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Résumé

Nous nous intéressons à l’utilisation d’approximations de rang faible pour ré-
duire le coût des solveurs creux directs multifrontaux. Parmi les différents formats
matriciels qui ont été proposés pour exploiter la propriété de rang faible dans les
solveurs multifrontaux, nous nous concentrons sur le format Block Low-Rank (BLR)
dont la simplicité et la flexibilité permettent de l’utiliser facilement dans un solveur
multifrontal algébrique et généraliste. Nous présentons différentes variantes de la
factorisation BLR, selon comment les mises à jour de rang faible sont effectuées, et
comment le pivotage numérique est géré.

D’abord, nous étudions la complexité théorique du format BLR qui, contraire-
ment à d’autres formats comme les formats hiérarchiques, était inconnue jusqu’à
présent. Nous prouvons que la complexité théorique de la factorisation multifron-
tale BLR est asymptotiquement inférieure à celle du solveur de rang plein. Nous
montrons ensuite comment les variantes BLR peuvent encore réduire cette com-
plexité. Nous étayons nos bornes de complexité par une étude expérimentale.

Après avoir montré que les solveurs multifrontaux BLR peuvent atteindre une
faible complexité, nous nous intéressons au problème de la convertir en gains de
performance réels sur les architectures modernes. Nous présentons d’abord une
factorisation BLR multithreadée, et analysons sa performance dans des environne-
ments multicœurs à mémoire partagée. Nous montrons que les variantes BLR sont
cruciales pour exploiter efficacement les machines multicœurs en améliorant l’in-
tensité arithmétique et la scalabilité de la factorisation. Nous considérons ensuite
à la factorisation BLR sur des architectures à mémoire distribuée.

Les algorithmes présentés dans cette thèse ont été implémentés dans le solveur
MUMPS. Nous illustrons l’utilisation de notre approche dans trois applications in-
dustrielles provenant des géosciences et de la mécanique des structures. Nous com-
parons également notre solveur avec STRUMPACK, basé sur des approximations
Hierarchically Semi-Separable. Nous concluons cette thèse en rapportant un résul-
tat sur un problème de très grande taille (130 millions d’inconnues) qui illustre les
futurs défis posés par le passage à l’échelle des solveurs multifrontaux BLR.

Mots-clés : matrices creuses, systèmes linéaires creux, méthodes directes, mé-
thode multifrontale, approximations de rang-faible, équations aux dérivées par-
tielles elliptiques, calcul haute performance, calcul parallèle.
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Abstract

We investigate the use of low-rank approximations to reduce the cost of sparse
direct multifrontal solvers. Among the different matrix representations that have
been proposed to exploit the low-rank property within multifrontal solvers, we fo-
cus on the Block Low-Rank (BLR) format whose simplicity and flexibility make it
easy to use in a general purpose, algebraic multifrontal solver. We present differ-
ent variants of the BLR factorization, depending on how the low-rank updates are
performed and on the constraints to handle numerical pivoting.

We first investigate the theoretical complexity of the BLR format which, unlike
other formats such as hierarchical ones, was previously unknown. We prove that
the theoretical complexity of the BLR multifrontal factorization is asymptotically
lower than that of the full-rank solver. We then show how the BLR variants can
further reduce that complexity. We provide an experimental study with numerical
results to support our complexity bounds.

After proving that BLR multifrontal solvers can achieve a low complexity, we
turn to the problem of translating that low complexity in actual performance gains
on modern architectures. We first present a multithreaded BLR factorization, and
analyze its performance in shared-memory multicore environments on a large set
of real-life problems. We put forward several algorithmic properties of the BLR
variants necessary to efficiently exploit multicore systems by improving the arith-
metic intensity and the scalability of the BLR factorization. We then move on to the
distributed-memory BLR factorization, for which additional challenges are identi-
fied and addressed.

The algorithms presented throughout this thesis have been implemented within
the MUMPS solver. We illustrate the use of our approach in three industrial ap-
plications coming from geosciences and structural mechanics. We also compare our
solver with the STRUMPACK package, based on Hierarchically Semi-Separable
approximations. We conclude this thesis by reporting results on a very large prob-
lem (130 millions of unknowns) which illustrates future challenges posed by BLR
multifrontal solvers at scale.

Keywords: sparse matrices, direct methods for linear systems, multifrontal method,
low-rank approximations, high-performance computing, parallel computing, partial
differential equations.
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Introduction

We are interested in efficiently computing the solution of a large sparse system
of linear equations:

Ax = b,

where A is a square sparse matrix of order n, and x and b are the unknown and
right-hand side vectors. This work focuses on the solution of this problem by means
of direct, factorization-based methods, and in particular based on the multifrontal
approach (Duff and Reid, 1983).

Direct methods are widely appreciated for their numerical robustness, reliabil-
ity, and ease of use. However, they are also characterized by their high computa-
tional complexity: for a three-dimensional problem, the total amount of computa-
tions and the memory consumption are proportional to O (n2) and O (n4/3), respec-
tively (George, 1973). This limits the scope of direct methods on very large problems
(matrices with hundreds of millions of unknowns).

The goal of this work is to reduce the cost of sparse direct solvers without sacri-
ficing their robustness, ease of use, and performance.

In numerous scientific applications, such as the solution of partial differential
equations, the matrices resulting from the discretization of the physical problem
have been shown to possess a low-rank property (Bebendorf, 2008): well-defined
off-diagonal blocks B of their Schur complements can be approximated by low-rank
products B̃ = XY T ≈ B. This property can be exploited in multifrontal solvers to
provide a substantial reduction of their complexity.

Several matrix representations, so-called low-rank formats, have been proposed
to exploit this property within multifrontal solvers. The H -matrix format (Hack-
busch, 1999), where H stands for hierarchical, has been widely studied in the
literature, as well as its variants H 2 (Börm, Grasedyck, and Hackbusch, 2003),
HSS (Xia, Chandrasekaran, Gu, and Li, 2010), and HODLR (Aminfar, Ambikasaran,
and Darve, 2016).

In the hierarchical framework, the matrix is hierarchically partitioned in order
to maximize the low-rank compression rate; this can lead to a theoretical com-
plexity of the multifrontal factorization as low as O (n), both in flops and memory
consumption. However, because of the hierarchical structure of the matrix, it is
not straightforward to use in a general purpose, algebraic “black-box” solver, and to
achieve high performance.
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Alternatively, a so-called Block Low-Rank (BLR) format has been put forward
by Amestoy et al. (2015a). In the BLR framework, the matrix is partitioned by
means of a flat, non-hierarchical blocking of the matrix. The simpler structure of
the BLR format makes it easy to use in a parallel, algebraic solver. Amestoy et al.
(2015a) also introduced the “standard” BLR factorization variant, which can easily
handle numerical pivoting, a critical feature often lacking in other low-rank solvers.

Despite these advantages, the BLR format was long dismissed due to its un-
known theoretical complexity; it was even conjectured it could asymptotically be-
have as the full-rank O (n2) solver. One of the main contributions of this thesis is
to investigate the complexity of the BLR format and to prove it is in fact asymp-
totically lower than O (n2). We show that the theory for hierarchical matrices does
not provide a satisfying result when applied to BLR matrices (thereby justifying
the initial pessimistic conjecture). We extend the theory to compute the theoretical
complexity of the BLR multifrontal factorization. We show that the standard BLR
variant of Amestoy et al. (2015a) can lead to a complexity as low as O (n5/3) in flops
and O (n logn) in memory. Furthermore, we introduce new BLR variants that can
further reduce the flop complexity, down to O (n4/3). We provide an experimental
study with numerical results to support our complexity bounds.

The modifications introduced by the BLR variants can be summarized as fol-
lows:

• During the factorization, the sum of many low-rank matrices arises in the up-
date of the trailing submatrix. We propose an algorithm, referred to as low-
rank updates accumulation and recompression (LUAR), to accumulate and
recompress these low-rank updates together, which improves both the perfor-
mance and complexity of the factorization. We provide an in-depth analysis
of the different recompression strategies that can be considered.

• The compression can be performed at different stages of the BLR factoriza-
tion. In the standard variant, it is performed relatively late so that only part
of the operations are accelerated. We propose novel variants that perform the
compression earlier in order to further reduce the complexity of the factoriza-
tion. In turn, we also show that special care has to be taken to maintain the
ability to perform numerical pivoting.

Our complexity analysis, together with the improvements brought by the BLR
variants, therefore shows that BLR multifrontal solvers can achieve a low theoret-
ical complexity.

However, achieving low complexity is only half the work necessary to tackle in-
creasingly large problems. In a context of rapidly evolving architectures, with an in-
creasing number of computational resources, translating the complexity reduction
into actual performance gains on modern architectures is a challenging problem.
We first present a multithreaded BLR factorization, and analyze its performance
in shared-memory multicore environments on a large set of problems coming from
a variety of real-life applications. We put forward several algorithmic properties of
the BLR variants necessary to efficiently exploit multicore systems by improving
the efficiency and scalability of the BLR factorization. We then present and ana-
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lyze the distributed-memory BLR factorization, for which additional challenges are
identified; some solutions are proposed.

The algorithms presented throughout this thesis have been implemented within
the MUMPS (Amestoy, Duff, Koster, and L’Excellent, 2001; Amestoy, Guermouche,
L’Excellent, and Pralet, 2006; Amestoy et al., 2011) solver. We illustrate the use of
our approach in three industrial applications coming from geosciences and struc-
tural mechanics. We also compare our solver with the STRUMPACK (Rouet, Li,
Ghysels, and Napov, 2016; Ghysels, Li, Rouet, Williams, and Napov, 2016; Ghy-
sels, Li, Gorman, and Rouet, 2017) solver, based on Hierarchically Semi-Separable
approximations, to shed light on the differences between these formats. We com-
pare their usage as accurate, high precision direct solvers and as more approxi-
mated, fast preconditioners coupled with an iterative solver. Finally, we conclude
this thesis by discussing some future challenges that await BLR solvers for large-
scale systems and applications. We propose some ways to tackle these challenges,
and illustrate them by reporting results on very large problems (up to 130 million
unknowns).

The remainder of this thesis is organized as follows. In order to make the thesis
self-contained, we provide in Chapter 1 general background on numerical linear al-
gebra, and more particularly sparse direct methods and low-rank approximations.
Chapter 2 is central to this work. It articulates and describes in detail the Block
Low-Rank (multifrontal) factorization in all its variants. Chapter 3 provides an in-
depth analysis of the different strategies to perform the so-called LUAR algorithm.
Chapter 4 deals with the theoretical aspects regarding the complexity of the BLR
factorization, including the proof that it is asymptotically lower than that of the
full-rank solver, together with its computation for all BLR variants and experimen-
tal validation. Chapters 5 and 6 focus on the performance of the BLR factorization
on shared-memory (multicore) and distributed-memory architectures, respectively.
The BLR variants are shown to improve the performance and scalability of the fac-
torization. Then, two real-life applications which benefit from BLR approximations
are studied in Chapter 7. Chapter 8 provides an experimental comparison with the
HSS solver STRUMPACK. Chapter 9 tackles the solution of a very large problem,
to show the remaining challenges of BLR solvers at scale. Finally, we conclude the
manuscript by summarizing the main results, and mentioning some perspectives.
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CHAPTER

1
General Background

We are interested in efficiently computing the solution of a large sparse system
of linear equations

Ax = b, (1.1)

where A is a square sparse matrix of order n, x is the unknown vector of size n, and
b is the right-hand side vector of size n.

In this chapter, we give an overview of existing methods to solve this prob-
lem and provide some background that will be useful throughout the thesis. To
achieve this objective, we consider an illustrative example (2D Poisson’s equation)
and guide the reader through the steps of its numerical solution.

1.1 An illustrative example: PDE solution
We consider the solution of Poisson’s equation in Rd

∆u = f , (1.2)

where ∆ is the Laplace operator, also noted ∇2, defined in two-dimensional Carte-
sian coordinates as

∆u(x, y)=
(
∂2

∂2x
+ ∂2

∂2 y

)
u(x, y). (1.3)

Equation (1.2) is therefore a partial derivative equation (PDE).
While this particular equation has an analytical solution on simple domains,

our purpose here is to use it as an illustrative example to describe the solution of
general PDEs on more complicated domains. We are thus interested in computing
an approximate solution restricted to a subset of discrete points. Two widely used
approaches to compute such a solution are the finite-difference method and the
finite-element method, which consist in discretizing the system using a subset of
points (or polygons) forming a mesh. In the following, we consider as an example
a finite-difference discretization resulting in a 5×5 regular equispaced mesh, as
illustrated in Figure 1.1.

The function u is then approximated by a vector, also noted u, whose elements
ui, j correspond to the value of u at the mesh points (i, j). f is similarly approxi-
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Figure 1.1 – Example of a 5-point stencil finite-difference mesh. The boundary
nodes (light color) are used to compute the approximate derivatives at the interior
nodes (dark color) but are not part of the linear system solved.

mated. The next step is to approximate the partial derivatives of u at a given point
(x, y) of the mesh, which can be done (using the central step method) as follows:

∂

∂x
u(x, y)≈ u(x+h, y)−u(x−h, y)

2h
, (1.4)

∂

∂y
u(x, y)≈ u(x, y+h)−u(x, y−h)

2h
, (1.5)

where the grid size is h in both dimensions, and should be taken small enough for
the approximation to be accurate. Furthermore, second order derivatives can also
be approximated:

∂2

∂2x
u(x, y)≈ u(x+h, y)−2u(x, y)+u(x−h, y)

h2 , (1.6)

∂2

∂2 y
u(x, y)≈ u(x, y+h)−2u(x, y)+u(x, y−h)

h2 . (1.7)

Therefore, the Laplacian operator in two dimensions can be approximated as

∆u(x, y)≈ 1
h2 (u(x+h, y)+u(x−h, y)+u(x, y+h)+u(x, y−h)−4u(x, y)) , (1.8)

which is known as the five-point stencil finite-difference method.
Equation (1.2) can thus be approximated by the discrete Poisson equation

(∆u)i, j = 1
h2 (ui+1, j +ui−1, j +ui, j+1 +ui, j−1 −4ui, j)= f i, j, (1.9)

where i, j ∈ [2; N−1]; N is the number of grid points. Note that the approximation of
the Laplacian at node (i, j) requires the values of u at the neighbors in all directions;
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therefore, in practice, the boundary nodes are prescribed and the equation is solved
for the interior points only. In this case, equation (1.9) is equivalent to a linear
system Au = g where u contains the interior nodes (shaded nodes in Figure 1.1),
and A is a block-diagonal matrix of order (N −2)2 of the form

A =



D −I 0 · · · 0

−I D . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . D −I
0 · · · 0 −I D

 , (1.10)

where I is the identity matrix of order N−2 and D, also of order N−2, is a tridiag-
onal matrix of the form

D =



4 −1 0 · · · 0

−1 4 . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . 4 −1
0 · · · 0 −1 4

 . (1.11)

Finally, we have g =−h2 f +β, where β contains the boundary nodes information.
For example, with the mesh of Figure 1.1, we obtain the following 9×9 linear

system:

4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 −1 0 −1 0 0 0
−1 0 −1 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 −1 0 −1
0 0 0 −1 0 −1 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4





u2,2
u3,2
u4,2
u2,3
u3,3
u4,3
u2,4
u3,4
u4,4


=



−h2 f2,2 +u1,2 +u2,1
−h2 f3,2 +u3,1
−h2 f4,2 +u5,2 +u4,1
−h2 f2,3 +u1,3
−h2 f3,3
−h2 f4,3 +u5,3
−h2 f2,4 +u1,4 +u2,5
−h2 f3,4 +u3,5
−h2 f4,4 +u5,4 +u4,5


. (1.12)

We now discuss how to solve such a linear system. There are two main classes
of methods:

• Iterative methods build a sequence of iterates xk which hopefully converges
towards the solution. Although they are relatively cheap in terms of memory
and computations, their effectiveness strongly depends on the ability to find
a good preconditioner to ensure convergence.

• Direct methods build a factorization of matrix A (e.g. A = LU or A = QR)
to solve directly the system. While they are commonly appreciated for their
numerical robustness, reliability, and ease of use, they are however also char-
acterized by a large amount of memory consumption and computations.

In this thesis, we focus on direct methods based on Gaussian elimination, i.e.
methods that factorize A as LU (general case), LDLT (symmetric indefinite case),
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or LLT (symmetric positive case, also known as Cholesky factorization). We first
give an overview of these methods in the dense case.

1.2 Dense LU or LDLT factorization

1.2.1 Factorization phase
1.2.1.1 Point, block, and tile algorithms

The LU factorization of a dense matrix A, described in Algorithm 1.1, computes
the decomposition A = LU , where L is unit lower triangular and U is upper trian-
gular. At each step k of the factorization, a new column of L and a new row of U are
computed; we call the diagonal entry Ak,k a pivot and step k its elimination.

Algorithm 1.1 Dense LU (Right-looking) factorization (without pivoting)
1: /* Input: a matrix A of order n */
2: for k = 1 to n−1 do
3: Ak+1:n,k ← Ak+1:n,k/Ak,k
4: Ak+1:n,k+1:n ← Ak+1:n,k+1:n − Ak+1:n,k Ak,k+1:n
5: end for

Algorithm 1.1 is referred to as in-place because A is overwritten during the
factorization: its lower triangular part is replaced by L and its upper triangular
part by U (note that its diagonal contains the diagonal of U , as the diagonal of L is
not explicitly stored since L i,i = 1).

Algorithm 1.1 is also referred to as point because the operations are performed
on single entries of the matrix. This means the factorization is mainly performed
with BLAS-2 operations. Its performance can be substantially improved (typically
by an order of magnitude) by using BLAS-3 operations instead, which increase data
locality (i.e. cache reuse) (Dongarra, Du Croz, Hammarling, and Duff, 1990). For
this purpose, the operations in Algorithm 1.1 can be reorganized to be performed
on blocks of entries: the resulting algorithm is referred to as block LU factorization
and is described in Algorithm 1.2.

Algorithm 1.2 Dense block LU (Right-looking) factorization (without pivoting)
1: /* Input: a p× p block matrix A of order n; A = [A i, j]i, j∈[1;p] */
2: for k = 1 to p do
3: Factor: Ak,k ← Lk,kUk,k
4: Solve (L): Ak+1:p,k ← Ak+1:p,kU−1

k,k
5: Solve (U): Ak,k+1:p ← L−1

k,k Ak,k+1:p
6: Update: Ak:p,k:p ← Ak:p,k:p − Ak:p,k Ak,k:p
7: end for

The block LU factorization consists of three main steps: Factor, Solve, and Up-
date. The Factor step is performed by means of a point LU factorization (Algo-
rithm 1.1). The Solve step takes the form of a triangular solve (so-called trsm
kernel), while the Update step takes the form of a matrix-matrix multiplication
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(so-called gemm kernel). Therefore, both the Solve and Update rely on BLAS-3 oper-
ations.

The LU factorization can be accelerated when several cores are available by
using multiple threads. Both the point and block LU factorizations, as implemented
for example in LAPACK (Anderson et al., 1995), solely rely on multithreaded BLAS
kernels to multithread the factorization.

More advanced versions (Buttari, Langou, Kurzak, and Dongarra, 2009; Quintana-
Ortí, Quintana-Ortí, Geijn, Zee, and Chan, 2009) of Algorithm 1.2 have been de-
signed by decomposing the matrix into tiles, where each tile is stored contiguously
in memory. This algorithm, described in Algorithm 1.3, is referred to as tile LU fac-
torization, and is usually associated with a task-based multithreading which fully
takes advantage of the independencies between computations. In this work, we
will not consider task-based factorizations but will discuss tile factorizations be-
cause they are the starting point to the BLR factorization algorithm, as explained
in Chapter 2.

Algorithm 1.3 Dense tile LU (Right-looking) factorization (without pivoting)
1: /* Input: a p× p tile matrix A of order n; A = [A i, j]i, j∈[1;p] */
2: for k = 1 to p do
3: Factor: Ak,k ← Lk,kUk,k
4: for i = k+1 to p do
5: Solve (L): A i,k ← A i,kU−1

k,k
6: Solve (U): Ak,i ← L−1

k,k Ak,i
7: end for
8: for i = k+1 to p do
9: for j = k+1 to p do

10: Update: A i, j ← A i, j − A i,k Ak, j
11: end for
12: end for
13: end for

For the sake of conciseness, in the following, we will present the algorithms in
their tile version. Unless otherwise specified, the discussion also applies to block
algorithms.

The number of operations and memory required to perform the LU factorization
is independent of the strategy used (point, block, or tile) and are equal to O (n3) and
O (n2), respectively (Golub and Van Loan, 2012).

1.2.1.2 Right-looking vs Left-looking factorization

Algorithms 1.1, 1.2, and 1.3 are referred to as right-looking, in the sense that as
soon as column k is eliminated, the entire trailing submatrix (columns to its “right”)
is updated. These algorithms can be rewritten in a left-looking form, where at each
step k, column k is updated using all the columns already computed (those at its
“left”) and then eliminated.

The tile version of the Left-looking LU factorization is provided in Algorithm 1.4
(the point and block versions are omitted for the sake of conciseness).
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Algorithm 1.4 Dense tile LU (Left-looking) factorization (without pivoting)
1: /* Input: a p× p block matrix A of order n; A = [A i, j]i, j∈[1;p] */
2: for k = 1 to p do
3: for i = k to p do
4: for j = 1 to k−1 do
5: Update (L): A i,k ← A i,k − A i, j A j,k
6: if i 6= k then
7: Update (U): Ak,i ← Ak,i − Ak, j A j,i
8: end if
9: end for

10: end for
11: Factor: Ak,k ← Lk,kUk,k
12: for i = k+1 to p do
13: Solve (L): A i,k ← A i,kU−1

k,k
14: Solve (U): Ak,i ← L−1

k,k Ak,i
15: end for
16: end for

1.2.1.3 Symmetric case

In the symmetric case, the matrix is decomposed in LDLT , where L is a unit
lower triangular matrix and D a diagonal (or block-diagonal, in the case of pivoting,
as explained in Section 1.2.4.1) matrix.

When the matrix is positive definite, it can even be decomposed in LLT (where L
is not unit anymore), commonly referred to as Cholesky factorization. In this thesis,
we will consider the more general symmetric indefinite case (LDLT decomposition),
but the discussion also applies to the Cholesky decomposition.

Algorithm 1.5 Dense tile LDLT (Right-looking) factorization (without pivoting)
1: /* Input: a p× p tile matrix A of order n; A = [A i, j]i, j∈[1;p] */
2: for k = 1 to p do
3: Factor: Ak,k ← Lk,kDk,kLT

k,k
4: for i = k+1 to p do
5: Solve: A i,k ← A i,kL−T

k,kD−1
k,k

6: end for
7: for i = k+1 to p do
8: for j = k+1 to i do
9: Update: A i, j ← A i, j − A i,k AT

j,k
10: end for
11: end for
12: end for

In Algorithm 1.5, we present the tile LDLT right-looking factorization. The
other versions (block, left-looking) are omitted for the sake of conciseness. The
algorithm is similar to the unsymmetric case, with the following differences:

• The Factor step is now a LDLT factorization.
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• The Solve step still takes the form of a triangular solve, but also involves a
column scaling with the inverse of D.

• Finally, since the matrix is symmetric, the Update is only done on its lower
triangular part. In particular, note that in Algorithm 1.5, for the sake of
simplicity, the diagonal blocks A i,i are entirely updated (line 9) when they are
in fact lower triangular, which would thus result in additional flops. One could
instead update each column one by one, minimizing the flops, but this would
be very inefficient as it consists of BLAS-1 operations. In practice, one can find
a compromise between flops and efficiency by further refining the diagonal
blocks, which leads to a “staircase” update, as illustrated in Figure 1.2.

Figure 1.2 – Part of the matrix that is updated in the symmetric case.

1.2.2 Solution phase
Once matrix A has been decomposed under the form LU , computing the solution

x of equation (1.1) is equivalent to solve two linear systems:

Ax = LUx = b ⇔
{

Ly= b
Ux = y , (1.13)

which can be achieved easily thanks to the special triangular form of L and U .
The two solves Ly = b and Ux = y are respectively referred to as forward elim-
ination and backward substitution. They are described, in their tile version, in
Algorithm 1.6.

Note that the right- and left-looking distinction also applies for the solution
phase. In Algorithm 1.6, the forward elimination is written in its right-looking
version while the backward substitution is written in left-looking.

1.2.3 Numerical stability
Once the solution x is computed, we may want to evaluate its quality. Indeed,

computations performed on computers are inexact: they are subject to roundoff
errors due to the floating-point representation of numbers. Thus, the linear system
that is solved is in fact

(A+δA)(x+δx)= b+δb, (1.14)
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Algorithm 1.6 Dense tile LU solution (without pivoting)
1: /* Input: a p× p block matrix A of order n; A = LU = [A i, j]i, j∈[1;p]; a vector b of size n.

*/
2: Forward elimination (Ly= b):
3: y← b
4: for j = 1 to p do
5: yj ← L−1

j, j yj
6: for i = j+1 to p do
7: yi ← L i, j yj
8: end for
9: end for

10: Backward substitution (Ux = y):
11: x ← y
12: for i = p to 1 by −1 do
13: for j = i+1 to p do
14: xi ←Ui, jx j
15: end for
16: xi ←U−1

i,i xi
17: end for

(a) Forward elimination (right-looking). (b) Backward substitution (left-looking).

Figure 1.3 – Dense triangular solution algorithms.

where δA, δx, and δb are called perturbations. An important aspect of any algo-
rithm is to evaluate its stability. An algorithm is said to be stable if small pertur-
bations lead to a small error. Of course, this depends on how the error is measured.

A first metric is to measure the quality of the computed solution x̃ with respect
to the exact solution x, referred to as the forward error metric:

‖x− x̃‖
‖x‖ . (1.15)

The forward error can be large for two reasons: an unstable algorithm; or an ill-
conditioned matrix (i.e., a matrix whose condition number is large), in which case
even a stable algorithm can lead to a poor forward error.
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To distinguish these two cases, Wilkinson (1963) introduces the backward error
metric, which measures the smallest perturbation δA such that x̃ is the exact solu-
tion of the perturbed system (A +δA)x̃ = b. The normwise backward error can be
evaluated as (Rigal and Gaches, 1967):

‖Ax̃−b‖
‖A‖‖x̃‖+‖b‖ , (1.16)

which does not depend on the conditioning of the system. Its componentwise ver-
sion (Oettli and Prager, 1964) will also be of interest in the sparse case:

max
i

|Ax̃−b|i
(|A||x̃|+ |b|)i

. (1.17)

In this manuscript, we will use the (normwise and componentwise) backward error
to measure the accuracy of our algorithms and we will refer to it as (normwise and
componentwise) scaled residual.

It turns out Algorithm 1.1 is not backward stable. In particular, at step k, if
Ak,k = 0, the algorithm will fail since line 3 would take the form of a division by zero.
Furthermore, even if Ak,k is not zero but is very small in amplitude, Algorithm 1.1
will lead to significant roundoff errors by creating too large off-diagonal entries in
column and row k. This is measured by the growth factor.

One can partially overcome this issue by preprocessing the original matrix, e.g.
by scaling the matrix so that its entries are of moderate amplitude (see Skeel (1979)
and, for the sparse case, Duff and Pralet (2005) and Knight, Ruiz, and Uçar (2014)).
However, in many cases, preprocessing strategies are not sufficient to ensure the
numerical stability of the algorithm. In these cases, we need to perform numerical
pivoting.

1.2.4 Numerical pivoting

The objective of numerical pivoting is to limit the growth factor by avoiding
small pivots. The most conservative option is thus to select, at each step k, the
entry A i, j in the trailing submatrix of maximal amplitude:

A i, j = max
i′, j′∈[k;n]

|A i′, j′ |, (1.18)

and to permute row k with row i and column k with column j. This is referred to
as complete pivoting (Wilkinson, 1961). It is however rarely used since it implies a
significant amount of searching and swapping which can degrade the performance
of the factorization. A more popular strategy, known as row or column partial pivot-
ing, consists in restricting the search of the pivot on row k or column k, respectively:

Ak, j = max
j′∈[k;n]

|Ak, j′ | or A i,k = max
i′∈[k;n]

|A i′,k|, (1.19)

and permute column k with column j, or row k with row i, respectively. In the
literature, as well as in reference implementations such as LAPACK (Anderson et
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al., 1995), column partial pivoting is often considered, and we will thus also consider
it in the rest of this section, for the sake of clarity.

Partial pivoting can still lead to significant amounts of swapping and is there-
fore sometimes relaxed by choosing a threshold τ and accepting some pivot A j,k
if

|A j,k| ≥ τ max
i′∈[k;n]

|A i′,k|. (1.20)

This strategy, referred to as threshold partial pivoting (Duff, Erisman, and Reid,
1986), is often enough to ensure the stability of the factorization, typically with a
threshold of the order τ = 0.1 or τ = 0.01. It is of particular interest in the sparse
case as explained in Section 1.3.

1.2.4.1 Symmetric case

In the symmetric case, special care must be taken to avoid losing the symmetry
of A by considering symmetric permutations only. However, in general, it is not
always possible to find a safe pivot with symmetric permutations only. For example,
consider the following symmetric matrix:

A =
 0 2 1

2 0 2
1 2 0

 .

At step 1, A1,1 = 0 is not an acceptable pivot. Thus row 1 must be exchanged with
row 2 or 3. In both cases, the symmetry of A is lost. For example, if rows 1 and 2
are exchanged, the resulting matrix is 2 0 2

0 2 1
1 2 0

 ,

which is not symmetric anymore, since A1,3 6= A3,1 (and A2,3 6= A3,2).
To ensure the stability of the factorization while maintaining the symmetry,

two-by-two pivots (noted 2×2 pivots hereinafter) must be used (Bunch and Parlett,
1971). For example, the previous matrix can be factored as

A = LDLT =
 1 0 0

0 1 0
1 1

2 1

 0 2 0
2 0 0
0 0 −2

 1 0 1
0 1 1

2
0 0 1

 ,

where D is made of one 2×2 pivot,
(

0 2
2 0

)
, and one 1×1 pivot, −2. Thus D is not

diagonal anymore but block-diagonal.
Many strategies have been proposed in the literature to search and choose 2×2

pivots. The Bunch-Parlett algorithm (Bunch and Parlett, 1971) uses a complete piv-
oting strategy to scan the entire trailing submatrix at each step to search the best
possible 2×2 pivot; it is a backward stable algorithm and also leads to bounded en-
tries in L, but it is also expensive and requires a point factorization to be used. On
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the contrary, the Bunch-Kaufman (Bunch and Kaufman, 1977) algorithm is based
on partial pivoting, scanning at most two columns/rows at each step, which makes
it cheaper and allows the use of block or tile factorizations; it is a backward sta-
ble algorithm but may lead to unbounded entries in L. For this reason, Ashcraft,
Grimes, and Lewis (1998) propose two variants in between the previous two algo-
rithms, the bounded Bunch-Kaufman and the fast Bunch-Parlett algorithms, which
trade off some of Bunch-Kaufman’s speed to make the entries in L bounded. The
extension of these algorithms to the sparse case is discussed in Section 1.3.2.6.

Note that all previously mentioned strategies seek to decompose A as LDLT .
An alternative LTLT decomposition, where T is a tridiagonal matrix, has been
proposed by Parlett and Reid (1970) and Aasen (1971). We do not discuss it in this
work.

1.2.4.2 LU and LDLT factorization algorithm with partial pivoting

To perform numerical pivoting during the LU or LDLT factorization, the algo-
rithms presented above (e.g. Algorithms 1.3 and 1.5) must be modified. Indeed,
in the block or tile versions, both the Solve and the Update step are performed on
blocks/tiles to use BLAS-3 operations. However, this requires the Solve step to be
performed after an entire block/tile has been factored, and therefore numerical piv-
oting can only be performed inside the diagonal block/tile. This strategy is referred
to as restricted pivoting, and is discussed in the sparse context in Section 1.3.2.6.

To perform standard, non-restricted partial pivoting, each column of the cur-
rent panel must be updated each time a new pivot is eliminated. Therefore, the
Factor and Solve steps must be merged together in a Factor+Solve step. This step
is described in Algorithm 1.8, and the resulting algorithm in Algorithm 1.7.

Algorithm 1.7 Dense tile LU factorization (with pivoting)
1: /* Input: a p× p tile matrix A of order n; A = [A i, j]i, j∈[1;p] */
2: for k = 1 to p do
3: Factor+Solve: Ak:p,k ← Lk:p,kUk,k
4: for i = k+1 to p do
5: Solve (U): Ak,i ← L−1

k,k Ak,i
6: end for
7: for i = k+1 to p do
8: for j = k+1 to p do
9: Update: A i, j ← A i, j − A i,k Ak, j

10: end for
11: end for
12: end for

As a consequence, while the Update step remains in BLAS-3, the Solve step
is now based on BLAS-2 operations instead. This leads to two contradictory objec-
tives: on one hand, the panel size should be small so as to reduce the part of BLAS-2
computations; on the other hand, it should be big enough so that the Update opera-
tion is of high granularity. To find a good compromise between these two objectives,
a possible strategy is to use double panels (i.e. two levels of blocking): the (small)
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Algorithm 1.8 Factor+Solve step (unsymmetric case)
1: /* Input: a panel A with nr rows and nc columns */
2: for k = 1 to nc do
3: i ← argmaxi′∈[k;nr] |A i′,k|
4: Swap rows k and i
5: Ak+1:nr ,k ← Ak+1:nr ,k/Ak,k
6: Ak+1:nr ,k+1:nc ← Ak+1:nr ,k+1:nc − Ak+1:nr ,k Ak,k+1:nc

7: end for

inner panels are factored in BLAS-2; once an inner panel is fully factored, the cor-
responding update is applied inside the current outer panel (which corresponds to
the original block/tile panel); once the (big) outer panel is factored, the entire sub-
trailing matrix can be updated with a high granularity operation. This strategy can
be generalized to a greater number of levels (Gustavson, 1997). This strategy is not
presented in Algorithm 1.8 for the sake of simplicity.

1.2.4.3 Swapping strategy: LINPACK vs LAPACK style

There are two ways to perform the row swaps, commonly referred to as LIN-
PACK and LAPACK styles of pivoting. At step k, assume A i,k has been selected as
pivot: row k must then be swapped with row i.

• In LINPACK (Dongarra, Bunch, Moler, and Stewart, 1979), only Ak,k:n and
A i,k:n are swapped, i.e. the subpart of the rows that is yet to be factored. This
results in a series of Gauss transformations interlaced with matrix permuta-
tions that must be applied in the same order during the solution phase.

• In LAPACK (Anderson et al., 1995), the entire rows Ak,1:n and A i,1:n, includ-
ing the already computed factors, are swapped. This results in a series of
transformations that can be expressed as P A = LU .

• Finally, the two styles can be combined into a hybrid style in the case of a
blocked factorization, where the LAPACK style is used inside the block while
the LINPACK style is used outside. This option is of particular interest when
only the current panel is accessible (e.g., in the context of an out-of-core exe-
cution (Agullo, Guermouche, and L’Excellent, 2010), or, as we will discuss in
Sections 2.2.3 and 9.2, in the context of the BLR solution phase).

These three different styles are illustrated in Figures 1.4 and 1.5 in the unsymmet-
ric and symmetric cases, respectively.

In the dense case, the same number of permutations is performed in any style.
The LINPACK style does not allow the solution phase to be performed using BLAS-
3 kernels and is thus generally avoided. The LAPACK style and the hybrid style
(with a big enough block size) can both exploit BLAS-3 kernels and can be expected
to perform comparably. This does not remain true in the sparse case, as we will
explain in Section 1.3.2.7.
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(a) LINPACK style
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(b) LAPACK style
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(c) Hybrid style

Figure 1.4 – LINPACK and LAPACK pivoting styles (unsymmetric case).

×
×

(a) LINPACK style

×
×

(b) LAPACK style

×
×

(c) Hybrid style

Figure 1.5 – LINPACK and LAPACK pivoting styles (symmetric case).

1.3 Exploiting structural sparsity: the
multifrontal method

In this section, we provide background on sparse direct methods and in partic-
ular on the multifrontal method.

Let us first go back to our illustrative example: in the linear system of equa-
tion (1.12), the matrix A is sparse, i.e. has many zero entries. These zeros come
from the independence between grid points not directly connected in the mesh (Fig-
ure 1.1). For example, u2,2 and u4,2 are not directly connected and therefore A1,3
and A3,1 are zero entries. This property is referred to as structural sparsity, as
opposed to data sparsity which will be the object of Section 1.4.

If the dense algorithms presented in the previous section are used to compute
the factorization of a sparse matrix, its structural sparsity is not taken into account
to reduce the amount of computations and memory to store the factors. However,
this is not immediate to achieve because the sparsity pattern of the original matrix
differs from that of the factors. Specifically, the sparsity pattern of the original
matrix is included in that of the factors (assuming numerical cancellations are not
taken into account), i.e., some new entries in the factors become nonzeros. Indeed,
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consider the update operation

A i, j ← A i, j − A i,k Ak, j.

If the original entry A i, j is zero but both A i,k and Ak, j are nonzeros, then A i, j will
also be nonzero in the factors. This property is referred to as fill-in and A i, j is said
to be a filled entry.

Therefore, a new phase, referred to as analysis phase is necessary to analyze the
matrix to predict the sparsity pattern of the factors (by means of a symbolic factor-
ization) and perform other important preprocessing operations such as reordering
the unknowns.

1.3.1 The analysis phase
1.3.1.1 Adjacency graph

Graph formalism is introduced to analyze the properties of a sparse matrix A.
The sparsity pattern of any sparse matrix A can be modeled by a so-called adjacency
graph G (A).

Definition 1.1 (Adjacency graph). The adjacency graph G (A) of a matrix A of order
n is a graph (V ,E) such that:

• V is a set of n vertices, where vertex i is associated with variable i.

• There is an edge (i, j) ∈ E iff A i, j 6= 0 and i 6= j.

If A is structurally symmetric (i.e. if A i, j 6= 0 iff A j,i 6= 0), then G (A) is an undi-
rected graph. We assume for the moment that the matrix is structurally symmetric
and thus its adjacency graph undirected. We discuss the generalization to struc-
turally unsymmetric matrices in Section 1.3.1.5.

In our illustrative example, the adjacency graph corresponds to the mesh formed
by the interior points in Figure 1.1, i.e. the graph in Figure 1.6a.

1.3.1.2 Symbolic factorization

The symbolic factorization consists in simulating the elimination of the vari-
ables that takes place during the numerical factorization to predict the fill-in that
will occur. When variable k is eliminated, the update operation

A i, j ← A i, j − A i,k Ak, j

will fill any entry A i, j such that both A i,k and Ak, j are nonzeros, as said before.
In terms of graph, this means that when vertex k is eliminated, all its neighbors
become interconnected, i.e. a clique is formed. For example, in Figure 1.6a, if vertex
1 is eliminated, vertices 2 and 4 are interconnected, i.e. an edge (2,4) must be added
(as done in red in Figure 1.6b).

After the elimination of variable k, the next step in the numerical factorization
is to factorize the trailing submatrix Ak+1:n,k+1:n, and therefore, in the symbolic
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factorization, vertex k is removed from the graph as well as all its edges. The
process is then applied again to the resulting graph until no vertices are left.

We define the filled graph G (F) as the adjacency graph where all edges that
were created during the symbolic factorization have been added. On our illustrative
example, this is illustrated in Figure 1.6b. Since the new edges correspond to filled
entries, the filled graph is the adjacency graph of the factors F = L +U (or F =
L+LT). The factor sparsity pattern on our example is reported in Figure 1.6c.
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(c) Sparsity pattern of the factors
(original nonzeros are in gray, fill-
in in red, zeros in white).

Figure 1.6 – Symbolic factorization: predicting the sparsity pattern of the factors.

1.3.1.3 Influence of the ordering on the fill-in

We now show that the order in which the variables are eliminated, referred to
as ordering, can significantly influence the fill-in. Obviously, we want to minimize
the amount of fill-in, since it increases the computational cost to factorize and store
the matrix; thus, finding a good ordering is a crucial issue to make sparse direct
methods effective.

However, there is no general rule on how to compute a good ordering. Finding
the ordering that minimizes the fill-in is an NP-complete problem (Yannakakis,
1981). Several heuristic strategies exist, whose effectiveness is matrix-dependent.
We can distinguish:

• Local heuristics, that successively eliminate vertices in an order depending
on some local criterion: for example, the vertex of minimum degree (such as
AMD (Amestoy, Davis, and Duff, 1996) or MMD (Liu, 1985)), or the vertex
that produces the minimum fill (such as AMF (Ng and Raghavan, 1999) or
MMF (Rothberg and Eisenstat, 1998)).

• Global heuristics, that recursively partition the graph into subgraphs, such
as nested dissection (ND) (George, 1973).

• Hybrid heuristics, which first use a global heuristic to partition the graph,
and then apply local heuristics to each subgraph. This is the strategy imple-
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mented in several partitioning libraries, such as METIS (Karypis and Kumar,
1998) and SCOTCH (Pellegrini, 2007).

Let us briefly review the nested dissection ordering, which is one of the most
widely used and that we will use in this work (building it geometrically or, more
commonly, algebraically, with one of the previously cited partitioning libraries).

Nested dissection divides the adjacency graph into a given number s of domain
subgraphs separated by a separator subgraph. The vertices of a given domain are
only connected to other vertices in the same domain or in the separator, but not
to other domains (Rose, Tarjan, and Lueker, 1976). This way, the elimination of
a vertex will not create any fill-in in the other domains. In general, we want to
choose the separator so that the size of the domains is as balanced as possible and
the size of the separator is as small as possible. The process is then recursively
applied to the s domain subgraphs until the domain subgraphs become too small to
be subdivided again; this generates a separator tree.

We illustrate this process in Figure 1.7a on our illustrative example with a
nested dissection ordering with s = 2, i.e. recursive bisection. The top level separa-
tor is in red, while the second level separators are in blue. The remaining nodes are
the third level subdomains. This generates an associated separator tree reported
in Figure 1.7b.
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the nested dissection on
the adjacency graph.
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(b) Associated separator tree.

Figure 1.7 – Nested dissection on example mesh.

We can then reorder the vertices using a topological order on the separator tree
(i.e., the nodes in any subtree are numbered consecutively). Vertices belonging to
the same separator are ordered arbitrarily. In Figure 1.8a and 1.8b, we report the
corresponding filled graph and factor sparsity pattern obtained by performing the
symbolic factorization on the reordered matrix. Compared to the natural ordering
used in Figure 1.6, the fill-in has decreased from 16 to 10 filled entries, which is
a considerable improvement compared to the number of nonzeros in the original
matrix.

As said before, the elimination of vertex in a given domain does not affect ver-
tices in other domains. A key consequence of this is that vertices in different
branches of the separator tree could be eliminated independently, and thus, con-
currently. The object of the next section is to generalize this concept to general
orderings.
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(b) Sparsity pattern of the factors
(original nonzeros are in gray, fill-
in in red, zeros in white).

Figure 1.8 – Symbolic factorization with nested dissection reordering.

1.3.1.4 Elimination tree

First, we formalize the concept of dependency between vertices. We want to
express the fact that j depends on i iff the elimination of i modifies column j.

Definition 1.2 (Vertex dependency). Let i, j be two vertices such that i < j. Vertex j
depends on i (noted i → j) iff ∃k ∈ [i+1;n] such that Lk,iUi, j 6= 0.

Indeed, in that case, the update Ak, j ← Ak, j − Lk,iUi, j will fill the entry Ak, j
and thus modify column j. Furthermore, in the structurally symmetric case, it is
straightforward to prove that this definition simplifies as follows.

Definition 1.3 (Vertex dependency for structurally symmetric matrices). Let i, j
be two vertices such that i < j. Vertex j depends on i (noted i → j) iff L j,i 6= 0 (or
equivalently Ui, j 6= 0).

Therefore, the vertex dependencies are characterized by the sparsity pattern of
the factors, and thus by the filled graph G (F). However, the dependency is not a
symmetric relation: a vertex j can only depend on vertices eliminated before it, i.e.
i → j implies i < j. Therefore, we introduce the directed version of the filled graph.

Definition 1.4 (Directed filled graph). Let the undirected filled graph be G (F) =
(V ,E). Then, the directed filled graph

−→
G (F) is the graph (

−→
V ,

−→
E ) such that:

•
−→
V =V , i.e., both graphs have the same vertices;

• For all edges (i, j) ∈ E, if i < j then (i, j) ∈ −→
E else ( j, i) ∈ −→

E , i.e., the edges of E
have been directed following the elimination order.

The directed filled graph thus characterizes the dependencies between vertices.
By definition, (i, j) ∈−→

E ⇒ i < j and therefore it cannot have any cycle. It is therefore
a directed acyclic graph (DAG) (Aho, Hopcroft, and Ullman, 1983). The directed
filled graph on our example is given on Figure 1.9a.
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Figure 1.9 – Construction of the elimination tree.

Furthermore, it contains many redundant dependencies: in our example, 1 → 7
can be obtained from 1 → 3 and 3 → 7. We can thus obtain a more compact repre-
sentation of the vertex dependencies by removing the redundant dependencies, i.e.,
by computing the transitive reduction T(

−→
G (F)) (which is unique for DAGs (Aho,

Garey, and Ullman, 1972)) of
−→
G (F). This is illustrated on Figure 1.9b.

T(
−→
G (F)) is obviously still a DAG. The key observation at the foundation of

sparse direct methods is that its undirected version T(G (F)) is still acyclic, i.e. it is
actually a spanning tree of the directed filled graph, as illustrated in Figure 1.9c.
This tree is referred to as elimination tree (Schreiber, 1982) and we note it E .

We briefly sketch the proof that E = T(G (F)) is a tree. We first prove the follow-
ing lemma.

Lemma 1.1. Let (i, j,k) ∈ −→
V 3 be three vertices of the directed filled graph

−→
G (F) of a

matrix A. If i < j < k, i → j, and i → k, then j → k.

Proof. The proof comes from the fill-in phenomenon and the structural symmetry of
the matrix. By definition of i → j, it holds L j,i 6= 0, which by symmetry is equivalent
to Ui, j 6= 0; and since i → k, it also holds Lk,i 6= 0. Therefore, Lk,iUi, j 6= 0 which fills
Lk, j and thus j → k.

We can now prove that E is a tree.

Theorem 1.1 (Existence of the elimination tree). The undirected transitive reduc-
tion E = T(G (F)) of the directed filled graph T(

−→
G (F)) is a tree (if the matrix is irre-

ducible, otherwise it is a forest).

Proof. We have to prove there is no cycle (directed or undirected) in E . As said
before, there are no directed cycles since it is a DAG. By reductio ad absurdum: let
(i, j,k) be three vertices forming a cycle with i < j < k, i.e. i → j and i → k. Then
Lemma 1.1 implies j → k. Therefore i → k is reduced to (i → j, j → k) and cannot be
part of E . This is a contradiction.
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The elimination tree is a key structure in sparse direct methods because it is
a compact representation of the dependencies, containing the order in which the
variables must be eliminated, as well as the variables that can be eliminated inde-
pendently and thus concurrently.

Before describing how it is used to schedule the computations done during the
numerical factorization, let us first discuss the case of structurally unsymmetric
matrices.

1.3.1.5 Generalization to structurally unsymmetric matrices

So far, we have been assuming the matrix is structurally symmetric, which is
in particular a key element of the proof of Lemma 1.1 and thus Theorem 1.1. In
fact, for unsymmetric matrices, the transitive reduction of the directed filled graph
is not a tree but a DAG. A possible way to overcome this issue is to consider the
symmetrized structure of the matrix instead, i.e. work on A + AT . This approach
was suggested by Duff and Reid (1984); it is used for example in MUMPS or Su-
perLU_Dist (Li and Demmel, 2003), and is the one we will consider in this thesis.

Note there are other ways to deal with unsymmetric matrices, such as a gener-
alization of the elimination tree structure that was formalized by Gilbert and Liu
(1993) and Eisenstat and Liu (2005), and used for instance in UMFPACK (Davis
and Duff, 1997), SuperLU (Demmel, Eisenstat, Gilbert, Li, and Liu, 1999), WSMP (Gupta,
2002), or the unsymmetrized MA41 (Amestoy and Puglisi, 2002).

In the following, we will assume we are working on the symmetrized structure
of the matrix A+ AT .

1.3.2 The multifrontal method

We now describe how the elimination tree structure is used to drive the com-
putations performed during the numerical factorization, and focus in particular on
the multifrontal method.

1.3.2.1 Right-looking, left-looking and multifrontal factorization

The factorization phase consists in performing two operations on each node of
the tree: the elimination of the node variable i, and the computation of the con-
tributions this elimination yields, which are used to update all ancestor nodes j
such that i → j. In our example, when node 1 is eliminated, nodes 3 and 7 must be
updated; when node 3 is eliminated, nodes 7, 8, and 9 are updated.

As said before, the tree parallelism offers some flexibility to schedule the node
eliminations. Furthermore, because the updates may concern ancestors much higher
up in the tree than the node being eliminated, we have some more freedom to sched-
ule when the updates are actually performed. Just as in the dense case, we can
distinguish two approaches:

• In the right-looking approach, the updates are performed as soon as possible:
after the elimination of i, all ancestors j such that i → j are updated.
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• In the left-looking approach, the updates are performed as late as possible:
all the contributions coming from descendants i such that i → j are applied
just before the elimination of j.

This is illustrated in Figures 1.10a and 1.10b. In parallel contexts, these right- and
left-looking approaches are also referred to as fan-out and fan-in, respectively.
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(a) Right-looking approach.
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(b) Left-looking approach.
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(c) Multifrontal approach.

Figure 1.10 – Comparison on the right-looking, left-looking, and multifrontal ap-
proaches. The red arrows indicate the contributions sent at node 7, either before
(left-looking and multifrontal) or after (right-looking) its elimination.

Therefore, the updates in both the right- and left-looking approaches are based
on the variable dependencies and thus on the directed filled graph. Instead, the
multifrontal method (Duff and Reid, 1983; Liu, 1992) is directly based on the more
compact dependencies represented by the elimination tree, thanks to the follow-
ing observation: if i → j, then node j is an ancestor of node i in the elimination
tree. Therefore, after the elimination of node i, its contribution to j is immediately
computed but does not need to be applied directly; instead, it is carried along the
tree, from parent to parent, until node j is reached and is ready to be eliminated.
This is illustrated in Figure 1.10c, where contributions of nodes 3 and 6 to nodes 8
and 9 are carried through node 7. We describe the involved algorithms using our
illustrative example.

We associate with each node of the tree a dense matrix called frontal matrix or
just front, as illustrated on Figure 1.11. This front is formed of the node variable to
be eliminated as well as all variables this elimination contributes to. For example,
the front associated with node 1, noted F1, is formed of variables 1, 3, and 7, because
1 → 3 and 1 → 7. Similarly, the fronts F2 and F3, associated with node 2 and 3 are
formed of variables 2, 3, and 8, and variables 3, 7, 8, and 9, respectively,

The elimination of variable 1 consists in a partial factorization of F1. It yields a
2×2 Schur complement containing the contributions to variables 3 and 7. It is for
this reason called contribution block (CB) and noted CB1. A similar contribution
block CB2, containing contributions to variables 3 and 8, is computed during the
elimination of variable 2. Once both fronts F1 and F2 have been factorized, their
contribution blocks CB1 and CB2 are passed to the parent front F3. One more
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Figure 1.11 – Three of the frontal matrices involved in the factorization of matrix
A.

operation, referred to as assembly, must be performed before the factorization of F3
can begin.

The assembly of F3 consists in summing together all updates related to its vari-
ables. Specifically:

• Variable 3 is updated with contributions from both CBs. These are summed
together with the corresponding values of the original matrix. Then, all con-
tributions related to variable 3 have been summed, and for this reason vari-
able 3 is said to be fully-summed.

• Similarly, the other variables of F3, 7, 8 and 9, are computed: 7 and 8 are
equal to their corresponding contribution in CB1 and CB2, respectively, while
variable 9 is simply initialized to zero. These variables are called non fully-
summed, because there are still some contributions left to sum. For instance,
variable 7 also receives a contribution from the elimination of variables 3, 4,
and 6.

The assembly of F3 can thus be written as follows:

F3 = A3 l↔ CB1 l↔ CB2, (1.21)

where A3 contains the entries of the original matrix corresponding to variable 3,
and l↔ denotes the extend-add operation.

The process then continues until all the fronts have been treated.

1.3.2.2 Supernodes and assembly tree

In practice, the nodes of the elimination tree are grouped together when their
associated variables have the same sparsity structure in the reduced matrix: nodes
i and j can be grouped if (i → k) ⇔ ( j → k) for all k > i (assuming i < j). This is
referred to as amalgamation and the resulting nodes are called supernodes. The
resulting tree is then known as the assembly tree. This allows the fronts to have
more than one fully-summed variable and thus their elimination takes the form of a
partial dense factorization. This allows the computations to be performed efficiently
by being based on the dense linear algebra kernels described in Section 1.2.
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For example, in Figure 1.9c, nodes 7, 8, and 9 have the same sparsity structure
after the elimination of variables 1 through 6 and can thus be amalgamated into a
single supernode; the resulting assembly tree is shown in Figure 1.12.

Note that even if the amalgamated nodes are called supernodes, supernodal
methods usually refer to the right-looking and left-looking approaches described
earlier, rather than multifrontal methods.
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Figure 1.12 – Assembly tree resulting from the amalgamation of nodes 7,8,9.

It can sometimes also be interesting to amalgamate variables that have differ-
ent but similar sparsity structure. In this case, the amalgamation increases the
computational cost of the factorization but also improves its efficiency.

1.3.2.3 Theoretical complexity

In the context of a nested dissection ordering on a regular grid, the theoretical
complexity of the multifrontal method can be easily computed as it is directly de-
rived from the dense complexities (George, 1973). For the sake of readability, and
to simplify the following computations, we assume that at each level the domains
are divided in 2d, where d is the dimension number (i.e. cross-shaped separators
in 2D). The asymptotical theoretical complexity would be the same with a recursive
bisection ordering.

We consider a sparse matrix A of order n arising from a discretized mesh of Nd

points, where d denotes the dimension; we only consider the 2D and 3D cases (i.e.
d = 2 and d = 3). The number of operations for the multifrontal factorization of A
can be computed as

CMF(N)=
L∑
`=0

C`(N)=
L∑
`=0

(2d)`C ((
N
2`

)d−1), (1.22)
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where C`(N) is the cost of factorizing all the fronts on the `-th level. At level `,
there are (2d)` fronts of order m` = ( N

2` )d−1, and thus C`(N) = (2d)`C (m`). Since
the number of operations to factorize a dense matrix of order m is O (m3), we obtain

CMF(N)=O (N3(d−1)
L∑
`=0

2(3−2d)`)=O (N3(d−1)), (1.23)

because the sum term is a geometric series of common ratio 23−2d < 1.
The factor size complexity (i.e. the memory required to store the factors) can

similarly be computed.
We provide the flops and factor size complexities in the 2D and 3D cases in

Table 1.1.

d CMF(n) MMF(n)

2D O (n3/2) O (n logn)
3D O (n2) O (n4/3)

Table 1.1 – Theoretical complexity for the multifrontal factorization of a sparse
matrix of order n. CMF(n): flop complexity; MMF(n): factor size complexity.

1.3.2.4 Parallelism in the multifrontal factorization

We briefly discuss possible ways to parallelize the multifrontal factorization.
Two sources of parallelism can be distinguished:

• As said before, different branches of the elimination/assembly tree are inde-
pendent; they can thus be traversed concurrently. This is referred to as tree
parallelism.

• For large enough fronts, their partial factorization may also be performed on
several threads/processes. This is referred to as node parallelism.

Parallelism issues will be central in Chapters 5 (shared-memory OpenMP par-
allelism) and 6 (distributed-memory MPI parallelism); we defer algorithmic details
about parallelism to these chapters.

1.3.2.5 Memory management

As said before, in the multifrontal method, the contributions from one supernode
to another are not applied directly but rather stored in a temporary workspace as
a contribution block. As a consequence, two types of memories must be managed
during the multifrontal factorization:

• The factors memory, which stores the LU factors as they are being computed;

• The active memory, which stores the contribution blocks waiting to be assem-
bled (the CB memory), as well as the current fronts being assembled/factorized
(the so-called active fronts).
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The factors memory is simple to analyze since it increases monotonically as the
factorization progresses. However, the active memory has a more complex behavior
and strongly depends on the order in which the fronts are factorized. Therefore,
the total memory consumption (the sum of the two types of memory) is also not
monotonic and depends on the ordering; its maximal value over time is referred to
as memory peak and represents the total amount of storage required to perform the
numerical factorization.

In a sequential context, if the assembly tree is traversed in a postorder, then the
CB memory behaves like a stack. This property is lost in parallel since the tree is
not traversed in a postorder anymore.

1.3.2.6 Numerical pivoting in the multifrontal method

We now discuss how to adapt the pivoting strategies discussed in Section 1.2.4
to the multifrontal case.

Postponed and delayed pivots Due to the special structure of the frontal ma-
trices, the Factor+Solve algorithm described in Algorithm 1.8 must be adapted, as
explained in the following. Consider the factorization of a frontal matrix F of order
n = nfs +nnfs, where nfs and nnfs denote its number of fully-summed and non fully-
summed variables, respectively. At step k of the partial factorization of F, the non
fully-summed variables Anfs+1:n,k cannot be selected as pivots since they are not
ready to be eliminated. Thus, the search for a pivot candidate should be restricted
to the fully-summed variables Ak:nfs,k. However, the quality of the pivot candidates
should still be assessed with respect to the entire column Ak:n,k, including the non
fully-summed variables.

Therefore, contrarily to the dense case, it is possible that none of the pivot can-
didates on the current column are acceptable (due to a large non fully-summed
variable). In that case, the elimination of pivot k must be postponed until a large
enough fully-summed variable can be found, and we move on to try to eliminate
pivot k+1. At the end of the partial factorization of F, there may still be some piv-
ots that cannot be eliminated; they are referred to as delayed pivots and are passed
to the parent front, where we will again try to eliminate them, until reaching the
root front where all variables are fully-summed and can thus be eliminated.

Note that in the literature, the terms “postponed” and “delayed” are often inter-
changeable. In this manuscript, for the sake of clarity, we will exclusively refer to
pivots whose elimination is deferred to later in the same front as “postponed”, and
those whose elimination is deferred to later in an ancestor front as “delayed”.

Modified algorithm The Factor+Solve algorithm adapted to unsymmetric frontal
matrices is presented in Algorithm 1.9. At step k, we try to eliminate a new pivot.
We loop until an acceptable pivot j is found, which satisfies the threshold partial
pivoting condition |A ifs, j| ≥ τ|A i, j|. The algorithm terminates when all nc pivots
have been eliminated, or when no more pivot candidates are left, in which case the
remaining nc −k+1 pivots are postponed.
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Algorithm 1.9 Factor+Solve step adapted to frontal matrices (unsymmetric case)
1: /* Input: a panel A with nr = nfs +nnfs rows and nc columns. */
2: for k = 1 to nc do
3: j ← k−1
4: /* Loop until an acceptable pivot is found, or until no pivot candidates are left. */
5: repeat
6: j ← j+1
7: if j > nc then
8: /* No pivot candidates left, exit. */
9: go to 19

10: end if
11: i ← argmaxi′∈[k;nr] |A i′, j|
12: ifs ← argmaxi′∈[k;nfs] |A i′, j|
13: until |A ifs, j| ≥ τ|A i, j|
14: /* Pivot candidate has been chosen in column j: swap it with current column k. */
15: Swap columns k and j and rows k and ifs
16: Ak+1:nr ,k ← Ak+1:nr ,k/Ak,k
17: Ak+1:nr ,k+1:nc ← Ak+1:nr ,k+1:nc − Ak+1:nr ,k Ak,k+1:nc

18: end for
19: /* npp = nc −k+1 is the number of postponed pivots. */

The symmetric case In the symmetric case, the algorithms discussed in Sec-
tion 1.2.4.1 must be adapted to the sparse case. Liu (1987) proposed a sparse vari-
ant of the Bunch-Kaufman algorithm , which suffers from the same problem as its
dense counterpart: the entries in L are unbounded. Its bounded version, proposed
in Ashcraft et al. (1998), is also extended to the sparse case in the same paper.
It is closely related to the Duff-Reid algorithm from Duff and Reid (1983) (for a
comparison between the two, see Section 3.4 of Ashcraft et al. (1998)).

In the Duff-Reid algorithm, if no 1× 1 pivot has been found at step k, P =(
Ak,k Ak,`
A`,k A`,`

)
is considered, where A`,k = max`′∈[k+1;n] A`′,k. P is accepted as a

2×2 pivot if it verifies the following condition:

∣∣P−1∣∣( maxi∈[k+2;n] |A i,k|
maxi∈[k+2;n] |A i,k+1|

)
≤

(
1/τ
1/τ

)
. (1.24)

Note that in the original Duff-Reid algorithm (Duff and Reid, 1983), an unnecessar-
ily stricter criterion was used, which was then relaxed as above in Duff and Reid
(1996). If P is rejected, pivot k is postponed and we repeat the process on pivot k+1
until either a 1×1 or 2×2 pivot is found.

Note that, in the block (or tile) version of the factorization, if A`` lies outside of
the current panel, it must first be updated before P can be assessed; if P is rejected,
that update will have been useless. To avoid that, it is common to limit the search
of off-diagonal pivots to the diagonal block of the current panel (inside which all
pivots are up to date).
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Restricted pivoting Threshold partial pivoting requires to check all the entries
in the current pivot column to assess the quality of the pivot candidates, and this
can be expensive. To reduce the cost of pivoting, one possible strategy is to limit
the search space to a subset R of rows. This is known as restricted pivoting. The
hope is that the pivot search can be accelerated while not leading to the acceptance
of pivot candidates that would otherwise have been rejected. Typical values for R
are the set of fully-summed rows or the rows belonging to the diagonal block of the
current panel.

To assess the quality of a given pivot candidate A i,k (with i ∈ R), several strate-
gies have been proposed to take into account the rest of the pivot rows (i.e. A j,k
with j ∈ [k;n]\R).

A first basic idea, presented for example in Section 6.1 of Duff and Pralet (2007),
is to simply ignore the pivots outside of the restricted search space R. Obviously,
this can be dangerous as A j,k can be arbitrarily larger than A i,k.

In Section 6.2 of Duff and Pralet (2007), a strategy based on the estimation
of the maximum norm of the rows outside R is presented. At the beginning of
the factorization, the element of maximum amplitude outside R on each column is
computed:

mk = max
j∈[k;n]\R

|A j,k|,

and subsequently used as an estimation of the maximum norm of column A[k;n]\R,k.
Note that in the cited paper, this strategy was developed for the parallel context and
therefore mk is actually also estimated as the maximum of each local maximum
on each processor (cf. equation (6.3) in Duff and Pralet (2007)). This strategy is
implemented and used as default in MUMPS.

Another strategy implemented in MUMPS (since version 4.5) consists in up-
dating the mk values each time a pivot ` < k is eliminated. In other words, the
row vector m = (mk)k∈[1;n] formed of all the column maximums can be seen as an
additional row of the matrix that is also factorized.

This latter strategy has been further pushed in Hogg and Scott (2014), where
more than one row vector m is computed and updated. This allows for computing a
richer estimation of the maximum norm of the row space outside R.

Static pivoting The threshold partial pivoting strategy is referred to as dynamic
in the sense that at each step, it performs a swap which dynamically modifies the
data structure. In the context of the multifrontal factorization, modifying the struc-
ture of the factors can increase the fill-in and thus the computational cost of the
factorization.

To avoid this behavior, it is sometimes preferred to use static pivoting, which
replaces too small diagonal pivots by an artificial value: for example, in Li and
Demmel (1998), the diagonal entries smaller in absolute value than

p
εmach‖A‖ are

replaced by
p
εmach‖A‖, where εmach is the machine precision.

Static pivoting allows operations to be performed in a more efficient and scal-
able way, but usually requires some steps of Iterative Refinement (described in
Algorithm 1.10) to achieve a similar accuracy as dynamic pivoting.

Finally, note that an algorithm based on a mixture of dynamic and static piv-
oting was also proposed in Section 4.1 of Duff and Pralet (2007): its core idea is to
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Algorithm 1.10 Iterative refinement
1: /* Input: a matrix A, right-hand side b, and initial solution x */
2: for k = 1 to nsteps do
3: r ← b− Ax
4: Solve A∆x = r
5: x ← x+∆x
6: end for

perform dynamic pivoting inside the fronts, and then use a static pivoting technique
to eliminate the remaining columns rather than delaying them.

1.3.2.7 Multifrontal solution phase

Once all the frontal matrices of the assembly tree have been partially factorized,
the linear system can be solved through forward elimination and backward substi-
tution, just as in the dense case (equation (1.13)). A key point is that the fronts are
not square, as illustrated in Figure 1.13. Therefore, Algorithm 1.6 must be modi-
fied so that, for each front F, a part of the solution (y in the forward phase or x in
the backward phase) is computed (corresponding to the fully-summed variables of
F) and another part of it is updated (corresponding to the non fully-summed vari-
ables of F). This results into the FrontalForward and FrontalBackward algorithms
described in Algorithm 1.11.

(a) Frontal forward elimination (right-
looking).

(b) Frontal backward substitution (left-
looking).

Figure 1.13 – Frontal solution phase.

The overall multifrontal solution phase is also described in Algorithm 1.11.
First, the forward elimination is achieved by means of a bottom-up traversal of
the assembly tree; then, a top-down traversal of the assembly tree is performed
for the backward substitution phase. Note that because the forward elimination
requires a bottom-up traversal of the assembly tree, it can be done directly on the
fly during the factorization. For the sake of simplicity, we ignore in Algorithm 1.11
issues concerning pivoting or parallelism.
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Algorithm 1.11 Multifrontal solution phase (without pivoting).
1: /* Input: the right-hand side vector b. */
2: y← b
3: Initialize pool with leaf nodes.
4: repeat
5: Extract a node F from pool.
6: y←FrontalForward(F, y)
7: if all siblings of F have been processed then
8: Insert parent of F in pool.
9: end if

10: until pool is empty (all fronts have been processed)
11: x ← y
12: Initialize pool with root nodes.
13: repeat
14: Extract a node F from pool
15: x ←FrontalBackward(F, x)
16: Insert children of F in pool.
17: until pool is empty (all fronts have been processed)
18:
19: FrontalForward(F, y)
20: Gather rows of y corresponding to variables of F in w.
21: for j = 1 to pfs do
22: w j ← L−1

j, jw j
23: for i = j+1 to pnfs do
24: wi ← L i, jw j
25: end for
26: end for
27: Scatter w in the rows of y corresponding to variables F.
28:
29: FrontalBackward(F, x)
30: Gather rows of x corresponding to variables of F in w.
31: for i = pfs to 1 by −1 do
32: for j = i+1 to pnfs do
33: wi ←Ui, jw j
34: end for
35: wi ←U−1

i,i wi
36: end for
37: Scatter w in the rows of x corresponding to variables F.

When a front F is processed, the corresponding rows of x (or y) are gathered
in a temporary workspace w, since in general they are not contiguous in x (or y).
After w has been computed, the result is scattered back in x (or y). A direct conse-
quence of this observation is that when w is gathered, it can be directly built in the
order specified by the permutations performed at the factorization (for numerical
pivoting). This makes the LINPACK and LAPACK styles very different; indeed,
with LAPACK, no permutations need to be performed after w is gathered, while
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with LINPACK, all permutations except the first must still be performed on w (and
similarly, with the hybrid style, only the permutations corresponding to the first
panel can be avoided). Therefore, in the sparse case, the LAPACK style is usually
preferred, especially in the case of multiple right-hand sides.

Note that rather than scattering the entries of w back to x and y each time a
front is processed, we could instead store them in a temporary workspace (similar
to the contribution blocks used in the factorization phase) until they are gathered
directly from w when needed. This strategy is not considered in Algorithm 1.11.

1.4 Exploiting data sparsity: low-rank formats

Let us come back once more to our 2D Poisson example. We have discussed
how to take advantage of the structural sparsity. If we take for example the root
node corresponding to the root separator in the nested dissection ordering, it is fully
dense. However, A7,9 and A9,7 are filled entries, since nodes 7 and 9 in the mesh
are not directly connected. This fill-in can thus be physically interpreted as the
interaction between nodes 7 and 9; because these nodes are at distance 2h from
each other (compared to h for neighbor nodes), we may expect its absolute value to
be lower than that of other nonzero entries. Thus, one may consider computing an
approximate factorization by dropping these fill-in entries corresponding to distant
interactions.

This is exactly the principle behind incomplete LU (ILU) factorization, where
filled entries below a given threshold are dropped (i.e. replaced by zero). In ILU(0),
in particular, all filled entries are dropped.

Low-rank approximations can be seen as a generalization of dropping: instead
of considering the interaction between single entries, we consider the interactions
between subdomains made of several entries. This is formalized in Section 1.4.2.1.
First, let us introduce some concepts related to low-rank matrices.

1.4.1 Low-rank matrices

1.4.1.1 Definitions and properties

In this section, we consider a matrix B of size m×n. We first define the rank of
a matrix.

Definition 1.5 (Rank). The rank k of B is defined as the smallest integer such that
there exist matrices X and Y of size m×k and n×k such that

B = XY T .

Definition 1.6 (Rank-k approximation at accuracy ε). We call a rank-k approxima-
tion of B at accuracy ε any matrix B̃ of rank k such that

‖B− B̃‖ ≤ ε.
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In particular, when the norm used in the definition above is the 2-norm, we
know from Eckard and Young (1936) that the optimal rank-k approximation of a
matrix B can be computed from its singular value decomposition (SVD).

Theorem 1.2. Let UΣV T be the SVD decomposition of B and let us note σi =Σi,i its
singular values. Then B̃ = U1:m,1:kΣ1:k,1:kV T

1:n,1:k is the optimal rank-k approxima-
tion of B and

‖B− B̃‖2 =σk+1.

We finally define the numerical rank of a matrix at a given accuracy ε.

Definition 1.7 (Numerical rank). The numerical rank Rkε(B) of B at accuracy ε is
defined as the smallest integer kε such that there exists a matrix B̃ of rank kε such
that

‖B− B̃‖ ≤ ε.

In particular, using the two-norm, we can also compute the numerical rank of B
from its SVD.

Theorem 1.3. Let UΣV T be the SVD decomposition of B and let us note σi =Σi,i its
singular values. Then the numerical rank of B at accuracy ε is given by

kε = min
1≤k≤min(m,n)

σk+1 ≤ ε.

Proof. Let Xk = U1:m,1:kΣ1:k,1:k and Yk = V1:n,1:k for some 1 ≤ k ≤ min(m,n). Then
‖B− XkεY

T
kε
‖2 = σkε+1 ≤ ε and ‖B− Xkε−1Y T

kε−1‖2 = σkε > ε. Therefore Rkε(B) = kε.

If the numerical rank of B is equal to min(m,n) then B is said to be full-rank.
If Rkε(B) < min(m,n), then B is said to be rank-deficient. A class of rank-deficient
matrices of particular interest are low-rank matrices, defined as follows.

Definition 1.8 (Low-rank matrix). B is said to be low-rank (for a given accuracy ε)
if its numerical rank kε verifies

kε(m+n)≤ mn.

The above condition means that matrix B is considered low-rank iff it requires
less storage to store its rank-kε approximation B̃ = XY T than the full-rank matrix
B itself. In that case, B̃ is said to be a low-rank approximation of B and ε is called
the low-rank threshold.

In the following, for the sake of simplicity, we refer to the numerical rank of a
matrix at accuracy ε simply as its “rank”.

1.4.1.2 Compression kernels

Computing B̃ from B is called compressing B. There are several ways to com-
press matrix B. As a consequence of Theorem 1.2, the optimal low-rank approxi-
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mation of B can be computed with its SVD. However, computing the SVD of a m×n
matrix has complexity O (mn2) (assuming m > n) and is therefore expensive.

Alternatively, a widely used compression kernel is the truncated version of the
QR factorization with column pivoting (Businger and Golub, 1965), which consists
in stopping the factorization when the diagonal coefficient of R falls below the pre-
scribed threshold ε. It is slightly less accurate than the SVD but much cheaper to
compute, with complexity O (mnkε).

More recently, randomized algorithms have been gaining attention and in par-
ticular random sampling (Liberty, Woolfe, Martinsson, Rokhlin, and Tygert, 2007).
We briefly summarize its main idea. For a detailed study, we recommend the survey
by Halko, Martinsson, and Tropp (2011). For example, a truncated QR factorization
of B can be computed via random sampling in three main steps:

1. Sample a subspace S = BΩ which approximates the range of B, where Ω is
some random matrix, such as a Gaussian or randomized Fast Fourier trans-
form matrix.

2. Compress the sample matrix S via the classical truncated QR factorization
with column pivoting: SP = Q̂

(
R̂1:k R̂k+1:n

)
.

3. Compute a QR factorization of BP1:k: BP1:k = QR, which yields BP ≈ QR
with R = R

(
Ik R̂−1

1:kR̂k+1:n
)
.

The compression (second step) is performed on a lower-dimensional sample and is
therefore usually dominated by the sampling (first step), which can be performed
efficiently. This makes random sampling more efficient and scalable than the pre-
vious compression kernels and is therefore particularly useful on large matrices
in parallel environments. Similar random sampling algorithms can be devised to
compute a truncated SVD decomposition.

Many other compression kernels have been proposed, among which we can cite
adaptive cross-approximation (Bebendorf, 2000), interpolative decomposition (Cheng,
Gimbutas, Martinsson, and Rokhlin, 2005), CUR decomposition (Mahoney and
Drineas, 2009), and boundary domain low-rank approximation (Aminfar et al.,
2016).

1.4.1.3 Algebra on low-rank matrices

Classical linear algebra operations involving low-rank matrices can be acceler-
ated by taking advantage of their low-rank property.

The triangular solve operation

A ← AL−1,

where A is a matrix of size m×n and L is a triangular matrix of order n, requires
mn2 operations if A is full-rank. However, if A ≈ Ã = XY T is low-rank of rank k,
the operation

Ã ← ÃL−1 = X (Y TL−1)

can be computed by
Y ← L−TY ,
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and thus only requires n2k operations. Therefore, exploiting the low-rank form of a
matrix to perform a triangular solve is always beneficial, regardless of its rank.

The matrix-matrix product operation

C ← AB,

where A,B,C are matrices of size m× n, n× p, and m× p, respectively, requires
2mnp operations if both A and B are full-rank. If A is low-rank of rank k, the
LR-FR product

C ← ÃB = X (Y TB)

consists of two operations: the inner product Z =Y TB, which requires 2npk opera-
tions, and the outer product C ← X Z, which requires 2mpk operations, for a total of
2(m+n)pk. Thus, using the low-rank form of A is beneficial if k < mn/(m+n), just
as for the storage requirements. The analysis is similar if B is low-rank instead.
Finally, if both A and B are low-rank, of ranks kA and kB, then the LR-LR product

C ← ÃB̃ = XA(Y T
A XB)Y T

B

also consists of inner and outer products. The inner product first computes Z ←
Y T

A XB, at the cost of 2nkAkB operations. The rest of the computations depend on
which side Z is multiplied:

• If we multiply Z to the right (W ← ZY T
B ), which requires 2pkAkB operations,

then the outer product computes C ← XAW , at the cost of 2mpkA, which leads
to a total of 2(n+ p)kAkB +2mpkA.

• If we multiply Z to the left (W ← XAZ), which requires 2mkAkB operations,
then the outer product computes C ←WY T

B , at the cost of 2mpkB, which leads
to a total of 2(n+m)kAkB +2mpkB.

The side that minimizes the computations thus depends on the sign of

mp(kA −kB)+ (p−m)kAkB.

Note that if C is a square matrix (m = p), this simplifies to the sign of kA −kB. Also
note that if the full-rank form of C is not needed, the outer product can be skipped,
since the result of the inner product yields a low-rank form of C.

Finally, let us consider the matrix sum operation

C ← A+B,

where A, B, and C are all of size m×n. The full-rank sum requires mn operations.
If A is low-rank but not B, then A must be decompressed back to full-rank (by
means of an outer product of cost 2mnk) before performing the sum in full-rank.
Similarly, if only B is low-rank, it must be decompressed. However, if both A and B
are low-rank, a low-rank form of C can be obtained at no cost:

C̃ = Ã+ B̃ ⇔ XCY T
C = (XA XB) (YA YB)T .
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Note that in this case, we obtain a rank of C equal to kC = kA + kB, which can be
significantly larger than the actual rank. It is thus a good idea to recompress C.
This will be further discussed in the context of the BLR factorization in Section 2.6.

1.4.2 Low-rank matrix formats
In this section, we present the different low-rank matrix representations that

exist to take advantage of the low-rank property arising in many applications.
These so-called low-rank formats can be distinguished and classified based on three
criteria:

• The block-admissibility condition (Section 1.4.2.1): strong or weak?

• The block-clustering (Section 1.4.2.2): flat or hierarchical?

• The low-rank basis (Section 1.4.2.3): nested or not?

1.4.2.1 Block-admissibility condition

hig
h r

an
k

low rank

complete domain

(a) Strong and weak interactions between clus-
ters in the geometric domain.

σ

τ

ρ

σ τ ρ

(b) Corresponding block-
clusters in the matrix.

Figure 1.14 – Illustration of the block-admissibility condition. The dark grey blocks
represent self-interactions and are full-rank; the light grey blocks represent near
interactions and are high-rank; the white blocks represent distant interactions and
are low-rank.

In the context of the solution of linear systems Ax = b, A is not usually low-rank
itself. However, in many applications, some of its off-diagonal blocks are. Indeed,
in the context of the solution of some discretized PDE, a block B corresponds to an
interaction between two subdomains σ and τ, where σ contains the row indices of
B while τ contains its column indices, as illustrated by Figure 1.14. σ and τ are
referred to as clusters, while B =σ×τ is referred to as block-cluster.

The rank of a given block-cluster B depends on the interaction it represents,
as illustrated by Figure 1.14. Indeed, if B is a diagonal block, it represents a self-
interaction σ×σ and is thus full-rank. However, if B is an off-diagonal block, it may
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be either full-rank or low-rank depending on the interaction σ×τ it represents: the
weaker the interaction, the lower the rank.

This is formalized with a key concept called the admissibility condition. The
block-admissibility condition determines whether a block σ×τ is admissible for low-
rank compression. The standard block-admissibility condition, also called strong
block-admissibility, takes the following form:

σ×τ is admissible ⇔max(diam(σ),diam(τ))≤ η dist(σ,τ), (1.25)

where η> 0 is a fixed parameter. Condition (1.25) formalizes the intuition that the
rank of a block σ×τ is correlated to the distance between σ and τ: the greater the
distance, the weaker the interaction, the smaller the rank; that distance is to be
evaluated relatively to the subdomain diameters.

The η parameter controls how strict we are in considering a block admissible.
The smaller the η, the fewer admissible blocks. On the contrary, if we choose

ηmax = max
σ,τ∈S(I )

dist(σ,τ)>0

max(diam(σ),diam(τ))
dist(σ,τ)

, (1.26)

where S(I ) is a clustering defining the subdomains (see next section), then condi-
tion (1.25) can be simplified into the following condition, that we call least-restrictive
strong block-admissibility:

σ×τ is admissible ⇔ dist(σ,τ)> 0. (1.27)

Finally, there is an even less restrictive admissibility condition, called weak block-
admissibility:

σ×τ is admissible ⇔σ 6= τ. (1.28)

With the weak admissibility, even blocks that correspond to neighbors (subdomains
at distance zero) are admissible, as long as they are not self-interactions (i.e., the
diagonal blocks).

1.4.2.2 Flat and hierarchical block-clusterings

Before deciding which block is admissible and which is not, an essential step is
to compute a block-clustering that defines these blocks, i.e., that determines which
variable goes into which block-cluster.

The clustering of the unknowns (noted I hereinafter) is formalized as a par-
tition S(I ) of I . In general, the row and column indices can be clustered differ-
ently. In the following, for the sake of simplicity, and without loss of generality,
we assume that the row and column indices are identically clustered. Then, the
block-clustering is formalized as a partition S(I ×I ) of I ×I .

Flat block-clustering A special type of block-clustering, referred to as flat, can
be defined solely based on the partition S(I ).
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Definition 1.9 (Flat block-clustering). Let S(I ) be a partition of I . Then we define
the flat block-clustering S(I ×I ) associated with S(I ) as

S(I ×I )=S(I )×S(I ).

The flat block-clustering associated with S(I ) verifies the following property:

(σ,τ) ∈S(I )2 iff σ×τ ∈S(I ×I ).

An example of clustering S(I ) = {I1, I2, I3, I4} and its associated flat block-
clustering are given in Figure 1.15.

I

I1 I2 I3 I4

(a) Clustering S(I ).

I

I1

I2

I3

I4

I

I1 I2 I3 I4

(b) Flat block-clustering.

Figure 1.15 – An example of clustering and its associated flat block-clustering.

The closely related Block Separable (BS) and Block Low-Rank (BLR) formats are
two examples of low-rank representations based on a flat, non-hierarchical block-
clustering. The BS format was introduced in Cheng et al. (2005) (Section 5.2) and
described in Gillman, Young, and Martinsson (2012) and Gillman (2011). A Block
Separable matrix Ã can be written as D+UBV T , where D is a block-diagonal ma-
trix and UBV T is a low-rank term. Thus, the off-diagonal blocks of a BS matrix are
all assumed to be low-rank, i.e. the BS format is weakly admissible.

The BLR format, introduced Amestoy et al. (2015a), is more general in the sense
that it allows some of the off-diagonal blocks to be full-rank (i.e. it is strongly
admissible).

Definition 1.10 (BLR matrix). Assuming the unknowns have been partitioned into
p clusters, and that a permutation P has been defined so that permuted variables of
a given cluster are contiguous, a BLR representation Ã of a dense matrix A is of the
form

Ã =


A1,1 Ã1,2 · · · Ã1,p

Ã2,1 · · · · · · ...
... · · · · · · ...

Ãp,1 · · · · · · Ap,p

 .

Subblocks A i, j = (P APT)i, j, of size mi, j ×ni, j and numerical rank kεi, j, are approxi-
mated by a low-rank product Ã i, j = X i, jY T

i, j at accuracy ε, where X i, j is a mi, j × kεi, j
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matrix and Yi, j is a ni, j ×kεi, j matrix.

For the sake of simplicity, and without loss of generality, we will assume in the
following that, for a given matrix Ã, the property ∀i, j mi, j = ni, j = b holds, where
b, the block size, can depend on the order of the matrix.

The BLR format is at the heart of the work presented in this thesis. Chapter 2
is dedicated to the discussion on how to perform the LU or LDLT factorization of a
BLR matrix.

Hierarchical block-clusterings Much more general block-clusterings S(I×I )
can be considered. In the literature, so-called cluster trees have been introduced as
a convenient way to describe them.

Definition 1.11 (Cluster tree). Let I be a set of unknowns and TI a tree whose
nodes v are associated with subsets σv of I . TI is said to be a cluster tree iff:

• The root of TI , noted r, is associated with σr =I ;

• For each node v ∈ TI , σv ⊂I is contiguous;

• For each non-leaf node v ∈ TI , with children noted CTI
(v), the subsets associ-

ated with the children form a partition of tv, i.e.⋃
c∈CTI

(v)
σc =σv.

An example of cluster tree is provided in Figure 1.16a. As illustrated, cluster
trees establish a hierarchy between clusters. In fact, for a given cluster tree, one
can uniquely define an associated weakly admissible hierarchical block-clustering.
This particular class of block-clusterings, referred to as Hierarchically Off-Diagonal
Low-Rank (HODLR), has been studied in particular by Aminfar et al. (2016).

Definition 1.12 (HODLR matrix). The HODLR block-clustering S(I ×I ) associ-
ated with a cluster tree TI is defined as

S(I ×I )= {
σv1 ×σv2 ; v1 and v2 are siblings in TI or v1 = v2

}
.

The HODLR matrix associated with the previous example cluster tree is pro-
vided in Figure 1.16b.

Thus, the off-diagonal blocks of an HODLR matrix are not refined but instead
are directly approximated as low-rank matrices. To define more general block-
clustering S(I ×I ), that are based on the strong block-admissibility condition,
a new tree structure, so-called block-cluster tree, must be introduced.

Definition 1.13 (Block-cluster tree). Let I be a set of unknowns, TI a cluster tree,
and TI×I a tree whose nodes are of the form v×w, for v,w ∈ TI . v×w is thus
associated with a subset σv ×σw of I ×I . TI×I is said to be a block-cluster tree
(associated with TI ) iff:
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(a) Cluster tree.
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(b) HODLR block-clustering

Figure 1.16 – An example of cluster tree and its associated HODLR block-
clustering.

• The root of TI×I is associated with I ×I ;

• For each node v×w ∈ TI×I , σv and σw are contiguous or v = w;

• For each non-leaf node v×w ∈ TI×I , the children of v×w, noted CTI×I
(v×w)

are associated with subsets of the form
σc ×σw, with c ∈ CTI

(v) if CTI
(v) 6= ;,CTI

(w)=;;
σv ×σc, with c ∈ CTI

(w) if CTI
(v)=;,CTI

(w) 6= ;;
σc1 ×σc2 , with (c1, c2) ∈ CTI

(v)×CTI
(w) otherwise.

Note that if CTI
(v)= CTI

(w)=;, then v×w is necessarily a leaf of TI×I .

For a given node v×w ∈ TI×I , note that, while it must be a leaf in TI×I if both
v and w are leaves in TI , it does not necessarily have children otherwise. Thus,
there are many possible block-cluster trees associated with a given cluster tree,
depending on which nodes are refined. However, we are only interested in a subset
of them, referred to as admissible block-cluster trees.

Definition 1.14 (Admissible block-cluster tree). Let TI×I be a block-cluster tree
associated with a cluster tree TI . TI×I is said to be admissible iff all leaves v×w
of TI×I are associated with a subset σv ×σw that is either block-admissible (in the
sense of one of the block-admissibility conditions defined in Section 1.4.2.1) or small
enough (i.e. max(#σv,#σw)≤ cmin).

The block-clusterings associated with an admissible block-cluster tree are re-
ferred to as H block-clusterings (where H stands for hierarchical). The matrices
they represent are known as H -matrices. An example of an admissible block-
cluster tree and its associated H -matrix is provided in Figure 1.17. Note that,
because the block-cluster tree of Figure 1.17a is balanced, all non-leaf nodes are of
the form σc1 ×σc2 (i.e. the first two forms in Definition 1.13 do not occur).
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(a) Block-cluster tree (I i × I j has been abbreviated as i× j).
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(b) Associated block-clustering.

Figure 1.17 – An example of block-cluster tree and its associated block-clustering.
The tree is admissible (and is then associated with an H block-clustering) if the
grey blocks are smaller than cmin and the white ones are admissible.

.

The H -matrix format, introduced by Hackbusch and his collaborators (Hack-
busch, 1999; Grasedyck and Hackbusch, 2003; Börm et al., 2003; Bebendorf, 2008),
is a strongly admissible format. It is the most general low-rank format (without
nested basis, see next section). Indeed, if the weak admissibility condition is used
in Definition 1.14, the resulting admissible block-cluster tree defines an HODLR
matrix. Furthermore, a full block-cluster tree (i.e. if v×w is a leaf in TI×I , then v
and w are leaves in TI ) defines a BLR matrix. Therefore, both HODLR and BLR
matrices are a particular kind of H -matrices.

Both the H format and its weakly admissible counterpart HODLR can factorize
a dense matrix of order n with O (r2n log2 n) (Grasedyck and Hackbusch, 2003) op-
erations, where r is the maximal rank of the blocks. This complexity can be reduced
to O (r2n) by exploiting a so-called nested basis property.

1.4.2.3 Low-rank formats with nested basis

The H 2 format (Börm et al., 2003) is a general, strongly admissible, nested for-
mat. The particular case where a weak admissibility condition is used has been
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the object of numerous studies. In this case, the format is referred to as Hierar-
chically Semi-Separable (HSS) (Xia et al., 2010; Chandrasekaran, Gu, and Pals,
2006). Because the presentation of nested low-rank formats is simpler with a weak
admissibility condition, and because Chapter 8 is dedicated to comparing the BLR
and HSS formats, we focus on the HSS format in this section.

A Hierarchically Block-Separable (HBS) format has been proposed by Gillman
et al. (2012). It is closely related to HSS and we therefore do not discuss it further.

The HSS format

Definition 1.15 (HSS tree and HSS matrix). Let A be a dense matrix associated
with a set of unknowns I and let TI be a cluster tree defining a clustering of I . TI

is said to be an HSS tree iff:

• It is a complete binary tree1;

• Each node v ⊂ I of TI is associated with matrices Dv, Ubig
v , Uv, V big

v , Vv,
and Bv, called HSS generators, which satisfy the following recursions if v is a
non-leaf node with children c1 and c2:

Dv =
(

Dc1 Uc1Bc1(V big
c2 )T

Ubig
c2 Bc2(V big

c1 )T Dc2

)
, (1.29)

Ubig
v =

(
Ubig

c1 0
0 Ubig

c2

)
Uv, (1.30)

and V big
v =

(
V big

c1 0
0 V big

c2

)
Vv. (1.31)

In that case, A can be represented by an HSS matrix defined as Ã = Dr, where r is
the root node.

Of course, Dr is not explicitly stored but is instead implicitly represented by the
recursive relation (1.29). For example, for the 3-level HSS tree given in Figure 1.18,
Ã is of the form

Ã =


D1 Ubig

1 B1(V big
2 )T

Ubig
3 B3(V big

6 )T
Ubig

2 B2(V big
1 )T D2

Ubig
6 B6(V big

3 )T D4 Ubig
4 B4(V big

5 )T

Ubig
5 B5(V big

4 )T D5

 . (1.32)

Thus, Dv is explicitly stored only when node v is a leaf. However, this property alone
is not enough to differentiate the HSS format from the HODLR one, which also re-
lies on a recursive approximation of the diagonal blocks. With an HSS matrix, a key
property is that the low-rank basis Ubig

v and V big
v are also implicitly generated with

1In the literature, more general HSS tree are described (e.g. in Xia et al. (2010)); we focus on
complete binary trees for the sake of simplicity.
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the Uv and Vv generators, as described by the recursive relations (1.30) and (1.31)
(hence their nested property). Thus, the HSS matrix Ã can finally be written as

Ã =


D1 U1B1V T

2
[

U1 0
0 U2

]
U3B3V T

6

[
V T

4 0
0 V T

5

]
U2B2V T

1 D2[
U4 0
0 U5

]
U6B6V T

3

[
V T

1 0
0 V T

2

]
D4 U4B4V T

5
U5B5V T

4 D5

. (1.33)

Thus, Ubig
v and V big

v are also explicitly stored only when node v is a leaf, in which
case Uv = Ubig

v and Vv = V big
v . This allows for some savings in storage and opera-

tions, which drops the logarithmic factor in the complexity.

7

3

1 2

6

4 5

B1

B2

B4

B5

B3

B6

U1,V1
D1

U2,V2
D2

U4,V4
D4

U5,V5
D5

U3,V3 U6,V6

Figure 1.18 – HSS tree associated with the HSS matrix defined by equation (1.33).

For algorithms to build an HSS representation of a dense matrix and to use such
a representation to accelerate classical linear algebra operations, such as matrix-
vector product and LU factorization, we refer the reader to Xia et al. (2010).

1.4.2.4 Taxonomy of low-rank formats

Based on the three criteria (partitioning type, admissibility condition, and nested
basis) described in the previous sections, the existing low-rank formats can be clas-
sified. This taxonomy is reported in Table 1.2.

partitioning type
admissibility flat hierarchical
condition non nested nested

weak BS HODLR HSS/HBS
strong BLR H H 2

Table 1.2 – Taxonomy of existing low-rank formats.
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1.4.3 Using low-rank formats within sparse direct solvers
Data sparsity can be efficiently exploited within sparse direct solvers to pro-

vide a substantial reduction of their complexity. Because the multifrontal method
relies on dense factorizations, low-rank formats can be incorporated into the multi-
frontal factorization by representing the frontal matrices with one of the previously
described low-rank formats.

1.4.3.1 Block-clustering of the fronts

One key aspect is the computation of the block-clustering of the frontal matrices.
In the following discussion, we assume that the assembly tree is built by means of
a nested dissection (George, 1973); this better suits the context of our work and
allows for an easier understanding of how low-rank approximation techniques can
be used within sparse multifrontal solvers.

Each frontal matrix is associated with a separator in the tree. The fully-summed
variables of a frontal matrix match the variables of the separator. The non fully-
summed variables of a front form a border of the separator’s subtree and correspond
to pieces of ancestor separators found higher in the separator tree. Thus, on each
front, the two types of variables must be clustered. Two strategies have been pro-
posed in Weisbecker (2013):

• Explicit clustering: each front is clustered independently; this leads to very
balanced cluster sizes inside a given front but can be very expensive since
each variable is clustered several times (as many times as fronts it belongs
to).

• Inherited clustering: each separator is clustered independently; thus, each
variable is only clustered once, leading to a much cheaper cost. For each
front, the clustering of the fully-summed variables is directly derived from
the clustering of the associated separator, while that of the non fully-summed
variables is inherited from the separator they belong to (which corresponds to
a front higher in the tree). Thus, the cluster sizes can be more unbalanced
inside a given front (since each separator can be clustered with a different
target size).

In Chapter 4, we will motivate the necessity to have a target cluster size that varies
depending on the clustered separator size (usually the cluster size should be of the
order of the square root of the separator size) and thus inherited clustering can
potentially lead to fronts with relatively unbalanced cluster sizes. However, explicit
clustering has been shown in Weisbecker (2013) to be unreasonably expensive and
thus we will not consider it.

Thus, the block-clustering of the fronts can be derived from the block-clustering
of the separators. We now discuss how to compute the latter. The computed clusters
should respect the admissibility condition. However, this requires geometric infor-
mation to compute the diameter and distances. To remain in a purely algebraic
context, the adjacency graph of the matrix A can be used instead. The admissibil-
ity condition must then be adapted: Grasedyck, Kriemann, and Le Borne (2008)
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propose to substitute the geometric diameter and distance operations by algebraic
graph operations, i.e.

σ×τ is admissible ⇔max(diamG (A)(σ),diamG (A)(τ))≤ η distG (A)(σ,τ) (1.34)

where σ and τ are two sets of graph points and diamG (A) and distG (A) are the graph
diameter and distance operations.

Furthermore, Weisbecker (2013) suggests simplifying this condition: indeed,
other practical considerations must be considered, such as having a cluster size
large enough to capture BLAS efficiency but small enough to be able to easily dis-
tribute the clusters in parallel. This relaxed clustering can be efficiently computed
with a k-way partitioning of each separator subgraph.

A important issue is that the separator subgraph GS of a given separator S is
not necessarily connected, especially in a context where S has been computed alge-
braically. In that case, the clustering computed on a disconnected subgraph may be
of poor quality (Weisbecker, 2013). A possible strategy to overcome this issue, pro-
posed in Weisbecker (2013), and used in solvers such as MUMPS or STRUMPACK,
is to cluster the separator subgraph together with its halo subgraph GH , defined
as the set of neighbor points at a distance dh or less; dh is called the halo depth
parameter. The clustering of GS can then be derived from that of GH , as shown in
Figure 1.19.
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Figure 1.19 – Halo-based partitioning of GS with depth 1.
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1.4.3.2 Full-rank or low-rank assembly?

In addition to the front factorization, one may also exploit the low-rank property
during the assembly. In this case, the fronts are directly assembled in low-rank
format and are thus never stored in full-rank: for this reason, the factorization is
referred to as fully-structured (Xia, 2013a).

The fully-structured factorization requires relatively complex low-rank extend-
add operations. Indeed, let Ã and B̃ be two low-rank blocks belonging to a parent
front and a child front, respectively, and assume A and B share some variables in
common, as shown in Figure 1.20a. In that case, we have to compute S̃ = Ã l↔ B̃.
Doing that without decompressing Ã or B̃ is not possible in general without further
assumption.

B̃child
front

Ã
parent
front

(a) Assembly of B̃ in Ã.

0

0
0 0

(b) Padding variables of S̃.

Figure 1.20 – Low-rank extend-add operation.

However, if we use the inherited clustering strategy, we can guarantee that all
the variables of B̃ belong to Ã (but the inverse is not true in general). Thus, to
compute S̃ we can simply pad S̃ with zeros corresponding to the variables of Ã that
do not belong to B̃, as illustrated in Figure 1.20b. Note that the variables of B̃
can be assumed to be contiguous in Ã by simply sorting the variables of Ã in an
adequate order.

Note that, in the hierarchical case, Martinsson (2011) proposed a randomized
algorithm to perform a fully-structured HSS factorization. This algorithm some-
what simplifies the low-rank assembly operations (Martinsson, 2011; Xia, 2013b;
Martinsson, 2016). It however cannot be directly applied to BLR matrices, and it is
unclear whether it could be extended.

1.5 Experimental setting

1.5.1 The MUMPS solver
The MUltifrontal Massively Parallel Solver, or MUMPS (Amestoy et al., 2001;

Amestoy et al., 2006; Amestoy et al., 2011), is a sparse direct solver based on
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the multifrontal method and developed mainly in Toulouse, Lyon, and Bordeaux
(France). The MUMPS project started in 1996 in the context of the European
project PARASOL.

1.5.1.1 Main features

MUMPS provides a large range of features that make it a very robust, general
purpose code:

• Input: MUMPS provides Fortran, C, and Matlab interfaces. The input matrix
can be symmetric or unsymmetric; centralized or distributed; assembled or in
elemental format. Real and complex, single and double precision arithmetics
are supported.

• Analysis phase: several preprocessing strategies such as scaling and re-
ordering can be used.

• Factorization phase: The LU , LDLT , and Cholesky factorizations can all be
performed and can benefit from both an MPI and/or OpenMP parallelization.
Numerical robustness is guaranteed thanks to the use of threshold partial
pivoting. Finally, the out-of-core (OOC) factorization is provided by writing
asynchronously the factors to disk.

• Solution phase: The solution phase can be parallelized with both MPI and
OpenMP; dense and sparse right-hand sides are supported; the solution can
be centralized or distributed. Postprocessing features such as iterative refine-
ment or the computation of the backward error are also available.

• Miscellaneous: Several other features are provided, such as the computa-
tion of the determinant, the partial factorization (computation of the Schur
complement), and the detection of null-pivots (Rank Revealing factorization).

The BLR factorization and all its variants, which will be presented in Chapter 2,
have been developed and integrated into the MUMPS solver, which was used to run
all experiments and constitutes our reference Full-Rank solver.

1.5.1.2 Implementation details

Threshold partial pivoting is used. The threshold set to τ = 0.01 for all experi-
ments. Contrarily to the algorithms in most of the reference codes (e.g. LAPACK)
and the literature, including this manuscript, row-major pivoting is performed in
LU , to fit the row-major storage of the fronts. In parallel, the master process does
not have access to the non fully-summed rows of the front and therefore pivoting is
restricted to the fully-summed rows. The maximum norm of the non-fully summed
part of each column is estimated following the restricted pivoting strategies de-
scribed in Section 1.3.2.6 and based on Duff and Pralet (2007).

As explained in Section 1.2.4.2, the Factor+Solve operation can be efficiently
implemented by using several levels of blocking. In MUMPS, we use two levels
of blocking. The internal block size is set to 32 for all experiments. In FR, the
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(external) panel size is constant and set to 128 for small and medium matrices and
256 for large ones. In BLR, it is chosen to be equal to the BLR block size b and is
automatically set according to the theoretical result reported in Chapter 4, which
states the block size should increase with the size of the fronts.

Both the nested-dissection matrix reordering and the BLR clustering of the un-
knowns are computed with METIS in a purely algebraic way (i.e., without any
knowledge of the geometry of the problem domain). The BLR clustering is com-
puted following the inherited clustering approach (cf. Section 1.4.3.1) with a halo
depth of 1.

To compute the low-rank form of the blocks, we perform a truncated QR fac-
torization with column pivoting (i.e., a truncated version of LAPACK’s (Anderson
et al., 1995) _geqp3 routine). We use an absolute tolerance (i.e. we stop the fac-
torization after |rk,k| < ε). To avoid the compression rate depending (too much) on
the matrix norm, the original matrix is scaled, using an algorithm based on those
discussed in Ruiz (2001) and Knight et al. (2014).

Using a low-rank representation for the smaller fronts does not pay off; there-
fore, we only compress fronts of order larger than 1000 and with 128 fully-summed
variables or more.

Because of our purely algebraic context, we do not know which blocks are admis-
sible and so we assume all off-diagonal blocks are admissible (which is equivalent
to using a weak block-admissibility condition). Thus, in our experiments, we try to
compress every off-diagonal block. If the prescribed accuracy ε is not achieved after
a given number of steps kmax, we stop the compression and consider the block to be
full-rank. In our complexity experiments (Chapter 4), we have set kmax = b/2, the
rank after which the low-rank representation of a block is not beneficial anymore
(in terms of both flops and memory) with respect to the full-rank one. In the rest
of the experiments, where performance is more important than flops, we have set
kmax = b/4.

1.5.2 Test problems

In the experiments presented throughout this thesis, we have used a variety of
real-life problems coming from physics applications, as well as PDE generators for
our complexity tests.

1.5.2.1 PDE generators

For our complexity experiments (mainly in Chapter 4, but also in Chapter 8),
we have used the standard Poisson and Helmholtz operators.

The Poisson problem generates the symmetric positive definite matrix A from a
7-point finite-difference discretization of equation

∆u = f .

on a cubic domain with Dirichlet boundary conditions. We perform the computa-
tions in double-precision arithmetic.
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The Helmholtz problem builds the matrix A as the complex-valued unsymmetric
impedance matrix resulting from the finite-difference discretization of the hetero-
geneous Helmholtz equation, that is the second-order visco-acoustic time-harmonic
wave equation (

−∆− ω2

v(x)2

)
u(x,ω)= s(x,ω),

where ω is the angular frequency, v(x) is the seismic velocity field, and u(x,ω) is
the time-harmonic wavefield solution to the forcing term s(x,ω). The matrix A is
built for an infinite medium. This implies that the input grid is augmented with
PML absorbing layers. Frequency is fixed and equal to 4 Hz. The grid interval h
is computed such that it corresponds to 4 grid point per wavelength. Computations
are done in single-precision arithmetic.

1.5.2.2 Main set of real-life problems

Throughout this thesis, we use the following main set of real-life problems to
assess the performance of our solver. These matrices come from three applications
(seismic modeling, electromagnetic modeling, and structural mechanics). We com-
plete the set with additional problems from the University of Florida Sparse Matrix
Collection (UFSMC) (Davis and Hu, 2011).

Our first application is 3D seismic modeling and its study is the object of Sec-
tion 7.1. The main computational bulk of frequency-domain Full Waveform Inver-
sion (FWI) (Tarantola, 1984) is the solution of the forward problem, which takes the
form of a large, single complex, sparse linear system. Each matrix corresponds to
the finite-difference discretization of the Helmholtz equation at a given frequency
(5, 7, and 10 Hz). In collaboration with the SEISCOPE consortium, we have shown
how the use of BLR can reduce the computational cost of 3D FWI for seismic imag-
ing on a real-life case-study from the North sea. We found that the biggest low-rank
threshold ε for which the quality of the solution was still exploitable by the applica-
tion was 10−3 and this is therefore the value we chose for the experiments on these
matrices.

Our second application, studied in depth in Section 7.2, is 3D electromagnetic
modeling applied to marine Controlled-Source Electromagnetic (CSEM) survey-
ing, a widely used method for detecting hydrocarbon reservoirs and other resistive
structures embedded in conductive formations (Constable, 2010). The matrices,
arising from a finite-difference discretization of frequency-domain Maxwell equa-
tions, were used to carry out simulations over large-scale 3D resistivity models
representing typical scenarios for the marine CSEM surveying. In particular, the S-
matrices (S3, S21) correspond to the SEG SEAM model, a complex 3D earth model
representative of the geology of the Gulf of Mexico. For this application, the biggest
acceptable low-rank threshold is ε= 10−7.

Our third application is 3D structural mechanics, in the context of the industrial
applications from Électricité De France (EDF). EDF has to guarantee the technical
and economical control of its means of production and transportation of electricity.
The safety and the availability of the industrial and engineering installations re-
quire mechanical studies, which are often based on numerical simulations. These
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simulations are carried out using Code_Aster2 and require the solution of sparse
linear systems. A previous study (Weisbecker, 2013) showed that using BLR with
ε= 10−9 leads to an accurate enough solution for this class of problems.

To demonstrate the generality and robustness of our solver, we complete our
set of problems with matrices coming from the UFSMC arising in several fields:
computational fluid dynamics, structural mechanics and optimization.

The complete set of matrices used throughout this thesis and their description
is provided in Table 1.3. Each application is separated by a solid line while each
problem subclass is separated by a dashed line. We assign an ID to each matrix,
that we will use to refer to them in subsequent chapters (mainly, Chapters 5 and 6).
Note that the flops associated with a given matrix are provided in its corresponding
arithmetic, i.e. we count complex flops if the matrix is complex.

application matrix ID arith. fact. type n nnz flops factor size

seismic modeling
(SEISCOPE)

5Hz 1 c LU 2.9M 70M 69.5 TF 61.4 GB
7Hz 2 c LU 7.2M 177M 471.1 TF 219.6 GB
10Hz 3 c LU 17.2M 446M 2.7 PF 728.1 GB

electromagnetic
modeling
(EMGS)

H3 4 z LDLT 2.9M 37M 57.9 TF 77.5 GB
H17 5 z LDLT 17.4M 226M 2.2 PF 891.1 GB
S3 6 z LDLT 3.3M 43M 78.0 TF 94.6 GB
S21 7 z LDLT 20.6M 266M 3.2 PF 1.1 TB

structural mechanics
(EDF Code_Aster)

perf008d 8 d LDLT 1.9M 81M 101.0 TF 52.6 GB
perf008ar 9 d LDLT 3.9M 159M 377.5 TF 129.8 GB
perf008cr 10 d LDLT 7.9M 321M 1.6 PF 341.1 GB
perf009ar 11 d LDLT 5.4M 209M 23.6 TF 40.5 GB

computational
fluid dynamics

(UFSMC)

StocF-1465 12 d LDLT 1.5M 11M 4.7 TF 9.6 GB
atmosmodd 13 d LU 1.3M 9M 13.8 TF 16.7 GB
HV15R 14 d LU 2.0M 283M 1.9 PF 414.1 GB

structural problems
(UFSMC)

Serena 15 d LDLT 1.4M 33M 31.6 TF 23.1 GB
Geo_1438 16 d LU 1.4M 32M 39.3 TF 41.6 GB
Cube_Coup_dt0 17 d LDLT 2.2M 65M 98.9 TF 55.0 GB
Queen_4147 18 d LDLT 4.1M 167M 261.1 TF 114.5 GB

DNA electrophoresis
(UFSMC)

cage13 19 d LU 0.4M 7M 80.1 TF 35.9 GB
cage14 20 d LU 1.5M 27M 4.1 PF 442.7 GB

optimization
(UFSMC)

nlpkkt80 21 d LDLT 1.1M 15M 15.1 TF 14.4 GB
nlpkkt120 22 d LDLT 3.5M 50M 248.4 TF 86.5 GB

Table 1.3 – Main set of matrices and their Full-Rank statistics.

1.5.2.3 Complementary test problems

In Table 1.4, we provide the description of some complementary test problems
that are used in various chapters of this thesis. The matrices come from structural
and optimization problems from the UFSMC, a magnetohydrodynamics applica-
tion from the LBNL, and a reservoir simulation problem from the SPE10 bench-

2http://www.code-aster.org
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mark. These problems will be used in Chapter 8 for the comparison with the
STRUMPACK solver, as well as in Section 9.1 for a study on the BLR clustering.

application matrix arith. fact. type n nnz flops factor size

magnetohydrodynamics
(LBNL)

A30 d LU 0.6M 123M 30.6 TF 28.3 GB
A22 d LU 0.6M 127M 33.8 TF 29.4 GB

structural problems
(UFSMC)

PFlow_742 d LDLT 0.7M 37M 2.8 TF 8.5 GB
audi_kw1 d LDLT 0.9M 39M 5.9 TF 10.5 GB
Hook_1498 d LDLT 1.5M 31M 7.9 TF 12.2 GB
ML_Geer d LU 1.5M 111M 4.3 TF 16.4 GB
Transport d LU 1.6M 23M 10.7 TF 21.0 GB

reservoir simulation
(SPE10)

spe10-aniso d LU 1.2M 31M 11.6 TF 18.9 GB

optimization
(UFSMC)

kkt_power d LU 2.1M 8M 0.8 TF 2.3 GB

seismic modeling
(SEISCOPE)

15Hz c LU 58.0M 1523M 29.6 PF 3.7 TB
20Hz c LU 129.9M 3432M 150.0 PF 11.0 TB

electromagnetic
modeling (EMGS)

D5 z LDLT 90.1M 1168M 29.2 PF 6.1 TB

structural mechanics
(EDF)

perf008ar2 d LDLT 31.1M 1267M 24.1 PF 2.1 TB

Table 1.4 – Complementary set of matrices and their Full-Rank statistics.

In Section 2.3.2.3, we also consider a set of matrices from the UFSMC that
require numerical pivoting (cf. Table 2.2).

Finally, we provide in Table 1.4 the description of a set of very large matri-
ces from our three applications described above: 15Hz and 20Hz (SEISCOPE), D5
(EMGS), and perf008ar2 (EDF). They will be used in the experiments presented in
Section 9.4.

1.5.3 Computational systems
The following computational systems were used to perform the experiments pre-

sented in this thesis:

• brunch, a shared-memory machine equipped with 1.5 TB of memory and four
Intel 24-cores Broadwell processors running at a frequency varying between
2.2 and 3.4 GHz, due to the turbo technology. brunch was used both for the
complexity experiments of Chapters 4 and 8 and the multicore experiments
of Chapter 5.

• grunch, a shared-memory machine equipped with 768 GB of memory and
two Intel 14-cores Haswell processors running at 2.3 GHz. grunch was used
for some experiments of Chapter 5.

• eos, the supercomputer of the Calcul en Midi-Pyrénées (CALMIP) center.
Each of its 612 nodes is equipped with 64 GB of memory and two Intel 10-
cores Ivy Bridge processors running at 2.8 GHz. The nodes are interconnected
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with an Infiniband FDR network with bandwidth 6.89 GB/s. eos was used for
the distributed-memory experiments of Chapters 6 and 9, as well as some
experiments in Section 7.2.

• licallo, the supercomputer of the SIGAMM mesocenter at l’Observatoire de
la Côte d’Azur (OCA). Each of its 102 nodes is equipped with 64 GB of memory
and two Intel 10-cores Ivy Bridge processors running at 2.5 GHz. The nodes
are interconnected with Infiniband FDR. licallo was used for the experiments
of Section 7.1.

• farad, a shared-memory machine equipped with 264 GB of memory and two
Intel 16-cores Sandy Bridge processors running at 2.9 GHz. farad was used
for some of the experiments of Section 7.2.

• cori, the supercomputer of the National Energy Research Scientific Comput-
ing (NERSC) center. Each of its 2388 nodes is equipped with 128 GB of mem-
ory and two Intel 16-cores Haswell processors running at 2.3 GHz. The nodes
are interconnected with a Cray Aries network with bandwidth 8 GB/s. cori
was used for the performance experiments of Chapter 8, and for one experi-
ment in Chapter 6.

• eosmesca, a cache coherent NUMA (ccNUMA) node, part of the eos super-
computer (CALMIP center). It is a shared-memory machine equipped with
2 TB of memory and eight Intel 16-cores Haswell processors running at a
2.2 GHz. eosmesca was used to run the very large problem D5 (90M un-
knowns) in Chapter 9.

• occigen, the supercomputer of the Centre Informatique National de l’Enseignement
Supérieur (CINES). We used 200 nodes equipped with 128 GB of memory and
two Intel 12-cores Haswell processors running at 2.6 GHz. The nodes are
interconnected with an Infiniband FDR network with bandwidth 6.89 GB/s.
occigen was used to run the very large problem 20Hz (130M unknowns) in
Chapter 9.
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CHAPTER

2
The Block Low-Rank
Factorization

In this chapter, we present the Block Low-Rank factorization algorithm. In
order to perform the LU or LDLT factorization of a dense BLR matrix, the standard
tile LU or LDLT factorization has to be modified so that the low-rank sub-blocks
can be exploited to reduce the number of operations. Because the low-rank sub-
blocks are by nature stored separately, the most natural starting point is the full-
rank tile factorization rather than its block version. In fact, the BLR factorization
has also been referred to as Tile Low-Rank (TLR) in the literature (Akbudak, Ltaief,
Mikhalev, and Keyes, 2017).

To compute the low-rank sub-blocks, a so-called Compress step must be added in
Algorithm 1.3 or 1.5. Several variants can be easily defined depending on when the
Compress step is performed. These variants are listed in Table 2.1. Furthermore,
they can be combined with the accumulation and recompression of the low-rank
updates (so-called LUAR algorithm), that improve the cost of the Update step. We
introduce it at the end of this chapter, in Section 2.6.

The BLR factorization variants will be studied under different angles through-
out this manuscript: asymptotic complexity in Chapter 4, parallel performance in
Chapters 5 and 6, and numerical accuracy in this chapter.

RL name LL name description Section

FSUC UFS;C Offline BLR compression 2.1
FSCU UFSC Standard BLR from Weisbecker (2013) 2.2
FCSU UFCS Compress before Solve with restricted pivoting 2.3.1
CFSU UCFS Compress before Solve with BLR pivoting 2.3.2
C;FSU CUFS Compress as soon as possible 2.4

Table 2.1 – The Block Low-Rank factorization variants. All these variants (except
FSUC) can be combined with the LUAR algorithm described in Section 2.6. The
semicolon notation is explained in Section 2.4.

We present each algorithm in their LDLT version. The extension to the unsym-
metric case (LU factorization) is mostly straightforward.

The algorithms in this chapter are described in the context of the factorization
of frontal matrices. Their discussion however applies to broader contexts, such as
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dense BLR solvers, but also supernodal (right- or left-looking) solvers.

2.1 Offline compression: the FSUC variant
We first briefly discuss the simplest of the variants, so-called FSUC, where the

compression is performed after the factorization. We refer to this strategy as offline
compression. Since the number of operations for the factorization is not reduced,
it is not of interest in the case of the factorization of a dense matrix. However, in
a multifrontal context, the frontal matrices can be compressed after their partial
factorization, which allows for storing the factors in low-rank and thus reduce the
total memory consumption.

Because the factorization is performed with machine-precision accuracy, and
the approximated low-rank factors are only used during the solution phase, this
variant can be of interest in the following contexts:

• Resolution of systems with many right-hand sides where the solution phase
is the bottleneck, such as some of those studied in Chapter 7.

• Use of BLR factorization to build a preconditioner, where many iterations
need to be performed.

• Resolution of numerically difficult problems where a very accurate factoriza-
tion is needed but where the potential for compression can be exploited to
reduce the memory consumption.

2.2 The standard BLR factorization: the FSCU
and UFSC variants

2.2.1 The standard FSCU variant
We describe the standard BLR factorization, for dense matrices, introduced in

Amestoy et al. (2015a) as the so-called FSCU variant, in Algorithm 2.1. In Algo-
rithm 2.1 and all subsequent algorithms in this chapter, pfs and pnfs denote the
number of fully-summed and non fully-summed block-rows (or block-columns), re-
spectively.

This algorithm is referred to as FSCU (standing for Factor, Solve, Compress, and
Update), to indicate the order in which the steps are performed. In particular, in
Algorithm 2.1, the compression is performed after the so-called Solve step and thus
the low-rank blocks are used to reduce the number of operations of the Update step
only. In Section 2.3, we present variants where the compression is performed before
the Solve step and thus the number of operations for the Solve is also reduced.

The Factor and Solve steps are merged together and performed via the full-rank
Factor+Solve algorithm already presented in Section 1.3.2.6 (Algorithm 1.9). The
Compress step is performed by means of one of the compression kernels presented
in Section 1.4.1.2. Finally, the Update step is described in Algorithm 2.2 and is
based on the operations described in Section 1.4.1.3. First the Inner Product step
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Algorithm 2.1 Frontal BLR LDLT (Right-looking) factorization: standard FSCU
variant.

1: /* Input: a p× p block frontal matrix F; F = [Fi, j]i=1:p, j=1:p; p = pfs + pnfs */
2: for k = 1 to pfs do
3: Factor+Solve: Fk:p,k ← Lk:p,kDk,kLT

k,k
4: for i = k+1 to p do
5: Compress: Fi,k ≈ F̃i,k = X i,kY T

i,k
6: end for
7: for i = k+1 to p do
8: for j = k+1 to i do
9: Update: Fi, j ← RL-Update(Fi, j, F̃i,k, F̃ j,k)

10: end for
11: end for
12: end for
13: for i = pfs +1 to p do
14: for k = pfs +1 to i do
15: if CB compression is activated then
16: Compress: Fi,k ≈ F̃i,k = X i,kY T

i,k
17: end if
18: end for
19: end for

(line 2) forms an update contribution C̃(k)
i, j , which can be either full-rank or low-

rank depending on whether Fi,k and F j,k are both full-rank or not, respectively.
Because the updated block Fi, j must be kept full-rank, when C̃(k)

i, j is low-rank, it is

decompressed into a full-rank update contribution C(k)
i, j via an Outer Product step

(line 3), before being summed in full-rank (line 4) with Fi, j.

Algorithm 2.2 Right-looking RL-Update step.
1: /* Input: a block Fi, j to be updated by blocks F̃i,k and F̃ j,k. */
2: Inner Product: C̃(k)

i, j ← X i,k(Y T
i,kDk,kY j,k)X T

j,k

3: Outer Product: C(k)
i, j ← C̃(k)

i, j

4: Fi, j ← Fi, j −C(k)
i, j

Once the partial factorization of the front is finished, the L (and U in the un-
symmetric case) factors are compressed, while the CB is still full-rank. In some
contexts, we may want to also compress the CB (lines 13-19). The CB compression
is discussed in Section 2.5.

2.2.2 The Left-looking UFSC variant
The FSCU algorithm is presented in its Right-looking form. Its Left-looking

version, referred to as UFSC, is presented in Algorithm 2.3. First, the fully-summed
part of the front is factorized (lines 2-10); then the contribution block is updated
(lines 11-18).
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Algorithm 2.3 Frontal BLR LDLT (Left-looking) factorization: UFSC variant.
1: /* Input: a p× p block frontal matrix F; F = [Fi, j]i=1:p, j=1:p; p = pfs + pnfs */
2: for k = 1 to pfs do
3: for i = k to p do
4: Update: Fi,k ← LL-Update(Fi,k)
5: end for
6: Factor+Solve: Fk:p,k ← Lk:p,kDk,kLT

k,k
7: for i = k+1 to p do
8: Compress: Fi,k ≈ F̃i,k = X i,kY T

i,k
9: end for

10: end for
11: for i = pfs +1 to p do
12: for k = pfs +1 to i do
13: Update: Fi,k ← LL-Update(Fi,k)
14: if CB compression is activated then
15: Compress: Fi,k ≈ F̃i,k = X i,kY T

i,k
16: end if
17: end for
18: end for

The left-looking version of the Update step is provided in Algorithm 2.4. Note
that the number of blocks used to update Fi,k is either k−1 or pfs, depending on
whether Fi,k belongs to the factors or the contribution block part of the front, re-
spectively. Also note that at step k = 1, there is nothing to do; this leads to an empty
loop (because k−1= 0 at line 2 of Algorithm 2.4), which is implicitly skipped.

Algorithm 2.4 Left-looking LL-Update step.
1: /* Input: a block Fi,k to be updated. */
2: for j = 1 to min(k−1, pfs) do
3: Inner Product: C̃( j)

i,k ← X i, j(Y T
i, jD j, jYk, j)X T

k, j

4: Outer Product: C( j)
i,k ← C̃( j)

i,k

5: Fi,k ← Fi,k −C( j)
i,k

6: end for

While the Right- and Left-looking versions of each variant are numerically equiv-
alent, we will show in Chapter 5 that the Left-looking version outperforms the
Right-looking one for a number of reasons. Therefore, we present the rest of the
BLR factorization variants using the Left-looking terminology. We refer the reader
to Table 2.1 for the corresponding Right-looking terminology.

2.2.3 How to handle numerical pivoting in the BLR
factorization

Algorithms 2.1 and 2.3 are fully compatible with threshold partial pivoting (cf.
Section 1.2.4). The pivots are selected inside the BLR blocks; to assess their quality,
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they are compared to the pivots of the entire column. Therefore, as explained be-
fore, to perform numerical pivoting, the Solve step is merged with the Factor step.
The postponed pivots are merged with the next BLR block, whose size consequently
increases, as illustrated in Figure 2.1. At the end of the last BLR panel, if unelim-
inated variables remain, they are then delayed to the parent front, just as in the
standard algorithm presented in Section 1.2.4.2.

current
panel

next panel
(size has increased)

CB

Figure 2.1 – BLR factorization with numerical pivoting scheme. Postponed pivots
after the elimination of the current panel are in red; they are merged with the next
panel, whose size increases.

Thus, in situations where many postponed pivots occur, the size of the BLR
blocks may be considerably different from the size of the originally computed clus-
ter. While this does not require any additional operations, one could think it may
degrade the compression rate since the clusters after pivoting may not be admissi-
ble.

The row swaps involved in the BLR factorization are quite different depending
on the choice of pivoting style (LINPACK or LAPACK, cf. Figure 1.5), as illustrated
in Figure 2.2. With the LINPACK style (Figure 2.2a), the only part to swap is the
trailing submatrix part, which is still represented in full-rank and can thus be done
exactly as in the Full-Rank factorization (Figure 1.5). The same holds for the hybrid
style where the LAPACK style is used inside the diagonal BLR blocks (Figure 2.2c).
With the LAPACK style (Figure 2.2b), the entire row is swapped, which corresponds
to parts of the frontal matrix already compressed. As long as there are no postponed
pivots, this does not pose any particular problem: swapping the rows or columns of
a low-rank block B̃ = XY T can be achieved easily by swapping the rows of X or Y ,
respectively.

However, in the presence of pivots postponed from one BLR block to the other,
the LAPACK style becomes much more complex to use, as illustrated in Figure 2.3.
Indeed, the low-rank blocks already compressed that lie on the left are not necessar-
ily aligned with the current diagonal block. Therefore, two rows inside the current
diagonal block may correspond to rows belonging to different low-rank or full-rank
blocks in the previous panels, as illustrated in Figure 2.3. Of course, swapping
rows from two full-rank blocks is straightforward. However, if one or both blocks
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×
×

(a) LINPACK style

×
×

(b) LAPACK style, without
postponed pivots

×
×

(c) Hybrid style

Figure 2.2 – LINPACK and LAPACK pivoting styles in BLR (symmetric case). The
shaded area represents the part of the matrix that is already factored (and also
indicates the BLR blocks).

×

×

Figure 2.3 – LAPACK pivoting style in BLR, with postponed pivots (symmetric
case). Eliminated pivots are in gray while postponed pivots are in red.

are low-rank, then there is no simple way to swap the rows. Two strategies can be
distinguished:

• FR-swap: the low-rank blocks are decompressed back to full-rank; the swap
can then be easily performed in full-rank. Then the blocks are compressed
again; to avoid decompressing and compressing the same blocks at each swap,
one should wait until enough pivots have been eliminated to guarantee no
more decompressions will be necessary to compress a given block again.

• LR-swap: as shown in Figure 2.4, it is possible to swap rows from two different
low-rank blocks by increasing their rank by 1. Indeed, let us consider two
blocks B̃1 = X1Y T

1 and B̃2 = X2Y T
2 ; one can swap row i1 from B̃1 with row i2

from B̃2 as follows:

Xnew
1 ← (

X̂1 e i2

)
and Y new

1 ←
(
Y1 Y2(X2)T

i2,:

)
, (2.1)

Xnew
2 ← (

X̂2 e i1

)
and Y new

2 ←
(
Y2 Y1(X1)T

i1,:

)
, (2.2)
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where e i is the standard basis vector with a 1 at coordinate i and 0 every-
where else, and X̂1 = X1 l↔ (−X1)i1,: is equal to X1 where row i1 has been
replaced by zeroes (and similarly for X̂2). This strategy can also be applied
to swap rows between a full-rank and a low-rank block. At the end of the
factorization, one should recompress the blocks to obtain the most compact
representation possible.

i2

i1
(X1)i1,:Y T

1

(X2)i2,:Y T
2

=

=

0 0 +

0

1

0

0 0 +

0

1

0

=

=

0 0

0

1

0

0 0

0

1

0

Figure 2.4 – LR-swap strategy.

In this thesis, we will not perform an experimental comparison of the differ-
ent pivoting styles and swap strategies. We will use the LAPACK style with the
FR-swap strategy. This should be the object of further research, as mentioned in
Chapter 9 (Section 9.2).

2.2.4 Is the UFSC standard variant enough?
In Weisbecker (2013), the potential of the standard UFSC variant was demon-

strated. This variant was furthermore presented as the best compromise between
savings and robustness for the following three reasons:

• The number of operations needed for the Solve step is much lower than for
the Update step and so we can focus on the latter without using a low-rank
solve operation.

• The Solve step is done accurately which avoids a twofold approximation of the
factors.

• As described in Section 2.2.3, standard pivoting strategies can be used, while
it is not obvious how numerical pivoting can be performed with low-rank off-
diagonal blocks.

We will show in this manuscript that:

• While the UFSC variant can already achieve significant gains with respect
to the full-rank solver, compressing before the Solve is critical to capture the
best complexity possible, as explained in Chapter 4, Section 4.5.
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• The twofold approximation of the factors barely degrades the accuracy of the
factorization and is therefore much more efficient in terms of flops/accuracy
ratio.

• Standard pivoting strategies can be efficiently and effectively adapted to be
performed on low-rank sub-blocks, as explained in Section 2.3.2 (so-called
UCFS variant).

Therefore, the other BLR factorization variants can and must be considered.

2.3 Compress before Solve: the UFCS and UCFS
variants

2.3.1 When pivoting can be relaxed: the UFCS variant

In the previous variants, as described in Section 2.2.3, threshold partial pivoting
is performed by merging together the Factor and Solve steps. For many problems,
numerical pivoting can be restricted to a smaller area of the panel (for example, the
diagonal BLR blocks). In this case, the Solve step can be separated from the Factor
step and applied directly on the entire BLR panel, just as in the FR factorization
(Algorithm 1.5). As said before, this makes the Solve step more efficient because it
solely relies on BLAS-3 operations.

Furthermore, in BLR, when numerical pivoting is restricted, it is natural and
more efficient to perform the Compress before the Solve, thus leading to the so-
called UFCS factorization, described in Algorithm 2.5. The UFCS variant makes
further use of the low-rank property of the blocks since the Solve step can then be
performed in low-rank as shown at line 11.

In Section 2.3.2.3, we compare the accuracy of the UFSC and UFCS variants
on a set of problems where numerical pivoting can be restricted with no significant
loss of accuracy. The goal of this comparison is to assess whether a two-fold approx-
imation significantly degrades the residual, as feared in Weisbecker (2013). Indeed,
performing the Compress step earlier can decrease the ranks of the blocks; however,
we will show this does not have a significant impact on the scaled residual.

We will prove in Chapter 4 that the UFCS variant improves the asymptotic
complexity of the factorization since it decreases the cost of the full-rank part of
the computations. We will also show in Chapters 5 and 6 how this translates into a
significant performance gain in parallel settings. Therefore, compressing before the
Solve is crucial to make the BLR factorization efficient and scalable. However, it
is also necessary to preserve the ability to perform pivoting, as numerous problems
require it, and since it is one of the main advantages and originality of Block Low-
Rank solvers.

This double requirement leads us to introduce the UCFS variant, that allows us
to capture the improved compression gain without sacrificing the ability to pivot.
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Algorithm 2.5 Frontal BLR LDLT (Left-looking) factorization: UFCS variant.
1: /* Input: a p× p block frontal matrix F; F = [Fi, j]i=1:p, j=1:p; p = pfs + pnfs */
2: for k = 1 to pfs do
3: for i = k to p do
4: Update: Fi,k ← LL-Update(Fi,k)
5: end for
6: Factor: Fk,k ← Lk,kDk,kLT

k,k
7: for i = k+1 to p do
8: Compress: Fi,k ≈ F̃i,k = X i,kY T

i,k
9: end for

10: for i = k+1 to p do
11: Solve: F̃i,k ← F̃i,kL−T

k,kD−1
k,k = X i,k(Y T

i,kL−T
k,kD−1

k,k)
12: end for
13: end for
14: for i = pfs +1 to p do
15: for k = pfs +1 to i do
16: Update: Fi,k ← LL-Update(Fi,k)
17: if CB compression is activated then
18: Compress: Fi,k ≈ F̃i,k = X i,kY T

i,k
19: end if
20: end for
21: end for

2.3.2 When pivoting is still required: the UCFS variant

We call UCFS the variant where the Compress is performed before the Fac-
tor+Solve step, which allows the latter to take into account the entries belonging to
the low-rank blocks when assessing the quality of a pivot. Note that, technically,
performing the Compress step before the Factor step does not necessarily imply
that numerical pivoting is performed, as one could very well perform a “UCFS”
factorization with restricted pivoting, which would then be equivalent to a UFCS
factorization. However, because there is no particular reason to perform the Com-
press before the Factor other than using the low-rank information to pivot, we adopt
the convention that numerical pivoting is always performed in the UCFS variant,
while it is always restricted in the UFCS one.

2.3.2.1 Algorithm description

Algorithm 2.6 describes the UCFS factorization, where the Factor+Solve step
takes as input a BLR panel that is already compressed. Thus, the Factor+Solve
step must be modified to take into account the low-rank blocks of the panel. We
have to guarantee that if there is no growth in Yi, there will not be either in F̃i =
X iY T

i . This is of course not true in general, but holds in the case where X i is an
orthonormal matrix (which we assume because a truncated QR factorization with
column pivoting is used to perform the compression). Indeed, let B̃ = F̃i = XY T be
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Algorithm 2.6 Frontal BLR LDLT (Left-looking) factorization: UCFS variant.
1: /* Input: a p× p block frontal matrix F; F = [Fi, j]i=1:p, j=1:p; p = pfs + pnfs */
2: for k = 1 to pfs do
3: for i = k to p do
4: Update: Fi,k ← LL-Update(Fi,k)
5: end for
6: for i = k+1 to p do
7: Compress: Fi,k ≈ F̃i,k = X i,kY T

i,k
8: end for
9: Factor+Solve: F̃k:p,k ← L̃k:p,kDk,kLT

k,k
10: end for
11: for i = pfs +1 to p do
12: for k = pfs +1 to i do
13: Update: Fi,k ← LL-Update(Fi,k)
14: if CB compression is activated then
15: Compress: Fi,k ≈ F̃i,k = X i,kY T

i,k
16: end if
17: end for
18: end for

a low-rank block, then the maximum norm of B̃:,k can be bounded by

‖B̃:,k‖∞ ≤ ‖B̃:,k‖2 = ‖XY T
k,:‖2 = ‖X‖2‖Y T

k,:‖2 = ‖Y T
k,:‖2, (2.3)

where ‖·‖∞ and ‖·‖2 denote the maximum norm and the 2-norm, respectively. Note
that we cannot directly use the maximum norm to bound ‖B̃:,k‖∞ because it is not a
submultiplicative norm (i.e. ‖AB‖∞ ≤ ‖A‖∞‖B‖∞ does not hold). Furthermore, we
cannot use other submultiplicative norms such as the 1-norm or the infinity norm,
because they are not unitarily invariant (i.e. ‖X‖ 6= 1). Using the 2-norm has a
double consequence:

• First, computing the 2-norm of ‖Y T
k,:‖ can be expensive since it requires 2r

operations (where r is the rank of B̃), compared to r operations for the 1-
norm and only comparisons (no operations) for the maximum norm. This is
however acceptable since we expect to reduce the overall number of operations
by performing the Solve in low-rank, at a cost of br operations instead of b2,
where b denotes the number of rows of B̃.

• Second, equation (2.3) may overestimate the maximum norm by a factor as
large as

p
b:

‖B̃:,k‖∞ ≤ ‖B̃:,k‖2 ≤
p

b‖B̃:,k‖∞. (2.4)

This can therefore potentially lead to an increased amount of (unnecessary)
postponed and delayed pivots. We will quantify this effect in Section 2.3.2.3
and show in most practical cases it is not problematic. In some cases where
it might, this could be avoided by choosing a lower threshold τ for partial
pivoting (to account for the overestimation). Alternatively, we could decom-
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press the column B̃:,k to compute its exact maximum norm, but only when the
inequality above cannot guarantee the pivot to be safe.

This results in a new Factor+Solve algorithm, described in Algorithm 2.7. We
denote the ( j, j)-th entry of the i-th block by (Fi) j, j. Since Algorithm 2.7 is written
in its symmetric form, the pivot search is restricted to the diagonal block F1. For
the sake of simplicity, we only consider 1×1 pivots, and thus only diagonal entries
(F1) j, j are assessed as pivot candidates. The algorithm mainly differs from the
standard Factor+Solve algorithm (described in Algorithm 1.9) on how the maximal
element m on column j is computed. For each block Fi, we compute a bound mi
on the maximum or 2-norm of column j, depending on whether Fi is full-rank or
low-rank, respectively (lines 13-17). Note that, in the case of the diagonal block F1,
the block is symmetric, and therefore, at line 11, the maximum norm of column j is
computed as

max
(
max

i< j
(F1) j,i , max

i> j
(F1)i, j

)
.

The algorithm loops until a pivot candidate (F1) j, j belonging to the diagonal
block F1 is found. Then, columns and rows k and j are swapped (line 22). If F̃i =
X iY T

i is low-rank, this corresponds to swapping the rows of Yi, as illustrated in
Figure 2.5. Finally, pivot k is eliminated (lines 23-31). For the low-rank off-diagonal
blocks F̃i = X iY T

i , the update resulting from this elimination is applied on the rows
of Yi.

k

k+nppF1

X i

Y T
i

F̃i

Figure 2.5 – Column swap in the UCFS factorization. Swapping the columns of F̃i
is equivalent to swapping the rows Yi.

2.3.2.2 Dealing with postponed and delayed pivots

At the termination of Algorithm 2.7, a panel F̃k:p,k has been factorized and npp
pivots have been postponed, as illustrated in Figure 2.6a. Let us note Jpp the set
of postponed columns. For each off-diagonal low-rank block F̃i,k = X i,kYi,k, these
postponed columns must be merged with the adjacent block Fi,k+1 (which is still
represented in full-rank) from the next panel, just as for the previous BLR vari-
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Algorithm 2.7 Factor+Solve step adapted for the UCFS factorization (symmetric
case)

1: /* Input: a panel F̃ with nr block-rows and nc columns F̃ = [F̃i]i=1:nr . */
2: for k = 1 to nc do
3: j ← k−1
4: /* Loop until an acceptable pivot is found, or until no pivot candidates are left. */
5: repeat
6: j ← j+1
7: if j > nc then
8: /* No pivot candidates left, exit. */
9: go to 33

10: end if
11: m1 ←max

(
maxi< j(F1) j,i , maxi> j(F1)i, j

)
12: for i = 2 to nr do
13: if F̃i is low-rank then
14: mi ←‖(Yi) j,:‖2
15: else
16: mi ←‖(Fi):, j‖∞ =maxi′ |(Fi)i′, j|
17: end if
18: end for
19: m ←maxi∈[1;nr] mi
20: until |(F1) j, j| ≥ τm
21: /* Pivot candidate has been chosen in column j: swap it with current column k. */
22: Swap columns k and j and rows k and j
23: for i = 1 to nr do
24: if F̃i is low-rank then
25: (Yi)k,: ← (Yi)k,:/(F1)k,k
26: (Yi)k+1:nc,: ← (Yi)k+1:nc,: − (Yi)k,:(Yi)T

k,k+1:nc
27: else
28: (Fi):,k ← (Fi):,k/(F1)k,k
29: (Fi):,k+1:nc ← (Fi):,k+1:nc − (Fi):,k(Fi)T

k+1:nc,k
30: end if
31: end for
32: end for
33: /* npp = nc −k+1 is the number of postponed pivots. */

ants1. However, in the UCFS factorization, the postponed columns (F̃i,k):,Jpp have
already been compressed and are thus represented in low-rank. In this case, the
merge requires extra computations. As illustrated in Figure 2.6, three strategies
can be considered:

• FR-merge: first, the postponed columns are decompressed via the matrix-
matrix product (F̃i,k):,Jpp = X i,k(Yi,k)T

Jpp,:. Then, the two full-rank blocks (Fi,k):,Jpp

1Note that, in the left-looking factorization, the next panel F:,k+1 must first be updated before
being merged with the postponed pivots.
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and Fi,k+1 are adjacent and can be compressed as a single block Fi,k+1 ←(
(Fi,k):,Jpp Fi,k+1

)
. This is illustrated in Figure 2.6b.

• LR-merge: first, the next panel block Fi,k+1 is compressed: Fi,k+1 ≈ F̃i,k+1 =
X i,k+1Y T

i,k+1. Then, the two low-rank blocks (F̃i,k):,Jpp and F̃i,k+1 can be merged
by means of a low-rank block agglomeration operation (cf. Bebendorf (2008),
Section 1.1.6):(

(F̃i,k):,Jpp F̃i,k+1
)= (

X i,k(Yi,k)T
Jpp,: X i,k+1Y T

i,k+1

)
= (

X i,k X i,k+1
)( (Yi,k)T

Jpp,: 0
0 Y T

i,k+1

)
= XaggY T

agg. (2.5)

The agglomerated low-rank block XaggY T
agg is then recompressed to obtain

the final low-rank representation of F̃i,k+1. The merge step is illustrated in
Figure 2.6c.

• No-merge: the postponed columns are not merged but rather permuted to
the end of the frontal matrix. We will try to eliminate them as independent
panels, hoping that their elimination will become possible after the rest of the
panels have been treated.

nppFk,k

X i,k

Y T
i,k

F̃i,k Fi,k+1

(a) Before merge

nppFk,k

X i,k

Y T
i,k

F̃i,k Fi,k+1

merge

(b) FR-merge

nppFk,k

X i,k

Y T
i,k

F̃i,k F̃i,k+1X i,k+1

Y T
i,k+1

merge

merge

(c) LR-merge

Figure 2.6 – Strategies to merge postponed pivots with the next panel in the UCFS
factorization. F̃i,k has been factored and npp pivots have been postponed; they must
be merged with the next panel Fi,k+1.

In the case where the panel F̃k:p,k is the last panel and there are still some
postponed pivots, they become delayed pivots and must be passed to the parent
front.

2.3.2.3 Experimental study on matrices that require numerical pivoting

In Table 2.2, we list some matrices from the UFSMC that require numerical
pivoting during the factorization. We measure the scaled residual (taking as right-
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hand side the vector such that the solution is the vector containing only ones) re-
sulting from the FR factorization with standard threshold partial pivoting (with
a threshold τ = 0.01) and with restricted threshold partial pivoting (restricted to
diagonal blocks).

Two cases can be distinguished. The first category of problems (delimited by the
dashed lines in Table 2.2) achieves a scaled residual with restricted pivoting that
is as good as that using standard pivoting. This is often related to the fact that
they require only a moderate amount of numerical pivoting (the number of delayed
pivots is under 10% of the order of the matrix). Conversely, for the second category
of problems, much more pivoting is needed (delayed pivots up to 80% of the order of
the matrix); in this case, restricted pivoting either achieves a much higher scaled
residual, or simply breaks down due to numerical issues. Note that the number of
delayed pivots can be much higher than the order of the matrix because a given
variable can be delayed on multiple fronts before being eliminated.

In Table 2.3, we compare the UFSC, UFCS (restricting pivoting to the diagonal
BLR blocks), and UCFS factorizations on the matrices listed in Table 2.2. We use a
low-rank threshold arbitrarily set to ε= 10−6 for all matrices, with the exception of
those coming from our EDF application (matrices perf009{d,ar}, cf. Section 1.5.2.2),
for which we know the required threshold is ε = 10−9, as well as matrix c-big, for
which ε= 10−4 is necessary to achieve some compression. In the case of the UCFS
factorization, postponed pivots are merged using the FR-merge strategy (cf. Sec-
tion 2.3.2.2). The threshold for partial pivoting is still set to τ= 0.01.

For the first category of matrices (those for which restricted pivoting is accept-
able in FR), the UFCS factorization with restricted pivoting also results in most
cases in an acceptable residual. Note that the residual is often slightly larger than
that of the standard UFSC factorization. The fact that the UCFS factorization (with
non-restricted pivoting) does not improve the residual with respect to UFCS shows
that this is not due to the restricted pivoting, but rather to the higher compression
rate (not provided in the table). There are two exceptions to this fact: matrix_9 and
matrix-new_3. For these two matrices, even though restricted pivoting is acceptable
in the full-rank case, the UFCS factorization results in a poor residual with respect
to UFSC; with UCFS, using non-restricted pivoting retrieves the same quality as
UFSC. It would therefore seem there is some amplification of the pivoting errors
due to the BLR approximations.

For the second category of matrices (those for which restricted pivoting is not
acceptable in FR), the UFCS factorization also fails to achieve a satisfying resid-
ual. However, with the non-restricted pivoting algorithm designed in the previous
sections, the UCFS variant manages to retrieve a good residual for all matrices.
Furthermore, the good news is it does so without increasing significantly the num-
ber of delayed pivots with respect to the UFSC variant. This may illustrate the
fact that numerical pivoting is needed to reject pivot candidates which are several
orders of magnitude smaller than the off-diagonal entries; thus, even if the norm of
the latter is overestimated by a factor

p
b (where b denotes the block size, cf. equa-

tion (2.4)), this does not create additional, unnecessary delayed pivots. Note that
this may not remain true for much larger block sizes, such as those which arise
in the hierarchical framework; this makes the BLR format particularly suitable
for handling numerical pivoting based on block low-rank information. There are
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matrix n nnz flops scaled residual delayed pivots
TPP RP TPP RP

3Dspectralwave 681k 33.7M 18.4 TF 2e-11 6e-11 13 0
af_shell10 1508k 52.7M 755.8 GF 5e-16 5e-16 0 0
barrier2-10 116k 3.9M 221.6 GF 2e-14 8e-16 1,456 0
bmw3_2 227k 11.3M 49.3 GF 9e-16 1e-15 774 0
dielFilterV2real 1547k 48.5M 2.0 TF 2e-16 2e-16 0 0
ecology1 1000k 5.0M 26.2 GF 5e-16 7e-16 0 0
Ga41As41H72 268k 18.5M 84.4 TF 2e-12 2e-12 0 0
gas_sensor 67k 1.7M 35.9 GF 1e-16 1e-16 0 0
helm2d03 392k 2.7M 8.8 GF 1e-12 2e-12 0 0
Lin 256k 1.8M 520.6 GF 4e-12 4e-12 0 0
matrix_9 103k 2.1M 271.4 GF 2e-16 2e-16 1,812 0
matrix-new_3 125k 2.7M 429.7 GF 2e-16 2e-16 8,415 0
nlpkkt80 1062k 28.7M 30.0 TF 5e-12 1e-11 0 0
para-10 156k 5.4M 362.2 GF 1e-14 8e-16 2,134 0
PR02R 161k 8.2M 105.6 GF 1e-14 3e-15 28 0
c-73 169k 1.3M 1.1 GF 2.1e-14 1.3e-11 22,122 0
c-73b 169k 1.3M 0.8 GF 3.7e-15 1.1e-09 766 0
c-big 345k 2.3M 264.9 GF 2.5e-16 1.1e-09 6,162 0
cont-300 181k 1.0M 32.4 GF 1e-07 fail 143,438 —
darcy003 390k 2.1M 1.0 GF 5e-14 fail 293,620 —
d_pretok 183k 1.6M 9.6 GF 3e-15 fail 90,204 —
kkt_power 2063k 14.6M 2.0 TF 4e-13 fail 234,927 —
mario002 390k 2.1M 1.0 GF 5e-14 fail 293,620 —
perf009d 803k 55.6M 870.5 GF 2e-16 5e-08 20,069 20,332
perf009ar 5413k 412.3M 36.6 TF 3e-16 9e-02 82,332 82,069
TSOPF_FS_b39_c30 120k 3.1M 4.0 GF 6e-14 4e-05 61,433 33,399
turon_m 190k 1.7M 8.4 GF 6e-15 fail 91,797 —

Table 2.2 – Set of matrices that require pivoting. All matrices are factorized by
means of a LU factorization in double real (d) arithmetic. Scaled residual and
number of delayed pivots are provided for the factorization with threshold partial
pivoting with threshold τ= 0.01 (TPP) and with restricted pivoting (RP) to the diag-
onal blocks. The term “fail” indicates the factorization broke down due to numerical
issues. The problems can be classified into two categories (separated by the dashed
lines), depending on whether restricted pivoting is acceptable (top) or not (bottom).

also some exceptions in the second category: for matrices c-73, c-73b, and c-big, the
residual remains of the same order with restricted pivoting (UFCS factorization),
whereas in the FR case, the residual grows by several orders of magnitude when
using restricted pivoting. A possible explanation for this behavior is that the initial
ordering is different in BLR, due to the clustering.

Thus, five matrices (in bold in Table 2.3) have switched category in BLR with
respect to FR. It therefore seems that the errors associated with BLR approxima-
tions and off-diagonal entry growth have an effect on each other (amplification or
the inverse). This effect would deserve to be further studied and formalized by
means of an error analysis of the BLR factorization. Note that for some matrices
(cont-300, d_pretok, turon_m), the residual with UCFS is significantly better than
with UFSC; this is currently unexplained and should be investigated.

We now assess the gains in flops due to compressing before the Solve step, and
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matrix flops (% of FR) scaled residual delayed pivots
UFSC UFCS UCFS UFSC UFCS UCFS UFSC UFCS UCFS

3Dspectralwave 46.6 39.9 39.9 9e-05 2e-05 2e-05 13 0 13
af_shell10 29.9 22.7 22.7 2e-06 5e-06 4e-06 0 0 0
barrier2-10 24.8 16.5 16.1 1e-10 2e-09 2e-09 3,248 0 3,248
bmw3_2 70.3 60.5 60.7 3e-09 5e-10 8e-11 855 0 855
dielFilterV2real 44.3 35.8 35.8 7e-07 1e-06 1e-06 0 0 0
ecology1 33.5 21.2 21.2 5e-06 2e-05 2e-05 0 0 0
Ga41As41H72 6.7 4.6 4.6 6e-06 2e-06 2e-06 0 0 0
gas_sensor 55.3 47.1 47.1 2e-08 2e-07 2e-07 0 0 0
helm2d03 56.2 43.5 43.5 6e-06 7e-06 7e-06 0 0 1
Lin 24.0 18.5 18.5 4e-05 4e-05 4e-05 0 0 0
matrix_9 42.2 34.2 38.7 7e-11 1e-07 9e-11 5,737 0 5,818
matrix-new_3 27.8 22.3 29.7 5e-12 1e-10 5e-11 18,374 0 18,546
nlpkkt80 22.4 23.3 23.3 2e-07 1e-07 1e-07 0 0 0
para-10 20.5 13.4 13.0 5e-10 1e-09 5e-10 4,099 0 4,099
PR02R 50.8 43.3 45.4 2e-09 2e-11 2e-11 1,159 0 1,189
c-73 84.2 65.0 73.0 2e-05 4e-08 1e-07 22,122 0 22,122
c-73b 100.8 97.0 97.1 2e-07 3e-06 2e-06 767 0 767
c-big 80.1 67.6 68.0 5e-04 1e-03 1e-03 6,167 0 6,167
cont-300 62.8 — 84.7 4e-01 fail 6e-06 148,315 — 148,131
darcy003 82.8 — 72.2 2e-06 fail 1e-06 292,620 — 292,620
d_pretok 67.1 — 57.8 1e-07 fail 4e-12 90,204 — 90,204
kkt_power 65.7 64.9 64.6 4e-12 9e-02 4e-14 242,732 42,558 242,708
mario002 82.8 — 72.2 2e-06 fail 1e-06 292,620 — 292,620
perf009d 48.4 43.3 43.0 2e-13 4e-05 1e-10 20,368 20,272 20,368
perf009ar 26.0 22.7 22.1 3e-13 1e-01 9e-11 82,123 80,659 82,123
TSOPF_FS_b39_c30 78.6 — 70.6 4e-10 fail 8e-12 60,797 — 60,797
turon_m 60.4 — 49.3 1e-06 fail 7e-13 91,433 — 91,433

Table 2.3 – Comparison of the UFSC, UFCS, and UCFS factorization variants on
the set of matrices of Table 2.2. All matrices are factorized by means of a LU fac-
torization in double real (d) arithmetic. UFSC and UCFS use threshold partial
pivoting with threshold τ = 0.01; UFCS uses restricted pivoting to the diagonal
blocks. Flops are given as a percentage of the full-rank ones. The term “fail” indi-
cates the factorization broke down due to numerical issues. The problems can be
classified into two categories (separated by the dashed lines), depending on whether
restricted pivoting is acceptable in the FR case (top) or not (bottom); in BLR, some
problems (indicated in bold) switch categories.

also measure the overhead cost of UCFS with respect to UFCS. For the matrices
for which UFCS is acceptable, the gains in flops with respect to standard UFSC are
considerable, higher than 30% for several matrices. Moreover, the UCFS variant
only leads a small increase in flops with respect to UFCS. This overhead cost is
associated with the FR-merge operations, as well as the possibly lower compression
rate (due to the higher amount of pivoting, which can perturb the original clus-
tering). For most matrices, the overhead is negligible (compare column “flops” for
UFCS and UCFS). For those for which it is noticeable (PR02R, c-73), we have ob-
served (results not shown here) that it is due to a lower compression rate rather
than the FR-merge operations. Therefore, on this set of problems, it is probably not
worth designing more sophisticated merge strategies (such as LR-merge).
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From this study, it results that the UCFS factorization can achieve comparable
gains with respect to UFCS, while maintaining the stability of UFSC. This is con-
firmed by the analysis on the second category of matrices, for which UFCS fails,
whereas UCFS is able to achieve a satisfying residual while considerably reducing
the number of operations for the factorization.

2.4 Compress as soon as possible: the CUFS
variant

The CUFS algorithm, described in Algorithm 2.8, is the final variant of the
BLR factorization. It performs the compression as early as possible. In Right-
looking, the entire matrix needs to be accessed at step 1, and therefore the entire
matrix must be compressed before starting the factorization: this is the meaning
of the “C;FSU” notation (cf. Table 2.1). On the contrary, in Left-looking, at step
k, the panels k+ 1 to p have not been accessed yet and therefore have not been
compressed yet either. Therefore, the Compress is the first step performed on each
panel, but is still interlaced with the other steps panel after panel. Note that a
similar Left-looking “C;UFS” variant (where the matrix would be first compressed
entirely) is possible but is unnecessary and is likely to have worse locality than the
CUFS variant.

Algorithm 2.8 Frontal BLR LDLT (left-looking) factorization: CUFS variant.
1: /* Input: a p× p block frontal matrix F; F = [Fi, j]i=1:p, j=1:p; p = pfs + pnfs */
2: for k = 1 to pfs do
3: for i = k+1 to p do
4: Compress: Fi,k ≈ F̃i,k = X i,kY T

i,k
5: end for
6: for i = k to p do
7: Update: F̃i,k ← CUFS-Update(F̃i,k)
8: end for
9: Factor+Solve: F̃k:p,k ← Lk:p,kDk,kLT

k,k
10: end for
11: for i = pfs +1 to p do
12: for k = pfs +1 to i do
13: if CB compression is activated then
14: Compress: Fi,k ≈ F̃i,k = X i,kY T

i,k
15: Update: F̃i,k ← CUFS-Update(F̃i,k)
16: else
17: Update: Fi,k ← LL-Update(Fi,k)
18: end if
19: end for
20: end for

Then, the blocks belonging to the L (and U in the unsymmetric case) factors
part of the front and those belonging to the CB part must be considered separately.
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• For the L factors blocks, the original entries of the matrix Fik are compressed
before the Update step, and thus this step must be modified as shown in
Algorithm 2.9. At line 4, the update contribution C̃( j)

i,k is summed with the
compressed original entries F̃i,k; this operation is therefore a low-rank matrix
sum, described in Section 1.4.1.3. However, the sum of all the contributions
might not be low-rank anymore since its rank is the sum of the ranks of each
summed matrix. This is why the result is then recompressed (as shown at
line 6) to obtain the final low-rank approximation of block Fi,k. The Outer
Product step can thus be avoided. The recompression is an essential part of
the CUFS factorization, as the recompression is used to compute the low-rank
blocks of the L factors. This is further discussed in Section 3.4.

• For the CB blocks, the situation is different since after being updated, the
blocks must be assembled into the parent front. Therefore, the Update step
depends on whether the CB is compressed. If, just as for the previous vari-
ants, the CB is not compressed, then its Update is still applied on full-rank
blocks and is therefore still based on the LL-Update kernel (Algorithm 2.4), as
shown at line 17 of Algorithm 2.8. In particular the update contributions are
still decompressed by means of an Outer Product. On the contrary, if the CB
is compressed, as shown at line 14, then its blocks can be treated just as the
blocks in the L factors; we discuss the benefits and drawbacks of compressing
the CB in Section 2.5.

Algorithm 2.9 CUFS-Update step.
1: /* Input: a block F̃i,k to be updated. */
2: for j = 1 to min(k−1, pfs) do
3: Inner Product: C̃( j)

i,k ← X i, j(Y T
i, jD j, jYk, j)X T

k, j

4: F̃i,k ← F̃i,k − C̃( j)
i,k

5: end for
6: F̃i,k ←Recompress(F̃i,k)

Note that, technically, the Inner Product performed to compute the update con-
tributions C̃( j)

i,k (line 3 of Algorithm 2.9) is independent from the Compress step
performed to compute F̃i,k and could therefore be performed before it; however, this
would significantly increase the memory consumption since both the update con-
tributions and the full-rank panel containing the original entries would need to be
allocated and stored at the same time.

In this thesis, we will consider the CUFS variant from a theoretical point of view
only. We will show in Chapter 4 that it does not improve the asymptotic complex-
ity of the BLR factorization with respect to the previously presented UFCS/UCFS
variants. Therefore, we leave the implementation of the CUFS variant and its ex-
perimental analysis for future work, as mentioned in the conclusion chapter.
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2.5 Compressing the contribution block
In all BLR variants, we have the flexibility to choose whether the CB is com-

pressed or not. Here, we discuss the benefits and drawbacks depending on which
metric is considered.

• Flops: in general, compressing the CB represents an overhead cost which
does not contribute to reducing the global number of operations. With the
CUFS variant, it might become beneficial, because the Outer Product can be
skipped; however, this is only true if the assembly operations are also per-
formed in low-rank (fully-structured case, discussed below).

• Time: in terms of time, the picture looks even worse, since we are exchang-
ing an efficient kernel (the Outer Product, a matrix-matrix multiplication)
for much slower operations (the CB Compress, based on some compression
kernel). Therefore, the time overhead is expected to be worse than the flop
overhead, due to a lower GF/s rate.

• Memory: as explained in Section 1.3.2.5, the memory consumption in the
multifrontal method is the sum of two types of memory, the factors and ac-
tive memories. The factors memory can be reduced by compressing the L
factors. However, the active memory mainly consists of the CB memory, and
is thus not reduced unless the CB is compressed. In a parallel context, the
active memory scales much worse than the factors memory, and it might thus
become critical to compress the CB. This is further discussed in Section 9.3.

• Communications: in a parallel context (Chapter 6), we will also show that the
volume of communications can be reduced both by compressing the L and CB
blocks.

• Assembly type: if the CB is compressed, then the assembly must be modified
to be performed on low-rank blocks. This involves quite complex low-rank
extend-add operations, described in Section 1.4.3.2, which we may prefer to
avoid.

For these reasons, the following three strategies are worth considering:

• Do not compress CB, full-rank assembly (CBFR+AsmFR): this should be the
strategy of choice in a sequential context where there is enough memory to
perform the factorization while storing the CB in uncompressed form. Indeed,
in such a context, we aim to minimize the time for factorization and have no
reason to compress the CB.

• Compress CB, full-rank assembly (CBLR+AsmFR): this strategy is of interest
in a parallel context, or in a sequential context where memory is the limiting
factor. The CB is first compressed and sent to the parent front, which allows
for reducing both memory consumption and the volume of communications.
Then, it is decompressed just before the assembly, which is thus efficiently
performed in full-rank.
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• Compress CB, low-rank assembly (CBLR+AsmLR): to avoid decompressing the
CB blocks as in the previous strategy, the assembly can be performed in low-
rank, which may or may not result in a gain in flops and/or time.

The CBLR+AsmLR strategy is usually referred to as fully-structured (or some-
times matrix-free), which means that the factorization can be performed without
needing to store the matrix in full-rank at any point of the factorization. The fully-
structured factorization is often considered when the input matrix is already under
compressed form, or when its compressed form can be computed at a negligible cost.
This is for example the case if A is sparse, in which case its original entries can be
compressed via some sparse compression kernel (e.g. sparse SVD or randomized
sampling (Halko et al., 2011) via a sparse matrix-vector product).

In Chapter 4, we show that skipping the Outer Product (performed to decom-
press the blocks) brings no asymptotical gain. Therefore, in this work, we will not
consider the fully-structured CBLR+AsmLR strategy. We will use the CBFR+AsmFR
strategy in the sequential case (Chapters 4 and 5) and compare it to the CBLR+AsmFR
strategy in our parallel experiments (Chapter 6). Moreover, note that using a full-
rank assembly does not necessarily imply an asymptotic increase of the memory
consumption, because the assembly can be performed panel by panel (or even block
by block) and interlaced with the compression.

2.6 Low-rank Updates Accumulation and
Recompression (LUAR)

In this section, we introduce a modification of the Update step in order to reduce
the cost of the Outer Product operation. It is applicable to all variants that use
the LL-Update kernel (Algorithm 2.4), by replacing it by the LUAR-Update kernel,
presented in Algorithm 2.10.

Algorithm 2.10 LUAR-Update step.
1: /* Input: a block Fi,k to be updated. */
2: Initialize C̃(acc)

i,k to zero
3: for j = 1 to min(k−1, pfs) do
4: Inner Product: C̃( j)

i,k ← X i, j(Y T
i, jD j, jYk, j)X T

k, j

5: Accumulate update: C̃(acc)
i,k ← C̃(acc)

i,k + C̃( j)
i,k

6: C̃(acc)
i,k ←Recompress(C̃(acc)

i,k )
7: end for
8: Outer Product: C(acc)

i,k ← C̃(acc)
i,k

9: Fi,k ← Fi,k − C(acc)
i,k

LUAR stands for Low-rank Updates Accumulation and Recompression. It con-
sists in accumulating the matrices C̃( j)

i,k together, as shown at line 5 of Algorithm 2.10:

C̃(acc)
i,k ← C̃(acc)

i,k + C̃( j)
i,k.
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We refer to C̃(acc)
i,k as accumulators. The + sign in the previous equation denotes a

low-rank sum operation. Specifically, noting A = C(acc)
i,k and B = C( j)

i,k, we have

B̃ = C̃( j)
i,k = X i, j(Y T

i, jD j, jY j,k)X T
j,k = XBZBY T

B ,

with XB = X i, j, ZB = Y T
i, jD j, jYk, j, and YB = Xk, j. Similarly, Ã = C̃(acc)

i,k = XAZAY T
A .

Then, as explained in Section 1.4.1.3, the low-rank sum of A and B can be per-
formed as follows:

Ã + B̃ = XAZAY T
A + XBZBY T

B = (XA XB)
(

ZA
ZB

)
(YA YB)T = XSZSY T

S = S̃,

where S̃ is a low-rank approximant of S = A+B. A visual representation is given
in Figure 2.7.

This algorithm has two advantages: first, accumulating the update contribu-
tions together leads to higher granularities in the Outer Product step, which is
thus performed more efficiently. This will be analyzed in the context of the multi-
threaded factorization in Chapter 5. Second, it allows for additional compression,
as the accumulated updates C̃(acc)

i,k can be recompressed (as shown at line 6) before
the Outer Product. This second aspect is more complex as there are many strate-
gies to perform the recompression. The analysis and comparison of these strategies
is the object of Chapter 3.

XS

ZS Y T
S

(a) Accumulated updates before recompres-
sion

X̃S

Z̃S

Ỹ T
S

(b) Accumulated updates after re-
compression

Figure 2.7 – Low-rank Updates Accumulation and Recompression.

2.7 Chapter conclusion
In this chapter, we have presented the Block Low-Rank factorization. We have

the freedom to choose when the compression is performed, and this flexibility leads
to a number of variants which we have described.

We have briefly mentioned the FSUC variant, which performs an offline com-
pression once the factorization of each front is finished, to reduce the memory re-
quired to store the factors. We will not consider this variant further.

We have then described the standard UFSC (FSCU in right-looking) variant, in-
troduced by Amestoy et al. (2015a). This variant reduces the number of operations
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performed in the Update step, and can easily handle numerical pivoting. However,
it performs the Solve step of the factorization phase in full-rank, whose cost is thus
not reduced.

For this reason, we have considered two variants which perform the Compress
before the Solve step, and can thus accelerate the latter. When numerical pivoting
can be restricted, the UFCS variant can compress before the Solve the blocks which
are not used for pivoting. To preserve the ability to perform numerical pivoting,
critical in many applications, we have designed the UCFS variant which first com-
presses the blocks and then uses their low-rank representation to perform pivoting.

We have also described the CUFS variant, which performs the compression as
soon as possible. In particular, this variant allows for a fully-structured factoriza-
tion, where the matrix is not stored in full-rank at any point of the factorization.

Regardless of the variant considered, we may choose to compress the LU factors
only, or to also compress the contribution block (CB) of the frontal matrices. Com-
pressing the CB does not contribute in general to reducing the global number of
operations, but can be useful to reduce the volume of communications or the mem-
ory consumption of the solver. These aspects will be studied in Sections 6.3 and 9.3,
respectively.

Finally, we have proposed a so-called LUAR algorithm to reduce the cost of the
Update step. This algorithm consists in accumulating and recompressing the low-
rank updates. The object of the next chapter is to study and compare the different
strategies to recompress these low-rank updates.
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CHAPTER

3
Strategies to add and
recompress low-rank matrices

In this chapter, we present, analyze, and compare different strategies to com-
pute the sum of several low-rank matrices. In general, the rank of the sum can be
as large as the sum of the ranks of each matrix. Some intermediate recompression
operations are needed to avoid the rank growing too much.

This broad setting is in particular applicable to two special cases of the BLR
factorization, in which the low-rank matrices that are to be summed are the update
contributions C̃( j)

i,k.

• In the CUFS variant, the update contributions, together with the already
compressed original entries of the matrix, are recompressed to compute the
final low-rank representation of the blocks, as presented in Section 2.4.

• In the LUAR algorithm, the update contributions are first accumulated and
recompressed before being decompressed, in order to reduce the cost of the
Outer Product step, as presented in Section 2.6.

In this chapter, we place ourselves in the context of the LUAR variant, and an-
alyze and compare the different recompression strategies based on their effective-
ness to reduce the cost of the Outer Product operation. We denote the accumulators
by X ZY T , as illustrated in Figure 2.7. Z is referred to as the middle accumulator,
while X and Y are referred to as the outer accumulators.

These strategies have also been analyzed in the context of the CUFS variant
in Anton, Ashcraft, and Weisbecker (2016). We summarize the main findings of
that study in Section 3.4, and explain why they lead to different conclusions.

The different recompression strategies can be distinguished and classified based
on the three questions below. Consider the update of a block Fi,k with k−1 update
contributions {C̃( j)

i,k} j=1:k−1. Then, one must decide:

• When do we recompress the update contributions? Do we first compute all
the Inner Product operations before recompressing the accumulator, or do we
interlace both operations?

• What update contributions do we recompress together? Assuming more than
two update contributions are available for recompression, do we recompress
them all together or separately? And if separately, in which order?
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• How do we recompress the update contributions? Do we recompress X , Z, or
Y ? And in which order?

Answering these three questions is the object of Sections 3.1 through 3.3. Then,
before concluding, we present some experiments using these strategies on real-life
sparse matrices in Section 3.5.

3.1 When: non-lazy, half-lazy, and full-lazy
strategies

Algorithm 3.1 presents three different strategies to decide when to recompress
the k−1 update contributions of a given block Fi,k:

• The first strategy consists in computing and accumulating all update con-
tributions first and then recompressing the accumulator. This strategy, de-
scribed in Algorithm 3.1a, is referred to as full-lazy recompression in the
sense that the recompression is performed as late as possible.

• The second strategy consists in recompressing the accumulator each time
a new update contribution is computed. This strategy, described in Algo-
rithm 3.1b, is referred to as non-lazy recompression in the sense that the
recompression is performed as soon as possible.

• The third strategy is an intermediary between the first two, where the com-
putation of the update contributions and the recompressions are interlaced to
some degree. It is referred to as half-lazy recompression.

As summarized in Table 3.1, these strategies can be compared based on two cri-
teria: memory consumption and recompression granularity. Non-lazy recompres-
sion leads to the lowest memory consumption by recompressing the accumulators
as often as possible, while full-lazy leads to the highest consumption. Conversely,
full-lazy achieves the highest granularity for the recompression operation, while
non-lazy achieves the lowest.

memory granularity

full-lazy high high
half-lazy average average
non-lazy low low

Table 3.1 – Comparison of the memory consumption and granularity for full-, half-,
and non-lazy recompression.

There is no strategy better than the others in general (even if it is suggested in
Anton et al. (2016) that half-lazy achieves the best compromise). However, in the
special case of a left-looking factorization, it can be argued that full-lazy recompres-
sion is the best. Indeed, in a sequential (monothreaded) left-looking factorization,
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Algorithm 3.1a Full-lazy recompression.
1: for j = 1 to k−1 do
2: Compute update contribution C̃( j)

i,k

3: Add it to accumulator C̃(acc)
i,k

4: end for
5: Recompress accumulator C̃(acc)

i,k

Algorithm 3.1b Non-lazy recompression.
1: for j = 1 to k−1 do
2: Compute update contribution C̃( j)

i,k

3: Add it to accumulator C̃(acc)
i,k

4: Recompress accumulator C̃(acc)
i,k

5: end for

once we start updating a block Fi,k, its update contributions are all computed, ac-
cumulated, and recompressed before starting to update another block Fi′,k′ . Thus,
only one accumulator is needed (in the multithreaded case, each thread updates a
different block and thus the number of accumulators can still be bounded by the
number of threads used). This allows us to easily control the memory consumption
while benefiting from the higher granularity. More importantly, the full-lazy re-
compression gives the complete freedom to choose which update contributions are
recompressed with which and in which order. As we are going to show in the next
section, this freedom is crucial to limit the cost of the recompression; in particular,
it allows us to sort the update contributions by increasing rank.

Therefore, since we consider a left-looking factorization, we will limit the rest of
this study (Sections 3.2 and 3.3) to the full-lazy recompression strategy. However,
part of our findings should still apply to non- and half-lazy recompression in the
context of right-looking or task-based factorizations. Comparing them with our
left-looking full-lazy approach is out of the scope of this work.

3.2 What: merge trees

We now consider the following context: k−1 update contributions {C̃( j)
i,k} j=1:k−1

have been computed; we now investigate the best strategy to recompress them:
which update contribution with which, and in which order? This problem can be
modeled with so-called merge trees, built as follows:

• The update contributions C̃( j)
i,k constitute the leaves of the tree.

• The other nodes are defined as the recompressed accumulation of their chil-
dren.

• The root of the tree is the final accumulator on which the Outer Product step
is performed.
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accumulated updates
recompressed updates

(a) Comb tree

accumulated updates
recompressed updates

(b) Binary tree

accumulated updates
recompressed updates

(c) Star tree

Figure 3.1 – Merge trees comparison.

Note that this model can be easily generalized to forests by defining the final accu-
mulator as the result of the accumulation (with no recompression) of all the roots.

In Figure 3.1, we present three examples of merge trees: comb tree, binary tree,
and star tree.

• With a comb merge tree, we first recompress together C̃(1)
i,k and C̃(2)

i,k and obtain

C̃(12)
i,k , which we in turn recompress with C̃(3)

i,k to obtain C̃(123)
i,k , and so on until

the final accumulator C̃(123...k−1)
i,k is computed.

• With a star merge tree, all C̃( j)
i,k for j ∈ [1;k−1] are recompressed together at

the same time.

• With a binary merge tree, we compress the leaves two-by-two to obtain the
next level made of d(k−1)/2e nodes, and so on until the root level. This can be
easily generalized to q-ary trees for q ≥ 2.

Note that there are some constraints on the shape of the merge tree depending on
the laziness of the recompression strategy: while any shape is possible with full-
lazy (hence our choice), the non-lazy strategy for example imposes to use a comb
merge tree.

3.2.1 Merge tree complexity analysis
We now present a theoretical complexity analysis for comb, star, and q-ary

merge trees. We first consider a uniform rank assumption: we consider n` leaves
of size b and rank r. We show that under that uniform assumption, the star tree
leads to the lowest complexity. We then generalize the analysis to non-uniform rank
distributions, for which we show other merge trees can be more effective.
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3.2.1.1 Uniform rank complexity analysis

We assume the recompression is performed by means of a QR factorization with
column pivoting. We also assume n`r ≤ b; removing this assumption would lead to
the same conclusions but would complexify the following computations.

Worst-case complexity analysis In the worst case, there is no recompression
at all. The cost of compressing a given node is then

C worst
rec (R)= cmergebR2. (3.1)

where cmerge is a constant that depends on which merge kernel is used (cf. Sec-
tion 3.3) and R is the sum of the ranks of the children of the node to be recom-
pressed. Then, we compute the worst-case complexity C worst

star , C worst
comb , and C worst

qary
when using a star, comb, and q-ary merge tree, respectively. We have

C worst
star (n`)=C worst

rec (n`r)= cmergebr2n2
`, (3.2)

C worst
comb (n`)=

n`−1∑
`=1

C worst
rec ((`+1)r)= cmergebr2

n`−1∑
`=1

(`+1)2

= cmergebr2(n`(n`+1)(2n`+1)/6−1), (3.3)

and, assuming n` is a power of q,

C worst
qary (n`)=

logq n`∑
`=1

n`q−` C worst
rec (q`r)= cmergebr2n`

logq n`∑
`=1

q`

= cmergebr2n`(n`−1)q/(q−1). (3.4)

Therefore, the conclusion of the worst-case analysis is

C worst
comb (n`)

C worst
star (n`)

∝ n`/3,
C worst

qary (n`)

C worst
star (n`)

∝ q/(q−1), and
C worst

comb (n`)

C worst
qary (n`)

∝ n`(q−1)/3q. (3.5)

Unsurprisingly, the star tree is the best option if no recompression gains can be
achieved, since it limits the number (and thus the cost) of the recompressions.

Best-case complexity analysis In the best case, every intermediary node in the
merge tree has rank r. The cost of compressing a given node is then

C best
rec (R)= cmergebRr. (3.6)

We compute
C best

star (n`)=C best
rec (n`r)= cmergebr2n`, (3.7)

C best
comb(n`)=

n`−1∑
`=1

C best
rec (2r)= 2cmergebr2(n`−1), (3.8)
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and, assuming n` is a power of q,

C best
qary(n`)=

logq n`∑
`=1

n`q−` C best
rec (qr)= cmergebr2n`

logq n`∑
`=1

q1−`

= cmergebr2(n`−1)q/(q−1). (3.9)

Therefore, the conclusion of the best-case analysis is

C best
comb(n`)

C best
star (n`)

∝ 2,
C best

qary(n`)

C best
star (n`)

∝ q/(q−1), and
C best

comb(n`)

C best
qary(n`)

∝ 2(q−1)/q. (3.10)

which means the star tree is also the best option in the best case, which is more
interesting. The first conclusion of this complexity analysis is therefore that nodes
of similar rank should be merged all together.

3.2.1.2 Non-uniform rank complexity analysis

The uniform rank analysis leads to the conclusion that the star tree recompres-
sion is always the best in terms of cost. However, this conclusion is in fact erroneous
in practice as we will show in our numerical experiments. This is because for real
problems, the rank distribution of the nodes is not uniform. We now extend the
complexity analysis to non-uniform rank distributions to prove the star tree recom-
pression may in fact be significantly worse for some particular rank distributions.

We assume there are n` leaves of rank r`. Since we have shown in the previous
analysis that close ranks should be recompressed all together, we assume the the
leaves are regrouped into nc clusters of similar rank. For the sake of simplicity, we
assume there are p leaves in each cluster, all of identical rank rc, for c = 1, . . . ,nc.
This assumption may not be entirely realistic because in practice low-rank blocks
are more numerous than high-rank ones, but it simplifies the computations and
accomplishes the purpose of this section: to show that star tree recompression is
not necessarily the best choice.

Under this assumption, we compute the best-case complexity of the star and
comb tree recompression. In the comb tree case, we first recompress each uniform-
rank cluster by means of a star tree recompression, and then use a comb tree re-
compression on the nc remaining nodes. We have

C best
star (n`)= cmergebp

nc∑
c=1

rcrnc , (3.11)

and

C best
comb(n`)=

nc∑
c=1

cmergebpr2
c +

nc−1∑
c=1

cmergeb(rc + rc+1)rc+1

= cmergeb

(
nc∑

c=1
pr2

c +
nc−1∑
c=1

(rc + rc+1)rc+1

)
. (3.12)

To assess which merge tree achieves the lower complexity, we compute the differ-
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ence

C best
star (n`)−C best

comb(n`)= cmergeb
nc−1∑
c=1

(
prcrnc − pr2

c − (rc + rc+1)rc+1
)

(3.13)

To proceed further, we need to assume a specific rank distribution. Let us assume
rc+1 =αrc =αcr (noting r = r1), with α≥ 1. Then, we have

C best
star (n`)−C best

comb(n`)= cmergebr2
nc−1∑
c=1

(
αc−1 (

p
(
αnc−1 −αc−1)−αc(1+α)

))
(3.14)

We omit the tedious but straightforward computation of the previous expression as
a sum of geometric series, which leads to the final result

sign
(
C best

star (n`)−C best
comb(n`)

)
= sign

(
α2nc−1(p−1−α)−αnc−1(α+1)p+α2 +α+ p

)
(3.15)

The sign of the difference thus behaves asymptotically (for large nc = n`/p) as the
sign of p−1−α. Figure 3.2 illustrates how either star or comb tree recompression
can be the cheapest strategy depending on the values of p and α.

,

1 3 5 7 9 11 13 15 17 19

p

1

2

4

8

16

32

64

Comb tree is better Star tree is better

Figure 3.2 – Comparison of star and comb tree recompression for non-uniform rank
distributions defined by ∀c ∈ [1;nc],∀` ∈ [(c−1)p+1; cp], r` = rc =αc−1r.

We leave out the non-uniform complexity analysis of the q-ary merge trees.
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3.2.2 Improving the recompression by sorting the nodes
Even for a fixed merge tree, we still have the freedom to choose which update

contribution belongs to which node of the tree. One can of course simply assign the
update contributions in their natural order (i.e. C( j)

i,k is assigned the j-th leaf of the
tree), but there are better strategies, that we described in the following.

The rank of a parent node is necessarily greater than the biggest rank of its
children; thus, to maximize the potential gain, we want to merge nodes of similar
ranks: a rank-10 and a rank-90 nodes can only recompress to a rank-90 node, while
two rank-50 nodes can potentially recompress to a rank-50 node. This is illustrated
in Figure 3.3.

→

90 10 90

(a) Low potential

→

50 50 50

(b) High potential

Figure 3.3 – Potential recompression is greater for similar ranks.

Therefore, a basic approach is to sort the leaves of the tree by (increasing or
decreasing) rank. We want to avoid merging big rank with small rank nodes; there-
fore, sorting by decreasing rank is likely to be a poor strategy since all the big rank
nodes will be merged first and will thus lead to an expensive merge with the subse-
quent small rank nodes. Conversely, if the small rank nodes are merged first, they
can be merged at low cost, while the most costly merges will then be done as late as
possible. This is illustrated in Table 3.2.

recompression flops (×109)
merge tree type do not sort sort leaves sort at each level savings

inc. dec. inc. dec.

comb 3.56 2.39 14.30 2.39 14.30 33%
binary 2.64 2.50 3.30 2.47 3.30 6%
ternary 2.68 2.63 2.86 2.59 2.86 3%
quaternary 2.44 2.49 2.90 2.49 2.90 -2%
star 1.96 1.96 1.96 1.96 1.96 0%

dynamic 2.36

Table 3.2 – Impact of sorting the nodes for different merge trees on the root node
of a 1283 Poisson problem. The reported savings correspond to the gains achieved
by the best sorting strategy (which is here sorting at each level by increasing rank)
with respect to the unsorted strategy.

For the same reason, this sorting strategy has a much stronger impact on the
comb tree than the other types of merge tree: indeed, with a comb tree, as soon
as a big rank node is encountered, it will be merged with all the subsequent nodes,
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which increases the cost of the recompression. In a q-ary tree, a big rank node is not
merged with all subsequent nodes, but simply those lying in the same subtree. This
is illustrated in Figure 3.4 and shown by the results in Table 3.2: the recompression
cost is reduced by 33% with a comb merge tree, while it is barely improved with q-
ary trees. Finally, note that star tree recompression is obviously not influenced by
the leaves order.

(a) Comb tree (unsorted leaves) (b) Comb tree (sorted leaves)

(c) Binary tree (unsorted
leaves)

(d) Binary tree (sorted leaves)

Figure 3.4 – Impact of sorting the leaves of the merge tree: gray merges are inex-
pensive while red are costly; sorting is more important for comb trees than binary
trees.

A more advanced strategy consists in resorting the nodes at each level of the
tree. This does not make a difference for the comb tree, since there are only two
nodes on each level, but can slightly improve the cost with q-ary trees, as shown in
Table 3.2. Finally, rather than guiding the recompression with a static merge tree,
one could dynamically build the tree based on the ranks of the nodes: we initialize a
pool of nodes with the leaves, merge together the q nodes of smallest rank, reinsert
the result in the pool, and iterate until only one node is left. The result of this
strategy with q = 2 is also reported in Table 3.2 (cf. row “dynamic”).
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3.3 How: merge strategies
The last question regards how a given node of the merge tree is recompressed.

Several merge kernels can be considered. A given node corresponds to an accumu-
lator X ZY T made of q update contributions, as already illustrated in Figure 2.7.

The merge kernels differ in two ways:

• The part of the accumulator that is recompressed (X , Y , Z, or a combination
of the three);

• If more than one part is recompressed, the order in which they are.

3.3.1 Weight vs geometry recompression
Consider the computation of a leaf node of the merge tree associated with an

accumulator C̃(acc)
i,k = X ZY T . In the rest of this section, we place ourselves in the

context where the compression kernel F̃i, j = X i, jY T
i, j used yields orthonormal X i, j

matrices (e.g. a truncated QR with column pivoting). In that case, the information
contained in the outer X ,Y , and middle Z accumulators are of different nature.

Indeed, X is made of q orthonormal matrices X i, j (with j ∈ [1;k−1]) and thus
contains geometric information. Similarly, Y is made of q orthonormal matrices
Yk, j. In the following, we refer to X and Y as block-wise orthonormal columns
(BOC). Note that X and Y are BOC only for the leaf nodes of the merge tree, since
the accumulators associated with nodes higher up in the tree depend on how nodes
are merged together (so-called merge kernels, discussed below).

On the other hand, Z is a block-diagonal matrix where each block Y T
i, jD j, jYk, j

contains all the weight information relative to the j-th update contribution.
Each diagonal block of Z can be independently recompressed (since we use an

absolute low-rank threshold), and this makes the recompression of Z particularly
cheap (compared to that of X and Y ) due to the small size of its diagonal blocks. In
Table 3.3, we compare the following three approaches:

• No recompression at all: we simply multiply each Z j, j to whichever side (X or
Y ) minimizes the flops, as explained in Section 1.4.1.3.

• Exploit only weight information: we recompress Z (i.e. compute Z j, j = XZ j, j Y
T
Z j, j

for each diagonal block Z j, j) and multiply XZ j, j and YZ j, j with the correspond-
ing columns of X and Y , respectively.

• Exploit both weight and geometry information: we first recompress Z as pre-
viously, but then also recompress X and Y .

We compare the number of operations performed in the Outer Product and Re-
compress steps, as well as the global impact on the total number of operations.
When no recompression is performed, the Outer Product represents a significant
part of the total computations (around 20%), which illustrates the importance of
recompressing. Exploiting weight only reduces its cost by a factor 3, at almost no
overhead, due to the small size of the diagonal blocks of Z. This reduces the to-
tal by a significant amount (around 15%). If additionally, geometry information is
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flops (×109)
recompression type Recompress Outer Product Total

none 0.0 21.0 99.6
weight only 0.1 6.9 86.6
weight+geometry 2.4 2.0 83.9

Table 3.3 – Comparison between exploiting weight only or both weight and geome-
try informations when recompressing the accumulators, on the root node of a 1283

Poisson problem. Note that the total columns is not equal to the sum of the two
other columns as it also includes other steps involved in the factorization.

recompressed, the cost of the Outer Product is further divided and becomes negli-
gible; however, the recompression overhead in this case is significant, due to the
relatively large size of X and Y . This leads to a marginal improvement of the total
operations (around 3%).

Therefore, on this problem, recompression based on weight information only
captures almost all the recompression gain while keeping the recompress overhead
limited.

As a consequence, in the context of the unsymmetric LU factorization, it is im-
portant to compress UT rather than U . Indeed, the LR-LR inner product operation
yields a middle block of the form Z = Y T

i, j X j,k or Z = Y T
i, jY j,k depending if U or UT

is compressed, respectively. It is preferable to recompress a middle block that con-
tains all the weight information rather than part of it.

3.3.2 Exploiting BOC leaf nodes

As said before, on the leaf nodes of the merge tree, X and Y are column-wise
orthonormal. This property can be exploited to efficiently recompress them by skip-
ping the recompression of the first set of orthonormal columns: indeed, assume we
want to recompress X = (X1 . . . Xq) and let us note X2:q = (X2 . . . Xq). Then, recom-
pressing X can be done as follows. First, we remove the span of X1 from X2:q:

W ← X2:q − X1X T
1 X2:q. (3.16)

Then, we perform a truncated QR factorization with column pivoting of W :

W = XWY T
W , (3.17)

and this leads to the recompressed form of X ZY T :

X ZY T = (X1 X2:q)ZY T =
(
X1 (W + X1X T

1 X2:q)
)
ZY T (3.18)

=
(
X1 (XWY T

W + X1X T
1 X2:q)

)
ZY T (3.19)

= (X1 XW )
(

I X T
1 X2:q

0 Y T
W

)
ZY T = X ′Z′Y T . (3.20)
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The impact of exploiting the column-wise orthonormality of X strongly depends
on how large is X1 compared to X2:q, as shown by Table 3.4. The larger is X1, the
greater are the savings. Thus, the greatest savings can be achieved in the case
of a comb merge tree (28% of the recompression cost); significant gains can also
be achieved for q-ary trees, although the savings decrease when q increases: 19%,
13%, and 11%, for q = 2, 3, and 4, respectively. Finally, the savings in the star tree
case are expectedly negligible (5%).

recompression flops (×109)
merge tree type do not exploit do exploit savings (%)

comb 3.07 2.22 28%
binary 4.36 3.51 19%
ternary 4.10 3.55 13%
quaternary 3.93 3.49 11%
star 3.64 3.47 5%

Table 3.4 – Usefulness of exploiting the orthonormality of X1 and Y1 when recom-
pressing X and Y depending on the merge tree used, on the root node of a 1283

Poisson problem.

We can similarly exploit the column-wise orthonormality of Y to efficiently re-
compress it.

3.3.3 Merge kernels
As said before, when recompressing more than one part (X , Y , and Z) of the

accumulator (as is the case when exploiting both weight and geometry), we have
some freedom on the order in which we recompress them.

Z should always be recompressed first, because, as we have seen, it captures
most of the recompression and allows for a considerable reduction of the size of the
X and Y parts and thus the recompression overhead. We therefore now consider
the recompression of an accumulator XY T . Note that either X or Y is BOC (but not
both), depending on whether Z or ZT has been compressed, respectively (because
XZ is orthonormal). In the following, if X or Y is BOC, we refer to the accumulator
as left- or right-BOC, respectively.

Several merge kernels can be distinguished:

• mergeLeft and mergeRight (mergeL and mergeR): we recompress only one
side. With mergeL, we recompress the left side X = XX Y T

X and obtain the new
accumulator X ← XX and Y ←Y YX . mergeR is the equivalent of mergeL but
on the right side (Y recompression). mergeL and mergeR can exploit left- and
right-BOC inputs, respectively.

• mergeBoth and mergeBothCompress (mergeB and mergeBC): we recom-
press both sides at the same time: X = XX Y T

X and Y = XY Y T
Y ; therefore, both

left- and right-BOC inputs can be exploited. Then, the product W = Y T
X YY

is formed. In mergeB, we then multiply W to whichever side minimizes the
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flops; in mergeBC, we compress W = XWY T
W and the new accumulator is given

by X ← XX XW and Y ← XY YW .

• mergeRightLeft and mergeLeftRight (mergeRL and mergeLR): we also re-
compress both sides, but one after the other: in mergeRL, Y = XY Y T

Y is recom-
pressed first; we update X : X ← XYY and recompress it: X : XX Y T

X ; finally,
the new accumulator is given by X ← XX and Y ← XY YX . mergeRL can ex-
ploit a right-BOC input but not a left-BOC one because when the left side is
compressed, X ← XYY is not BOC anymore. Conversely, mergeLR can exploit
a left-BOC input but not a right-BOC one.

Before comparing these merge kernels, let us discuss how to exploit BOC inputs
on general nodes (not just the leaves).

3.3.4 Exploiting BOC general nodes
As said before, X or Y are BOC only for the leaf nodes of the merge tree. To

preserve this property of nodes higher up the tree, one must recompress XY T in
such a way that either the new X or the new Y has orthonormal columns (OC).
Similarly as for inputs, we distinguish left- and right-OC outputs.

Let us reexamine the merge kernels with that in mind:

• On output of mergeL, X is orthonormal and the output is thus left-OC. Con-
versely, mergeR yields a right-OC output.

• mergeBC yields an output that is either left- or right-OC, depending if W or
WT is compressed, respectively (because XW is orthonormal). Since we can
choose whether to compress W or WT , we can easily control the kind of output
yielded. With mergeB, the output depends on which side W is multiplied to,
which is decided based on the side which minimizes the flops of the Inner and
Outer Product (as explained in Section 1.4.1.3). Thus, while the output is nec-
essarily either left- or right-OC, we cannot easily control which it effectively
is. However, there are several ways to systematically enforce left- or right-OC
at the cost of additional operations. For example, to enforce left-OC, one can:.

– Force the multiplication of W to the right, even when it should be multi-
plied to the left;

– When W is multiplied to the left, perform one more recompression on the
left side;

– When W should be multiplied to the left, compress W instead (i.e. switch
to mergeBC).

A right-OC output can be similarly enforced.

• mergeRL and mergeLR yield a left- and right-OC output, respectively. How-
ever, we have seen that they can exploit right- and left-BOC inputs, respec-
tively. The fact that the desired input and yielded output are BOC/OC on
opposite sides can be problematic as it will lead to left- and right-OC nodes
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being merged together1. For this reason, we also introduce two additional
kernels. . .

• mergeLeftRightTranspose and mergeRightLeftTranspose (mergeLRT and merg-
eRLT): in mergeLRT, we first compress X (and thus left-BOC inputs can be
exploited), i.e compute X = XX Y T

X ; we then update Y (Y ← Y YX ) before com-
pressing its transpose (Y = YY X T

Y ). The final accumulator is then given by
X ← XX XY and Y ← YY , and is thus left-OC. Similarly, mergeRLT can ex-
ploit a right-BOC input and yields a right-OC output.

In Table 3.5, we summarize which kind of inputs can be exploited and which
kind of output are yielded by each merge kernel.

merge kernel can exploit _ input can yield _ output

mergeL left-BOC left-OC
mergeR right-BOC right-OC

mergeB(C)
right-BOC right-OC
left-BOC left-OC

mergeRL right-BOC left-OC
mergeLR left-BOC right-OC
mergeLRT left-BOC left-OC
mergeRLT right-BOC right-OC

Table 3.5 – Comparison of what kind of input can exploited and what kind of output
can be yielded by different merge kernels.

For the sake of exhaustivity, note that merge{RTL,LTR,RT,LT,RTLT,LTRT} ker-
nels could also be defined. However, these kernels cannot exploit neither left- or
right-BOC inputs, and, additionally, the latter four yield a general output (i.e. nei-
ther left- or right-OC). Therefore, we do not consider them.

In Table 3.6, we compare the gains obtained exploiting left-BOC inputs for dif-
ferent merge kernels. Expectedly, mergeL benefits the most, followed by mergeLRT,
mergeB, and mergeBC; mergeRL cannot exploit left-BOC inputs and its recompres-
sion cost is thus not reduced. Interestingly, without exploiting the column-wise
orthonormality of the input, mergeL results in an extremely expensive recompres-
sion, while mergeB for example, which also recompresses the left side, does not.
Even though mergeB is necessarily more expensive than mergeL at the leaf nodes,
it seems that recompressing the right side as well leads to smaller ranks on the
nodes higher in the tree and thus considerably reduces the overall recompression
cost. It might thus be important to recompress both sides.

Finally, in Figure 3.5, we compare the total factorization cost depending on the
merge kernel used. Left-BOC inputs are exploited and thus only merge kernels
yielding left-OC output are considered. Similar results would be obtained exploit-
ing right-BOC inputs and using the corresponding merge kernels. We use a comb

1In this case, the input is neither left- or right-BOC, but can still be recompressed efficiently be-
cause the first set of columns of either X or Y is necessarily orthonormal. This is however somewhat
complex and is ignored in the following.
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recompression flops (×109)
merge kernel do not exploit do exploit savings (%)

mergeL 10.70 0.44 96%
mergeB 3.11 2.12 32%
mergeBC 3.09 2.13 31%
mergeRL 2.55 2.55 0%
mergeLRT 2.25 1.16 48%

Table 3.6 – Usefulness of exploiting the orthonormality of X1 when recompressing
X and Y depending on the merge kernel used, on the root node of a 1283 Poisson
problem. A comb merge tree with leaves sorted by increasing rank is used. We
consider only kernels that yield left-OC output so that left-BOC inputs can be ex-
ploited on every node of the merge tree, not just the leaves. Similar results would be
obtained exploiting right-BOC inputs and using the corresponding merge kernels.

merge tree. We report the flops performed in the Recompression and the Outer
Product steps, as well as the total factorization. The flops are normalized with re-
spect to the total flops for the factorization with only recompression based on weight
information (i.e. when X and Y are not recompressed). We consider two matrix
sizes (root nodes of 1283 and 2563 Poisson problems) and two variants: UFSC and
UFCS.

For the UFSC variant, the total flops are dominated by the Solve step and thus
the impact of the merge kernels on the total is limited; it is more important for the
UFCS variant. This effect is especially clear on the larger matrix (cf. Figure 3.5).
The mergeL recompression is inexpensive but barely reduces the cost of the Outer
Product and thus is not an effective way to exploit geometric information. mergeB,
mergeBC, and mergeRL all achieve further compression compared to exploiting
weight information only, but their overhead cost is important and leads to limited
gains only. mergeLRT is in the end the most effective kernel, since its overhead cost
is relatively low due to the possibility to efficiently recompress the accumulators; it
achieves up to 30% gains with respect to the case where weight information only is
exploited.

Note that these kernels lead not only to different recompression overhead costs
but also to different accumulator ranks (i.e. Outer Product cost); this is currently
unexplained. While it only leads to slight differences in this context, this makes a
huge difference in the case of the CUFS factorization (as explained in Section 3.4)
and should therefore be further investigated.

3.4 Recompression strategies for the CUFS
variant

As explained in the beginning of this chapter, the recompression strategies that
we have analyzed can also be applied to the CUFS factorization, presented in Sec-
tion 2.4. In that context, they have a very different role. Indeed, while in the LUAR
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(a) Root node of 1283 Poisson problem.
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(b) Root node of 2563 Poisson problem.

Figure 3.5 – Merge kernels comparison on two problem sizes and two variants:
UFSC and UFCS. The flops are given as a percentage of those achieved with weight
recompression only.

context, the goal of is to reduce the cost of the Outer Product (by recompressing the
accumulators), in the CUFS variant, there is no Outer Product. Instead, the update
contributions and the original entries of the matrix are all recompressed together;
the result is kept as a low-rank representation of the blocks, which is then used
to perform the update of the subtrailing matrix. Therefore, in the CUFS context,
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the goal of the recompression is to achieve as small a rank as possible. This leads
to completely different conclusions on the comparison of the different recompres-
sion strategies. Such a study was carried out by Anton et al. (2016) and the main
conclusions were:

• The global impact of the recompression is much more important than in the
non fully-structured case, because even the smallest difference of rank makes
a huge difference; this is because the computed low-rank blocks are subse-
quently reused to update the trailing submatrix. It is therefore absolutely
necessary to recompress all the information, both on weight and geometry.

• For the same reason, big differences can be observed between different merge
kernels, depending on the ranks obtained by the recompression. For example,
mergeL is not a good choice because even though it keeps the merge overhead
cost low, it achieves higher ranks than other merge kernels because it does
not recompress both sides of the accumulator.

• Finally, because low-rank blocks are computed from the recompressed up-
dates, it is important to enforce the output to be left-orthonormal in L and
right-orthonormal in U , to maximize the weight recompression. This is not
necessary with the LUAR algorithm because the blocks are first decompressed
back to full-rank; then, the outer-orthonormality can be easily enforced by
compressing L and UT , as explained in Section 3.3.1

3.5 Experimental results on real-life sparse
problems

We conclude this chapter with some experiments on real-life sparse problems,
reported in Figure 3.6. We consider the UFSC variant. We measure the flops for the
factorization with LUAR recompression normalized with respect to the flops with-
out recompressing. We compare weight only and weight+geometry recompression.
For the geometry recompression, we have tested several merge trees and merge
kernels, and report the best for each problem. The merge tree nodes are sorted
by increasing rank, and the column-wise orthonormality of the outer accumulators
is exploited when possible. Important gains are achieved, up to 40% with weight
recompression only and 50% with additionally geometry recompression.

It can be observed that the gain due to the recompression is greater for larger
problems: for example, 24%, 29%, and 34% gain for the 5Hz, 7Hz, and 10Hz matri-
ces (matrix ID 1-3), respectively. This illustrates the fact that the LUAR algorithm
reduces the asymptotic complexity of the BLR factorization, which will be proved in
Chapter 4 (Section 4.5). This also applies, to a lesser extent, to the gains due to the
geometry recompression (compared to weight recompression only), and will also be
discussed in Chapter 4 (cf. Figure 4.6).
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Figure 3.6 – Gains due to LUAR on real-life sparse problems using the UFSC factor-
ization variant. The flop achieved by weight only and weight+geometry recompres-
sion are given as a percentage of the flops without recompression. For the geometry
recompression, we have tested several merge trees and merge kernels, and report
the best for each problem. The merge tree nodes are sorted by increasing rank,
and the column-wise orthonormality of the outer accumulators is exploited when
possible. The matrices ID have been assigned in Table 1.3.

3.6 Chapter conclusion

We have presented and analyzed strategies to add and recompress low-rank
updates. We have applied these strategies to the BLR factorization in order to
reduce the cost of the Outer Product step (so-called LUAR algorithm).

We have considered different strategies based on three criteria: when do we
recompress the low-rank updates? What do we recompress? And how?

First, we have explained why, in a left-looking factorization, it is best to recom-
press once all updates have been computed, so as to have more flexibility.

Then, we formalized the problem of choosing which updates are recompressed
together with the concept of merge tree: each node represents an update, and sib-
lings are recompressed together. Our complexity analysis and experiments show
that no merge tree is always better than the others. Moreover, we have underlined
the importance of sorting the nodes by increasing rank.

Finally, we have analyzed several merge kernels, which differ on what type of
information is recompressed. Weight information can be efficiently exploited by
recompressing the middle accumulator (ZS in Figure 2.7), which is of small size.
Geometry information can be exploited by recompressing the outer accumulators
(XS and YS); even though it leads to a higher recompression cost, we have shown
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we can exploit the orthonormality of XS or YS to limit the overhead.
All in all, we have shown the accumulation and recompression of low-rank up-

dates allows for significant gains in the factorization of large sparse real-life matri-
ces, up to a factor 2 in number of operations. In the next chapters, we will come back
to these recompression strategies to analyze their asymptotic complexity (Chap-
ter 4), and their performance in shared- and distributed-memory parallel settings
(Chapters 5 and 6).
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CHAPTER

4
Complexity of the
BLR Factorization

Unlike hierarchical formats, the theoretical complexity of the BLR factorization
was unknown until recently. It remained to be proved that the BLR format does not
only reduce the computations by a constant, i.e. leads to dense LU factorization of
complexity O (m3), just like in the full-rank case.

The main objective of this chapter is to compute the complexity of the BLR
multifrontal factorization. We will first prove that the BLR UFSC (or FSCU in
right-looking) factorization does provide a non-constant gain, and then show how
the BLR factorization variants (described in Chapter 2) influence its complexity.

As explained in Chapter 1, the BLR format is strongly admissible, which means
that off-diagonal blocks are allowed to be full-rank. One of the key results of this
chapter (Lemma 4.1) is that the number of these off-diagonal full-rank blocks on
any row can be bounded by a constant, even for a strong admissibility condition
for which theoretical bounds on the ranks have been proven. This will allow us to
compute the theoretical complexity of the BLR factorization.

We now briefly describe the contents of each section. In Section 4.1, we present
the context of this complexity study, the solution of elliptic PDEs with the Finite
Element (FE) method. In Section 4.2, we compute the theoretical bounds on the
numerical ranks of the off-diagonal blocks in BLR matrices arising in our context.
First, we briefly review the work done on hierarchical matrices and the complexity
of their factorization. Then, we explain why applying this work to BLR matrices
(which can be seen as a very particular kind of hierarchical matrices) does not pro-
vide a satisfying result. We then give the necessary ingredients to extend this work
to the BLR case. In Section 4.3, we use the rank bounds computed in Section 4.2
to compute the theoretical complexity of the standard dense UFSC factorization.
Then, we explain in Section 4.4 how the dense UFSC factorization can be used
within each node of the tree associated with a sparse multifrontal factorization,
and we compute the complexity of the corresponding BLR multifrontal factoriza-
tion. We then analyze in Section 4.5 the other variants of the BLR factorization
and show how they can further reduce its complexity. In Section 4.6, we support
our theoretical complexity bounds with numerical experiments and analyze the in-
fluence on complexity of each variant of the BLR factorization and of two other
parameters: the low-rank threshold and the block size. We conclude this chapter
with some remarks in Section 4.7.
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4.1 Context of the study

We describe the context in which we place ourselves for the complexity study,
which is the same as in Bebendorf and Hackbusch (2003).

We consider a partial differential equation of the form:

Lu = f in Ω⊂Rd,Ω convex ,d ≥ 2, (4.1)
u = g on ∂Ω,

where L is a uniformly elliptic operator in divergence form:

Lu =−div[C∇u+ c1u]+ c2 ·∇u+ c3u.

C is a d×d matrix of functions, such that ∀x,C(x) ∈Rd×d is symmetric positive
definite with entries ci, j ∈ L∞(Ω). Furthermore, c1(x), c2(x) ∈Rd and c3(x) ∈R.

We consider the solution of problem (4.1) by the Finite Element (FE) method.
Let D = H1

0(Ω) be the domain of definition of operator L. We consider a FE dis-
cretization, with step size h, that defines the associated approximation of D, the
space Dh. Let n = Nd = dimDh be its dimension and

{
ϕi

}
i∈I the basis functions,

with I = [1,n] the index set. Similarly as in Bebendorf and Hackbusch (2003), we
assume that a quasi-uniform and shape-regular triangulation is used. We define
X i, the support of ϕi, and generalize the definition of support to subdomains:

Xσ =
⋃
i∈σ

X i.

Please note that with this definition, the admissibility conditions defined in Sec-
tion 1.4.2.1 should be rewritten by replacing σ and τ by Xσ and Xτ in the distance
and diameter calls, respectively. For example, the least-restrictive strong admissi-
bility condition (1.27) becomes

σ×τ is admissible ⇔ dist(Xσ, Xτ)> 0. (4.2)

We note J the bijection defined by

J :
Rn → Dh
x 7→ ∑

i∈I xiϕi
. (4.3)

Equation (4.1) can be approximately solved by solving the discretized problem,
which takes the form of a sparse linear system Ax = b where A is the stiffness
matrix defined by A = J∗LJ. We consider the solution of that system using the
multifrontal method to factorize A. We also define B = J∗L−1J and M = J∗J. B is
the Galerkin discretization of L−1 and M the mass matrix.

A matrix of the form

S = AΨ,Ψ− AΨ,ΦA−1
Φ,ΦAΦ,Ψ, (4.4)

for some Φ,Ψ⊂ I such that Φ∪Ψ= I is called a Schur complement of A. One of
the main results of Bebendorf (2007) (Section 3) states that the Schur complements
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of A can be approximated if an approximant of the inverse stiffness matrix A−1 is
known.

Therefore, we are interested in finding Ã−1, approximant of the inverse stiffness
matrix A−1. The following result from FE theory will be used (cf. Bebendorf and
Hackbusch (2003), Subsection 5.2): the discretization of the inverse of the operator
is approximated by the inverse of the discretized operator, i.e.,

‖A−1 −M−1BM−1‖2 ≤O (εh), (4.5)

where εh is the accuracy associated with the step size h of the FE discretization. In
the following, for the sake of simplicity, we assume that the low-rank threshold ε is
set to be equal to εh.

Then, assuming we can find M̃−1 and B̃, approximants of the inverse mass ma-
trix M−1 and of the B matrix, we have (cf. Bebendorf and Hackbusch (2003), Sub-
section 5.3):

M−1BM−1 − M̃−1B̃M̃−1 = (M−1 − M̃−1)BM−1

+ M̃−1(B− B̃)M−1 + M̃−1B̃(M−1 − M̃−1). (4.6)

Thus M−1BM−1 can be approximated by M̃−1B̃M̃−1 and therefore so can A−1.
The proofs in Bebendorf and Hackbusch (2003), on which this paper is based,

rely on the strong admissibility. In Hackbusch, Khoromskij, and Kriemann (2004),
it is shown that using the weak block-admissibility condition instead leads to a
smaller constant in the complexity estimates. The extension to the weak admis-
sibility condition in the BLR case is out of the scope of this work. Therefore, we
assume that a strong block-admissibility condition is used for computing our theo-
retical complexity bounds, that we will simply note (Admb).

4.2 From Hierarchical to BLR bounds
The existence of H -matrix approximants of the Schur complements of A has

been shown in Bebendorf and Hackbusch (2003) and Bebendorf (2007). In this sec-
tion, we summarize the main ideas of the proof and give the necessary ingredients
to extend it to the BLR case. The reader can refer to Bebendorf and Hackbusch
(2003), Bebendorf (2005), and Bebendorf (2007) for the details of the proof for hier-
archical matrices.

4.2.1 H -admissibility and properties
We define the so-called sparsity constant

csp =max
(
max

i
#{I j; I i×I j ∈S(I ×I )},max

j
#{I i; I i×I j ∈S(I ×I )}

)
, (4.7)

where #E denotes the cardinality of a set E (we will use this notation throughout
the rest of this chapter). Thus, the sparsity constant is the maximum number of
blocks of a given level in the block cluster tree that are in the same row or column
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of the matrix. For example, in Figure 1.16b, csp is equal to 2, and in Figures 1.15b
and 1.17b, it is equal to 4. Under the assumption of a partitioning S(I ×I ) defined
by a geometrically balanced tree, the sparsity constant can be bound by O (1) (cf.
Grasedyck and Hackbusch (2003), Lemma 4.5). A geometrically balanced tree is
a block cluster tree resulting from a partitioning computed as the intersection be-
tween the domain Ω (defined below in (4.1)) and a hierarchical cubic domain. For a
formal description, see Construction 4.3 in Grasedyck and Hackbusch (2003).

We remind the definition of the H -admissibility condition:

S(I ×I ) is admissible ⇔∀σ×τ ∈S(I ×I ), (Admb) is satisfied, (AdmH )
or min(#σ,#τ)≤ cmin.

where cmin is a positive constant. The partitioning associated with the H -admissibility
condition (AdmH ) can thus roughly be obtained by the following algorithm: for a
given initial partition, for each block σ×τ, if (Admb) is satisfied, the block is ad-
missible and is added to the final partition; if not, the block is subdivided, until
either (Admb) is satisfied or the block becomes small enough. This often leads to
non-uniform partitionings, such as the example shown on Figure 1.17b.

We note H (S(I ×I ), r) the set of hierarchical matrices such that r is the max-
imal rank of the blocks defined by the admissible partition S(I ×I ).

In Bebendorf and Hackbusch (2003), Bebendorf (2005), and Bebendorf (2007),
the proof that the Schur complements of A possess H -approximants is derived
using (4.5).

It is first established that B and M−1 possess H -approximants (cf. Bebendorf
and Hackbusch (2003), Theorems 3.4 and 4.3). More precisely, they can be approxi-
mated with accuracy ε by H -matrices B̃ and M̃−1 such that

B̃ ∈H (S(I ×I ), rG), (4.8)

M̃−1 ∈H (S(I ×I ), | logε|d), (4.9)

where S(I ×I ) is an H -admissible partition and rG is the rank resulting from
the approximation of the degenerate Green function’s kernel. rG can be shown to
be small for many problem classes (Bebendorf and Hackbusch, 2003; Bebendorf,
2005).

Then, the following H -arithmetics theorem is used.

Theorem 4.1 (H -matrix product, Theorem 2.20 in Grasedyck and Hackbusch (2003)).
Let H1 and H2 be two hierarchical matrices of order n, such that H1 ∈ H (S(I ×
I ), r1) and H2 ∈H (S(I ×I ), r2). Then, their product is also a hierarchical matrix
and it holds

H1H2 ∈H (S(I ×I ), csp max(r1, r2) logn).

In Theorem 4.1, csp is the sparsity constant, defined by (4.7).
Then, using the fact that rG > | logε|d (Bebendorf and Hackbusch, 2003), and ap-

plying (4.5), (4.6), and Theorem 4.1, it is established (cf. Bebendorf and Hackbusch
(2003), Theorem 5.4) that

Ã−1 ∈H (S(I ×I ), rH ), with rH = c2
sprG log2 n. (4.10)
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Furthermore, if an approximant Ã−1 exists, then for any Φ ⊂ I , an approximant
of A−1

Φ,Φ must also exist, since AΦ,Φ is simply the restriction of A to the subdomain
XΦ (Bebendorf, 2007).

Thus, using (4.4), in combination to the fact that the stiffness matrix A can also
be approximated by Ã ∈ H (S(I ×I ),O (1)), the existence of S̃, H -approximant of
any Schur complement S of A, is guaranteed by (4.10) and it is shown (Bebendorf,
2007) that the maximal rank of the blocks of S̃ is rH , i.e.

S̃ ∈H (S(I ×I ), rH ). (4.11)

Finally, it can be shown that the complexity of factorizing an H -matrix of order
m and of maximal rank r is (Grasedyck and Hackbusch, 2003; Hackbusch, 1999):

C (m)=O (c2
spr2m log2 m). (4.12)

Equation (4.12) relies on the assumption that the factorization is fully-structured,
i.e. the compressed form Ã of A is available at no cost.

To conclude, in the H case, applying (4.12) to the (dense) factorization of S̃ leads
to a cost which is almost linear when r = O (1) and almost O (m2) when r = O (

p
m).

As will be explained in Section 4.4, both cases lead to near-linear complexity of the
multifrontal (sparse) factorization (Xia, 2013a).

4.2.2 Why this result is not suitable to compute a complexity
bound for BLR

One might think that, since BLR is a specific type of H -matrix, the previous
result can be used to derive the complexity of the BLR factorization. However, the
bound obtained by simply applying H -matrix theory to BLR is useless, as explained
below.

Applying the result on H -matrices to BLR is equivalent to bounding all the
ranks kεi, j by the same bound r, the maximal rank. The problem is that this nec-
essarily implies r = b, because there will always be some blocks of size b such that
dist(Xσ, Xτ) = 0 (i.e., non-admissible blocks, which will be considered full-rank).
Thus, the best we can say about a BLR matrix is that it belongs to H (S(I ),b),
which is obvious and overly pessimistic.

In addition, with a BLR partitioning, the sparsity constant csp (defined by (4.7))
is not bounded, as it is equal to p = m/b. Thus, (4.12) leads to a factorization com-
plexity bound O ((m/b)2b2m log2 m) = O (m3 log2 m), which is even worse than the
full-rank factorization.

4.2.3 BLR-admissibility and properties
To compute a meaningful complexity bound for BLR, we divide the BLR blocks

into two groups: the blocks that satisfy the block-admissibility condition (whose
rank r can be bounded by a meaningful bound), and those that do not, which we
assume are left in full-rank form. We show that the number of non-admissible
blocks in A can be asymptotically negligible, provided an appropriate partitioning
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S(I ). This leads us to introduce the notion of BLR-admissibility of a partition
S(I ), and we establish for such a partition a bound on the maximal rank of the
admissible blocks.

In the following, we note BA the set of admissible blocks. We also define

Nna = max
σ∈S(I )

#{τ ∈S(I ),σ×τ ∉BA}, (4.13)

the maximum number of non-admissible blocks on any row. Note that, because we
have assumed for simplicity that the row and column partitioning are the same,
Nna is also the maximum number of non-admissible blocks on any column.

We then recast the H -admissibility of a partition to the BLR uniform blocking.
We propose the following BLR-admissibility condition:

S(I ) is admissible ⇔ Nna ≤ q, (AdmBLR)

where q is a positive constant. With (AdmBLR), we want the number of blocks (on
any row or column) that are not admissible (and thus whose rank is not bounded
by r), to be itself bounded by q.

For example, if the least-restrictive strong block-admissibility condition (1.27)
is used, (AdmBLR) means that a partition is admissible if for any subdomain, its
number of neighbors (i.e. number of subdomains at distance zero) is smaller than
q. The BLR-admissibility condition is illustrated in Figure 4.1, where we have
assumed that (1.27) is used for simplicity. In Figure 4.1a, the vertical subdomain
(in gray) is at distance zero of O (m/b) blocks and thus Nna is not constant. In
Figure 4.1b, the maximal number of blocks at distance zero of any block is at most
9 and thus the partition is BLR-admissible for q ≥ 9. Note that if a general strong
admissibility condition (1.25) is used, the same reasoning applies, as in Figure 4.1b,
Nna only depends on η and d, which are both constant.

We note BL R(S(I ), r, q) the set of BLR matrices such that r is the maximal
rank of the admissible blocks defined by the BLR-admissible partition S(I ).

b

m

(a) Example of a non BLR-
admissible partition. Here,
the gray subdomain has Nna =
O (m/b) 6=O (1) neighbors.

b

m

(b) Example of a BLR-
admissible partition when
q ≥ Nna = 9 = O (1), the max-
imal number of neighbors of
any block.

Figure 4.1 – Illustration of the BLR-admissibility condition.

We now prove the following lemma.
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Lemma 4.1. Let S(I ×I ) be a given H -partitioning and let S(I ) be the corre-
sponding BLR partitioning obtained by refining the H one. Let us note N(H )

na and
N(BLR)

na the value of Nna for the H and BLR partitionings, respectively. Then: (a)
Provided b ≥ cmin, it holds N(BLR)

na ≤ N(H )
na ; (b) Under the assumption that S(I ×I )

is defined by a geometrically balanced block cluster tree, it holds N(H )
na =O (1).

Proof. (a) We provide Figure 4.2 (where non-admissible blocks are in gray) to illus-
trate the following proof. The BLR partitioning is simply obtained by refining the
H one. Since non-admissible H -blocks are of size cmin ≤ b, they will not be refined,
and thus the BLR refining only adds more admissible blocks to the partitioning.
Furthermore, if cmin is strictly inferior to b, the non-admissible H -blocks will be
merged as a single BLR-block of size b and thus N(BLR)

na may in fact be smaller than
N(H )

na . (b) Since all non-admissible blocks necessarily belong to the same level of the
block cluster tree (the last one), it holds by definition that N(H )

na ≤ csp. We conclude
with the fact that in the H case, the sparsity constant is bounded for geometrically
balanced block cluster trees (Grasedyck and Hackbusch, 2003).

As a corollary, we assume in the following that the partition S(I ) is defined by
a geometrically balanced cluster tree and is thus admissible for q = Nna =O (1).

cmin

(a) Example of H -partitioning, with
N(H )

na = 4≤ csp = 6=O (1). Here, we have
assumed the bottom-left and top-right
blocks are non-admissible for illustrative
purposes.

b

(b) BLR refining of the H -partitioning
4.2a. csp = O (m/b) is not bounded any-
more but N(BLR)

na = 3=O (1) remains con-
stant.

Figure 4.2 – Illustration of Lemma 4.1 (proof of the boundedness of Nna).

The next step is to find BLR approximants of B and M−1.
The construction of B̃ is the same for a BLR or an H -partitioning, and we can

thus rely on the work of Bebendorf and Hackbusch (2003).
The main idea behind this construction is to exploit the smoothness property of

Green functions. As shown in Bebendorf and Hackbusch (2003) (see their Theorem
3.4), for any admissible block σ×τ ∈BA, Bσ×τ can be approximated by a low-rank
matrix Bε

σ×τ of numerical rank less than rG .
Therefore, we construct B̃ as follows:

∀σ×τ ∈S(I )2, B̃σ×τ =
{

Bε
σ×τ if σ×τ ∈BA

Bσ×τ otherwise , (4.14)
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which leads to
B̃ ∈BL R(S(I ), rG , Nna). (4.15)

The construction of M̃−1 is also very similar to the one in Bebendorf and Hack-
busch (2003). The main idea is that the inverse mass matrix asymptotically tends
towards a block-diagonal matrix. More precisely, it is shown that, for any block
σ×τ ∈S(I )2,

‖M−1
σ×τ‖ ≤O (

p
#σ#τ c

2dp#σ#τ dist(Xσ,Xτ))‖M−1‖,

where c < 1 (cf. Bebendorf and Hackbusch (2003), Lemma 4.2). Therefore, ‖M−1
σ×τ‖

tends towards zero when #σ,#τ tend towards infinity (which is the case for a non-
constant block size b), as long as dist(Xσ, Xτ)> 0, i.e., as long as σ×τ ∈BA.

Therefore, we construct M̃−1 ∈BL R(S(I ),0, Nna) as follows:

∀σ×τ ∈S(I )2, M̃−1
σ×τ =

{
0 if σ×τ ∈BA
M−1

σ×τ otherwise , (4.16)

which leads to
M̃−1 ∈BL R(S(I ),0, Nna). (4.17)

(4.15) and (4.17) are the BLR equivalents of (4.8) and (4.9), respectively. It now
remains to derive a BLR arithmetic property similar to Theorem 4.1. which takes
the form of the following theorem.

Theorem 4.2 (BLR matrix product). If A ∈BL R(S(I ), rA, qA) and B ∈ BL R(S(I ), rB, qB)
are BLR matrices then their product P = AB is a BLR matrix such that

P ∈BL R(S(I ), rP , qP ),

with rP = csp min(rA, rB)+ qArB + qBrA and qP = qA qB.

Proof. Let A ∈ BL R(S(I ), rA, qA) and B ∈ BL R(S(I ), rB, qB) be two csp × csp
BLR matrices and let P = AB be their product.

For all (i, j) ∈ [1; csp]2, we note A i, j, Bi, j, and Pi, j the (i, j)-th subblock of matrix
A, B, and P, respectively. We also note Rkε (X ) the numerical rank of a matrix X at
accuracy ε.

We define

qA(i)= {k ∈ [1; csp]; A i,k ∉BA},
qB( j)= {k ∈ [1; csp];Bk, j ∉BA},

and thus qA =maxi∈[1;csp] #qA(i) and qB =max j∈[1;csp] #qB( j).
Then, for any (i, j) ∈ [1; csp]2, it holds

Pi, j =
csp∑
k=1

A i,kBk, j =
S1︷ ︸︸ ︷∑

A i,k∈BA
Bk, j∈BA

A i,kBk, j +
S2︷ ︸︸ ︷∑

A i,k∈BA
Bk, j∉BA

A i,kBk, j +
S3︷ ︸︸ ︷∑

A i,k∉BA
Bk, j∈BA

A i,kBk, j +
S4︷ ︸︸ ︷∑

A i,k∉BA
Bk, j∉BA

A i,kBk, j .

We then seek a bound on the rank of each of the four terms S1 to S4.
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1.

Rkε (S1)≤
∑

A i,k∈BA
Bk, j∈BA

Rkε
(
A i,kBk, j

)≤ ∑
A i,k∈BA
Bk, j∈BA

min(Rkε
(
A i,k

)
,Rkε

(
Bk, j

)
)

≤ ∑
A i,k∈BA
Bk, j∈BA

min(rA, rB)≤ csp min(rA, rB).

2.

Rkε (S2)≤
∑

A i,k∈BA
Bk, j∉BA

Rkε
(
A i,kBk, j

)≤ ∑
A i,k∈BA
Bk, j∉BA

min(Rkε
(
A i,k

)
,Rkε

(
Bk, j

)
)

≤ ∑
A i,k∈BA
Bk, j∉BA

rA ≤ #qB( j) rA ≤ qBrA.

3.

Rkε (S3)≤
∑

A i,k∉BA
Bk, j∈BA

Rkε
(
A i,kBk, j

)≤ ∑
A i,k∉BA
Bk, j∈BA

min(Rkε
(
A i,k

)
,Rkε

(
Bk, j

)
)

≤ ∑
A i,k∉BA
Bk, j∈BA

rB ≤ #qA(i) rB ≤ qArB.

4. It holds that

∀i ∈ [1; csp], #{ j ∈ [1; csp]; qA(i)∩ qB( j) 6= ;}≤ qA qB, (4.18)
∀ j ∈ [1; csp], #{i ∈ [1; csp]; qA(i)∩ qB( j) 6= ;}≤ qA qB. (4.19)

Equation (4.18) states that the number of non-admissible blocks on any row
of P is bounded by qA qB, while equation (4.19) states that the number of
non-admissible blocks on any column of P is also bounded by qA qB. Thus,
putting (4.18) and (4.19) together, we have qP = qA qB. Finally, we prove
equation (4.18). Let i ∈ [1; csp]. For all k ∈ qA(i), it holds

#{ j ∈ [1; csp];Bk, j ∉BA}≤ qB,

and since #qA(i)≤ qA, we conclude

#{ j ∈ [1; csp];Pi, j ∉BA}≤ qA qB.

The proof of (4.19) works in the same way. In conclusion, S4 = 0 and thus
Rkε (S4) = 0, except for qP = qA qB blocks whose rank is not bounded. For the
rest, their rank is thus bounded by

rP = csp min(rA, rB)+ qBrA + qArB.
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Note that the sparsity constant csp is not bounded but only appears in the term
csp min(rA, rB) that will disappear when one of rA or rB is zero.

Since A−1 can be approximated by M−1BM−1 (equation (4.5)), applying Theo-
rem 4.2 on (4.15) and (4.17) leads to

Ã−1 ∈BL R(S(I ), N2
narG , N3

na), (4.20)

and from this approximant of A−1 we can derive an approximant of A−1
Φ,Φ for any

Φ⊂I .
The stiffness matrix A satisfies the following property:

∀σ,τ ∈S(I ), Aσ,τ 6= 0⇔ dist(σ,τ)= 0,

and thus A ∈ BL R(S(I ),0, Nna). A fortiori, for any Φ,Ψ ⊂ I , we have AΦ,Ψ ∈
BL R(S(I ),0, Nna).

Therefore applying Theorem 4.2 on (4.4) and (4.20) implies in turn

S̃ ∈BL R(S(I ), N4
narG , N5

na). (4.21)

As a result, there are at most N5
na =O (1) non-admissible blocks that are not consid-

ered low-rank candidates and are left full-rank.
The rest are low-rank and their rank is bounded by N4

narG . In addition to the
bound rG , which is already quite large (Bebendorf, 2005), the constant N4

na can be
very large. However, our bound is extremely pessimistic. In Section 4.6, we will
experimentally validate that, in reality, the ranks are much smaller. Similarly, the
bound N5

na on the number of non-admissible blocks is also very pessimistic.
In conclusion, the ranks are bound by O (rG), i.e. the BLR bound only differs

from the hierarchical one by a constant.
In the following, the bound N4

narG will be simply referred to as r.

4.3 Complexity of the dense standard BLR
factorization

We now compute the complexity of the dense BLR UFSC factorization. The
extension to the multifrontal case is the object of Section 4.4, while the other factor-
ization variants are dealt with in Section 4.5. Note that the complexity of the BLR
factorization is the same in LU or LDLT , up to a constant.

Note that, as long as a bound on the ranks holds, similar to the one we have
established in Section 4.2, the complexity computations reported in this section
hold, and thus, the following results may be applicable to a broader context than
the solution of discretized PDEs.

First, we compute the complexity of factorizing a dense frontal matrix of order
m. The cost of the main steps Factor, Solve, Compress, Inner and Outer Product
necessary to compute the factorization of a matrix of order m are shown in Table 4.1
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(third column). This cost depends on the type (full-rank or low-rank) of the block(s)
on which the operation is performed (second column). Note that the Inner Product
operation can take the form of a product of two full-rank blocks (FR-FR), two low-
rank blocks (LR-LR) or a low-rank block and a full-rank one (LR-FR). In the last
two cases, the Inner Product yields a low-rank block that is decompressed by means
of the Outer Product operation. We note b the block size and p = m/b the number of
blocks per row and/or column. We remind that the cost of the classic linear algebra
operations on low-rank matrices has been discussed in Section 1.4.1.3.

We assume here that the cost of compressing an admissible block is O (b2r). For
example, this is true when the Compress is performed by means of a truncated QR
factorization with column pivoting which, as explained in Subsection 4.6.1, will be
used in our numerical experiments. This assumption does not hold for Singular
Value Decomposition (SVD) for which the Compress cost is O (b3); however, this
would not change the final complexity of this standard variant, as the complexity
of the Compress step would then be of the same order as that of the Solve step.

We can then use (4.21) to compute the cost of the factorization. The boundedness
of N5

na = O (1) ensures that only a constant number of blocks on each row are full-
rank. From that we derive the fourth column of Table 4.1, which counts the number
of blocks on which the step is performed.

step type cost number Cstep(b, p) Cstep(m, x)

Factor FR O (b3) O (p) O (pb3) O (m1+2x)
Solve FR-FR O (b3) O (p2) O (p2b3) O (m2+x)
Compress LR O (b2r) O (p2) O (p2b2r) O (m2r)
Inner Product LR-LR O (br2) O (p3) O (p3br2) O (m3−2xr2)

LR-FR O (b2r) O (p2) O (p2b2r) O (m2r)
FR-FR O (b3) O (p) O (pb3) O (m1+2x)

Outer Product LR O (b2r) O (p3) O (p3b2r) O (m3−xr)

Table 4.1 – Main operations for the BLR (standard UFSC variant) factorization of a dense matrix
of order m, with blocks of size b, and low-rank blocks of rank at most r. We note p = m/b. type:
type of the block(s) on which the operation is performed. cost: cost of performing the operation once.
number: number of times the operation is performed. Cstep(b, p): obtained by multiplying the cost
and number columns (equation (4.22)). Cstep(m, x): obtained with the assumption that b = O (mx)
(and thus p =O (m1−x)), for some x ∈ [0,1].

The BLR factorization cost of each step is then equal to

Cstep(b, p)= coststep ∗numberstep, (4.22)

and is reported in the fifth column of Table 4.1. Then, we assume the block size b
is of order O (mx), where x is a real value in [0,1], and thus the number of blocks p
per row and/or column is of order O (m1−x). Then by substituting b and p by their
value, we compute Cstep(m, x) in the last column.

We can then compute the total flop complexity of the dense BLR factorization as
the sum of the cost of all steps:

C (m, x)=O (rm3−x +m2+x). (4.23)
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Similarly, the factor size complexity of a dense BLR matrix can be computed as

O (NLR ∗br+NFR ∗b2)=O (p2br+N5
na pb2)=O (p2br+ pb2), (4.24)

where NLR =O (p2) and NFR =O (p) are the number of low-rank and full-rank blocks
in the matrix, respectively. Thus, the factor size complexity is:

M (m, x)=O (rm2−x +m1+x). (4.25)

It then remains to compute the optimal x∗ which minimizes the complexity. We
consider a general rank bound r =O (mα), with α ∈ [0,1]. Equations (4.23) and (4.25)
become

C (m, x)=O (m3+α−x +m2+x), (4.26)

M (m, x)=O (m2+α−x +m1+x), (4.27)

respectively. Then, the optimal x∗ is given by

x∗ = 1+α
2

, (4.28)

which leads to optimal complexities

C (m)=C (m, x∗)=O (m2.5+α/2)=O (m2.5pr), (4.29)

M (m)=M (m, x∗)=O (m1.5+α/2)=O (m1.5pr). (4.30)

It is remarkable that the value of x∗ is the same for both the flop and factor size
complexities, i.e. that both complexities are minimized by the same x. This was
not guaranteed, and is a desirable property as we do not need to choose which
complexity to minimize at the expense of the other.

In particular, the case r =O (1) leads to complexities O (m2.5) for flops and O (m1.5)
for factor size, while the case r =O (

p
m) leads to O (m2.75) for flops and O (m1.75) for

factor size. The link between dense and sparse rank bounds will be made in Section
4.4.2.

Note that the fully-structured BLR factorization (when A is available under
compressed form at no cost, i.e. when the Compress step does not need to be per-
formed) has the same complexity as the non fully-structured factorization, since the
Compress is asymptotically negligible with respect to the Solve step. This is not
the case in the hierarchical case, where the construction of the compressed matrix,
whose cost is O (m2r) (Grasedyck and Hackbusch, 2003), becomes the bottleneck
when it has to be performed.

4.4 From dense to sparse BLR complexity

We first describe in Subsection 4.4.1 how the BLR clustering is computed in the
context of the multifrontal method and the relation between frontal matrices and
BLR approximants of the Schur complements of the stiffness matrix A. Then, we
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Figure 4.3 – BLR clustering of the root separator of a 1283 Poisson problem.

extend in Subsection 4.4.2 the computation of the factorization complexity to the
sparse multifrontal case.

4.4.1 BLR clustering and BLR approximants of frontal
matrices

In a multifrontal context, the computation of the BLR clustering and therefore
the resulting complexity of the BLR factorization strongly depend on how the as-
sembly tree is built, as explained in Section 1.4.3.1.

Let us assume that the assembly tree is built by means of a nested dissec-
tion (George, 1973). Because of the bottom-up traversal of the assembly tree, the
rows and columns of the fully-summed variables of a frontal matrix associated with
a separator S thus belong to the Schur complement of the variables of the two do-
main subgraphs separated by S. From this and the existence of low-rank approxi-
mants of the Schur complements of the stiffness matrix A, which was established
in Section 4.2, it results that the fronts can be approximated by BLR matrices. This
remains true for general orderings other than nested dissection.

The admissibility condition (H or BLR) requires geometric information to com-
pute the diameter and distances. To remain in a purely algebraic context, as ex-
plained in Section 1.4.3.1, we use the adjacency graph of the matrix A instead.
The BLR clustering is computed with a k-way partitioning of each separator sub-
graph. This may lead to suboptimal complexity if the admissibility condition is not
respected. An example of BLR clustering obtained with this method is shown in Fig-
ure 4.3. In particular, we note that the clustering respects the BLR-admissibility
condition (AdmBLR).

The impact of algebraic orderings (as opposed to geometric) will be analyzed in
Section 4.6.
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4.4.2 Computation of the sparse BLR multifrontal
complexity

The BLR multifrontal complexity in the sparse case can be directly derived from
the dense complexity.

The flop and factor size complexities CMF(N) and MMF(N) of the BLR mul-
tifrontal factorization are reported in Table 4.2. We assume a nested dissection
ordering (George, 1973) (with separators in cross shape).

At each level ` of the separators tree, we need to factorize (2d)` fronts of or-
der O (( N

2` )d−1), for ` ranging from 0 to L = log2(N). Therefore, the flop complexity
CMF(N) to factorize a sparse matrix of order Nd is

CMF(N)=
L∑
`=0

C`(N)=
L∑
`=0

(2d)`C ((
N
2`

)d−1), (4.31)

where C`(N) is the cost of factorizing all the fronts on the `-th level, i.e. C`(N) =
(2d)`C (m`) with m` = ( N

2` )d−1. Using the dense complexity equation (4.29), we com-
pute and report the value of C`(N) in Table 4.2 (second column). C`(N) takes the
form O (2β`Nγ) where β and γ depend on the dimension d and the rank bound α

parameter. Thus, CMF(N) is a geometric series of common ratio Q = 2β`. Its com-
putation depends on the sign of β:

• If β< 0, then Q < 1 and CMF(N)=O (1−QL+1

1−Q Nγ)=O (Nγ).

• If β= 0, then Q = 1 and CMF(N)=O (LNγ)=O (Nγ log N).

• If β> 0, then Q > 1 and CMF(N)=O (QL+1−1
Q−1 Nγ)=O (2β log N Nγ)=O (Nβ+γ).

The corresponding value of CMF(N) is reported in the third column of Table 4.2.
Note that, to obtain an expression as a function of r rather than α, the relation
r =O (mα)=O (N(d−1)α) is used, i.e. Nα is equal to O (r) in 2D and O (

p
r) in 3D.

Using (4.30), we similarly compute the factor size complexity:

MMF(N)=
L∑
`=0

M`(N)=
L∑
`=0

(2d)`M ((
N
2`

)d−1), (4.32)

and report the results in Table 4.2.

4.5 The other BLR variants and their complexity
In this section, we analyze the other BLR factorization variants, and prove they

achieve lower complexity than the standard UFSC variant. For the sake of clarity,
we refer to the different variants using their left-looking name. Of course, the right-
looking variants have the same complexity as their left-looking counterpart.

Let us start by the LUAR algorithm, which has been described in Section 2.6
(cf. Algorithm 2.10). To compute its complexity, we first need to compute the cost of
the Recompress; we thus need to bound the rank of the accumulators XS and YS.
If the Compress is done with an SVD or RRQR operation, then each accumulated
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d C`(N) CMF(N)

2D O (2−(`+α)/2N2.5+α/2) O (N2.5+α/2)=O (N2.5pr)
3D O (2−(2+α)`N5+α) O (N5+α)=O (N5pr)

d M`(N) MMF(N)
α= 0 α> 0

2D O (2`(1−α)/2N1.5+α/2) O (N2) O (N2)
3D O (2−α`N3+α) O (N3 log N) O (N3+α)=O (N3pr)

Table 4.2 – Flop and factor size complexity of the BLR (standard UFSC variant) multifrontal
factorization of a sparse matrix of order Nd . d: dimension. C`(N)/M`(N): flop/factor size complexity
at level ` in the separator tree, computed using the dense complexity equations (4.29) and (4.30).
CMF(N)/MMF(N): total multifrontal flop/factor size complexity, computed using equations (4.31) and
(4.32).

update in XS and YS is an orthonormal basis of an admissible block. Thus, the
accumulator is a basis of a superblock which is itself admissible (because the union
of admissible blocks remains admissible) and thus the rank of the accumulator is
bounded by r.

Then, by recompressing the accumulators, we only need to do one Outer Prod-
uct (of size r) per block, instead of O (p) (one for each update matrix). This leads to
a substantial theoretical improvement, as it lowers the cost of the Outer Product
from O (b2r)∗O (p3) = O (p3b2r) to O (b2r)∗O (p2) = O (p2b2r) (cf. Table 4.3, column
Cstep(b, p)), even though the recompressions of the accumulated updates (Recom-
press operation) introduce an overhead cost, equal to O (pbr2)∗O (p2)=O (p3br2).

Next, let us analyze the UFCS variant, described in Algorithm 2.5. In this
variant, we perform the Compress before the Solve. The Solve step can thus be
performed on low-rank blocks (as shown at line 11) and its cost is thus reduced
to O (p2b2r + pb3) (as reported in Table 4.3, column Cstep(b, p)). The UCFS (Al-
gorithm 2.6) variant simply changes the way numerical pivoting is handled and
therefore has the same complexity as the UFCS one.

Finally, with the CUFS variant (Algorithm 2.8), we can suppress the Outer
Product step, whose cost becomes zero. Furthermore, in a fully-structured context,
the cost of the Compress may also be made negligible (e.g. if the original entries of
the matrix can be compressed with a fast matrix-vector operation).

The computation of the complexity of the BLR variants is very similar to that of
the standard version, computed in Section 4.3. We provide the equivalent of Tables
4.1 and 4.2 for the BLR variants in Tables 4.3 and 4.4, respectively.

In Table 4.3, we report the cost of each step of the factorization. These costs have
been explained in the previous subsection. For each variant, the steps whose cost
has changed with respect to the previous variant (in the order: UFSC, UFSC+LUAR,
UFCS+LUAR, CUFS) have been grayed out.

By summing the cost of all steps, we obtain the flop complexity of the dense
factorization. In the UFSC+LUAR variant, it is given by

C (m, x)=O (r2m3−2x +m2+x). (4.33)
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UFSC+LUAR variant

step type cost number Cstep(b, p) Cstep(m, x)

Factor FR O (b3) O (p) O (pb3) O (m1+2x)
Solve FR-FR O (b3) O (p2) O (p2b3) O (m2+x)
Compress LR O (b2r) O (p2) O (p2b2r) O (m2r)
Inner Product LR-LR O (br2) O (p3) O (p3br2) O (m3−2xr2)

LR-FR O (b2r) O (p2) O (p2b2r) O (m2r)
FR-FR O (b3) O (p) O (pb3) O (m1+2x)

Recompress LR O (bpr2) O (p2) O (p3br2) O (m3−2xr2)
Outer Product LR O (b2r) O (p2) O (p2b2r) O (m2r)

UFCS/UCFS+LUAR variant

step type cost number Cstep(b, p) Cstep(m, x)

Factor FR O (b3) O (p) O (pb3) O (m1+2x)
Solve FR-FR O (b3) O (p) O (pb3) O (m1+2x)

LR-FR O (b2r) O (p2) O (p2b2r) O (m2r)
Compress LR O (b2r) O (p2) O (p2b2r) O (m2r)
Inner Product LR-LR O (br2) O (p3) O (p3br2) O (m3−2xr2)

LR-FR O (b2r) O (p2) O (p2b2r) O (m2r)
FR-FR O (b3) O (p) O (pb3) O (m1+2x)

Recompress LR O (bpr2) O (p2) O (p3br2) O (m3−2xr2)
Outer Product LR O (b2r) O (p2) O (p2b2r) O (m2r)

CUFS variant (fully-structured)

step type cost number Cstep(b, p) Cstep(m, x)

Factor FR O (b3) O (p) O (pb3) O (m1+2x)
Solve FR-FR O (b3) O (p) O (pb3) O (m1+2x)

LR-FR O (b2r) O (p2) O (p2b2r) O (m2r)
Compress LR — — — —
Inner Product LR-LR O (br2) O (p3) O (p3br2) O (m3−2xr2)

LR-FR O (b2r) O (p2) O (p2b2r) O (m2r)
FR-FR O (b3) O (p) O (pb3) O (m1+2x)

Recompress LR O (bpr2) O (p2) O (p3br2) O (m3−2xr2)
Outer Product LR — — — —

Table 4.3 – Main operations for the factorization of a dense matrix of order m, with blocks of
size b, and low-rank blocks of rank at most r. We note p = m/b. type: type of the block(s) on
which the operation is performed. cost: cost of performing the operation once. number: number of
times the operation is performed. Cstep(b, p): obtained by multiplying the cost and number columns
(equation (4.22)). Cstep(m, x): obtained with the assumption that b =O (mx) (and thus p =O (m1−x)),
for some x ∈ [0,1]. Note that the non fully-structured CUFS variant can also be considered, where
the Compress step is still needed; its asymptotic complexity is the same as the fully-structured
CUFS variant.
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Compared to (4.23), the low-rank term of the complexity has thus been reduced
from O (rm3−x) to O (r2m3−2x) thanks to the recompression of the accumulated up-
dates. The full-rank term O (m2+x) remains the same. By recomputing the value of
x∗, we achieve flop complexity gains: For r =O (mα), C (m) becomes

C (m)=O (m2+(2α+1)/3)=O (m7/3r2/3), (4.34)

which yields in particular O (m7/3) for r =O (1) and O (m8/3) for r =O (
p

m).
In the same way, the flop complexity for the dense factorization with the UFCS+LUAR

variant is given by
C (m, x)=O (r2m3−2x +m1+2x). (4.35)

This time, the full-rank term has been reduced from O (m2+x) to O (m1+2x). By re-
computing x∗, we achieve further flop complexity gains:

C (m)=O (m2+α)=O (m2r), (4.36)

which yields in particular O (m2) for r =O (1) and O (m2.5) for r =O (
p

m).
Note that for the UFCS+LUAR variant, the Compress step has become asymp-

totically dominant and thus the assumption that its cost is O (b2r) is now necessary
to obtain the complexity reported in equation (4.35).

Finally, the CUFS variant achieves the same asymptotic complexity as the UFCS+LUAR
one, because even though the Compress and Outer Product steps have been sup-
pressed, the Solve step remains dominant in both UFCS and CUFS.

Note that the factor size complexity is not affected by the BLR variant used.
The sparse flop complexities are derived from the dense ones in the same way

as they are for the standard UFSC variant. The results are reported in Table 4.4.

UFSC+LUAR
d C`(N) CMF(N)

2D O (2−(1+2α)`/3N2+(2α+1)/3) O (N2+(2α+1)/3)=O (N7/3r2/3)
3D O (2−(5+4α)`/3N4+(4α+2)/3) O (N4+(4α+2)/3)=O (N14/3r2/3)

UFCS+LUAR/UCFS+LUAR/CUFS
d C`(N) CMF(N)

α= 0 α> 0

2D O (2−α`N2+α) O (N2 log N) O (N2+α)=O (N2r)
3D O (2−(1+2α)`N4+2α) O (N4+2α)=O (N4r)

Table 4.4 – Flop and factor size complexity of the BLR multifrontal factorization of a sparse matrix
of order Nd . d: dimension. C`(N): flop complexity at level ` in the separator tree, computed using
the dense complexity equations (4.34) and (4.36) for the UFSC+LUAR and UFCS+LUAR variants,
respectively. CMF(N): total multifrontal flop complexity, computed using equation (4.31).

A summary of the sparse complexities for all BLR variants, as well as the full-
rank and H complexities, is given in Table 4.5. The complexity formulas sometimes
have a max term in their expression because, depending on the value of r with
respect to n, the complexity formula is a geometric series with common ratio > 1
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or < 1. Therefore, to give more readable expressions, which can be easily compared
to the experimental ones obtained in the next section, we provide in Table 4.6 the
BLR complexity formulas in the case r =O (1) and r =O (

p
m), respectively.

operations factor size
2D 3D 2D 3D

FR O (n1.5) O (n2) O (n logn) O (n4/3)

BLR UFSC O (n1.25pr) O (n5/3pr) O (n) O (nmax(
p

r, logn))
BLR UFSC+LUAR O (n7/6r2/3) O (n14/9r2/3) O (n) O (nmax(

p
r, logn))

BLR UFCS+LUAR O (nmax(r, logn)) O (n4/3r) O (n) O (nmax(
p

r, logn))

H O (nmax(r, logn)) O (n4/3r) O (n) O (nmax(
p

r, logn))
H (fully-structured) O (max(n,

p
nr2)) O (max(n,n2/3r2)) O (n) O (max(n,n2/3r))

Table 4.5 – Flop and factor size complexities of the BLR multifrontal factorization
of a system of n unknowns, with maximal rank r and an optimal choice of b. In
the fully-structured case, the original matrix is assumed to be already compressed.
In the non fully-structured case, the cost of compressing the original matrix is in-
cluded. We remind that the complexity of the BLR fully-structured factorization is
the same as that of the non fully-structured one, i.e. UFCS and CUFS have the
same asymptotic complexity.

operations factor size
2D 3D 2D 3D

r =O (1)

BLR UFSC O (n1.25) O (n1.67) O (n) O (n logn)
BLR UFSC+LUAR O (n1.17) O (n1.56) O (n) O (n logn)
BLR UFCS+LUAR O (n logn) O (n1.33) O (n) O (n logn)

r =O (
p

m)

BLR UFSC O (n1.5) O (n1.83) O (n logn) O (n1.17)
BLR UFSC+LUAR O (n1.5) O (n1.78) O (n logn) O (n1.17)
BLR UFCS+LUAR O (n1.5) O (n1.67) O (n logn) O (n1.17)

Table 4.6 – Flop and factor size complexities of the BLR multifrontal factorization
of a system of n unknowns, considering the case r =O (1) and r =O (

p
m)=O (Nd−1).

4.6 Numerical experiments
In this section we compare the experimental complexity of the full-rank solver

with each of the BLR variants previously presented. We also discuss the choice of
two parameters, the low-rank threshold ε and the block size b, and their impact on
the complexity.
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4.6.1 Description of the experimental setting
All the experiments in this chapter were performed on brunch (see description

in Section 1.5.3).
To compute our complexity estimates, we use least-squares estimation to com-

pute the coefficients {βi}i of a regression function f such that Xfit = f (N, {βi}i) fits
the observed data Xobs. We use the following regression function:

Xfit = eβ
∗
1 Nβ∗2 with β∗

1 ,β∗
2 = argmin

β1,β2
‖ log Xobs −β1 −β2 log N‖2. (4.37)

We provide the experimental complexities for two different problems: the Pois-
son problem and the Helmholtz problem, described in 1.5.2.1.

For the Poisson problem, the rank bound is O (1) (Bebendorf and Hackbusch,
2003). For the Helmholtz problem, although there is no rigorous proof of it, the
rank bound is assumed to be O (

p
m) in the related literature (Xia, 2013a; Wang,

Li, Rouet, Xia, and De Hoop, 2016; Engquist and Ying, 2011). Thus, we will use
the Poisson and Helmholtz problems to experimentally validate the complexities
computed in Table 4.6.

For Poisson, we will use a low-rank threshold ε varying from 10−14 to 10−2 to
better understand its influence on the complexity, with no particular application in
mind. For Helmholtz, we will use a low-rank threshold ε varying from 10−5 to 10−3

because we know these are the values for which the result is meaningful for the
application, as explained in Section 7.1.

For both Poisson and Helmholtz, in all the following experiments, the backward
error is in good agreement with the low-rank threshold used.

Note that both the Poisson and Helmholtz problems were discretized using the
finite-difference method rather than the finite-elements one, but this is acceptable
as both methods are equivalent on equispaced meshes (Peiró and Sherwin, 2005).

4.6.2 Flop complexity of each BLR variant
In Figures 4.4 and 4.5, we compare the flop complexity of the full-rank solver

with each of the BLR variants previously presented (UFSC, UFSC+LUAR, UFCS+LUAR)
for the Poisson problem, and the Helmholtz problem, respectively. Note that in
these experiments, the LUAR variant only exploits weight information to recom-
press the accumulators. In Section 4.6.3, we report experiments with geometry
recompression, as well as with the CUFS variant.

The results show that each new variant improves the complexity. Note that
we obtain the well-known quadratic complexity of the full-rank version. Results
with both geometric nested dissection (Figures 4.4a and 4.5a) and with a purely
algebraic ordering computed by METIS (Figures 4.4b and 4.5b) are also reported.

We first analyze the results obtained with geometric nested dissection and com-
pare them with our theoretical results. For Poisson, the standard BLR (UFSC)
version achieves a complexity O (n1.45). Moreover, the constant in the big O () is
equal to 2105, which is quite reasonable, and leads to a substantial improvement of
the number of flops performed with respect to the full-rank version. This confirms
that the theoretical rank bounds (N4

narG) are very pessimistic, as the experimental
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constants are in fact much smaller. Further compression in the UFSC+LUAR vari-
ant lowers the complexity to O (n1.39), while the UFCS+LUAR reaches the lowest
complexity of the variants, O (n1.29). Although the constants increase with the new
variants, they also remain relatively small and they effectively reduce the number
of operations with respect to the standard variant, even for the smaller mesh sizes.
The same trend is observed for Helmholtz, with complexities O (n1.85) for UFSC,
O (n1.79) for UFSC+LUAR, and finally O (n1.74) for UFCS+LUAR. Thus, the numeri-
cal results are in good agreement with the theoretical bounds reported in Table 4.6.

We also analyze the influence of the ordering on the complexity. We observe that
even though the METIS ordering slightly degrades the complexity, results remain
close to the geometric nested dissection ordering and still in good agreement with
the theoretical bounds. This is a very important property of the BLR factorization
as it allows us to remain in a purely algebraic (black box) framework, an essential
property for a general purpose solver.

For the remaining experiments, we use the METIS ordering.
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(a) Nested Dissection ordering (geometric)
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(b) METIS ordering (purely algebraic)

Figure 4.4 – Flop complexity of each BLR variant (Poisson, ε= 10−10).

4.6.3 LUAR and CUFS complexity
In the previous experiments, the LUAR algorithm recompressed the accumu-

lated updates exploiting only weight information (i.e. the Z part of the accumula-
tor), which captures most of the recompression potential while keeping the recom-
press overhead cost limited, as explained in Section 2.6.

However, it is interesting to investigate how the additional recompression ob-
tained recompressing geometry information (i.e. the X ,Y parts of the accumulator)
evolves with the size of the problem. This analysis is performed in Figure 4.6,
for the UFCS variant on the Poisson problem and a low-rank threshold equal to
ε= 10−10.
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Figure 4.5 – Flop complexity of each BLR variant (Helmholtz, ε= 10−4).

Recompressing geometry information is not beneficial for the smaller problems:
the recompress overhead is greater than the additional recompression gained. In
this case, gains are obtained for problems of size N = 192 or greater. This shows that
the LUAR algorithm based on both weight and geometry recompression has lower
complexity than the one based on weight only, but a (much) larger prefactor. This is
confirmed by the fitting shown in Figure 4.6: compared to the asymptotic complex-
ity of O (n1.30) obtained with weight recompression only, geometry recompression
achieves a O (n1.21) complexity1. This is therefore a marginal asymptotic improve-
ment that will only pay off for very large problems. For example, for N = 320, the
geometry recompression brings a gain of 19% with respect to the weight recompres-
sion only version.

The fact that the geometry recompression is only beneficial for large problems
means that it is probably beneficial for large fronts only. Therefore, a possible im-
provement is to exploit geometry information only for large enough fronts (i.e. of
size greater than some nmin). We have tested several values of nmin and taken the
minimal number of flops obtained for each problem size. The result is shown in
Figure 4.6 (green diamond curve). This improved version allows us to reduce the
prefactor and thus to achieve gains on smaller problems (of size N = 128 or greater),
while maintaining almost the same asymptotic behavior (O (n1.22)).

Finally, in Figure 4.7, we study the CUFS variant. and compare it to the
UFCS+LUAR variant. The recompression is based on both weight and geometry
information (the weight only recompression strategy is not suitable for the CUFS
variant because it would lead to too large ranks, as explained in Section 3.4).

In the CUFS variant, the Outer Product step can be suppressed, and this leads
to a lower prefactor (red triangle curve); however, the exponent is almost unchanged

1Note that the smaller problems for which the geometry recompression is not beneficial have
not been taken into account for the fit, as we are interested in the asymptotic behavior.
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Figure 4.6 – Flop complexity of the UFCS+LUAR variant, depending on the recom-
pression strategy (Poisson, ε= 10−10).
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Figure 4.7 – Flop complexity of the CUFS variant (Poisson, ε= 10−10).

(O (n1.20)), as predicted by the theory. Furthermore, if we assume the Compress step
can be performed for free (fully-structured case, green diamond curve), the prefactor
is further decreased, but again, no asymptotic gain is achieved, as expected.

4.6.4 Factor size complexity
To compute the factor size complexity of the BLR solver, we study the evolution

of the number of entries in the factors, i.e., the compression rate of L and U . Note
that the global compression rate would be even better, because the local matrices
that need to be stored during the multifrontal factorization compress more than the
factors.
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In Figure 4.8, we plot the factor size complexity using the METIS ordering for
both the Poisson and Helmholtz problems. The different BLR variants do not im-
pact the factor size complexity. Here again, the results are in good agreement with
the bounds computed in Table 4.6. The complexity is of order O (n1.05 logn) for Pois-
son and O (n1.26) for Helmholtz.
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(a) Poisson problem (ε= 10−10)
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Figure 4.8 – Factor size complexity with METIS ordering.

4.6.5 Low-rank threshold
The theory (Bebendorf and Hackbusch, 2003; Bebendorf, 2005), through the

bound rG , which increases as | logε|d+1, states the threshold ε should only play a
role in the constant factor of the complexity.

However, that is not exactly what the numerical experiments show. In Fig-
ures 4.9 and 4.10, we compare the flop complexity for different values of ε, for
the Poisson and Helmholtz problems, respectively. For Helmholtz, the threshold
does seem to play a role only in the constant factor, as the complexity exponent
remains around O (n1.87), O (n1.82), and O (n1.77), for the UFSC, UFSC+LUAR, and
UFCS+LUAR variants, respectively. However, for Poisson, an interesting trend ap-
pears: the complexity gradually lowers as the threshold increases. For example,
the UFSC variant achieves a complexity of the order of O (n1.55) to O (n1.50), O (n1.46)
and O (n1.36) with a threshold of 10−14, 10−10, 10−6, and 10−2, respectively. A similar
behavior is observed for the UFSC+LUAR and UFCS+LUAR variants. The factor
size complexity analysis, reported in Figure 4.11, leads to the same observation:
varying the threshold leads to a high asymptotic variation for Poisson but not for
Helmholtz.

Our analysis is that the complexity exponent is related to the processing of zero-
rank blocks. With absolute tolerance, it is possible for blocks to have a numerical
rank equal to zero. However, the bound on the ranks rG is strictly positive, and
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(c) UFCS+LUAR variant

Figure 4.9 – Flop complexities for different thresholds ε (Poisson problem, METIS
ordering).
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(b) UFSC+LUAR variant
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Figure 4.10 – Flop complexities for different thresholds ε (Helmholtz problem,
METIS ordering).

thus the theory does not account for zero-rank blocks. This leads to a theoretical
sparsity constant csp equal to p = m/b (i.e. all blocks are considered nonzero-rank),
while in fact the actual value of csp (number of nonzero-rank blocks) may be much
less than p.

Clearly, the number of zero-rank blocks increases with the threshold ε and with
the mesh size N. What is more interesting, as shown in Table 4.7, is that the
number of zero-rank blocks (NZR) has a much faster rate of increase with respect
to the mesh size than the number of nonzero low-rank blocks (NLR). For example,
for ε= 10−2, the number of zero-rank blocks represents 74% of the total for N = 64
while it represents 97% for N = 320.

This could suggest that, asymptotically, the major part of the blocks are zero-
rank blocks. Then, the number of low-rank blocks in Table 4.1 would not be O (p) but
rather O (pα), with α< 1. For example, for ε= 10−2, the complexity of O (n1.36) could
be explained by a number of nonzero-rank blocks of order O (1): indeed, if we assume
the number of nonzero-rank blocks per row and/or column remains constant, then
the dense flop complexity equation (4.23) is only driven by full-rank operations and
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(a) Poisson problem
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Figure 4.11 – Factor size complexities for different thresholds ε (METIS ordering).

N
64 96 128 160 192 224 256 320

ε= 10−14 NFR 40.8 35.5 31.3 30.3 26.4 26.4 23.6 13.4
NLR 59.2 64.5 68.6 69.6 73.6 73.6 76.4 86.6
NZR 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0

ε= 10−10 NFR 21.3 19.1 16.6 17.0 14.6 14.6 12.8 5.8
NLR 78.6 80.9 83.4 82.9 85.4 85.4 87.1 94.2
NZR 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0

ε= 10−6 NFR 2.9 3.2 3.0 3.1 2.5 2.5 2.1 0.6
NLR 97.0 96.5 96.7 96.4 96.4 95.7 95.3 93.3
NZR 0.1 0.3 0.3 0.5 1.0 1.7 2.5 6.1

ε= 10−2 NFR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NLR 26.2 17.4 12.2 9.4 7.6 6.4 5.5 3.0
NZR 73.8 82.6 87.8 90.6 92.4 93.6 94.5 97.0

Table 4.7 – Number of full- (NFR), low- (NLR), and zero-rank (NZR) blocks in per-
centage of the total number of blocks.

becomes
C (m, x)=O (m2+x +m2r)=O (m2+x), (4.38)

since r ≤ b = O (mx). With the optimal x∗ = 0, the previous equation leads to a
dense complexity O (m2), which, as shown in Section 4.5, Table 4.4, leads to a sparse
complexity O (n1.33). Similarly, the same assumption on the number of nonzero-
rank blocks leads to a factor size complexity of O (n), which matches very well the
experimental O (n1.02) result with ε= 10−2 in Figure 4.11.
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4.6.6 Block size

For our theoretical complexity, we have assumed that the block size varies with
the front size. Here, we want to show that the complexity of the BLR factorization is
not strongly impacted by the choice of the block size, as long as this choice remains
reasonable. The choice of a good block size is currently an ongoing research focus;
the tuning of the block size for performance is out of the scope of this paper. In
Figure 4.12, we show the number of operations for the BLR factorization of the root
node (which is of size m = N2) of the Poisson problem, for block sizes b ∈ [128;640].
Three trends can be observed.

First, for each matrix, there is a reasonably large range of block sizes around
the optimal one that lead to a number of operations that is reasonable with respect
to the minimal one. For example, for the UFSC variant and m = 2562, the optimal
block size among the ones tested is b = 448. However, any block size in the range
[320;640] (all those under the dashed black line) leads to a number of operations
at most 10% greater than the minimal one. Thus, we have the flexibility to choose
the block size which in turn gives the flexibility to tune the performance of the BLR
factorization.

The second trend is that the range of acceptable block sizes (i.e., the block sizes
for which the number of operations is not too far from the minimal one) increases
with the size of the matrix m. For example, for the UFSC variant, the range of block
sizes leading to a number of operations at most 10% greater than the minimal one
is [192;384] for m = 1282, [256;576] for m = 1922 and [320;640] for m = 2562. This
is expected and in agreement with the theory, at least under the assumption that
the block size is of the form b = O (mx∗). This shows the importance of having a
variable block size during the multifrontal factorization to adapt to the separators’
size along the assembly tree, as opposed to fixed block size.

The third trend is observed when comparing the three factorization variants.
Compared to the standard UFSC variant (Figure 4.12a), the UFSC+LUAR variant
(Figure 4.12b) tends to favor smaller block sizes. This is because the low-rank term
of the complexity equation (4.33) has been further reduced, and thus, in relative,
the full-rank term (which increases with the block size) represents a greater part
of the computations. This is accounted for by the theory with the optimal value x∗

being equal to 1/3 instead of 1/2. In turn, compared to the UFSC+LUAR variant,
the UFCS+LUAR (Figure 4.12c) benefits from bigger block sizes. This comes from
the fact that the full-rank term has been reduced from (4.33) to (4.35). This is again
consistent with the theory, which leads to x∗ = 1/2.

A similar study on the Helmholtz problem shows very flat curves (i.e., the block
size has little effect on the number of operations) as long as the block size remains
reasonable.

4.7 Chapter conclusion
We have computed a bound on the numerical rank of the admissible blocks of

BLR matrices arising from discretized elliptic PDEs. This bound is the same as in
the hierarchical case (up to a constant), but cannot be obtained by applying directly
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(c) UFCS+LUAR variant

Figure 4.12 – Normalized flops (i.e., the minimal is 1) for different block sizes b
(Poisson problem, ε = 10−10, METIS ordering). The block sizes under the dashed
black line are those for which the number of operations is at most 10% greater than
the minimal one.

the theoretical work done on H -matrices. The main idea of the extension to BLR
matrices is to identify the blocks that are not low-rank, and to reformulate the
admissibility condition of a partition to ensure that they are in negligible number
for an admissible partition.

Under this bound assumption, we have computed the theoretical complexity of
the BLR multifrontal factorization. The standard UFSC version can reach a com-
plexity as low as O (n5/3) (in 3D, for constant ranks). We have shown how the other
factorization variants can further reduce this complexity, down to O (n4/3). Our nu-
merical results demonstrate an experimental complexity that is in good agreement
with the theoretical bounds. The importance of zero-rank blocks and variable block
sizes on the complexity has been identified and analyzed.

The object of the next chapter is to translate this complexity reduction into ac-
tual performance gains. This is a challenging problem, especially in a parallel set-
ting.
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CHAPTER

5
Performance of the BLR
Factorization on Multicores

In this chapter, we present a multithreaded BLR factorization for multicore ar-
chitectures and analyze its performance on a variety of problems coming from real-
life applications. We explain why it is difficult to fully convert the reduction in
the number of operations into a performance gain, especially in multicore environ-
ments, and describe how to improve the efficiency and the scalability of the BLR
factorization.

We briefly describe the organization of this chapter. In Section 5.1, we describe
our experimental setting. In Section 5.2, we motivate our work with an analysis of
the performance of the FSCU algorithm in a sequential setting. We then present in
Section 5.3 the parallelization of the BLR factorization in a shared-memory context,
the challenges that arise, and the algorithmic choices made to overcome these chal-
lenges. In Section 5.4, we analyze the algorithmic variants of the BLR multifrontal
factorization that were described in Chapter 2. We show how they can improve the
performance of the standard algorithm. In Section 5.5, we provide a complete set of
experimental results on a variety of real-life applications and in different multicore
environments. We provide our concluding remarks in Section 5.6.

5.1 Experimental setting

5.1.1 Test machines
In this chapter, we use the brunch and grunch shared-memory, multicore ma-

chines. A detailed description of these machines is provided in Table 5.1. All the
experiments reported in this article, except those of Table 5.14, were performed on
brunch, which equipped with 1.5 TB of memory and four Intel 24-cores Broadwell
processors running at a frequency varying between 2.2 and 3.4 GHz, due to the
turbo technology. We consider as peak per core the measured performance of the
dgemm kernel with one core, 47.1 GF/s. Bandwidth is measured with the STREAM
benchmark. For all experiments on brunch where several threads are used, the
threads are scattered among the four processors to exploit the full bandwidth of the
machine.

To validate our performance analysis, we report in Table 5.14 additional experi-
ments performed on grunch, which has a similar architecture but different proper-
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ties (frequency and bandwidth), as described in Section 5.5.3. For the experiments
on grunch, all 28 cores are used.

name cpu model np nc freq peak bw mem
(GHz) (GF/s) (GB/s) (GB)

brunch E7-8890 v4 4 24 2.2−3.4∗ 47.1∗ 102 1500
grunch E5-2695 v3 2 14 2.3 36.8 57 768
∗frequency can vary due to turbo; peak is estimated as the dgemm peak

Table 5.1 – List of machines used for Table 5.14 and their properties: number of pro-
cessors (np), number of cores (nc), frequency (freq), peak performance, bandwidth
(bw), and memory (mem).

The above GF/s peak, as well as all the other GF/s values in this article, are
computed counting flops in double-precision real (d) arithmetic, and assuming a
complex flop corresponds to four real flops of the same precision.

5.1.2 Test problems

In the experiments of this chapter, we have used real life problems coming from
the three applications described in Section 1.5.2.2, as well as additional matrices
coming from the UFSMC. We remind that the complete set of matrices and their
description is provided in Table 1.3.

We also remind that the low-rank threshold is chosen according to the applica-
tion requirements: 10−3 for the seismic modeling matrices, 10−7 for the electromag-
netics matrices, and 10−9 for the structural mechanics matrices. For the matrices
from the UFSMC, we have arbitrarily set the low-rank threshold to ε= 10−6, except
for the more difficult matrix nlpkkt120 where we used ε= 10−9 (cf. Section 5.5).

For all experiments, we have used a right-hand side b such that the solution x
is the vector containing only ones.

We provide in Section 5.5 experimental results on the complete set of matri-
ces. For the sake of conciseness, the performance analysis in the main body of this
chapter (Sections 5.2 to 5.4) will focus on matrix S3 (described in Section 1.5.2.2).

5.2 Performance analysis of sequential FSCU
algorithm

In this section, we analyze the performance of the FSCU algorithm (described
in Algorithm 2.1) in a sequential setting. Our analysis underlines several issues,
which will be addressed in subsequent sections.

In Table 5.2, we compare the number of flops and execution time of the sequen-
tial FR and BLR factorizations. While the use of BLR reduces the number of flops
by a factor 7.7, the time is only reduced by a factor 3.3. Thus, the potential gain in
terms of flops is not fully translated in terms of time.
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FR BLR ratio

flops (×1012) 77.97 10.19 7.7
time (s) 7390.1 2241.9 3.3

Table 5.2 – Sequential run (1 thread) on matrix S3.

To understand why, we report in Table 5.3 the time spent in each step of the
factorization, in the FR and BLR cases. The relative weight of each step is also
provided in percentage of the total. In addition to the four main steps Factor, Solve,
Compress and Update, we also provide the time spent in parts with low arithmetic
intensity (LAI parts). This includes the time spent in assembly, memory copies and
factorization of the fronts at the bottom of the tree, which are too small to benefit
from BLR and are thus treated in FR.

FR BLR
step flops % time (s) % flops % time (s) %

(×1012) (×1012)

Factor+Solve 1.51 1.9 671.0 9.1 1.51 14.9 671.0 29.9
Update 76.22 97.8 6467.0 87.5 7.85 77.0 1063.7 47.4
Compress 0.00 0.0 0.0 0.0 0.59 5.8 255.1 11.4
LAI parts 0.24 0.3 252.1 3.4 0.24 2.3 252.1 11.2

Total 77.97 100.0 7390.1 100.0 10.19 100.0 2241.9 100.0

Table 5.3 – Performance analysis of sequential run of Table 5.2 on matrix S3.

The FR factorization is clearly dominated by the Update, which represents
87.5% of the total time. In BLR, the Update operations are done exploiting the
low-rank property of the blocks and thus the number of operations performed in
the Update is divided by a factor 9.7. The Factor+Solve and LAI steps remain in
FR and thus do not change. From this result, we can identify three main issues
with the performance of the BLR factorization:

Issue 1 (lower granularity): the flop reduction by a factor 9.7 in the Update is not fully
captured, as its execution time is only reduced by a factor 6.1. This is due to
the lower granularity of the operations involved in low-rank products, which
have thus a lower performance: the speed of the Update step is 47.1 GF/s in
FR and 29.5 GF/s in BLR.

Issue 2 (higher relative weight of the FR parts): because the Update is reduced in
BLR, the relative weight of the parts that remain FR (Factor, Solve, and LAI
parts) increases from 12.5% to 41.1%. Thus, even if the Update step is further
accelerated, one cannot expect the global reduction to follow as the FR part
will become the bottleneck.

Issue 3 (cost of the Compress step): even though the overhead cost of the Compress
step is negligible in terms of flops (5.8% of the total), it is a very slow operation
(9.2 GF/s) and thus represents a non-negligible part of the total time (11.4%).

127



A visual representation of this analysis is given on Figure 5.1 (compare Fig-
ures 5.1a and 5.1b).

In the next section, we first extend the BLR factorization to the multithreaded
case, for which previous observations are even more critical. Issues 1 and 2 will
then be addressed by the algorithmic variants of the BLR factorization in Sec-
tion 5.4. Issue 3 is a topic of research by itself; it is out of the scope of this thesis
and we only comment on possible ways to reduce the cost of the Compress step in
the conclusion chapter.
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Figure 5.1 – Normalized (FR = 100%) flops and time on matrix S3.

5.3 Multithreading the BLR factorization
In this section, we describe the shared-memory parallelization of the BLR FSCU

factorization (Algorithm 2.1).

5.3.1 Performance analysis of multithreaded FSCU
algorithm

Our reference Full-Rank implementation is based on a fork-join approach com-
bining OpenMP directives with multithreaded BLAS libraries. While this approach
can have limited performance on very small matrices, on the set of problems con-
sidered, it achieves quite satisfactory speedups on 24 threads (around 20 for the
largest problems) because the bottleneck consists of matrix-matrix product opera-
tions. This approach will be taken as a reference for our performance analysis.

In the BLR factorization, the operations have a finer granularity and thus a
lower speed and a lower potential for exploiting efficiently multithreaded BLAS.
To overcome this obstacle, more OpenMP-based multithreading exploiting serial
BLAS has been introduced. This allows for a larger granularity of computations
per thread than multithreaded BLAS on low-rank kernels. In our implementation,
we simply parallelize the loops of the Compress and Update operations on different
blocks (lines 4, and 7-8) of Algorithm 2.1. The Factor+Solve step remains full-rank,
as well as the FR factorization of the fronts at the bottom of the assembly tree.
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Because each block has a different rank, the task load of the parallel loops is
very irregular in the BLR case. To account for this irregularity, we use the dy-
namic OpenMP schedule (with a chunk size equal to 1), which achieves the best
performance.

In Table 5.4, we compare the execution time of the FR and BLR factorization
on 24 threads. The multithreaded FR factorization achieves a speedup of 14.5 on
24 threads. However, the BLR factorization achieves a much lower speedup of 7.3.
The gain factor of BLR with respect to FR is therefore reduced from 3.3 to 1.7.

FR BLR ratio

time (1 thread) 7390.1 2241.9 3.3
time (24 threads) 508.5 306.8 1.7
speedup 14.5 7.3

Table 5.4 – Multithreaded run on matrix S3.

The BLR multithreading is thus less efficient than the FR one. To understand
why, we provide in Table 5.5 the time spent in each step for the multithreaded FR
and BLR factorizations. We additionally provide for each step the speedup achieved
on 24 threads.

FR BLR
step time % speedup time % speedup

Factor+Solve 38.9 7.7 17.3 38.9 12.7 17.3
Update 361.2 71.0 17.9 121.6 39.6 8.8
Compress 0.0 0.0 37.9 12.4 6.7
LAI parts 108.4 21.3 2.3 108.4 35.3 2.3

Total 508.5 100.0 14.5 306.8 100.0 7.3

Table 5.5 – Performance analysis of multithreaded run (24 threads) of Table 5.4 on
matrix S3.

From this analysis, one can identify two additional issues related to the multi-
threading of the BLR factorization:

Issue 4 (low arithmetic intensity parts become critical): the LAI parts expectedly
achieve a very low speedup of 2.3. While their relative weight with respect
to the total remains reasonably limited in FR, it becomes quite significant in
BLR, with over 35% of time spent in them. Thus, the impact of the poor mul-
tithreading of the LAI parts is higher on the BLR factorization than on the
FR one.

Issue 5 (scalability of the BLR Update): not only is the BLR Update less efficient
than the FR one in sequential, it also achieves a lower speedup of 8.8 on 24
threads, compared to a FR speedup of 17.9. This comes from the fact that
the BLR Update, due to its smaller granularities, is limited by the speed of
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memory transfers instead of the CPU peak as in FR. As a consequence, the
Outer Product operation runs at the poor speed of 8.8 GF/s, to compare to
35.2 GF/s in FR.

A visual representation of this analysis is given on Figure 5.1 (compare Fig-
ures 5.1b and 5.1c).

In the rest of this section, we will revisit our algorithmic choices to address both
of these issues.

5.3.2 Exploiting tree-based multithreading

In our standard shared-memory implementation, multithreading is exploited at
the node parallelism level only, i.e. different fronts are not factored concurrently.
However, in multifrontal methods, multithreading may exploit both node and tree
parallelism. Such an approach has been proposed, in the FR context, by L’Excellent
and Sid-Lakhdar (2014) and relies on the idea of separating the fronts by a so-
called L0 layer, as illustrated in Figure 5.2. Each subtree rooted at the L0 layer is
treated sequentially by a single thread; therefore, below the L0 layer pure tree par-
allelism is exploited by using all the available threads to process concurrently mul-
tiple sequential subtrees. When all the sequential subtrees have been processed,
the approach reverts to pure node parallelism: all the fronts above the L0 layer are
processed sequentially (i.e., one after the other) but all the available threads are
used to assemble and factorize each one of them.

thr0 thr1 thr2 thr3

Node
parallelism

Tree
parallelism

L0 layer

thr0-3 thr0-3

thr0-3

Figure 5.2 – Illustration with four threads of how both node and tree multithread-
ing can be exploited.

In Table 5.6, we quantify and analyze the impact of this strategy on the BLR
factorization. The majority of the time spent in LAI parts is localized under the L0
layer. Indeed, all the fronts too small to benefit from BLR are under it; in addition,
the time spent in assembly and memory copies for the fronts under the L0 layer
represents 60% of the total time spent in the assembly and memory copies. There-
fore, the LAI parts are significantly accelerated, by a factor over 2, by exploiting
tree multithreading.
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In addition, the other steps (the Update and especially the Compress) are also
accelerated thanks to the improved multithreading behavior of the relatively smaller
BLR fronts under the L0 layer which do not expose much node parallelism.

FR BLR
step time % speedup time % speedup

Factor+Solve 33.2 7.9 20.2 33.2 15.1 20.2
Update 331.7 79.4 19.5 110.2 50.0 9.7
Compress 0.0 0.0 24.1 10.9 10.6
LAI parts 53.0 12.7 4.8 53.0 24.0 4.8

Total 417.9 100.0 17.4 220.5 100.0 10.2

Table 5.6 – Execution time of FR and BLR factorizations on matrix S3 on 24
threads, exploiting both node and tree parallelism.

Please note that the relative gain due to introducing tree multithreading can be
larger even in FR, for 2D or very small 3D problems, for which the relative weight
of the LAI parts is important. However, for large 3D problems the relative weight of
the LAI parts is limited, and the overall gain in FR remains marginal. In BLR, the
weight of the LAI parts is much more important so that exploiting tree parallelism
becomes critical: the overall gain is significant in BLR. We have thus addressed
Issue 4, identified in Subsection 5.3.1.

The approach described in L’Excellent and Sid-Lakhdar (2014) additionally in-
volves a so-called Idle Core Recycling (ICR) algorithm which consists in reusing the
idle cores that have already finished factorizing their subtrees to help factorizing
the subtrees assigned to other cores. This results in the use of both tree and node
parallelism when the workload below the L0 layer is unbalanced.

The maximal potential gain of using ICR can be computed by measuring the
difference between the maximal and average time spent under the L0 layer by
the threads (this corresponds to the work unbalance). For the run of Table 5.6,
the potential gain is equal to 3.3s in FR (i.e., 0.8% of the total) and 5.1s in BLR
(i.e., 2.3% of the total). Thus, even though the potential gain in FR is marginal,
it is higher in BLR, due to load unbalance generated by the irregularity of the
compressions: indeed, the compression rate can greatly vary from front to front
and thus from subtree to subtree.

Activating ICR brings a gain of 3.0s in FR and 4.7s in BLR; thus, roughly 90%
of the potential gain is captured in both cases. While the absolute gain with re-
spect to the total is relatively small even in BLR, this analysis illustrates that Idle
Core Recycling becomes an even more relevant feature for the multithreaded BLR
factorization.

Exploiting tree multithreading is thus very critical in the BLR context. It will
be used for the rest of the experiments for both FR and BLR.
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5.3.3 Right-looking vs. Left-looking
Algorithm 2.1 has been presented in its Right-looking (RL) version. In Ta-

ble 5.7, we compare it to its Left-looking (LL) equivalent, referred to as UFSC
(Algorithm 2.3). The RL and LL variants perform the same operations but in a dif-
ferent order, which results in a different memory access pattern (Dongarra, Duff,
Sorensen, and Vorst, 1998).

FR BLR
parallelism step RL LL RL LL

1 thread
Update 6467.0 6549.8 1063.7 899.1
Total 7390.1 7463.9 2241.9 2074.5

24 threads, Update 331.7 335.6 110.2 66.9
node+tree// Total 417.9 420.6 220.5 174.7

Table 5.7 – Execution time of Right- and Left-looking factorizations on matrix S3.

The impact of using a RL or LL factorization is mainly observed on the Update
step. In FR, there is almost no difference between the two, RL being slightly (less
than 1%) faster than LL. In BLR however, the Update is significantly faster in LL
than in RL. This effect is especially clear on 24 threads (40% faster Update, which
leads to a global gain of 20%).

We explain this result by a lower volume of memory transfers in LL BLR than
RL BLR. As illustrated in Figure 5.3, during the BLR LDLT factorization of a p× p
block matrix, the Update will require loading the following blocks stored in main
memory:

• in RL (Figure 5.3a), at each step k, the FR blocks of the trailing sub-matrix
are written and therefore they are loaded many times (at each step of the
factorization), while the LR blocks of the current panel are read once and
never loaded again.

• in LL (Figure 5.3b), at each step k, the FR blocks of the current panel are
written for the first and last time of the factorization, while the LR blocks of
all the previous panels are read, and therefore they are loaded many times
during the entire factorization.

Thus, while the number of loaded blocks is roughly the same in RL and LL
(which explains the absence of difference between the RL FR and LL FR factoriza-
tions), the difference lies in the fact that the LL BLR factorization tends to load
more often LR blocks and less FR blocks, while the RL one has the opposite behav-
ior. To be precise:

• Under the assumption that one FR block and two LR blocks fit in cache, the
LL BLR factorization loads O (p2) FR blocks and O (p3) LR blocks.

• Under the assumption that one FR block and an entire LR panel fit in cache
(which is a stronger assumption so the number of loaded blocks may in fact
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read once

written at
each step

(a) RL factorization

read at
each step

written once
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Figure 5.3 – Illustration of the memory access pattern in the RL and LL BLR Up-
date during step k of the factorization of a matrix of p× p blocks (here, p = 8 and
k = 4).

be even worse), the RL BLR factorization loads O (p3) FR blocks and O (p2) LR
blocks.

Thus, switching from RL to LL reduces the volume of memory transfers and
therefore accelerates the BLR factorization, which addresses Issue 5, identified in
Subsection 5.3.1.

Throughout the rest of this article, the best algorithm is considered: LL for BLR
and RL for FR.

Thanks to both the tree multithreading and the Left-looking BLR factorization,
the factor of gain due to BLR with respect to FR on 24 threads has increased from
1.7 (Table 5.4) to 2.4 (Table 5.7).

Next, we show how the algorithmic variants of the BLR factorization can further
improve its performance.

5.4 BLR factorization variants

In this section, we study the UFSC+LUAR and UFCS+LUAR BLR factorization
variants. In Chapter 4, we have proved that they lead to a lower theoretical com-
plexity. In this section, we quantify the flop reduction achieved by these variants
and how well this flop reduction can be translated into a time reduction. We analyze
how they can improve the efficiency and scalability of the factorization.
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5.4.1 LUAR: Low-rank Updates Accumulation and
Recompression

We begin by the UFSC+LUAR variant, i.e. Algorithm 2.3 with the modified
LUAR-Update of Algorithm 2.10.

The LUAR algorithm has two advantages: first, accumulating the update ma-
trices together leads to higher granularities in the Outer Product step (line 8 of
Algorithm 2.10), which is thus performed more efficiently. This should address Is-
sue 1, identified in Section 5.2. Second, it allows for additional compression, as
explained in Section 2.6.

In Table 5.8, we analyze the performance of the UFSC+LUAR variant. We
separate the gain due to accumulation (UFSC+LUA, without recompression) and
the gain due to the recompression (UFSC+LUAR). As explained in Chapter 3, two
different types of recompression can be considered: weight recompression, which
consists in recompressing the middle accumulator ZS (cf. Figure 2.7); and ge-
ometry recompression, which consists in recompressing the outer accumulators
XS and/or YS. In the following, we compare both weight only recompression and
weight+geometry recompression. We provide the flops, time and speed of both the
Outer Product (which is the step impacted by this variant) and the total (to show
the global gain). We also provide the average (inner) size of the Outer Product op-
eration, which corresponds to the rank of C̃(acc)

i,k at line 8 in Algorithm 2.10. It also
corresponds to the number of columns of XS and YS in Figure 2.7.

UFSC +LUA +LUAR +LUAR
(weight only) (weight+geometry)

average size of Outer Product 16.5 61.0 32.8 9.1

flops
(×1012) Outer Product 3.76 3.76 1.59 0.77
(×1012) Recompress 0.00 0.00 0.01 0.35
(×1012) Total 10.19 10.19 8.15 7.57

Outer Product 21.4 14.0 6.0 2.7
time (s) Recompress 0.0 0.0 1.2 11.6

Total 174.7 167.1 160.0 168.3

Outer Product 29.3 44.7 44.4 47.8
speed (GF/s) Recompress 0.7 5.0

Total 9.7 10.2 8.5 7.5

Table 5.8 – Performance analysis of the UFSC+LUAR factorization on matrix S3 on
24 threads.

Thanks to the accumulation, the average size of the Outer Product increases
from 16.5 to 61.0. As illustrated by Figure 5.4, this higher granularity improves the
speed of the Outer Product from 29.3 to 44.7 GF/s (compared to a peak of 47.1 GF/s)
and thus accelerates it by 35%. The impact of accumulation on the total time de-
pends on both the matrix and the computer properties and will be further discussed
in Section 5.5.

134



Size of Outer Product
0 20 40 60 80 100

G
flo

ps
/s

0

10

20

30

40

50

b=256
b=512

Figure 5.4 – Performance benchmark of the Outer Product step on brunch. Please
note that the average sizes (first line) and speed values (eighth line) of Table 5.8
cannot be directly linked using this figure because the average size would need to
be weighted by its number of flops.

Next, we analyze the gain obtained by recompressing the accumulated low-rank
updates (Figure 2.7b). We begin by weight only recompression. While the total flops
are reduced by 20%, the execution time is only accelerated by 5%. This is partly due
to the fact that the Outer Product only represents a small part of the total, but could
also come from two other reasons:

• The recompression decreases the average size of the Outer Product back to
32.8. As illustrated by Figure 5.4, its speed remains at 44.4 GF/s and is thus
not significantly decreased, but it can be the case for other matrices or ma-
chines.

• The speed of the Recompress operation itself is 0.7 GF/s, an extremely low
value. Thus, even though the Recompress overhead is negligible in terms of
flops, it can limit the global gain in terms of time. Here, the time overhead is
1.2s for an 8s gain, i.e. 15% overhead.

The latter issue becomes even more noticeable when considering weight+geometry
recompression. Indeed, even though the flops are further reduced, the efficient
Outer Product operations are traded for much slower Recompress operations, which
represent an important part of the total in the weight+geometry case. Overall, re-
compressing the geometry information leads to slowdowns. Therefore, we conclude
that recompressing the middle accumulator ZS only (weight information only) is
the best strategy as, due to the small size of ZS, it leads to a lower Recompress cost
while capturing most of the recompression potential. In the rest of our experiments,
we use weight only recompression.

135



5.4.2 UFCS algorithm
In all the previous experiments, threshold partial pivoting was performed dur-

ing the FR and BLR factorizations, which means the Factor and Solve steps were
merged together as described in Section 5.1. For many problems, numerical piv-
oting can be restricted to a smaller area of the panel (for example, the diagonal
BLR blocks). In this case, the Solve step can be separated from the Factor step and
applied directly on the entire panel, thus solely relying on BLAS-3 operations.

Furthermore, in BLR, when numerical pivoting is restricted, it is natural and
more efficient to perform the Compress before the Solve (thus leading to the so-
called UFCS factorization). Indeed UFCS makes further use of the low-rank prop-
erty of the blocks since the Solve step can then be performed in low-rank as shown
at line 11 in Algorithm 2.5.

Note that for the matrices where pivoting cannot be restricted, we can instead
turn to the UCFS variant, discussed in Section 2.3.2. We do not evaluate the mul-
ticore performance of this variant in this thesis.

In Table 5.9, we report the gain achieved by UFCS and its accuracy. We mea-
sure the scaled residual ‖Ax−b‖∞

‖A‖∞‖x‖∞ . We first compare the factorization with either
standard or restricted pivoting. Restricting the pivoting allows the Solve to be per-
formed with more BLAS-3 and thus the factorization is accelerated. This does not
degrade the solution because on this test matrix restricted pivoting is enough to
preserve accuracy.

standard pivoting restricted pivoting
FR UFSC FR UFSC UFCS

+LUAR +LUAR +LUAR

flops (×1012) 77.97 8.15 77.97 8.15 3.95
time (s) 417.9 160.0 401.3 140.4 110.7
scaled residual 4.5e-16 1.5e-09 5.0e-16 1.9e-09 2.7e-09

Table 5.9 – Performance and accuracy of UFSC and UFCS variants on 24 threads
on matrix S3.

We then compare UFSC and UFCS (with LUAR used in both cases). The flops
for the UFCS factorization are reduced by a factor 2.1 with respect to UFSC. This
can at first be surprising as the Solve step represents less than 20% of the total
flops of the UFSC factorization.

To explain the relatively high gain observed in Table 5.9, we analyze in detail
the difference between UFSC and UFCS in Table 5.10. By performing the Solve in
low-rank, we reduce its number of operations of the Factor+Solve step by a factor
4.2, which translates to a time reduction of this step by a factor of 1.9. Furthermore,
the flops of the Compress and Update steps are also significantly reduced, leading
to a time reduction of 15% and 35%, respectively. This is because the Compress is
performed earlier, which decreases the ranks of the blocks. On our test problem,
the average rank decreases from 21.6 in UFSC to 16.2 in UFCS, leading a very
small relative increase of the scaled residual. The smaller ranks also lead to a
smaller average size of the Outer Product, which decreases from 32.8 (last column of
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flops (×1012) time (s)
UFSC UFCS UFSC UFCS

Factor+Solve 1.52 0.36 12.4 6.6
Update 5.78 2.93 53.4 34.0
Compress 0.62 0.43 24.1 20.4
LAI parts 0.24 0.24 50.5 49.7

Total 8.15 3.95 140.4 110.7

Table 5.10 – Detailed analysis of UFSC and UFCS results of Table 5.9 on matrix
S3.

Table 5.8) to 24.4. This makes the LUAR variant even more critical when combined
with UFCS: with no accumulation, the average size of the Outer Product in UFCS
would be 10.9 (to compare to 16.5 in UFSC, first column of Table 5.8).

Thanks to both the LUAR and UFCS variants, the factor of gain due to BLR with
respect to FR on 24 threads has increased from 2.4 (Table 5.7) to 3.6 (Table 5.9).

5.5 Complete set of results
This section serves two purposes. First, we show that the results and the analy-

sis reported on a representative matrix on a given computer hold for a large number
of matrices coming from a variety of real-life applications and in different multicore
environments. Second, we will further comment on specificities that depend on the
matrix or machine properties.

The results on the matrices coming from the three real-life applications from
SEISCOPE, EMGS and EDF (described in Section 1.5.2.2) are reported in Table 5.11.
To demonstrate the generality and robustness of our solver, these results are com-
pleted with those of Table 5.12 on matrices from the UFSMC. We summarize the
main results of Tables 5.11 and 5.12 with a visual representation in Figure 5.5.
Then, for the biggest problems, we report in Table 5.13 results obtained using 48
threads instead of 24. We recall that the test matrices are described and assigned
an ID in Table 1.3.

5.5.1 Results on the complete set of matrices

We report the flops and time on 24 threads for all variants of the FR and BLR
factorizations and report the speedup and scaled residual ‖Ax−b‖∞

‖A‖∞‖x‖∞ for the best FR
and BLR variants. The scaled residual in FR is taken as a reference. In BLR, the
scaled residual also depends on the low-rank threshold ε (whose choice of value
is justified in Section 5.1). One can see in Tables 5.11 and 5.12 that in BLR the
scaled residual correctly reflects the influence of the low-rank approximations with
threshold ε on the FR precision. Matrix nlpkkt120 (matrix ID 22) is a numerically
difficult problem for which the FR residual (1.9e-08) is several digits lower than the
machine precision; on this matrix the low-rank threshold is set to a smaller value
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low-rank threshold ε 10−3 10−7 10−9

matrix ID 1 2 3 4 5 6 7 8 9 10 11

flops
(×1012)

FR 69.5 471.1 2703.0 57.9 2188.0 78.0 3119.0 101.0 377.5 1616.0 23.6
BLR 9.3 48.4 222.8 10.4 159.2 10.2 163.3 21.4 55.2 157.2 5.6

+ LUAR 7.0 34.4 146.1 8.3 95.2 8.1 105.6 17.7 43.3 110.2 5.2
+ UFCS 6.4 34.3 100.1 3.7 53.1 3.9 48.1 15.9 37.6 93.5 —

flop ratio∗ 10.8 13.7 27.0 15.8 41.2 19.7 64.8 6.4 10.0 17.3 4.2

time
(24 threads)

FR 235.2 1295.9 6312.5 376.4 10089.4 508.5 14362.3 211.7 662.2 2272.1 166.7
+ tree// 196.2 1100.0 5844.8 321.4 9779.2 417.9 13979.7 174.3 577.3 2145.0 77.6
+ rest. piv. 163.2 1013.0 5649.5 304.2 9655.6 401.3 13842.7 163.8 544.1 2066.9 —

BLR 146.2 537.7 1998.8 229.0 2967.5 306.8 3702.9 161.5 416.7 1129.0 151.5
+ tree// 92.8 373.6 1497.3 161.2 2586.7 220.5 3165.9 115.6 313.0 944.5 56.3
+ UFSC 88.1 347.7 1334.3 150.1 1688.4 174.7 1971.6 99.3 245.2 632.9 50.0
+ LUA 84.0 327.5 1245.4 145.6 1643.7 167.1 1856.6 97.3 232.2 570.2 49.1
+ LUAR 91.0 362.5 1196.9 138.3 1509.4 160.0 — 92.7 216.5 515.8 79.6
+ UFCS 49.7 194.8 773.7 91.0 652.7 110.7 736.1 78.2 176.7 377.9 —

time ratio∗ 3.3 5.2 7.3 3.3 14.8 3.6 18.8 2.1 3.1 5.5 1.6

speedup
(24 threads)

Best FR 17.8 18.8 — 17.7 — 18.2 — 15.9 17.5 — 14.2
Best BLR 11.3 13.8 12.6 9.6 11.5 9.0 12.2 10.8 12.2 13.5 12.3

scaled
residual

Best FR 1.7e-04 3.5e-04 2.9e-04 3.7e-16 7.0e-16 5.0e-16 8.1e-16 9.1e-15 5.2e-15 7.1e-15 1.4e-15
Best BLR 3.1e-02 2.9e-02 4.2e-02 3.1e-10 2.8e-10 2.7e-09 2.0e-10 1.4e-08 3.7e-08 5.0e-08 4.5e-13

∗between best FR and best BLR

Table 5.11 – Experimental results on real-life matrices from SEISCOPE, EMGS,
and EDF.

(10−9) to preserve a scaled residual comparable to those obtained with the other
matrices from the UFSMC set.

On this set of problems, BLR always reduces the number of operations with
respect to FR by a significant factor. This factor is never fully translated in terms
of time, but the time gains remain important, even for the smaller problems.

Tree parallelism (tree//), the Left-looking factorization (UFSC) and the accumu-
lation (LUA) always improve the performance of the BLR factorization. For some
smaller problems where the factorization of the fronts at the bottom of the assembly
tree represents a considerable part of the total computations, such as StocF-1465
and atmosmodd (matrix ID 12 and 13), exploiting tree parallelism is especially crit-
ical, even in FR.

Even though the recompression (LUAR) is always beneficial in terms of flops, it
is not always the case in terms of time. Especially for the smaller problems, the low
speed of the computations may lead to slowdowns. When LUAR is not beneficial (in
terms of time), the “+UFCS” lines in Tables 5.11 and 5.12 correspond to a UFCS
factorization without Recompression (LUA only).

For most of the problems, the UFCS factorization obtained a scaled residual of
the same order of magnitude as the one obtained by UFSC. This was the case even
for some matrices where pivoting cannot be suppressed, but can be restricted to the
diagonal BLR blocks, such as perf008{d,ar,cr} (matrix ID 8-10). Only for problems
perf009ar and nlpkkt{80,120} (matrix ID 11 and 21-22), standard threshold piv-
oting was needed to preserve accuracy and thus the restricted pivoting and UFCS
results are not available. For these three matrices, we should instead use the UCFS
variant, discussed in Section 2.3.2. We do not evaluate the multicore performance
of this variant in this thesis.
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low-rank threshold ε 10−6 10−6 10−6 10−6 10−9

matrix ID 12 13 14 15 16 17 18 19 20 21 22

flops
(×1012)

FR 4.7 13.8 1872.0 31.6 39.3 98.9 261.1 80.1 4066.0 15.1 248.4
BLR 0.4 1.2 216.2 5.0 2.0 14.7 21.5 9.9 161.8 1.9 22.8

+ LUAR 0.4 1.0 173.1 3.9 1.9 12.8 18.8 7.9 111.5 1.7 17.6
+ UFCS 0.2 0.8 133.9 4.1 1.8 12.7 14.6 6.1 75.5 — —

flop ratio∗ 27.0 17.1 14.0 7.7 22.3 7.8 17.9 13.1 53.8 7.8 10.9

time
(24 threads)

FR 31.0 36.7 2349.1 81.0 85.5 210.2 513.1 123.6 4930.4 54.9 592.2
+ tree// 15.2 27.7 2247.9 60.8 65.7 168.5 420.3 114.8 4864.1 37.0 523.2
+ rest. piv. 12.8 23.4 2237.5 56.9 60.2 158.1 388.7 109.6 4626.2 — —

BLR 26.8 28.8 1019.6 66.3 52.2 153.1 321.0 76.6 1393.8 42.1 334.2
+ tree// 10.1 18.5 840.8 43.3 27.9 105.2 202.3 67.9 1321.1 22.9 263.3
+ UFSC 10.2 16.6 729.1 36.8 29.0 87.7 161.9 58.8 817.1 21.7 226.3
+ LUA 10.9 16.6 697.3 35.2 29.6 82.1 152.8 55.0 734.2 20.9 215.6
+ LUAR 10.5 18.1 681.4 35.1 28.7 80.9 151.2 53.6 662.2 24.7 228.8
+ UFCS 7.5 11.4 565.0 28.7 20.1 68.5 106.1 43.4 517.3 — —

time ratio∗ 1.7 2.1 4.0 2.0 3.0 2.3 3.7 2.5 8.9 1.8 2.4

speedup
(24 threads)

Best FR 10.9 14.1 — 14.5 15.2 15.8 17.0 16.3 — 17.7 20.4
Best BLR 5.1 7.1 12.4 7.8 7.1 10.1 8.6 8.6 10.4 12.4 13.6

scaled
residual

Best FR 1.6e-16 1.5e-15 1.8e-14 1.2e-15 1.8e-16 2.4e-15 2.7e-16 1.6e-15 3.4e-15 6.6e-12 1.9e-08
Best BLR 1.9e-09 1.4e-04 6.5e-08 7.9e-07 6.9e-07 1.1e-08 2.1e-08 2.0e-05 4.1e-05 6.4e-04 1.7e-04

∗between best FR and best BLR

Table 5.12 – Experimental results on real-life matrices from the UFSMC

We now analyze how these algorithmic variants evolve with the size of the ma-
trix, by comparing the results on matrices of different sizes from the same problem
class, such as perf008{d,ar,cr} (matrix ID 8-10) or {5,7,10}Hz (matrix ID 1-3). Tree
parallelism becomes slightly less critical as the matrix gets bigger, due to the de-
creasing weight of the bottom of the assembly tree. On the contrary, improving
the efficiency of the BLR factorization (UFSC+LUA variant, with reduced memory
transfers and increased granularities) becomes more and more critical (e.g., 16%
gain on perf008d compared to 40% gain on perf008cr). Both the gains due to the
Recompression (LUAR) and the Compress before Solve (UFCS) increase with the
problem size (e.g., 20% gain on perf008d compared to 34% gain on perf008cr), which
is due to the improved complexity of these variants (cf. Chapter 4).

We also analyze the parallel efficiency of the FR and BLR factorization by re-
porting the speedup on 24 threads. The speedup achieved in FR for the small and
medium problems is of 16.4 in average and up to 20.4. As for the biggest problems,
they would take too long to run in sequential in FR; this is indicated by a “—” in
the corresponding row of Tables 5.11 and 5.12. However, for these problems, we can
estimate the speedup assuming they would run at the same speed as the fastest
problem of the same class that can be run in sequential. Under this assumption
(which is conservative because the smaller problems already run very close to the
CPU peak speed), these big problems all achieve a speedup close to or over 20.
Overall, it shows that our parallel FR solver is a good reference to be compared
with.

The speedups achieved in BLR are lower than in FR, but they remain satisfac-
tory, averaging at 10.5 and reaching up to 13.8, and leading to quite interesting
overall time ratios between the best FR and the best BLR variants. It is worthy to
note that bigger problems do not necessarily lead to better speedups than smaller
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ones, because they achieve higher compression and thus lower efficiency.
We summarize the main results of Tables 5.11 and 5.12 with a visual represen-

tation in Figure 5.5. We compare the time using 24 threads for four versions of the
factorization: reference (ref.) FR and BLR, and improved (impr.) FR and BLR. Ref-
erence versions correspond to the initial versions of the factorization with only node
parallelism, standard partial threshold pivoting and the standard FSCU variant for
the BLR factorization. The improved FR version exploits tree parallelism and re-
stricts numerical pivoting when possible. The improved BLR version additionally
uses a UFCS factorization with accumulation (LUA), and possibly recompression
(LUAR, only when beneficial). While the time ratio between the reference FR and
BLR versions is only of 1.9 in average (and up to 6.9), that of the improved versions
is of 4.6 in average (and up to 18.8).
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Figure 5.5 – Visual representation of summarized results of Tables 5.11 and 5.12
(ref.: reference; impr.: improved).

5.5.2 Results on 48 threads
Next, we report in Table 5.13 the results obtained using 48 threads on brunch.

For these experiments, we have selected the biggest of our test problems: 10Hz,
H17, S21, and perf008cr (matrix ID 3, 5, 7, and 10). On these big problems, we com-
pute the speedup obtained using 48 threads with respect to 24 threads (and thus,
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the optimal speedup value is 2). With the reference FR factorization, a speedup
between 1.51 and 1.71 is achieved, which is quite satisfactory. The improved FR
version, thanks to tree parallelism and restricted pivoting, increases the speedup
to between 1.53 and 1.73, a relatively minor improvement.

time (48 threads) speedup w.r.t 24 threads
matrix ID 3 5 7 10 3 5 7 10

FR 4100.5 5949.8 8387.0 1508.7 1.54 1.70 1.71 1.51
+ tree// + rest. piv. 3402.1 5599.0 7987.4 1350.4 1.66 1.72 1.73 1.53

BLR 1764.9 2478.3 3142.7 828.8 1.13 1.20 1.18 1.36
+ tree// + UFSC + LUA 1056.7 1071.3 1234.3 389.9 1.18 1.53 1.50 1.46
+ LUAR + UFCS 590.1 519.0 604.9 328.2 1.31 1.26 1.22 1.15

ratio best FR/best BLR 6.1 10.8 13.2 4.1

Table 5.13 – Results on 48 threads.

The results are quite different for the BLR factorization. The speedup achieved
by the reference version is much smaller: between 1.13 and 1.36, which illustrates
that exploiting a high number of cores in BLR is a challenging problem. We then
distinguish two types of improvements of the BLR factorization:

• The improvements that increase its scalability: tree parallelism but also the
UFSC (i.e., Left-looking) factorization (due to a lower volume of memory ac-
cesses) and the LUA accumulation (due to increased granularities). All these
changes combined lead to a major improvement of the achieved speedup, be-
tween 1.18 and 1.53, and illustrate the ability of the improved BLR factoriza-
tion to scale reasonably well, even on higher numbers of cores.

• The improvements that increase its compression: the recompression (LUAR)
and the UFCS factorization. By decreasing the number of operations, these
changes may degrade the scalability of the factorization. This explains why
the achieved speedup may be lower than that of the UFSC+LUA variant, or
sometimes even that of the reference BLR version. Despite this observation,
these changes do reduce the time by an important factor and illustrate the
ability of the improved BLR factorization to achieve significant gains, even on
higher numbers of cores.

5.5.3 Impact of bandwidth and frequency on BLR
performance

In this Section, we report additional experiments performed on two machines
and analyze the impact of their properties on the performance.

The machines and their properties are listed in Table 5.1. brunch is the ma-
chine used for all previous experiments. grunch is a machine with very similar
architecture but with lower frequency and bandwidth.

In Table 5.14, we compare the results obtained on brunch and grunch. We re-
port the execution time of the BLR factorization in Right-looking (RL), Left-looking
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(LL), and with the LUA variant. On brunch, as observed and analyzed in Sec-
tions 5.3.3 and 5.4.1, the gain due to the LL factorization is significant while that of
the LUA variant is limited. However, on grunch, we have the opposite effect, the
difference between RL and LL is limited while the gain due to LUA is significant.

machine RL LL LUA

brunch 220.5 174.7 167.1
grunch 247.7 228.3 196.8

Table 5.14 – Time (s) for BLR factorization on matrix S3 (on 24 threads on brunch
and 28 threads on grunch).
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Figure 5.6 – Roofline model analysis of the Outer Product operation.

These results can be qualitatively analyzed using the Roofline Model (Williams,
Waterman, and Patterson, 2009). This model provides an upper bound for the speed
of an operation as a function of its arithmetic intensity, defined as the ratio between
number of operations and number of memory transfers, the memory bandwidth and
the CPU peak performance:

Attainable
GF/s =min


Peak Floating-point

Performance
Peak Memory

Bandwidth × Operational
intensity

.

The Roofline Model is plotted for the grunch and brunch machines in Fig-
ure 5.6 considering the bandwidth and CPU peak performance values reported in
Table 5.1. Algorithms whose arithmetic intensity lies on the slope of the curve are
commonly referred to as memory-bound because their performance is limited by
the speed at which data can be transferred from memory; those whose arithmetic
intensity lies on the plateau are referred to as compute-bound and can get close to
the peak CPU speed.
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Although it is very difficult to compute the exact arithmetic intensity for the
algorithms presented above, the following relative order can be established:

• because of the unsuitable data access pattern (as explained in Section 5.3.3)
and the low granularity of operations, the RL method is memory bound as
proved by the fact that the Outer Product operation runs, on brunch, at the
poor speed of 8.8 GF/s;

• as explained in Section 5.3.3, the LL method does the same operations as the
RL one but in a different order which results is a lower volume of memory
transfers. Consequently, the LL method enjoys a higher arithmetic intensity
although it is still memory bound as shown by the fact that the Outer Product
operation runs, on brunch, at 29.3 GF/s (cf. Table 5.8) which is still relatively
far from the CPU peak;

• the LUA method is based on higher granularity operations; this likely allows
for a better use of cache memories within BLAS operations which ultimately
results in an increased arithmetic intensity; in conclusion the LUA method is
compute-bound (or very close to) as shown by the fact that the Outer Product
runs at 44.7 GF/s on brunch (cf. Table 5.8).

This leads to the following interpretation of the results of Table 5.14. Compared
to grunch, brunch has a higher bandwidth; this translates by a steeper curve
in the memory-bound area of the roofline figure. As a consequence, the difference
between the RL and LL algorithms (which are both memory-bound) is greater on
brunch than on grunch. However, the higher bandwidth also makes the LL fac-
torization closer to being compute-bound on brunch than on grunch. Therefore,
the difference between LL and LUA (for which the Outer Product is compute-bound)
is greater on grunch.

5.6 Chapter conclusion
We have presented a multithreaded Block Low-Rank factorization for shared-

memory multicore architectures.
We have first identified challenges of multithreaded performance in the use of

BLR approximations within multifrontal solvers. This has motivated us to both
revisit the algorithmic choices of our Full-Rank Right-looking solver based on node
parallelism, and also to introduce algorithmic variants of the BLR factorization.

Regarding the algorithmic changes for the FR factorization, even though ex-
ploiting tree parallelism brings only a marginal gain in FR, we have shown that it
is critical for the BLR factorization. This is because the factorization of the fronts
at the bottom of the assembly tree is of much higher weight in BLR. We have then
observed that, contrarily to the FR case, the Left-looking BLR factorization outper-
forms the Right-looking one by a significant factor. We have shown that it is due to
a lower volume of memory transfers.

Regarding the BLR algorithmic variants, firstly we have shown that accumulat-
ing together the low-rank updates (so-called LUA algorithm) improves the granu-
larity and the performance of the BLAS kernels. This approach also offers potential
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for recompression (so-called LUAR algorithm) which can often be translated into
time reduction. Secondly, for problems on which the constraint of numerical pivot-
ing can be relaxed, we have presented the UFCS variant which improves both the
efficiency and compression rate of the factorization.

An efficient multithreaded BLR factorization for multicores is the first building
block of a scalable, parallel BLR solver. The next chapter deals with the extension
to distributed-memory architectures.
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CHAPTER

6
Distributed-memory
BLR Factorization

In this chapter, we analyze the distributed-memory BLR factorization. We ex-
tend the algorithms presented previously to distributed-memory environments, and
analyze the new issues raised in this context.

In Section 6.1, we describe our MPI implementation and how it is adapted to
perform a BLR factorization. Then, in Section 6.2, we provide a strong scalability
analysis of the standard FSCU factorization. The analysis raises a number of is-
sues among which a high relative weight of communications, and load unbalance.
In Sections 6.3 and 6.4, we propose some ways to overcome these issues. Then, in
Sections 6.5 and 6.6, we present and analyze distributed-memory versions of the
LUAR and UFCS factorization variants, introduced in Chapter 2. As in the pre-
vious chapter, we focus on one matrix (10Hz, matrix ID 3) in our analysis, before
presenting results on our main set of problems (described in Section 1.5.2.2) in Sec-
tion 6.7. We conclude in Section 6.8.

The eos supercomputer was used to run all experiments presented in this chap-
ter, with the exception of one experiment of Section 6.3.2 which was run on cori.

6.1 Parallel MPI framework and implementation
In this section, we first describe a general MPI framework in which the algo-

rithms and analysis presented in this chapter are valid. We then specify our im-
plementation in MUMPS, and explain how it can be adapted to perform a BLR
factorization.

6.1.1 General MPI framework

As explained in Section 1.3.2.4, two kinds of parallelism, referred to as tree par-
allelism and node parallelism, can be exploited. We consider a standard framework
in the literature, where both types of parallelism are exploited.

This is illustrated in Figure 6.1. All processes are mapped on the root node of
the assembly tree. Then, as we go down the tree, the processes are distributed on
the child nodes, until each MPI process is left with one or more subtrees to process
sequentially. There are several strategies to assign the processes to the child nodes.
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In the following, we consider, without loss of generality, a proportional mapping
strategy (Pothen and Sun, 1993).

In strict proportional mapping, the processes are recursively distributed over
the assembly tree according to the following rule. Consider p f processes assigned
to the factorization of a given front f with nc children. Denoting wi the weight of
the subtree rooted at child i, the number of processes assigned to child i is

pi = wi∑nc
j=1 w j

p f . (6.1)

The metric used to compute the weights wi is usually the workload (or sometimes
the memory load).

P0 P1 P2 P3

Node+tree
parallelism

Tree
parallelism

P0-P1 P2-P3

P0-P3

Figure 6.1 – Illustration with four MPI processes of our framework based on both
tree and node parallelism.

We then describe in Figure 6.2 how node parallelism is handled in our frame-
work. The MPI processes are mapped on a node following a one-dimensional row-
wise partitioning. The mapping of the fully-summed rows (shaded area in Fig-
ure 6.2) is 1D-cyclic, so as to allow for the pipelining of computations. The mapping
of the non fully-summed rows can also be cyclic or acyclic.

P0
P1
P0
P1

P0

P1

Figure 6.2 – Illustration with two MPI processes of how node parallelism is handled
in our framework. The shaded area represents the fully-summed rows.

For the sake of simplicity, we base our analysis on the unsymmetric case. Re-
sults on symmetric matrices will be included in Section 6.7.
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6.1.2 Implementation in MUMPS

The MPI parallelism designed in MUMPS is described in detail in Amestoy et
al. (2001) and Amestoy et al. (2006). We summarize the most important aspects
that are relevant in our context.

Both levels of parallelism are exploited with MPI, as illustrated by Figure 6.3.
Fronts in different subtrees are processed by different processes, and the large
enough ones are mapped on several processes: the master process is assigned to
process the fully-summed rows and is in charge of organizing computations; the
non fully-summed rows are distributed following a one-dimensional row-wise par-
titioning, so that each slave holds a range of rows.

P0

P1

P2

P3

P4

P0

P1

P2

P3

P4

Figure 6.3 – Illustration of tree and node parallelism. The shaded part of each
front represents its fully-summed rows. The fronts are row-wise partitioned in our
implementation, but column-wise partitioning is also possible.

The fact that all the fully-summed rows are mapped on the same process sim-
plifies many algorithmic aspects on the code, but would also lead to severe load
unbalance. To overcome this issue, the nodes are split into chains so that the load
of the master processes is roughly the same as that of the slaves, as illustrated in
Figure 6.4. This splitting strategy is described in Rouet (2012) and Sid-Lakhdar
(2014). We revisit it in Section 6.4, when analyzing the load balance of the BLR
factorization.

There are two main types of messages that carry numerical values: the sending
of LU factors between processes mapped on the same front, and the sending of a
range of rows of the CB of a front to the processes mapped on the parent front.
This is illustrated in Figure 6.5. The shaded area corresponds to the part of the
matrix that is sent, and the arrows represent at least a message (and more com-
monly several messages, as the data to be sent is usually split into several smaller
messages). The dashed arrows represent logical messages, which are not actually
sent because the sender and receiver correspond to the same process. Note that the
master processes of the child fronts may also have to send a message if they hold
delayed pivots (non-eliminated variables due to numerical pivoting).
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Figure 6.4 – Splitting of a front (left) into a split chain (right) to be processed
bottom-up. L and U factors are in gray and black respectively, and Schur com-
plements in white.

P0

P1

P2

P3

(a) LU messages.

P0

P1

P2

P3

P4

P5

P0 P0

P1 P1
P2 P2
P3 P3
P4 P4
P5 P5

(b) CB messages.

Figure 6.5 – The two main types of messages sent during the factorization. The
shaded part represents the content of the messages. The shaded red part (right
figure) represents delayed pivots.

Finally, note that both the master and slave processes perform a right-looking
factorization in our current default implementation.

6.1.3 Adapting this framework/implementation to BLR
factorizations

When considering a BLR front mapped on several processes, there are two op-
tions: either the MPI mapping is constrained to follow the BLR clustering, or the
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inverse. Following Weisbecker (2013), we have chosen the latter option: the BLR
clustering is first computed independently from the MPI partitioning; then, the
BLR blocks mapped on more than one process are split into several blocks. If this
produces too small blocks1, we merge some blocks together. This is illustrated in
Figure 6.6.

(a) BLR clustering com-
puted independently of
the MPI partitioning
(dashed red line).

(b) BLR clustering con-
strained by the MPI par-
titioning.

(c) BLR clustering effec-
tively used. Small blocks
have been merged so as to
obtain big enough blocks.

Figure 6.6 – BLR clustering constrained by MPI partitioning.

Similarly, the splitting of frontal matrices can be performed either before or
after the BLR clustering. In our implementation, we perform it before; the sep-
arators are first split into subparts, which we then cluster independently. This
assumes that the splitting strategy is aware of the graph, so as to avoid producing
disconnected subparts (which would lead to a clustering of poor quality).

In the BLR factorization, the volume of the LU messages can be reduced thanks
to the compression of the LU factors. Moreover, the volume of CB messages may
also be reduced by compressing the CB, as described in Section 2.5. So far, we
have not considered compressing the CB, because it does not contribute to reducing
the global number of operations, and thus represents an overhead cost. However,
in this chapter, we will compare the full-rank CB (noted CBFR) and low-rank CB
(noted CBLR) strategies to assess the impact of compressing the CB on the volume
of communications and on the overall performance of the solver.

Note that when the CB is compressed, two strategies are possible to perform the
assembly operations, as described in Section 2.5. The assembly can be performed
in full-rank by decompressing the CB low-rank blocks (CBLR+AsmFR strategy) or
it can be performed in low-rank by padding and recompressing them (CBLR+AsmLR
strategy, described in Section 1.4.3.2). In this work, we only consider the CBLR+AsmFR
strategy.

When the CB is compressed, some CB low-rank blocks may be needed to as-
semble rows mapped on different processes on the parent front, as illustrated in

1In our implementation, too small is defined as less than half the target cluster size.
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Figure 6.7. In this situation, the column basis Y must be sent to each process hold-
ing at least a row concerned by the block. Thus, if there are p such processes, a
block of size m×n and rank k requires O ((m+np)k) data to be sent.

X1

X2

Y T

P0

child
front

P1

P2

parent
front

Figure 6.7 – CB block mapped on two processes on the parent front. The BLR block(
X1
X2

)
Y T is mapped on P1 and P2 on the parent front. P0 must send X1 to P1, X2

to P2, and Y to both P1 and P2.

6.2 Strong scalability analysis
In Figure 6.8, we provide a strong scalability analysis of both the FR and BLR

factorizations. This section focuses on the FSCU factorization variant, using the
CBFR strategy (i.e., the CB is not compressed).

We use the 10Hz matrix on an increasing number of nodes (from 30, the minimal
number for the problem to fit in-core, to 90, the maximal number available). The
number of threads is fixed to 10 per node. While both FR and BLR scale reasonably
well, the FR strong scalability is clearly better than the BLR one.

To understand why, we provide an analysis of different metrics in Table 6.1:
flops, load balance, memory consumption, and volume of communications. To esti-
mate the quality of the load balance, we compute the flop ratio between the most
loaded process and the least loaded one.

The analysis of these metrics raises the following issues:

Issue 1 (degradation of the compression rate): the compression rate slightly decreases
with the number of processes. This is because the row-wise partitioning im-
posed by the distribution of the front onto several processes constraints the
BLR clustering of the unknowns, as we want to ensure a given BLR block
belongs to one process only (cf. Section 6.1.3). While this may become an is-
sue on much larger numbers of processes, in this case it cannot explain the
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Number of MPIs x Number of cores
30x10 45x10 60x10 75x10 90x10
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(a) Strong scalability figure. Dashed lines repre-
sent ideal scalability.

30×10 45×10 60×10 75×10 90×10

FR 1257.2 874.8 722.5 667.2 617.0
BLR 366.6 281.5 258.0 242.3 231.2
ratio 3.4 3.1 2.8 2.8 2.7

(b) Associated table.

Figure 6.8 – Strong scalability of the FR and BLR factorizations (10Hz matrix).

30×10 90×10
FR BLR ratio FR BLR ratio

time (s) 1257.2 366.6 3.4 617.0 231.2 2.7
flops (×1014) 25.56 1.98 12.9 25.56 2.00 12.8
load unbalance 1.42 2.01 1.28 2.57
communications (GB) 2060.3 935.6 2.2 5735.9 2587.2 2.2
avg. memory/proc (GB) 35.22 25.92 1.4 13.27 10.82 1.2

Table 6.1 – Analysis of the strong scalability of Figure 6.8 on 10Hz matrix (matrix
ID 3).

lesser strong scalability of BLR, as the degradation of the compression rate is
negligible (1.98 vs 2.00×1014 flops). We do not consider this issue further.

Issue 2 (higher relative weight of communications): both the flops and the volume of
communications are reduced in BLR. However, while the flops are reduced by
a factor around 12.8, the volume of communications is only reduced by a factor
2.2. Thus, the ratio of volume of communications over flops is much higher in
BLR than in FR. We provide a theoretical and experimental communication
analysis of the BLR factorization in Section 6.3.

Issue 3 (higher load unbalance): in our current implementation, the mapping and
splitting strategies are based on the full-rank flops estimates, even for the
BLR factorization. This is because the compression rate cannot be predicted
in advance. As a consequence, the load balance in BLR is worse than in FR,
with a significantly higher maximal load over minimal load ratio. We analyze
the load balance in Section 6.4.

Issue 4 (lower memory efficiency): in FR, the average memory consumption per pro-
cess decreases from 35.22 GB on 30 processes to 13.27 GB on 90 processes. It
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is thus divided by a factor 2.65, which corresponds to a memory efficiency of
0.88 with respect to 30 processes. However, in BLR, the average memory is
only divided by a factor 2.40, which corresponds to an efficiency of 0.80. We
will analyze the reason behind this and how to improve the memory efficiency
of the BLR factorization in Section 9.3.

Thus, Issues 2 and 3 may both contribute to the lesser strong scalability ob-
served for the BLR factorization. Moreover, Issue 4 will limit the scope of BLR
solvers on very large problems. In the next two sections, we analyze the Issues 2
and 3, and suggest some ways to address them. We will come back to Issue 4 in
Chapter 9.

6.3 Communication analysis
In this section, we analyze and compare the communications performed in the

FR and BLR distributed-memory factorizations. This analysis if motivated by Is-
sue 2: in the BLR factorization, the volume of communications has only been re-
duced by a factor of 2.2, which is relatively small with respect to the flops reduction
factor (12.8).

In Table 6.2, we measure the data sent for each type of message. We focus on
the LU and CB messages, since the data sent for other messages is negligible.

30×10 90×10
FR BLR ratio FR BLR ratio

LU messages 1219.3 100.1 12.2 3488.3 339.4 10.3
CB messages 840.7 835.2 1.0 2245.6 2245.8 1.0
other messages 0.3 0.3 1.0 2.0 2.0 1.0

total 2060.3 935.6 2.2 5735.9 2587.2 2.2

Table 6.2 – Volume of communications (in GB) for the FR and BLR factorizations
on matrix 10Hz (matrix ID 3). In BLR, the CB is not compressed (CBFR strategy).

In FR, the LU and CB messages represent a comparable part of the total vol-
ume of communications. The LU messages tend to dominate, especially when the
number of processes grows. This will be explained in Section 6.3.1.

In BLR, the LU factors are compressed and therefore the volume of LU commu-
nications is reduced by a factor 12.2 on 30×10 cores. This might seem surprising
at first because the compression rate of the factors is only of 22% on this matrix.
However, this is the global compression rate (with respect to all compressed fronts),
while most of the messages actually concern the bigger fronts at the top of the as-
sembly tree, which are large enough to be mapped on several processes, and which
are also likely to compress more. This also explains why the reduction factor of the
LU messages decreases to 10.3 on 90×10 cores: with more processes, more fronts
that are lower in the assembly tree, which compress less, are mapped on several
processes.
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In BLR, compressing the LU factors is thus not enough since the LU messages
become negligible with respect to the total, and therefore the communications are
largely dominated by the CB messages, which represent almost 90% of the total.

The total volume of communications is thus reduced by the underwhelming fac-
tor of 2.2. In particular, this means that the ratio between the number of operations
and the volume of communications decreases compared to the FR factorization: on
900 cores, the FR factorization performs 446 GF for each GB of communication,
whereas that value falls to 77 in BLR. This may explain the lesser scalability of the
BLR factorization.

Therefore, compressing the CB deserves to be considered as a strategy to im-
prove the parallel efficiency of the solver. Before providing experimental results in
Section 6.3.2, we first motivate this idea with the following theoretical analysis.

6.3.1 Theoretical analysis of the volume of communications
For the purpose of this theoretical analysis, we make some stronger assump-

tions on our setting. We assume the assembly tree has been built by means of
nested dissection. We use p processes mapped with a strict proportional mapping
strategy (Pothen and Sun, 1993). We consider a domain of size Nd (where d denotes
the dimension) and assume both N and p are powers of 2. We also assume N ≥ p.
We note n = Nd.

The LU and CB messages are of different type. The sending of the CB is a
many-to-many communication (where “many” refers to all processes involved in the
communication), while that of the LU factors is a one-to-many communication (a
broadcast). There are two ways to measure the cost of a communication: the total
volume Wtot, and the critical volume Wcri. Wtot is the total number of words that have
to be transferred; Wcri is the number of words that have to be transferred along the
critical path (representing communications as a graph).

In a one-to-many communication, the cost for a processor to send w words to
p processors is Wtot = wp and Wcri = wp, except if broadcasts follow a tree-based
implementation, in which case Wcri is reduced to w log p. We do not consider tree-
based broadcasts in our analysis (nor in our current implementation), but mention
how their use would influence the results at the end of this section. On the other
hand, in a many-to-many communication, the cost for p processors to send w words
each is Wtot = wp and Wcri = w.

We begin by analyzing the communications performed in our two dense kernels:
the partial LU factorization of a front and the sending of the CB of a front (i.e. the
two communications depicted in Figure 6.5). We consider a frontal matrix of order
m distributed over p processes following a 1D row-wise partitioning, as described
in our framework (cf. Figure 6.2). We assume that m is a multiple of p and that the
partitioning is perfectly regular, i.e. each process holds exactly m/p rows.

In FR, the LU partial factorization and the sending of the CB require one-to-
many and many-to-many communications of O (m2) data, respectively. Therefore,
W LU

tot =W LU
cri =O (m2 p), W CB

tot =O (m2), and W CB
cri =O (m2/p). Thus, Wtot =W LU

tot +W CB
tot

is dominated by the LU messages, which transfer O (p) more words than the CB
messages. This explains the results of Table 6.2. The weight of the LU messages
is even more important in terms of critical volume (O (p2) more words transferred).
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This remark should be slightly attenuated by the fact that the ratio W CB
tot /W LU

tot is
proportional to c = mnfs/mfs, the ratio between the number of non fully-summed
and fully-summed rows (c is usually of order O (10) in 3D nested dissection on a
regular problem).

In BLR, we know from Chapter 4 that the factor size is reduced from O (m2) to
O (m1.5pr). Therefore, we obtain W LU

tot = W LU
cri = O (m1.5prp). If we compress the

CB, and assuming the ranks of the CB blocks are also of order O (r), we obtain
W CB

tot =O (m1.5pr) and W CB
cri =O (m1.5pr/p).

We summarize in Table 6.3 the total and critical volumes in FR, in BLR without
compressing the CB (CBFR), and in BLR compressing the CB (CBLR).

W LU
tot (m, p) W CB

tot (m, p) W LU
cri (m, p) W CB

cri (m, p)

FR O (m2 p) O (m2) O (m2 p) O (m2/p)
BLR (CBFR) O (m1.5prp) O (m2) O (m1.5prp) O (m2/p)
BLR (CBLR) O (m1.5prp) O (m1.5pr) O (m1.5prp) O (m1.5pr/p)

Table 6.3 – Theoretical number of words transferred in total (Wtot) and along the
critical path (Wcri), for the LU and CB communications on a single front of order m
mapped on p processes.

Let us now compute the total and critical volume of the entire multifrontal fac-
torization, across all fronts in the assembly tree.

Similarly to the complexity computations in Chapter 4, we assume the separa-
tors are cross-shaped, without loss of generality. In this case, the number of mapped
processes per front is divided by 2d at each level of the tree, whereas the front size
is divided by 2d−1.
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(b) BLR factorization (CBFR)
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(c) BLR factorization (CBLR)

Figure 6.9 – Volume of communications as a function of the front size (matrix 10Hz).

To simplify the computations, we consider the 3D case (d = 3). We will also
provide results for the 2D case, but leave out the associated computations for the
sake of conciseness.

We begin by the computation of the total volume.
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In the FR case, the total number of words Wtot(`) transferred at level `< log8 p
of the tree can be computed as

Wtot(`)= 23`Wtot

(
N2

22` ,
p

23`

)
= 23`

(
N4

24` ∗
p

23` +
N4

24`

)
= N4 p

24` + N4

2`
. (6.2)

Thus, the relative weight of the LU term ( N4 p
24` ) with respect to the CB term ( N4

2` )
decreases when ` increases. Nevertheless, the LU term remains dominant as long
as `< log8 p, i.e. for fronts mapped on more than one process. Using our example,
we plot in Figure 6.9a the volume of communications for each front as a function
of its size, and compare the volume for LU and for CB messages. The experiments
match very well the theory: even though their relative weight gets smaller with the
front size, the LU messages dominate for all fronts. This leads to the total cost over
all the levels

Wtot(n, p)=
log8 p∑
`=0

Wtot(`)=O (n4/3 p). (6.3)

Let us now consider the BLR CBFR case. First, it is interesting to estimate the
front size for which the CB messages start to dominate over the LU ones in BLR
CBFR. We must have m > p2r. In our example, p = 90; our problem comes from the
Helmholtz equation and therefore r is expected to behave as O (

p
m). Thus, the CB

communication becomes dominant for fronts of size 904 ≈ 65 million. At first glance,
it would thus seem that the LU communication remains dominant for all practical
sizes. However, as previously mentioned, we should also take into account the ratio
c: the previous computation now yields (90/c)4 = O (104), a much smaller front size
which is largely attained in our problem (the biggest front is of order 67,500).

The following computations give further insight:

Wtot(`)= 23`Wtot

(
N2

22` ,
p

23`

)
= 23`

(
N3pr

23` ∗ p
23` +

N4

24`

)
= N3prp

23` + N4

2`
. (6.4)

Now, the CB term dominates the LU one when `≥ log4

p
rp
N , which is quite small (or

even negative!). Thus, in BLR CBFR, the CB term dominates the LU one for most
(or all) fronts in the tree. The total cost over all the levels is

Wtot(n, p)=
log8 p∑
`=0

Wtot(`)=O (n
p

rp+n4/3). (6.5)

Finally, we consider the BLR CBLR case. We have

Wtot(`)= 23`Wtot

(
N2

22` ,
p

23`

)
= 23`

(
N3pr

23` ∗ p
23` +

N3pr
23`

)
= N3prp

23` +N3pr. (6.6)

We are back to the case where the LU term dominates for all fronts mapped on
more than one process (`< log8 p), regardless of the rank. Experimental results on
our example (Figure 6.9c) match again very well this theoretical result (we further
discuss the experimental results of the BLR CBLR factorization in the next section).
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The total cost over all the levels is

Wtot(n, p)=
log8 p∑
`=0

Wtot(`)=O (n
p

rp). (6.7)

We summarize the value of Wtot(n, p) in Table 6.4. We now turn to the computa-
tion of the critical volume.

The critical volume can be computed as the sum of the dense critical volumes
associated with each front on the critical path of the assembly tree. Since we con-
sider a regular problem, this simply corresponds to any branch of the tree. Thus,
Wcri(n, p) can be computed by the same formulas as Wtot(n, p) where the 23` factor
has been removed (to only count one front per level, i.e. one branch).

This leads to the results reported in Table 6.4. Because the LU volume domi-
nates in the FR and BLR CBLR cases, and since the LU total and critical volumes
are the same, the sparse critical volume Wcri(n, p) is thus the same as its total coun-
terpart in these two cases. However, in the BLR CBFR case, the CB volume may
dominate, and thus the critical volume may be lower than the total one. As a con-
sequence, compressing the CB may reduce the total volume but not necessarily the
critical one, depending on whether n4/3/p still dominates over the LU volume n

p
rp.

We will come back to this key observation in the next section.

2D (d = 2) 3D (d = 3)
Wtot(n, p) Wcri(n, p) Wtot(n, p) Wcri(n, p)

FR O (np) O (np) O (n4/3 p) O (n4/3 p)
BLR (CBFR) O (n3/4prp+n log p) O (n3/4prp+n) O (n

p
rp+n4/3) O (n

p
rp+n4/3/p)

BLR (CBLR) O (n3/4prp) O (n3/4prp) O (n
p

rp) O (n
p

rp)

Table 6.4 – Theoretical number of words transferred in total (Wtot) and along the
critical path (Wcri), for the overall multifrontal factorization of a sparse matrix of
order n = Nd.

The conclusion of this communication analysis is that compressing the CB is
necessary to truly reduce the volume of communications in the BLR factorization,
because the CB messages become dominant on most levels of the assembly tree.

Note that if we used instead a tree-based broadcast implementation, such as the
one described by Rouet (2012) and Sid-Lakhdar (2014), the cost of sending the LU
messages to p processors would be reduced (the factor p would be replaced by log p
in all the formulas), which would even further motivate the compression of the CB
in the BLR factorization.

6.3.2 Compressing the CB to reduce the communications
We now return to our experimental example and analyze how compressing the

CB can reduce the volume of communications and influence the overall performance
of the solver.

We first analyze the overhead cost of the CB compression in terms of flops. In
Table 6.5, we report an overhead of 11% and 4% on 30 and 90 processes, respec-
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tively. This is a relatively small cost composed of two parts: the actual compression
of the CB, and the decompression of the CB at the assembly, which is performed in
FR (i.e. the so-called CBLR+AsmFR strategy described in Section 2.5). The latter
term only represents 1% of the overhead, which is thus dominated by the actual
compression.

30×10 90×10
CBFR CBLR % CBFR CBLR %

flops (×1014) 1.98 2.20 +11% 2.00 2.09 +4%
total communications (GB) 935.6 177.0 -81% 2587.2 592.0 -77%
time (s) 358.7 363.4 +1% 229.2 282.5 +23%

Table 6.5 – Performance comparison of the BLR factorization with (CBLR) and with-
out (CBFR) compression of the CB, on matrix 10Hz (matrix ID 3).

The average compression rate of the CB blocks is 11.2%. It is thus higher than
the factors compression rate (around 22%), which is possibly due to the partially
summed nature of the CB entries. As reported in Table 6.6, this CB compression
results in a reduction of the volume of the CB messages, by a factor of 11.9 and 8.2
on 30 and 90 processes, respectively.

30×10 90×10
CBFR CBLR ratio CBFR CBLR ratio

LU messages 100.1 106.7 0.9 339.4 314.7 1.1
CB messages 835.2 70.0 11.9 2245.8 275.2 8.2
other messages 0.3 0.3 1.0 2.0 2.0 1.0

total 935.6 177.0 5.3 2587.2 592.0 4.4

Table 6.6 – Volume of communications (in GB) of BLR factorization with (CBLR)
and without (CBFR) compression of the CB.

On 30 processes, the reduction factor of the communications is thus higher than
the compression rate. This is a similar result as for the LU messages and the
factors compression previously analyzed, and is probably due to the same reason:
the communications mainly concern the bigger fronts at the top of the assembly
tree, which tend to compress more than average.

On the other hand, on 90 processes, the reduction factor drops from 11.9 to
8.2. The reason for this is two-fold. First, with more processes, fronts lower in
the assembly tree, which achieve a lower compression rate, are mapped on several
processes and are thus concerned by communications. Second, the situation where
a BLR block is mapped on more than one process on the parent front (described
in Figure 6.7) occurs more frequently when the number of processes grows, which
leads to a higher communication overhead cost (due to the sending on the column
basis Y to each process concerned).
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Note that the LU volume of communications is also slightly different from that
of Table 6.2. This comes from slight variations of the LU compression rate depend-
ing on whether the CB is compressed or not.

As reported in Table 6.5, the reduction of the volume of communications is not
enough to compensate the flop overhead and leads to slowdowns. This could be ex-
plained by the theoretical results obtained in the previous section. Indeed, while
the total volume is asymptotically reduced by compressing the CB, the critical vol-
ume is not always asymptotically decreased, depending on whether the dominant
term is the LU (n

p
rp) or CB (n4/3/p) one (cf. Table 6.4). Since the performance of

the solver is mainly driven by the critical volume, this may explain why no gains
are observed. However, two facts could improve this result.

First, the CB compression in the context of the CUFS (or C;FSU) variant may
have a much lower cost. Indeed, we have observed that if the CB blocks are com-
pressed before being updated (as is the case in the CUFS variant), their rank is
much smaller, which results in a much lower compression overhead. The com-
pressed blocks must then be accumulated and recompressed together with the low-
rank update contributions. The choice of recompression strategy (Chapter 3) is less
critical in this case, because the CB blocks are not further involved in operations; a
cheap strategy that captures most of the compression potential to reduce the com-
munications is likely to be enough.

Second, and perhaps most importantly, a key parameter is the network speed
with respect to the processor speed. We have run the same experiment on cori,
which has a similar network speed (8 GB/s compared to 6.89 GB/s on eos) but twice
faster processors (Haswell instead of Ivy Bridge). Using 32×16 cores, the run time
for the BLR CBFR factorization is 280s while that of the CBLR factorization is only
272s. This shows that on a machine with a higher processor speed over network
speed ratio, compressing the CB may improve the run time of the factorization.
Since this ratio tends to increase on recent machines, we believe compressing the
CB will become a necessity for BLR solvers to scale on modern architectures.

6.4 Load balance analysis
In this section, we propose some strategies to improve the load balance of the

BLR factorization. This analysis is motivated by Issue 3: due to the low-rank
compression, the flop ratio between the least and most loaded processes increases
in BLR with respect to the FR factorization.

There are mainly two parameters that can influence the load balance: the map-
ping and the splitting strategies. The mapping controls which (and how many)
processors are assigned to each frontal matrix in the assembly tree. The splitting
can be used to to adjust the number of fully-summed rows in each front. Because
the fully-summed rows are always assigned to a single processor, this can be used
to balance the load. Thus, to simplify, mapping controls tree parallelism while split-
ting controls node parallelism.

Both the mapping and splitting strategies of our solver are based on full-rank
cost estimates. Therefore, to improve the BLR factorization, we need to revisit them
to take into account the low-rank compression.

158



We begin by adapting our proportional mapping (Pothen and Sun, 1993) strat-
egy described in Section 6.1.1. Since we aim at minimizing the workload unbalance,
the weights wi in equation (6.1) measure the number of flops performed for the fac-
torization of the subtree rooted at child i. The key question is then how to compute
these weights wi. In the FR factorization, this is relatively straightforward as the
number of operations to factorize a given subtree can usually be predicted in ad-
vance (except in some cases such as when large amounts of numerical pivoting
occur).

However, in the BLR case, the low-rank compression cannot be predicted. Fur-
thermore, even if the compression rate could be known or estimated in advance,
this information would be useless to improve the mapping without knowing the
compression rate of each individual front. Indeed, if we know a given problem
achieves a compression rate of, say, 10%, and if we assume each front achieves the
same compression rate, all the weights wi are divided by 10 and the processors are
assigned exactly as in the full-rank case.

The problem with this reasoning is that we have assumed a constant compres-
sion rate. However, as proven in Chapter 4, the complexity is asymptotically re-
duced. With the standard FSCU variant, the factorization of a front of order m
requires O (m2.5pr) operations rather than O (m3) as in full-rank. This observation
still makes no difference if the assembly tree is very regular (i.e. siblings fronts
are of the same order), but may become important for unbalanced and/or irregular
trees. Indeed, factorizing a front of order 1000 has the same cost as factorizing 1000
fronts of order 100 in FR, but only 102.5 ≈ 316 fronts of order 100 in BLR (assuming
r =O (1)).

In Table 6.7, we assess the quality of this improved mapping, computed with the
asymptotic formulas of Chapter 4. Specifically, we have used a dense complexity of
order O (m2.75) (i.e. a rank bound r =O (

p
m)), because matrix 10Hz arises from the

Helmholtz equation (cf. Section 1.5.2.2). We compare the load balance and the run
time of the BLR factorization using a proportional mapping based on FR and LR
estimates (MappFR and MappLR).

30×10 90×10
MappFR MappLR MappFR MappLR

load balance 2.01 1.98 2.57 2.07
time (s) 366.6 353.4 231.2 230.0

Table 6.7 – Comparison of the load balance (ratio between most and least loaded
processor) and the time of the BLR factorization with the reference mapping based
on full-rank cost estimates (MappFR) and the improved mapping based on the
asymptotic BLR complexities (MappLR), on matrix 10Hz (matrix ID 3).

On both 300 and 900 cores, the load balance and time for factorization are im-
proved by using the LR-based mapping. On 900 cores, the gains in time are negligi-
ble, whereas those on 300 cores are slightly better. This seems to indicate that the
performance bottleneck lies somewhere else.

We therefore turn to the splitting strategy. Each front is split such that the
master process holds nmaster = αnslave rows, where nslave denotes the number of
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rows held by the slave processes. In our solver, α is set by default to 1.0. Thus, the
master and slave processes hold the same number of rows, which aims at balancing
the memory consumption. Note that this means the master process has less work
to perform than the slaves (Sid-Lakhdar, 2014). By tuning the value of α, some
performance gains can be achieved. We have tested several values of α and report
in Table 6.8 the load balance and run time for the FR and BLR factorizations for
the choice of α that minimizes the run time, noted α∗.

30×10 90×10
FR BLR FR BLR

α 1.0 α∗ = 1.4 1.0 α∗ = 1.6 1.0 α∗ = 1.6 1.0 α∗ = 1.8

load balance 1.42 1.41 1.98 1.89 1.28 1.27 2.07 2.13
time (s) 1257.2 1218.1 353.4 343.5 617.0 600.9 230.0 204.0

Table 6.8 – Influence of the splitting strategy on the FR and BLR factorizations, on
matrix 10Hz (matrix ID 3).

In FR, some gains can be achieved by giving more work to the master, since the
default behavior of our solver is to balance memory rather than flops. This slightly
improves the load balance, and is translated into very modest time gains (less than
3% improvement).

In BLR, the optimal value α∗ is different than in FR, which illustrates the ef-
fect of low-rank compression. With a tuned splitting, more significant gains are
achieved, especially on 900 cores. At first glance, it might seem surprising that the
optimal α∗ value is higher in BLR than in FR (0.2 more on both 300 and 900 cores).
Indeed, intuitively, the master is mainly dominated by the Factor and Solve steps,
which are performed in full-rank; the slaves are dominated by the Update step,
which is performed in low-rank. Therefore, we would expect the flop ratio between
master and slaves to increase in BLR. This intuition is strengthened by the fact
that, on 900 cores, the load balance is actually worse for α = α∗ than for α = 1.0.
We have performed some tests with α < 1.0 which show some improvement of the
load balance but lead to higher run times. Therefore, we believe this could be due
to the fact that the full-rank operations performed by the master are faster (higher
GF/s rate) than the low-rank ones performed by the slaves. There is thus a tradeoff
between load balance and speed. This requires to be formalized, and is out of the
scope of this thesis.

Overall, by revisiting the mapping and splitting strategies, we have accelerated
the BLR factorization by 6% on 300 cores and by 11% on 900 cores. Thus, since the
gains increase with the number of cores, we have improved the scalability of the
factorization; on larger number of cores, higher gains could surely be expected. As
a consequence, the time ratio with respect to the FR case has increased from 3.4 to
3.5 (300 cores) and from 2.7 to 2.9 (900 cores).
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6.5 Distributed-memory LUAR

We now discuss how to benefit from the accumulation and recompression of the
LUAR variant in a distributed-memory factorization. So far, the results we have
presented were obtained using a right-looking factorization, both on the master and
slave processes. However, to be accumulated (and possibly recompressed) together,
the low-rank updates must be performed when they are all available, i.e. in left-
looking. We must therefore revisit our choice of factorization pattern.

We refer to Table 6.9 for a comparison of the different options. In addition to the
total time for the factorization, we also provide the average time spent in computa-
tions per MPI process. This value measures the time spent in calls to computational
kernels, and can thus be used to assess the computational cost of the method with-
out taking into account the effect of communications and synchronizations.

Factorization on master RL LL
Factorization on slaves RL RL LL

avg. time spent in
computations (s)

FSCU/UFSC 132.4 133.5 126.4
+LUA — 127.6 114.3
+LUAR — 123.4 97.7

total time for
factorization (s)

FSCU/UFSC 343.5 342.2 373.8
+LUA — 332.2 367.1
+LUAR — 335.7 333.6

Table 6.9 – Comparison between the different patterns of factorization on matrix
10Hz (matrix ID 3) on 30×10 cores. RL/LL: right-/left-looking. The average time
spent in computations per MPI process evaluates the time spent in computational
kernels, without taking into account idle times due to communications or synchro-
nizations.

Using a LL instead of a RL factorization on the master process has been previ-
ously considered in the FR context (Sid-Lakhdar, 2014, Section 5.3). It can perform
comparably or, in some cases, better, because the master produces panels faster at
the beginning and thus feeds the slaves faster, preventing them from starving. On
our matrix, using 300 cores, the run time for the factorization with a LL pattern
on the master processes is 1210.3s (not shown in Table 6.9), and thus achieves a
comparable performance as when using a RL pattern (1218.1s). The same behavior
is observed in BLR, with a run time of 342.2s compared to 343.5s. In BLR, the
difference is that LUAR can now be used, even if only on the master. This reduces
the average time spent in computations, and leads to a modest overall gain, down
to 332.3s.

To fully exploit the potential of the LUAR variant, the slaves processes should
also switch their pattern from RL to LL. However, that is not a good idea in general:
it worsens the pipeline between the master and slaves, the latter having more work
towards the end of the factorization (in particular, the slaves only start updating
the CB after the master has completed its work). Thus, even though the LUAR
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algorithm significantly decreases the computational cost of the factorization (the
time spent in computations decreases from 123.4 to 97.1), the total time increases.

Similar results are obtained on 900 cores (not shown here). With LUAR on the
master processes only, the time for the BLR factorizations decreases from 204.0s
to 195.1s. Overall, the distributed-memory LUAR variant has increased the time
ratio between BLR and FR from 3.5 to 3.7 on 300 cores, and from 2.9 to 3.1 on 900
cores.

6.6 Distributed-memory UFCS
In the distributed-memory factorization, the non fully-summed variables are

mapped on the slaves and therefore not available to the master, who performs the
numerical pivoting. To avoid communicating during pivoting, which would be very
inefficient, we use the approach proposed by Duff and Pralet (2007) to restrict the
pivoting to the fully-summed variables, and use an estimate of the maximal pivots
among the non fully-summed variables, as described in Section 1.3.2.6.

Thus, in BLR, the slave processes can switch from a UFSC to a UFCS factor-
ization without compromising the ability to perform numerical pivoting. The result
obtained is reported in Table 6.10 (compare second and third columns). The number
of operations is reduced by a 23%. while the scaled residual remains comparable.
The reduction of flops translates to a modest time gain.

standard pivoting restricted pivoting

UFSC UFCS UFCS
on slaves only on master+slaves

flops (×1014) 2.00 1.54 1.40
time (s) 332.2 323.0 214.0
scaled residual 4.6e-02 4.3e-02 4.5e-02

Table 6.10 – Performance and accuracy of UFSC and UFCS on 10Hz matrix on
30×10 cores.

Furthermore, if numerical pivoting is not needed or can be further restricted,
the master can also perform a UFCS factorization. We report in the fourth column
of Table 6.10 the result using pivoting restricted to the diagonal blocks. The UFCS
factorization allows for an additional gain in flops and leads to a time improvement
of 34%, while keeping the residual almost constant.

Similar results are obtained on 900 cores (not shown here). With the UFCS
variant, the time for the BLR factorization decreases to 123.4. Therefore, the
distributed-memory UCFS variant has increased the time ratio between BLR and
FR from 3.7 to 5.6 on 300 cores, and from 3.1 to 4.9 on 900 cores.

Note that the UCFS algorithm introduced in Section 2.3.2 to compress before
the Solve step while maintaining the ability to perform pivoting can naturally be
extended to the distributed-memory case. We do not present distributed-memory
UCFS results in this thesis.
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6.7 Complete set of results
As in the previous chapter (cf. Section 5.5), we now present results on our main

set of problems, described in Section 1.5.2.2. We have chosen some of the larger
problems of the set, and report the results for the FR and BLR factorizations on
900 (90×10) cores in Table 6.11.

low-rank threshold ε 10−3 10−7 10−9 10−6

matrix ID 3 5 7 10 14 18 20

flops (×1014)

FR 25.56 17.64 24.88 15.20 16.71 2.61 35.55
BLR 2.00 1.43 1.69 2.62 2.19 0.22 1.11
+ LUAR 1.95 1.30 1.53 1.32 1.72 0.20 0.98
+ UFCS 1.35 0.31 0.32 1.15 1.34 0.12 0.77

flop ratio∗ 19.0 57.6 47.0 13.2 12.5 21.5 46.0

time (s)

FR 617.0 960.0 1307.4 289.3 373.4 70.5 1488.1
+ load bal. 600.9 919.3 1242.6 263.0 352.8 65.4 1438.8

BLR 231.2 358.5 454.3 156.9 162.8 38.4 311.4
+ load bal. 204.0 286.4 339.2 128.8 145.0 31.8 262.1
+ LUAR 195.1 295.7 340.0 130.2 140.8 32.7 250.0
+ UFCS 123.4 183.6 233.8 104.9 130.8 23.5 236.4

time ratio∗ 4.9 5.0 5.3 2.5 2.7 2.8 6.1
∗between best FR and best BLR

Table 6.11 – Experimental results on real-life matrices from SEISCOPE, EMGS,
EDF, and the UFSMC, using 90×10 cores.

On this set of large problems, the BLR gains with respect to the FR solver in
flops are very important (average flop gain of 13.9). Only a small fraction of this
potential gain is translated into time gains with the standard BLR variant, with
an average time gain of 2.7. With the improved load balance, the average time gain
increases to 3.1. Finally, the lower complexity LUAR and UFCS variants further
increase the flop gain to 31.0, which leads to the final average time gain of 4.2.

Compared to the multicore results presented in Section 5.5 (cf. Tables 5.11
and 5.12), the time gains with respect to the FR solver on 90×10 cores are lower
than on 24 threads. This shows that, although the gains are already important,
there is still some margin for further improvement of the performance and scala-
bility of the distributed-memory BLR factorization.

6.8 Chapter conclusion
We have presented and analyzed the distributed-memory BLR factorization on a

set of large real-life problems. Our strong scalability analysis underlines a number
of issues for which we have proposed some beginnings of a solution.

First, the volume of communications of the BLR factorization has a higher rela-
tive weight compared to the FR case. We showed both theoretically and experimen-
tally that this is because the messages associated with the contribution block of
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the frontal matrices become dominant. By compressing these contribution blocks,
we have greatly reduced the volume of communications; moreover, even though it
represents an overhead cost which does not contribute to reducing the overall num-
ber of operations, it can potentially improve the run time depending on the relative
speed of the network with respect to that of the processors.

Second, the BLR factorization suffers from a higher load unbalance, due to the
unpredictability of the low-rank compressions. We have proposed some ways to
improve the load balance by revisiting our mapping and splitting strategies.

Finally, we analyzed the distributed-memory version of the LUAR and UFCS
algorithms, which both improve the performance of the BLR factorization.
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CHAPTER

7
Application to real-life
industrial problems

In this chapter, we present the use of BLR solvers in two real-life industrial
applications: 3D frequency-domain Full Waveform Inversion (Section 7.1) and 3D
Controlled-source electromagnetic inversion (Section 7.2).

We have already presented results using BLR approximations on matrices aris-
ing in these two applications ({5,7,10}Hz matrices and H{3,17},S{3,21} matrices, re-
spectively) in Chapters 5 and 6. Therefore, in this chapter, we mostly focus on the
applications and the overall gains that can be expected with the use of BLR solvers.
We refer to the two previously mentioned chapters for a detailed performance anal-
ysis of the algorithms.

7.1 3D frequency-domain Full Waveform
Inversion

7.1.1 Applicative context

Full Waveform Inversion (FWI) (Tarantola, 1984)) is now routinely used in the
oil industry as part of the seismic imaging work-flow, at least in soft geological en-
vironments such as the North Sea that make the acoustic parameterization of the
subsurface acceptable (cf. Barnes and Charara (2009) and Plessix and Perez Solano
(2015) for a discussion on this latter issue). However, it remains a computational
challenge due to the huge number of full-waveform seismic modelings to be per-
formed over the iterations of the FWI optimization. Seismic modeling and FWI can
be performed either in the time domain or in the frequency domain (e.g., Plessix
(2007), Vigh and Starr (2008b), and Virieux and Operto (2009)). Hybrid approaches
are also possible where seismic modeling and inversion are performed in the time
domain and in the frequency domain, respectively (Sirgue, Etgen, and Albertin,
2008). In these hybrid approaches, the monochromatic wavefields required to per-
form the inversion in the frequency domain are built on the fly in the loop over time
steps by discrete Fourier transform during the time-domain modeling (Nihei and Li,
2007). Today, most FWI codes are fully implemented in the time domain because
the good scalability and the moderate memory demand of the initial-condition evo-
lution problem underlying the forward problem allow one to tackle a wide range of
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applications in terms of target dimension, survey design and wave physics. How-
ever, the time domain formulation also requires significant computational resources
to be efficient when thousands or tens of thousands of (reciprocal) seismic sources
are processed in parallel. A common parallel strategy consists in distributing these
seismic sources over processors. This embarrassingly parallel strategy can be com-
bined with shared-memory parallelism and/or domain decomposition of the compu-
tational mesh if enough computational resources are available. Strategies based on
source sub-sampling (Warner et al., 2013) or source blending with random or deter-
ministic (i.e., plane-wave decomposition) encoding (Vigh and Starr, 2008a; Krebs
et al., 2009) are commonly used to reduce the number of seismic modelings per
FWI iteration. However, these strategies, which reduce the data fold or add ran-
dom noise in the FWI gradient at each iteration, require increasing the number of
iterations to reach a sufficient signal-to-noise ratio in the subsurface models. Con-
sidering a computational mesh with N3 degrees of freedom, an acquisition with N2

seismic sources and assuming that the number of time steps scales to N, the time
complexity of time-domain modeling scales to O (N6) (Plessix, 2007).

Alternatively, both seismic modeling and FWI can be performed in the frequency
domain (e.g., Pratt (1999) and Virieux and Operto (2009)). A few applications of 3D
frequency-domain FWI on synthetic or real data are presented in Ben Hadj Ali, Op-
erto, and Virieux (2008), Plessix (2009), Petrov and Newman (2014), and Operto et
al. (2015). Solving the time-harmonic wave equation is a stationary boundary-value
problem which requires to solve a large and sparse complex-valued system of linear
equations with multiple right-hand sides per frequency (e.g., Marfurt (1984)). The
sparse right-hand sides of these systems are the seismic sources, the solutions are
monochromatic wavefields and the coefficients of the so-called impedance matrix
depend on the frequency and the subsurface properties we want to image. This
linear system can be solved either with sparse direct methods, namely, Gaussian
elimination techniques (e.g. Operto et al. (2007)), iterative solvers (e.g., Riyanti et
al. (2006), Plessix (2007), Petrov and Newman (2012), and Li, Métivier, Brossier,
Han, and Virieux (2015)) or a combination of both in the framework of domain de-
composition methods (e.g., Sourbier et al. (2011)). One pitfall of iterative methods is
the design of an efficient preconditioner considering that the wave-equation opera-
tor is indefinite. More precisely, the iterative approach is competitive with the time-
domain approach in terms of operation count as long as the number of iterations
can be made independent of the frequency, i.e., the problem size (Plessix, 2007). It
seems that this objective has not yet been fully achieved, although using damped
wave equation as a preconditioner or as such for early-arrival modeling decreases
the iteration count efficiently (Erlangga and Nabben, 2008; Petrov and Newman,
2012). Processing a large number of right-hand sides leads us more naturally to-
ward direct methods because the computation of the solutions by forward/backward
substitutions is quite efficient once a LU factorization of the impedance matrix has
been performed. The pitfalls of the direct methods are the memory demand and
the limited scalability of the LU factorization that result from the fill-in of the
impedance matrix generated during the LU factorization. Fill-reducing matrix or-
derings based on nested dissections are commonly used to reduce the memory com-
plexity by one order of magnitude, that is O (N4) instead of O (N5) (George, 1973).
The time complexity of the substitution step for N2 right-hand sides scales to O (N6)
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accordingly and is the same as the complexity of time-domain modeling. The time
complexity of one LU factorization (for sparse matrices as those considered in this
study) also scales to O (N6). The conclusions that can be drawn about the relevancy
of the direct solver-based approach from this complexity analysis are two fold: the
identity between the time complexity of the LU factorization and the solution step
for N2 right-hand sides requires the number of right-hand sides to scale to N2.
Moreover, the identity between the time complexity of one LU factorization and
time-domain modeling for N2 right-hand sides requires to limit the inversion to
a few discrete frequencies. Both requirements are fulfilled by wide-azimuth long-
offset acquisitions implemented with stationary-receiver geometries (ocean bottom
cable or ocean bottom node acquisitions in marine environment). On the one hand,
stationary-receiver geometries involve a large number of sources and associated re-
ceivers in the computational domain from which the LU factorization is performed.
On the other hand, the wide-azimuth long-offset coverage provided by these geome-
tries generate a strong redundancy in the wavenumber sampling of the subsurface
target. This multi-fold wavenumber coverage results from the redundant contribu-
tion of finely-sampled (temporal) frequencies and a broad range of finely-sampled
scattering angles provided by dense point-source acquisitions (Pratt and Worthing-
ton, 1990). The strategy consisting in coarsening the frequency sampling in the
data space to remove the redundancy of the wavenumber sampling in the model
space has been referred to as efficient FWI by Sirgue and Pratt (2004).

The focus of this study is to present an up-to-date status of the computational
efficiency of 3D frequency-domain FWI based on sparse direct solvers with a real
OBC data case study from the North Sea. A first application of 3D frequency-
domain FWI on the North Sea OBC dataset has been presented in Operto et al.
(2015), which is focused on a detailed quality control of the FWI results based on
seismic modeling and source wavelet estimation. In this study, we focus on the
benefits resulting from the use of low-rank approximations. We solve the linear
system resulting from the discretization of the time-harmonic wave equation with
the Block Low-Rank multifrontal solver presented in the previous chapters. Other
low-rank formats such as the Hierarchically Semi-Separable (HSS) format have
also been proposed for seismic modeling by Wang, Hoop, and Xia (2011), Wang, Xia,
Hoop, and Li (2012b), and Wang, Hoop, Xia, and Li (2012a).

The rest of this section is organized as follows. Section 7.1.2 first briefly re-
views the finite-difference stencil with which the time-harmonic wave equation is
discretized. This stencil must satisfy some specifications so that the fill-in of the
impedance matrix is minimized during the LU factorization. The reader is referred
to Operto et al. (2014) for a more detailed description of this finite-difference sten-
cil. Then, Section 7.1.3 presents the application on the OBC data from the North
Sea. Finally, Section 7.1.4 analyzes the results obtained with the BLR multifrontal
solver and compares it to the FR solver. We first show the nature of the errors
introduced by the BLR approximation in the monochromatic wavefields and quan-
tify the backward errors for different frequencies. For a given BLR threshold, the
ratio between the backward errors obtained with the BLR and the full-rank (FR)
solvers decreases with frequency. This suggests that more aggressive threshold can
be used as frequency increases hence leading to more efficient compression as the
problem size grows. Then, we show that the modeling errors have a negligible im-
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pact in the FWI results. The cost of the FWI in terms of memory and time confirms
that the computational saving provided by the BLR solver relative to the FR solver
increases with frequency (namely, matrix size).

The limited computational resources that have been used to perform this case
study and the limited computational time required to perform the FWI in the 3.5Hz-
10Hz frequency band using all the sources and receivers of the survey at each FWI
iteration highlights the computational efficiency of our frequency-domain approach
to process stationary recording surveys in the visco-acoustic VTI approximation.

7.1.2 Finite-difference stencils for frequency-domain
seismic modeling

Frequency-domain seismic modeling with direct solvers defines some stringent
specifications whose objective is to minimize the computational burden of the LU
factorization. The first specification aims to minimize the dependencies in the adja-
cency graph of the matrix and hence the fill-in of the impedance matrix during the
LU factorization. The second one aims to obtain accurate solutions for a coarse dis-
cretization that is matched to the spatial resolution of the FWI (i.e., four grid points
per wavelengths according to a theoretical resolution of half a wavelength). The
first specification can be fulfilled by minimizing the numerical bandwidth and op-
timizing the sparsity of the impedance matrix using finite-difference stencils with
compact spatial support. This precludes using conventional high-order accurate
stencils. Instead, accurate stencils are designed by linearly combining different
second-order accurate stencils that are built by discretizing the differential oper-
ators on different coordinate systems with a spreading of the mass term over the
coefficients of the stencil (Jo, Shin, and Suh, 1996; Stekl and Pratt, 1998; Min, Sin,
Kwon, and Chung, 2000; Hustedt, Operto, and Virieux, 2004; Gosselin-Cliche and
Giroux, 2014). Such stencils are generally designed for second-order acoustic/elastic
wave equations, by opposition to first-order velocity-stress equations, as the second-
order formulation involves fewer wavefield components, hence limiting the dimen-
sion of the impedance matrix accordingly. For the 3D visco-acoustic wave equation,
the resulting finite-difference stencil has 27 nonzero coefficients distributed over
two grid intervals and provides accurate solution for arbitrary coarse grids provided
that optimal coefficients are estimated by fitting the discrete dispersion equation in
homogeneous media (Operto et al., 2007; Brossier, Etienne, Operto, and Virieux,
2010). The visco-acoustic 27-point stencil was recently extended in order to account
for VTI anisotropy without generating significant computational overhead (Operto
et al., 2014). The visco-acoustic VTI 27-point stencil results from the discretization
of the following equation

Ah ph = s′, (7.1)
pv = Av ph + s′′, (7.2)

p = 1
3

(2ph + pv) , (7.3)
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where ph, pv and p are the so-called horizontal pressure, vertical pressure and
(physical) pressure wavefields, respectively. The operators Ah and Av are given by

Ah = ω2
[
ω2

κ0
+ (1+2ε) (X +Y )+

p
1+2δZ

1p
1+2δ

]
+2

p
1+2δZ

κ0(ε−δ)p
1+2δ

(X +Y ) ,

Av = 1p
1+2δ

+ 2(ε−δ)κ0

ω2
p

1+2δ
(X +Y ) , (7.4)

where κ0 = ρV 2
0 , ρ is density, V0 is vertical wavespeed, ω is the angular frequency, δ

and ε are Thomsen’s parameters. Differential operators X , Y and Z are given by
∂x̃b∂x̃, ∂ ỹb∂ ỹ and ∂z̃b∂z̃, respectively, where b = 1/ρ is buoyancy and (x̃, ỹ, z̃) define
a complex-valued coordinate system in which perfectly-matched layers absorbing
boundary condition are implemented (Operto et al., 2007). The right-hand side
vectors s′ and s′′ have the following expression:

s′(x,ω) = ω4 s(ω)
sh(x)
κ0(x)

δ̃(x− xs)

−ω2 s(ω)
√

1+2δ(x)Z
(
sv(x)− 1p

1+2δ(x)
sh(x)

)
δ̃(x− xs), (7.5)

s′′(x,ω) =
(
sv(x)− 1p

1+2δ(x)
sh(x)

)
δ̃(x− xs), (7.6)

where δ̃ denotes the Dirac delta function, xs denotes the source position, s(ω) is the
source excitation term and sh, sv are two quantities that depend on the Thomsen’s
parameters.

The expression of the operator Ah shows that the VTI wave equation has been
decomposed as a sum of an elliptically anisotropic wave equation (term between
brackets) plus an anelliptic correcting term involving the factor (ε−δ). The elliptic
part can be easily discretized by plugging the Thomsen parameters δ and ε in the
appropriate coefficients of the isotropic 27-point stencil, while the anelliptic correct-
ing term is discretized with conventional second-order accurate stencil to preserve
the compactness of the overall stencil.

The direct solver is used to solve the linear system involving the matrix Ah,
equation (7.1). In a second step, the vertical pressure pv is explicitly inferred from
the expression of ph, equation (7.2), before forming the physical pressure wavefield
p by linear combination of ph and pv, equation (7.3).

The accuracy of the 27-point stencil for the visco-acoustic isotropic and VTI
equations is assessed in details in Operto et al. (2007), Brossier et al. (2010) and Op-
erto et al. (2014) and allows for accurate modeling with a discretization rule of four
grid points per minimum wavelength.

7.1.3 Description of the OBC dataset from the North Sea
The subsurface target and the dataset are the same as in Operto et al. (2015).

The FWI experimental setup is also similar except that we perform FWI with a
smaller number of discrete frequencies (6 instead of eleven) and we fix the maxi-
mum number of FWI iterations per frequency as stopping criterion of iterations. A
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brief review of the target, dataset and experimental setup is provided here. The
reader is referred to Operto et al. (2015) for a more thorough description.

7.1.3.1 Geological target

The subsurface target is the Valhall oil field located in the North Sea in a shal-
low water environment (70 m water depth) (Sirgue et al., 2010; Barkved et al.,
2010). The reservoir is located at around 2.5 km depth. The overburden is char-
acterized by soft sediments in the shallow part. A gas cloud, whose main zone
of influence is delineated in Figure 7.1a, makes seismic imaging at the reservoir
depths challenging. The parallel geometry of the wide-azimuth OBC acquisition
consists of 2302 hydrophones which record 49,954 explosive sources located 5 m
below the sea surface (Figure 7.1a). The seismic sources cover an area of 145 km2

leading to a maximum offset of 14.5 km. The maximum depth of investigation in
the FWI model is 4.5 km. The seismograms recorded by a receiver for a shot profile
intersecting the gas cloud and the receiver position are shown in Figure 7.1b. The
wavefield is dominated by the diving waves which mainly propagate above the gas
zone, the reflection from the top of the gas cloud (Figure 7.1b, white arrow) and the
reflection from the reservoir (Figure 7.1b, black arrow) (Prieux et al., 2011; Prieux,
Brossier, Operto, and Virieux, 2013a; Prieux, Brossier, Operto, and Virieux, 2013b;
Operto et al., 2015). In Figure 7.1b, the solid black arrow points on the pre-critical
reflection from the reservoir while the dash black arrow points on the critical and
post-critical reflection. The discontinuous pattern in the time-offset domain of this
wide-angle reflection highlights the complex interaction of the wavefield with the
gas cloud.

7.1.3.2 Initial models

The vertical-velocity (V0) and the Thomsen’s parameter models δ and ε, which
are used as initial models for FWI, were built by reflection traveltime tomogra-
phy (courtesy of BP) (Figure 7.2(a-d) and 7.3a,d). The V0 model describes the long
wavelengths of the subsurface except at the reservoir level which is delineated by a
sharp positive velocity contrast at around 2.5 km depth (Figures 7.3a,d). We do not
smooth this velocity model before FWI for reasons explained in Operto et al. (2015)
(their figure 7). The velocity model allows us to match the first-arrival traveltimes
as well as those of the critical reflection from the reservoir (cf. Operto et al. (2015),
Figure 8), hence providing a suitable framework to prevent cycle skipping during
FWI. A density model was built from the initial vertical velocity model using a poly-
nomial form of the Gardner law given by ρ =−0.0261V 2

0 +0.373V0+1.458 (Castagna,
1993) and was kept fixed over iterations. A homogeneous model of the quality factor
was used below the sea bottom with a value of Q = 200.

7.1.3.3 FWI experimental setup

We review here the experimental setup that was used to apply frequency-domain
FWI on the OBC dataset. The discrete frequencies, the computational resources
and the finite-difference grid dimensions that are used to perform FWI are reviewed
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Figure 7.1 – North Sea case study. a) Acquisition layout. The green lines are cables.
The dot pattern shows the area covered by the 50,000 explosive sources. The black
circle shows the position of the receiver whose records are shown in b). A depth
slice at 1 km depth across the gas cloud is superimposed in transparency to show
the zone of influence of this gas cloud. b) Common receiver gather for a shot profile
cross-cutting the receiver position (circle in a) and the gas cloud. The white arrow
points on reflection from top of the gas. The black arrows point on pre-critical (solid)
and post-critical (dash) reflections from the reservoir.

in Table 7.1. We perform FWI for six discrete frequencies in the 3.5Hz-10Hz fre-
quency band. Only one frequency is processed at a time and the inversion proceeds
sequentially from the lowest frequency to the highest one following a frequency-
driven multi-scale approach (Pratt, 1999). The grid interval in the subsurface mod-
els is periodically matched to the frequency f to minimize the computational time
and regularize the inversion by avoiding over-parameterization. We use a grid in-
terval of 70m for 3.5Hz ≤ f ≤ 5Hz, 50m for f = 7Hz and 35m for f = 10Hz. This
roughly leads to 4 grid points per wavelength for a minimum wavespeed of 1400 m/s.
The number of degrees of freedom in the 70m, 50m and 35m finite-difference grids
are 2.9, 7.2 and 17.4 million, respectively, after adding perfectly matched absorbing
layers (PMLs) (Bérenger, 1996; Operto et al., 2007).

We perform FWI on 12, 16 and 34 nodes of the licallo supercomputer for the
70m, 50m and 35m grids, respectively (Table 7.1). The operations are performed in
single precision complex arithmetic (c), for which the peak performance of the ma-
chine is 10 GF/s/core (which corresponds to a double precision (d) peak of 20 GF/s/core).
We launch two MPI processes per node (that is, one MPI process per processor) and
use 10 threads per MPI process such that the number of MPI processes times the
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Figure 7.2 – North Sea case study. (a-d) Depth slice extracted from the initial model
at 175 m (a), 500 m (b), 1 km (c) and 3.35 km (d) depths. (e-h) Same as (a-d) for
depth slices extracted from the FWI model obtained with the FR solver. (i-l) Same
as (a-d) for depth slices extracted from the FWI model obtained with the BLR solver.

number of threads is equal to the number of cores on the node. The number of
nodes for the three grids (12, 16 and 34) were chosen pragmatically to find the best
compromise between the computational efficiency, the memory use and the fast ac-
cess to the computational resources according to the operating rule of the available
cluster.

We use all the (reciprocal) shots and receivers at each FWI iteration, whatever
the grid interval and the frequency. This implies that 4604 wavefield solutions need
to be computed for each FWI gradient computation. Seismic modeling is performed
with a free surface on top of the finite-difference grid during inversion. Therefore,
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Figure 7.3 – North Sea case study. (a,d) Vertical slices extracted from the initial
model at X=5250 m (a) and X=5575 m (d). The slice in (d) crosscuts the gas cloud
while the slice in (a) is located in its periphery (cf. Figure 7.2). (b,e) Same as (a,d)
for the final FWI model obtained with the FR solver. (c,f) Same as (b,e) for the final
FWI model obtained with the BLR solver (ε = 10−3). The back arrow points on a
low-velocity reflector at 500 m depth (cf. Figure 7.2f,j for the lateral extension of
this reflector at 500 m depth, while the white arrows point on the base Cretaceous
reflector.

free surface multiples and ghosts were left in the data and accounted for during
FWI. We only update V0 during inversion, while ρ, Q, δ and ε are kept to their
initial values. We use the preconditioned steepest-descent method implemented in
the SEISCOPE toolbox (Métivier and Brossier, 2016) to perform FWI where the pre-
conditioner is provided by the diagonal terms of the so-called pseudo-Hessian (Shin,
Jang, and Min, 2001). No regularization and no data weighting were used.

The stopping criterion of iterations consists of fixing the maximum iteration to
15 for the 3.5Hz and 4Hz frequencies, 20 for the 4.5Hz, 5Hz and 7Hz frequencies
and 10 for the 10Hz frequency. We use a limited number of iterations at 3.5Hz
and 4Hz because of poor signal to noise ratio. Although this stopping criterion of
iteration might seem quite crude, we show that a similar convergence rate was
achieved by FWI performed with the full-rank and BLR solvers at the 7Hz and
10Hz frequencies, leading to very similar final FWI results. Therefore, the FWI
computational cost achieved with the full-rank and BLR solvers in this study are
provided for FWI results of similar quality.
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Frequencies (Hz) h(m) Grid dimensions npml #u #n #MPI #th #c #rhs

3.5, 4, 4.5, 5 70 66×130×230 8 2.9 12 24 10 240 4604
7 50 92×181×321 8 7.2 16 32 10 320 4604

10 35 131×258×458 4 17.4 34 68 10 680 4604

Table 7.1 – North Sea case study. Problem size and computational resources (for
the results of Tables 7.3 and 7.4 only). h(m): grid interval. npml: number of grid
points in absorbing perfectly-matched layers. #u(106): number of unknowns. #n:
number of computer nodes. #MPI: number of MPI process. #th: number of threads
per MPI process. #c: number of cores. #rhs: number of right-hand sides processed
per FWI gradient.

7.1.4 Results
7.1.4.1 Nature of the modeling errors introduced by the BLR solver

We show now the nature of the errors introduced in the wavefield solutions
by the BLR approximation. Figures 7.4a, 7.5a and 7.6a show a 5Hz, 7Hz and
10Hz monochromatic common-receiver gather computed with the FR solver in the
FWI models obtained after the 5Hz, 7Hz and 10Hz inversions (the FWI results
are shown in the next section). Figures 7.4(b-d), 7.5(b-d) and 7.6(b-d) show the
differences between the common-receiver gathers computed with the FR solver and
those computed with the BLR solver using ε= 10−5, ε= 10−4 and ε= 10−3 (the same
subsurface model is used to perform the FR and the BLR simulations). These dif-
ferences are shown after multiplication by a factor 10. A direct comparison between
the FR and the BLR solutions along a shot profile intersecting the receiver position
is also shown. Three conclusions can be drawn for this case study: for these values
of ε the magnitude of the errors generated by the BLR approximation relative to
the reference full-rank solutions is small. Second, these relative errors mainly con-
cern the amplitude of the wavefields, not the phase. Third, for a given value of ε,
the magnitude of the errors decreases with the frequency. This last statement can
be more quantitatively measured by the ratio between the scaled residual obtained
with the BLR and the full-rank (FR) solver where the scaled residual is given by
δ = ‖Ah p̃h−b‖∞

‖Ah‖∞‖p̃h‖∞ and p̃h denotes the computed solution. We show that, for a given
value of ε, δBLR/δFR decreases with frequency (Table 7.2).

F(Hz)/h(m) δ(FR) δ(BLR,ε= 10−5) δ(BLR,ε= 10−4) δ(BLR,ε= 10−3)

5Hz/70m 2.3×10−7 (1) 4.6×10−6 (20) 6.7×10−5 (291) 5.3×10−4 (2292)
7Hz/50m 7.5×10−7 (1) 4.6×10−6 (6) 6.9×10−5 (92) 7.5×10−4 (1000)

10Hz/35m 1.3×10−6 (1) 2.9×10−6 (2.3) 3.0×10−5 (23) 4.3×10−4 (331)

Table 7.2 – North Sea case study. Modeling error introduced by BLR for different
low-rank threshold ε and different frequencies F. δ: scaled residuals defined as
‖Ah p̃h−b‖∞
‖Ah‖∞‖p̃h‖∞ , for b being for one of the RHSs in B. The number between bracket is
δBLR/δFR. Note that, for a given ε, this ratio decreases as frequency increases.
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7.1.4.2 FWI results

The FWI results obtained with the FR solver are shown in Figures 7.2(e-h) and
7.3b,e. Comparison between the initial model and the FWI model highlights the
resolution improvement achieved by FWI. The structures reviewed below are also
described in Sirgue et al. (2010), Barkved et al. (2010), and Operto et al. (2015) for
comparison. The depth slice at 175 m depth shows high-velocity glacial sand chan-
nel deposits as well as small-scale low velocity anomalies (Figure 7.2e). The depth
slice at 500 m depth shows linear structures interpreted as scrapes left by drifting
icebergs on the paleo seafloor as well as a wide low velocity zone (Figure 7.2f) repre-
sented by a horizontal reflector in the vertical sections (Figure 7.3b,e, black arrow).
The depth slice at 1 km depth (Figure 7.2g) and the vertical section at X=5575 m
(Figure 7.3e) crosscuts the gas cloud whose geometry has been nicely refined by
FWI. We also show a vertical section at X=5250 m near the periphery of the gas
cloud (Figure 7.3b), which highlights some low-velocity sub-vertical structures also
identifiable in the 1 km depth slice (Figure 7.2g). The depth slice at 3.35 km depth
crosscuts the base Cretaceous reflector (Barkved et al., 2010) whose geometry is
highlighted by the white arrows in the vertical sections (Figure 7.3b,e).

The final FWI model obtained with the BLR solver (ε= 10−3) shown in Figures
7.2(i-l) and 7.3c,f) does not show any obvious differences with the one obtained with
the FR solver (Figures 7.2(e-h) and 7.3b,e. This is indeed also the case when the
BLR solver is used with ε= 10−4 and ε= 10−5 (not shown here).

The data fit achieved with the BLR solver (ε= 10−3) is illustrated in Figure 7.7
for the receiver, the position of which is given in Figure 7.1a. The figure shows the
real 5Hz, 7Hz and 10Hz monochromatic receiver gathers, the modeled ones com-
puted in the FWI model inferred from the inversion of the frequency in question
and the difference between the two. We also show a direct comparison between the
recorded and modeled wavefields along the dip and cross profiles intersecting the
position of the receiver. The data fit is very similar to the one achieved with the FR
solver (not shown here, cf. Operto et al. (2015), Figures 15, 16 and 17) and is quite
satisfactory, in particular in terms of phase. We already noted that the modeled am-
plitudes tend to be overestimated at long offsets when the wavefield has propagated
through the gas cloud in the dip direction, unlike in the cross direction (Figure 7.7b,
ellipse). In Operto et al. (2015), we interpret these amplitude mismatches as the
footprint of attenuation whose absorption effects have been underestimated during
seismic modeling with a uniform Q equal to 200.

The misfit functions versus the iteration number obtained with the FR and BLR
(ε = 10−5,10−4,10−3) solvers for the six frequencies are shown in Figure 7.8. The
convergence curves obtained with the FR solver and the BLR solver for ε = 10−4

and ε= 10−5 are very similar. In contrast, we show that the convergence achieved
by the BLR solver with ε= 10−3 is alternatively better (4Hz, 5Hz) and worse (3.5Hz,
4.5Hz) than for the three other FWI runs when the inversion jumps from one fre-
quency to the next within the 3.5Hz-5Hz frequency band. However, for the last two
frequencies (7Hz and 10Hz) that have the best signal-to-noise ratio, all of the four
convergence curves show a similar trend and reach a similar misfit function value
at the last iteration. This suggests that the crude stopping criterion of iteration
that is used in this study by fixing a common maximum iteration count is reason-
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able for a fair comparison of the computational cost of each FWI run. The different
convergence behavior at low frequencies shown for ε = 10−3 probably reflects the
sensitivity of the inversion to the noise introduced by the BLR approximation at
low frequencies (Figure 7.4) although this noise remains sufficiently weak to not
alter the FWI results. The higher footprint of the BLR approximation at low fre-
quencies during FWI is consistent with the former analysis of the relative modeling
errors which decrease as frequency increases (Table 7.2, ratio δBLR/δFR).

7.1.4.3 Computational cost

We now show how the BLR solver can reduce the overall time of the FWI mod-
eling. This expensive simulation was carried out in 2016 and the results were pub-
lished in Amestoy et al. (2016b). At the time, the BLR solver used the standard
FSCU factorization and the solution phase was still performed in FR and therefore
not accelerated in BLR.

We summarize the results obtained in Amestoy et al. (2016b); then, we provide a
performance projection of the FWI modeling with the UFCS+LUAR variant (based
on the results obtained in the previous chapters on the same matrices) and with the
use of a reasonably optimized BLR solution phase (cf. Section 9.2). These projected
results are reported in Table 7.5.

The reduction of the operation count and factorization time obtained with the
BLR approximation are outlined in Table 7.3 for the 5Hz, 7Hz and 10Hz frequen-
cies.

Compared to the FR factorization, when the BLR solver (with ε= 10−3) is used,
the number of flops for the factorization (field FLU in Table 7.3) decreases by a factor
8, 10.7 and 13.3 for the 5Hz, 7Hz and 10Hz frequencies, respectively. Moreover,
the LU factorization time is decreased by a factor 1.9, 2.7 and 2.7 (field TLU in
Table 7.3). The time reduction achieved by the BLR solver tends to increase with
the frequency.

The elapsed time to compute one wavefield once the LU factorization has been
performed is small (field Ts in Table 7.3). The two numbers provided in Table 7.3 for
Ts are associated with the computation of the incident and adjoint wavefields. In
the latter case, the source vectors are far less sparse which leads to a computational
overhead during the solution phase. This results in an elapsed time of respectively
262s, 598s and 1542s to compute the 4604 wavefields required for the computa-
tion of one FWI gradient (field Tms in Table 7.3). Despite the high efficiency of the
substitution step, the elapsed time required to compute the wavefield solutions by
substitution is significantly higher than the time required to perform the LU fac-
torization, especially when the latter is accelerated by the use of BLR. However, the
rate of increase of the solution step is smaller than that of the factorization time
when increasing the frequency. In other words, the real time complexity of the LU
factorization is higher than that of the solution phase, although the theoretical time
complexities are both equal to O (N6) for N2 right-hand sides. This is shown by the
decrease of the ratio Tms/TLU as the problem size increases (3.4, 1.86, 1.34 for the
70m, 50m and 35m grids, respectively when the FR solver is used). The fact that the
speed-up of the factorization phase achieved by the BLR approximation increases
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F(Hz)/h(m) ε FLU (×1012) TLU (s) Ts(s) Tms(s) Tg(mn)

FR 66 (1.0) 78 (1.0)

0.051/0.063 262

9.9
5Hz/70m 10−5 17 (3.8) 48 (1.6) 9.4

(240 cores) 10−4 12 (5.3) 46 (1.7) 9.1
10−3 8 (8.0) 41 (1.9) 9.1

FR 410 (1.0) 322 (1.0)

0.12/0.14 598

21.2
7Hz/50m 10−5 90 (4.5) 157 (2.1) 17.7

(320 cores) 10−4 63 (6.5) 136 (2.4) 17.3
10−3 38 (10.7) 121 (2.7) 17.1

FR 2600 (1.0) 1153 (1.0)

0.26/0.41 1542

69.0
10Hz/35m 10−5 520 (4.9) 503 (2.3) 48.6
(680 cores) 10−4 340 (7.5) 442 (2.6) 48.9

10−3 190 (13.3) 424 (2.7) 49.5

Table 7.3 – North Sea case study. Computational savings provided by the BLR
solver during the factorization step. Factor of improvement due to BLR is indicated
between parenthesis. The elapsed times required to perform the multi-rhs substi-
tution step and to compute the gradient are also provided. FLU : flops for the LU
factorization. TLU (s): elapsed time for the LU factorization. Ts(s): average time
for 1 solve. The first and second numbers are related to the incident and adjoint
wavefields, respectively. Tms(s): elapsed time for 4604 solves (incident + adjoint
wavefields). Tg(mn): elapsed time to compute the FWI gradient. This time also
includes the IO tasks.

with the problem size will balance the higher complexity of the LU factorization
relative to the solution phase and help to address large-scale problems.

As reported in column Tg(mn) of Table 7.3, the elapsed times required to com-
pute one gradient with the FR solver are of the order of 9.9mn, 21.3mn, and 69mn
for the 5Hz, 7Hz and 10Hz frequencies, respectively, while those with the BLR
solver are of the order of 9.1mn, 17.1mn, and 49.5mn, respectively.

For a fair assessment of the FWI speedup provided by the BLR solver, it is
also important to check the impact of the BLR approximation on the line search
and hence the number of FWI gradients computed during FWI (Table 7.4). On
the 70m grid where the impact of the BLR errors is expected to be the largest one
(as indicated in Table 7.2), the inversion with the BLR solver (ε = 10−3) computes
82 gradients against 77 gradients for the three other settings (FR solver and BLR
solver with ε = 10−4 and ε = 10−5) for a total of 70 FWI iterations. On the 7Hz
grid, the FR solver and the BLR solver with ε= 10−5 compute 39 gradients against
30 gradients with the BLR solver with ε = 10−4 and ε = 10−3 for a total of 20 FWI
iterations. On the 10Hz grid, the four inversions compute 16 gradients for a total
of 10 FWI iterations.

The elapsed time to perform the FWI is provided for each grid in Table 7.4. The
entire FWI application takes 49hr, 40hr, 36hr and 37.8hr with the FR solver and
the BLR solver with ε = 10−5, ε = 10−4 and ε = 10−3, respectively. We remind that
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the FWI application performed with the BLR solver with ε= 10−3 takes more time
than with ε= 10−4 because more gradients were computed on the 70m grid.

h(m) Freq(Hz) #c ε #it #g TFWI (hr)

70 3.5, 4, 4.5, 5 240

FR 70 77 14.0
10−5 70 77 12.9
10−4 70 77 12.7
10−3 70 82 14.0

50 7 320

FR 20 39 14.5
10−5 20 39 12.0
10−4 20 30 9.1
10−3 20 30 9.0

35 10 680

FR 10 16 20.7
10−5 10 16 14.5
10−4 10 16 14.2
10−3 10 16 14.8

Table 7.4 – North Sea case study. FWI cost. #it and #g are the number of FWI itera-
tions and the number of gradients computed on each grid. TFWI is the elapsed time
for FWI on each grid. The total time for the FWI application is 49.2hr, 39.4hr, 36hr
and 37.8hr for the FR, BLR(10−5), BLR(10−4) and BLR(10−3) solvers, respectively.

We conclude from this analysis that, for this case study, the BLR solver with
ε= 10−4 provides the best trade-off between the number of FWI gradients required
to reach a given value of the misfit function and the computational cost of one gra-
dient computation at low frequencies. At the 7Hz and 10Hz frequencies, the BLR
solver with ε= 10−3 provides the smaller computational cost without impacting the
quality of the FWI results.

Finally, we conclude by providing a projected performance if the entire FWI sim-
ulation was carried out again with the new FR and BLR solvers. These projected
results are reported in Table 7.5. Both the FR and BLR factorizations have been
improved; we assume the UFCS+LUAR variant is used for the BLR solver. More-
over, while the FR solution phase has not changed, we estimate the performance of
the BLR solution phase once it will have been reasonably optimized, as described
in Section 9.2. We assume the time gains are equal to half the potential gain due to
the factor size reduction. Finally, we assume that the IO tasks have been divided by
2 due to code optimizations. Under these assumptions, we obtain a projected total
cost for the FWI application of 31.9hr and 19.4hr using the FR and BLR (ε= 10−3)
solvers, respectively.

7.1.5 Section conclusion
While 3D frequency-domain FWI based on sparse direct methods is generally

considered intractable, we have shown in this study its high computational effi-
ciency to process OBC data in the visco-acoustic VTI approximation with quite
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F(Hz)/h(m) ε TLU (s) Tms(s) Tg(mn) TFWI(hr)

5Hz/70m FR 52 262 7.2 9.2
(240 cores) 10−3 19 173 5.2 7.1

7Hz/50m FR 226 598 16.5 10.7
(320 cores) 10−3 70 382 10.3 5.2

10Hz/35m FR 699 1542 44.9 12.0
(680 cores) 10−3 181 961 26.5 7.1

Table 7.5 – North Sea case study. Projected computational saving provided by
the BLR solver using the UFCS+LUAR factorization variant and the BLR solution
phase. Tg is computed assuming the time for IO tasks has been divided by a factor
2 due to code optimizations. TFWI is computed assuming the number of iterations
and computed gradient would be the same as in Table 7.4. The total projected time
for the FWI application is 31.9hr and 19.4hr for the FR and BLR (ε= 10−3) solvers,
respectively.

limited computational resources. The computational efficiency of the frequency-
domain FWI relies on a suitable choice of a few discrete frequencies, and on the
exploitation of Block Low-Rank approximations to accelerate the solver. This offers
a suitable framework to preserve the fold resulting from dense seismic acquisitions
during the stack procedure underlying FWI and hence build subsurface model with
a high signal to noise ratio.

Although the FWI was limited to a maximum frequency of 10 Hz, it is proba-
bly reasonable to try to push the inversion up to a frequency of 15 Hz in the near
future. For the case study presented here, this would require to manage computa-
tional grids with up to 60 million unknowns. Some preliminary performance and
memory results are reported in Section 9.4. On the other hand, although the fre-
quency decimation underlying efficient frequency-domain FWI is relatively neutral
for mono-parameter FWI, the impact of this decimation will have to be assessed
with care in the framework of multi-parameter reconstruction. This comment how-
ever also applies to time-domain FWI which is generally applied on a quite narrow
frequency bandwidth. Frequency-domain FWI remains limited to a relatively nar-
row range of applications in terms of wave physics and acquisition geometries. Ex-
tension of our finite-difference stencil to TTI anisotropy is not straightforward and
should lead to a significant computational overhead. Application to short-spread
narrow-azimuth streamer data might not be beneficial since the cost of the LU fac-
torizations might become prohibitive relative to the one of the solution steps and the
number of frequencies to be managed should be increased to prevent wraparound
artefacts. Despite these limitations, 3D frequency-domain FWI on OBC data based
on sparse direct solver can also be viewed as an efficient tool to build an initial visco-
acoustic VTI subsurface model for subsequent elastic FWI of multi-component data.
Feasibility of frequency-domain visco-elastic modeling based on sparse direct solver
for multi-component/multiparameter FWI applications at low frequencies needs to
be assessed and will be the aim of future work.

179



3

4

5

6

7

8

9

10

11

X
(k

m
)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Y(km)

3

4

5

6

7

8

9

10

11

X
(k

m
)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Y(km)

3

4

5

6

7

8

9

10

11

X
(k

m
)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Y(km)

3

4

5

6

7

8

9

10

11

X
(k

m
)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Y(km)

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3
Offset (km)

0

A
m

pl
itu

de

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3
Offset (km)

0

A
m

pl
itu

de

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3
Offset (km)

0

A
m

pl
itu

de

a) b)

c) d)

e)

f )

g)

Figure 7.4 – North Sea case study. BLR modeling errors. (a) 5Hz receiver gather
(real part) computed with the FR solver. (b) Difference between the receiver gathers
computed with the BLR (ε = 10−5) and the FR (a) solvers. (c) Same as (b) for ε =
10−4. (d) Same as (b) for ε = 10−3. Residual wavefields in (b-d) are multiplied
by a factor 10 before plot. The FR wavefield (a) and the residual wavefields after
multiplication by a factor 10 (b-d) are plotted with the same amplitude scale defined
by a percentage of clip equal to 85 of the FR-wavefield amplitudes (a). (e-g) Direct
comparison between the wavefields computed with the FR solver (dark gray) and
the BLR solver (light gray) for ε= 10−5 (e), ε= 10−4 (f), ε= 10−3 (g) along a X profile
intersecting the receiver position (dash line in (a)). The difference is shown by the
thin black line. Amplitudes are scaled by a linear gain with offset.
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Figure 7.5 – North Sea case study. BLR modeling errors. Same as Figure 7.4 for
the 7Hz frequency. The simulations are performed in the same subsurface model
obtained after a 7Hz inversion (not shown here). The same percentage of clip (85%)
of the FR-wavefield amplitudes and the same amplitude scaling of the residuals
wavefields (multiplication by a factor 10 before plot) than those used in Figure 7.4
are used for plot.
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Figure 7.6 – North Sea case study. BLR modeling errors. Same as Figure 7.4 for
the 10Hz frequency. The simulations are performed in the same subsurface model
obtained after a 10Hz inversion. The same percentage of clip (85%) of the FR-
wavefield amplitudes and the same amplitude scaling of the residuals wavefields
(multiplication by a factor 10 before plot) than those used in Figure 7.4 are used for
plot.
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Figure 7.7 – North Sea case study. Data fit achieved with the BLR solver (ε= 10−3).
(a-c) 5Hz(a), 7Hz(b) and 10Hz(c) frequencies. Left (X-Y) panel shows the recorded
data. Middle panel shows the modeled data computed in the FWI model inferred
from the inversion of the current frequency. Right panel is the difference. Bottom
and right amplitude-offset panels show direct comparison between the recorded
(black) and the modeled (gray) data (real part) along a dip and a cross profiles
intersecting the receiver position (dash lines in (X-Y) panels). Amplitudes are cor-
rected for geometrical spreading. The ellipse delineates an offset range for which
modeled amplitudes are overestimated (see text for interpretation).
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Figure 7.8 – North Sea case study. Misfit function versus iteration number achieved
with the FR solver (black cross) and the BLR solver with ε= 10−5(dark gray trian-
gle), 10−4(gray square), 10−3(light gray circle). (a) 3.5Hz Inversion. (b) 4Hz inver-
sion. (c) 4.5Hz inversion. (d) 5Hz inversion. (e) 7Hz inversion. (f) 10Hz inversion.
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7.2 3D Controlled-source Electromagnetic
inversion

In this section, we apply the BLR algorithms developed in the previous chap-
ters to large-scale 3D CSEM problems. We first describe our frequency-domain
finite-difference electromagnetic (EM) modeling approach. We search for the opti-
mal threshold for the low-rank approximation that provides an acceptable accuracy
for EM fields in the domain of interest, and analyze the reductions in flops, matrix
factor size and computation time compared to the FR approach for linear systems
of different sizes, up to 21 million unknowns. It is also shown that the gains due
to low-rank approximation are significantly larger in a deep water setting (that ex-
cludes highly resistive air) than in shallow water. Finally, for a realistic 3D CSEM
inversion scenario, we compare the computational cost of using the BLR multi-
frontal solver to that of running the inversion using an iterative solver.

7.2.1 Applicative context

Marine controlled-source electromagnetic (CSEM) surveying is a widely used
method for detecting hydrocarbon reservoirs and other resistive structures embed-
ded in conductive formations (Ellingsrud et al., 2002; Constable, 2010; Key, 2012).
The conventional method uses a high powered electric dipole as a current source,
which excites low-frequency (0.1-10 Hz) EM fields in the surrounding media, and
the responses are recorded by electric and magnetic seabed receivers. In an in-
dustrial CSEM survey, data from a few hundred receivers and thousands of source
positions are inverted to produce a 3D distribution of subsurface resistivity.

In order to invert and interpret the recorded EM fields, a key requirement is
to have an efficient 3D EM modeling algorithm. Common approaches for numeri-
cal modeling of the EM fields include the finite-difference (FD), finite-volume (FV),
finite-element (FE) and integral equation methods (see reviews e.g. by Avdeev
(2005), Börner (2010), and Davydycheva (2010)). In the frequency domain, these
methods reduce the governing Maxwell equations to a system of linear equations
Mx = s for each frequency, where M is the system matrix defined by the medium
properties and grid discretization, x is a vector of unknown EM fields, and s repre-
sents the current source and boundary conditions. For the FD, FV and FE methods,
the system matrix M is sparse, and hence the corresponding linear system can be
efficiently solved using sparse iterative or direct solvers.

Iterative solvers have long dominated 3D EM modeling algorithms, see for ex-
ample, Newman and Alumbaugh (1995), Smith (1996), Mulder (2006), Puzyrev et
al. (2013), and Jaysaval, Shantsev, Kethulle de Ryhove, and Bratteland (2016),
among others. This is due to the fact they are relatively cheap and provide better
scalability in parallel environments. However, their robustness usually depends
on the numerical properties of M and they often require problem-specific precon-
ditioners. In addition, their computational cost grows linearly with an increasing
number of sources (i.e. the right-hand side s vectors) (Blome, Maurer, and Schmidt,
2009; Oldenburg, Haber, and Shekhtman, 2013), and this number may reach many
thousands in an industrial CSEM survey.
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Direct solvers, on the other hand, are in general more robust, reliable, and
well suited for multi-source simulations. Unfortunately, the amount of memory
and floating point operations required for the factorization can become huge as
the problem size grows. Therefore the application of direct solvers to 3D problems
has traditionally been considered computationally too demanding. However, re-
cent advances in sparse matrix factorization packages, along with the availability
of modern parallel computing environments, have created the necessary conditions
to attract interest in direct solvers in the case of 3D EM problems of moderate size,
see for example, Blome et al. (2009), Streich (2009), Silva, Morgan, MacGregor, and
Warner (2012), Puzyrev, Koric, and Wilkin (2016), and Jaysaval, Shantsev, and
Kethulle de Ryhove (2014).

There have so far been no reports on the application of multifrontal solvers with
low-rank approximations to 3D EM problems. EM fields in geophysical applications
usually have a diffusive nature which makes the underlying equations fundamen-
tally different from those describing seismic waves. They are also very different
from the thermal diffusion equations since EM fields are vectors. Most importantly,
the scatter of material properties in EM problems is exceptionally large, for ex-
ample, for marine CSEM applications resistivities of seawater and resistive rocks
often differ by four orders of magnitude or more. On top of that, the air layer has
an essentially infinite resistivity and should be included in the computational do-
main unless water is deep. Thus, elements of the system matrix may vary by many
orders of magnitude, which can affect the performance of low-rank approaches for
matrix factorization.

Indeed, the geometrical principle behind the admissibility condition may not
work for EM problems as well as it does for seismic ones since extreme variations in
electrical resistivity over the system lead to vastly different matrix elements. Thus,
for two clusters to be weakly connected and have a low rank interaction, it is not
sufficient that the corresponding unknowns be located far from each other in space.
One should also require that the medium between them not be highly resistive. We
will see in the next sections that this nuance may strongly affect the BLR gains
for CSEM problems involving the highly resistive air layer. Note that, from a user
perspective, it is very desirable that the approach is able to automatically adapt the
amount of low-rank compression to the physical properties of the medium.

In all simulations the system matrix was generated using the finite-difference
modeling code presented in Jaysaval et al. (2014). The simulations were carried out
on either the eos supercomputer or the farad machine.

7.2.2 Finite-difference electromagnetic modeling

If the temporal dependence of the EM fields is e−iωt where ω denotes the angular
frequency, the frequency-domain Maxwell equations in the presence of a current
source J are

∇×E = iωµH, (7.7)
∇×H = σ̄E− iωεE+ J, (7.8)
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where E and H are, respectively, the electric and magnetic field vectors, and µ and
ε are, respectively, the magnetic permeability and dielectric permittivity. The value
of µ is assumed to be constant and equal to the free space value µ0 = 4π10−7 H/m. σ̄
is the electric conductivity tensor and can vary in all the 3 dimensions. In a vertical
transverse isotropic (VTI) medium, σ̄ takes the form

σ̄=
 σH 0 0

0 σH 0
0 0 σV

 , (7.9)

where σH (or 1/ρH) and σV (or 1/ρV ) are, respectively, the horizontal and vertical
conductivities (inverse resistivities).

The magnetic field can be eliminated from equations (7.7) and (7.8) by taking
the curl of equation (7.7) and substituting it in equation (7.8). This yields a vector
Helmholtz equation for the electric field

∇×∇×E− iωµσ̄E−ω2µεE = iωµJ. (7.10)

For typical CSEM frequencies in the range of 0.1 to 10 Hz, the displacement
current is negligible as σH ,σV Àωε. Therefore, equation (7.10) becomes

∇×∇×E− iωµσ̄E = iωµJ. (7.11)

We assume that the bounded domain Ω⊂ R3 where equation (7.11) holds is big
enough for EM fields at the domain boundaries ∂Ω to be negligible and allow the
perfectly conducting Dirichlet boundary conditions

n̂×E|∂Ω = 0 and n̂ ·H|∂Ω = 0 (7.12)

to be applied, where n̂ is the outward normal to the boundary of the domain.
In order to compute electric fields, equation (7.11) is approximated using finite

differences on a Yee grid (Yee, 1966) following the approach of Newman and Alum-
baugh (1995). This leads to a system of linear equations

Mx = s, (7.13)

where M is the system matrix of order 3N for a modeling grid with N = Nx×Ny×Nz
cells, x is the unknown electric field vector of dimension 3N , and s, also of dimen-
sion 3N, is the source vector resulting from the right-hand side of equation (7.11).
The matrix M is a complex-valued sparse matrix, having up to 13 nonzero entries
in a row. In general, M is unsymmetric but it can easily be made symmetric (but
non-Hermitian) by simply applying scaling factors to the discretized finite differ-
ence equations (cf. e.g. Newman and Alumbaugh (1995)). For all simulations in
this section, we consider the matrix symmetric because it reduces the solution time
of equation (7.13) by approximately a factor of two and increases the maximum fea-
sible problem size. Finally, after computing the electric field by solving the matrix
equation (7.13), Faraday’s law (equation (7.7)) can be used to calculate the magnetic
field.
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7.2.3 Models and system matrices
In order to examine the performance of the BLR solver, let us consider the two

earth resistivity models depicted in Figures 7.9 and 7.10.

Figure 7.9 – Vertical cross-section through a simple isotropic 3D resistivity model
(H-model) at y = 10 km.

The model in Figure 7.9 (which we hereafter call the H-model) is a simple
isotropic half-space earth model in which a 3D reservoir of resistivity 100 Ωm and
dimension 10× 10× 0.2 km3 is embedded in a uniform background of resistivity
1 Ωm. It is a shallow-water model: the seawater is 100 m deep and has a resistivity
of 0.25 Ωm. The dimensions of the H-model are 20×20×10 km3. A deep-water
variant where the water depth is increased to 3 km (hereafter referred to as the
D-model) is also considered and will be described further later. The H and the D
models lead to matrices with the same size and structure but different numerical
properties.

The model in Figure 7.10 (hereafter the S-model) is the SEAM (SEG Advanced
Modeling Program) Phase I salt resistivity model. It is a complex 3D earth model
designed by the hydrocarbon exploration community and widely used to test 3D
modeling and inversion algorithms. The S-model is representative of the geology in
the Gulf of Mexico, its dimension is 35×40×8.6 km3, and it includes an isotropic
complex salt body of resistivity 100 Ωm and several hydrocarbon reservoirs (Ste-
fani, Frenkel, Bundalo, Day, and Fehler, 2010). The background formation has VTI
anisotropy and horizontal ρH and vertical ρV resistivities varying mostly in the
range 0.5−0.6 m. The seawater is isotropic with resistivity 0.3 Ωm, and thickness
varying from 625 to 2250 m. However, we chose to remove 400 m from the water col-
umn in the original SEAM model, thereby resulting in water depths varying from
225 to 1850 m, to make sure that the air-wave (the signal components propagating
from source to receiver via the air) has a significant impact on the data.

The top boundary of both models included an air layer of thickness 65 km and re-
sistivity 106 Ωm. On the five other boundaries 30 km paddings were added to make
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Figure 7.10 – Vertical cross-section for vertical (a) and horizontal (b) resistivities of
the SEAM model (S-model) at y = 23.7 km.

sure the combination of strong airwave and zero-field Dirichlet boundary conditions
does not lead to edge effects. The current source was an x-oriented horizontal elec-
tric dipole (HED) with unit dipole moment at frequency of 0.25 Hz located 30 m
above the seabed.

In the padded regions the gridding was severely non-uniform and followed the
rules described by Jaysaval et al. (2014), where the air was discretized with 15 cells
and the other boundaries with 7 cells. Apart from the padded regions, we used
finite-difference grids that were uniform in all three directions. The parameters of
five uniform grids used to discretize the H-, D- and S-models are listed in Table 7.6
the cell sizes, number of cells, resulting number of unknowns, and the number of
nonzero entries in the system matrix. These discretizations resulted in six different
system matrices: H1, H3/D3 and H17 for the H- and D-models; and S3 and S21 for
the S-model. The numbers represent the approximate number of unknowns, in
millions, in the linear systems associated with each matrix; for example, the linear
system corresponding to matrix S21 had about 21 million unknowns. So far, for
3D geophysical EM problems, the largest reported complex-valued linear system
that has been solved with a direct solver had 7.8 million unknowns (Puzyrev et al.,
2016).
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Grid Matrix dx = d y dz Nx Ny Nz 3N NNZ

G1 H1 400 200 64 64 74 909,312 11,658,644
G2 H3/D3 200 200 114 114 74 2,885,112 37,148,644
G3 H17 100 100 214 214 127 17,448,276 225,626,874

G4 S3 480 80 98 87 130 3,325,140 42,836,538
G5 S21 240 40 181 160 237 20,590,560 266,361,112

Table 7.6 – Parameters of the uniform grids used to discretize the 3D shallow-
water H-model, deep-water D-model and the SEAM S-model. Here dx, d y, and dz
are the cell sizes in meters, while Nx, Ny, and Nz are the number of cells in the x-,
y-, and z-directions that also include non-uniform cells added to pad the model at
the edges. 3N = 3Nx × Ny × Nz is the total number of unknowns and NNZ is the
total number of nonzero entries in the system matrix.

7.2.4 Choice of the low-rank threshold ε

It is necessary to find out which choices of low-rank threshold ε provide accept-
able CSEM solution accuracies, and what are the associated reductions in factor
size, flops and run time.

We define the relative residual norm δ as the ratio of the residual norm ‖s−
Mxε‖ for an approximate BLR solution xε with a low-rank threshold ε and the
zero-solution residual norm ‖s‖:

δ= ‖s−Mxε‖
‖s‖ . (7.14)

The linear systems corresponding to the matrices H1, H3, S3, H17 and S21 are
then solved for different values of ε to examine its influence on δ. For all the linear
systems, the RHS vector s corresponds to an HED source located 30 m above the
seabed in the center of the model. Figure 7.11 shows the value of δ plotted as a
function of the low-rank threshold ε. The different curves on each plot correspond
to different numbers of iterative refinement steps. Iterative refinement improves
the accuracy of the solution of linear systems by the iterative process illustrated in
Algorithm 1.10.

A conventional choice for the convergence criterion for iterative solvers used
for EM problems, see for example, Newman and Alumbaugh (1995), Smith (1996),
and Mulder (2006) is δ ≤ 10−6. Figure 7.11 shows that the low-rank threshold ε

should be ≤ 10−7 to fulfill this criterion for all the linear systems. Iterative refine-
ment reduces the relative residual norm δ, but it comes at the cost of an additional
forward-backward substitution per refinement step at the solution stage. For the
case of thousands of RHSs, which is typical for a CSEM inversion problem, these
iterative steps may be too costly. Therefore, the focus of the following discussions is
on the BLR solution obtained without any iterative refinement. It follows from Fig-
ure 7.11 that the corresponding curves δ(ε) look quite similar for all the matrices
included in the study. This is a good sign that gives reason to hope that choosing
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ε≤ 10−7 will guarantee good accuracy of the solution for most practical CSEM prob-
lems. Furthermore, the fact that the accuracy in the solution smoothly decreases
when ε increases, also adds confidence in the robustness and usability of the BLR
method in a production context.

Let us now investigate the accuracy of the BLR solution xε for different values
of ε and analyze the spatial distribution of the solution error. The error is defined
as the relative difference between the BLR solutions xε and the full-rank solution
x :

ξm,i, j,k =
√√√√√ |xεm,i, j,k − xm,i, j,k|2(

|xεm,i, j,k|2 +|xm,i, j,k|2
)
/2+η2

, (7.15)

for m = x, y and z; i ∈ [1; Nx], j ∈ [1; Ny], and k ∈ [1; Nz]. Here, xm,i, j,k represents
the m-component of the electric field at the (i, j,k)-th node of the grid, while η =
10−16 V/m represents the ambient noise level. Figure 7.12 shows 3D maps of the
relative difference ξx,i, j,k between xε and x for the x-component of the electric field
for matrix H3.

In all maps, the relative error in the air is orders of magnitude larger than in
the water or formation. Similar observations have been earlier reported by Grayver
and Streich (2012). Fortunately, large errors in the air do not create a problem in
most practical CSEM applications. For marine CSEM inversion one needs very
high accuracy for the computation of the EM fields at the seabed receivers (to com-
pare them to the measured data), as well as reasonably accurate fields in the whole
inversion domain (to compute the corresponding Jacobians and/or gradients). How-
ever, one never inverts for the air resistivity, hence we can exclude the air from the
analysis and focus on the solution errors only in the water and the earth.

One can see from Figure 7.12 that for the smallest low-rank threshold, ε= 10−10,
the relative error ξx,i, j,k in water and formation is negligible (≈ 10−4), but it in-
creases for larger ε, and for ε = 10−8 and 10−7 reaches 1−2% at depth, though it
remains negligible close to the seabed and at shallow depths. For ε= 10−6 the error
exceeds 10% in the deeper part of the model, implying that the BLR solution xε

obtained with ε= 10−6 is of poor quality. At the same time, solutions obtained with
ε≤ 10−7 are accurate enough and can be considered appropriate for CSEM model-
ing and inversion. We also computed the error ξz,i, j,k for the z-component of the
electric field and found very similar behavior as in Figure 7.12.

This study on the errors introduced by BLR approximations in the EM mod-
eling has been conducted with the FSCU variant. While it would be interesting
to reproduce it with the other more advanced variants (e.g. UFCS+LUAR which
is well suited for these matrices), we expect the results would lead to the same
conclusions.

Next, we discuss how the complexity of the BLR solver is affected by removing
the air layer, which strongly reduces the scale of resistivity variations in the model.
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Figure 7.11 – Plots of the relative residual norm δ as a function of the low-rank
threshold ε for linear systems corresponding to matrices H1, H3, S3, H17, and S21.
The residual δ is always below 10−6 if one chooses ε≤ 10−7.
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Figure 7.12 – Relative difference between the BLR solution xε for different low-rank
thresholds ε, and the FR solution x for a linear system corresponding to matrix H3.
For ε= 10−7, the solution accuracy is acceptable everywhere except in the air layer
at the top. The results are for the x-component of the electric field. The air and
PML layers are not to scale.
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7.2.5 Deep water versus shallow water: effect of the air
The benefits of the BLR solver depend on how efficiently blocks of frontal ma-

trices can be compressed using low-rank approximations. Compression of a block
matrix Aστ is expected to be efficient when the spatial domains corresponding to
unknowns σ and τ are far from each other and the two sets of unknowns are thus
weakly connected. One complication for CSEM problems is the presence of the in-
sulating air layer whose resistivity is typically many orders of magnitude higher
than that in the rest of the computational domain. EM signals propagate through
the air almost instantaneously, as compared to relatively slow propagation through
conductive water or sediments. Therefore, two regions located close to the air are
effectively connected to each other via the so called air-wave even if these regions
are geometrically very far apart. It is interesting to know whether this intercon-
nectivity via the air layer can degrade the low-rank properties of corresponding
matrices and affect performance of the BLR solver. Therefore, in this section we
present additional simulations for earth models that do not include an air layer.

The results presented in the previous sections are based on a shallow-water H-
model (water depth of 100 m) and the S-model with water depth varying from 225 to
1850 m. In both cases, the airwave strongly affects the subsurface response at most
source-receiver offsets at the chosen frequency of 0.25 Hz (Andreis and MacGregor,
2008). On the other hand, if the water depth is increased to 3 km, the airwave
contribution becomes negligible because EM fields are strongly attenuated in the
conductive sea water (cf. e.g. Jaysaval, Shantsev, and Kethulle de Ryhove (2015)).
Keeping this in mind, we built a deep-water model (D-model) from the shallow-
water H-model by simply removing the air layer and adding 2.9 km of seawater
so that the water layer becomes 3 km thick. The source is again an x-oriented
HED with a frequency of 0.25 Hz placed 30 m above the seabed. The D-model was
discretized using the same grid (Table 1) as the H-model, which resulted in matrix
D3 having the same dimensions and number of nonzero entries as H3. We compare
the results of simulations with the H- and D-models in Table 7.7.

Matrix, water depth FR solver BLR solver (ε= 10−7)
Factor storage (GB) Flops Factor storage (%) Flops (%)

H3, shallow 76 5.7×1013 49.5 16.3
D3, deep 76 5.7×1013 45.3 12.0

Table 7.7 – Factor storage and flops for the factorization of shallow-water (H3) and
deep-water (D3) matrices. Values for the BLR solver are given as a percentage of
the corresponding FR values.

The FR numbers are essentially identical for the shallow-water and deep-water
matrices, which is somewhat expected as the matrices have the same number of
unknowns and the same structure. On the other hand, it once again demonstrates
the robustness of the direct solver whose efficiency is not affected by replacing the
conductive water layer with extremely resistive air which changes values of the
corresponding matrix elements by six to seven orders of magnitude. In contrast,
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many iterative solvers struggle to converge in the presence of an air layer because
it makes the system matrix more ill-conditioned due to high resistivities and large
aspect ratios of some cells (cf. e.g. Mulder (2006)).

Most importantly, the gains achieved by using the BLR solver are larger for the
deep-water matrix D3 than for the shallow-water matrix H3. This is especially ev-
ident for the factorization flops that amount to only 12.0% of the FR flops for D3,
while for the H3 matrix that number increases to 16.3%. It is interesting to in-
vestigate how the observed difference in flops between the deep and shallow-water
matrices depends on the matrix size. For that purpose we generated 11 additional
grids for discretization of the H- and D-models. We started with a grid resulting
in 4.9 million unknowns, which was constructed along the same lines as the other
grids in Table 1, but with dx = dy = dz = 167 m. The next grid was obtained by
making all its cells proportionally coarser by 5-10 percent, and so on for next grids.
The rate at which the cell sizes were increasing, was identical in all parts of the
model (air, water, formation, reservoir, non-uniform paddings) and all directions: x,
y and z. The number of unknowns for the smallest grid was around 516,000.

Figure 7.13 – Factorization flop complexity for shallow-water and deep-water ma-
trices with different number of unknowns. The full-rank complexity O (N2) is inde-
pendent of the water-depth. The low-rank method reduces complexity for shallow-
water matrices to O (Nm), with m = 1.58. The improvement is even stronger in deep
water, where m = 1.40, indicating better BLR compression rates in the absence of
resistive air.

Figure 7.13 shows how the factorization flops depend on the number N of un-
knowns for this set of grids. The FR solver has the expected O (N2) complexity for
both types of matrices. The BLR compression significantly reduces complexity, and
the reduction depends on the matrix type. For matrices obtained from the shallow-
water H-model, we observe an O (Nm) behavior with m = 1.58±0.02. At the same
time, Figure 7.13 shows that for the deep-water D-model, the complexity is reduced
even further, down to m = 1.40± 0.01. This confirms that the BLR savings are
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Figure 7.14 – Factor size for shallow-water and deep-water matrices with different
number of unknowns N. The memory needed to store factors grows as a power law,
O (Nm), and the use of the BLR solver significantly reduces the value of exponent
m. The reduction is slightly stronger for the deep water case.

consistently larger for deep-water matrices and also shows that this effect becomes
stronger for larger systems. For example, for the system with 4.9 million unknowns,
the factorization of the shallow-water matrix requires 71 percent more flops than
factorization of the deep-water matrix. Figure 7.14 shows data for the factor stor-
age computed for the same set of 11 grids with different number of unknowns. One
can see that the BLR method also reduces the factor storage complexity. Namely,
the FR behavior of O (Nm) with m = 1.38±0.01 is changed to m = 1.18±0.01 for
the shallow-water case, while for the deep-water case the BLR reductions are even
stronger, down to m = 1.14±0.01. These values are very close to the exponents re-
ported for 3D seismic problems, and in agreement with the theoretical predictions
of Chapter 4.

The deep-water D-model is different from the H-model in two ways: it has a
thicker water layer and does not contain air. We made an additional test run for
a model with both a thick water layer and an air layer, and found the results to
be similar to those for the H-model. It allows us to conclude that the observed
improvements in the performance of BLR solver for the deep-water matrices are
mainly due to removal of the highly resistive air layer. Presence of the air layer
effectively interconnects model domains located close to the air interface, as dis-
cussed above. It should lead to higher rank of the corresponding block matrices and
make low-rank approximations less efficient. In other words, the air introduces
non-locality into the system: in some numerical schemes the air is simply excluded
from the computational domain and replaced by a non-local boundary condition at
the air-water interface (Wang and Hohmann, 1993). Thus, one may argue that the
air effectively increases dimensionality of the system, which in turn, should also
increase complexity.
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7.2.6 Suitability of BLR solvers for inversion

Direct solvers are very well suited for multisource simulations since once the
system matrix M is factorized, the solution for each RHS can be computed using
relatively inexpensive forward-backward substitutions. Therefore, they are partic-
ularly attractive for applications involving large-scale CSEM inversions where the
number of RHSs can reach several thousands. Nevertheless, the computational cost
of the factorization phase remains huge and often dominates, tipping the balance
in favor of simpler iterative solvers. For example, even for relatively small CSEM
matrices with ≈3 million unknowns, an iterative solver is shown to be superior as
long as the number of RHSs is kept below 150 (Grayver and Streich, 2012). In
this section we benchmark our direct solver with and without BLR functionality
against an iterative solver for an application in a realistic CSEM inversion based
on the SEAM model.

Let us consider inversion of synthetic CSEM data over the S-model of Fig-
ure 7.10. We assume that nr = 121 receivers are used to record simulated responses.
For each receiver, HED sources are located along 22 towlines (11 in the x- and 11
in the y-directions) with an interline spacing of 1 km. Each towline has a length
of 30 km with independent source positions 200 m apart. This implies 150 source
positions per towline, or a total of ns = 22×150= 3300 source positions. The model
is discretized with grid G5 defined in Table 7.6, which results in system matrix S21
with 20.6 million unknowns. The frequency is 0.25 Hz.

To invert the CSEM responses with the above acquisition parameters, we con-
sider two inversion schemes: (1) a quasi-Newton inversion scheme described in Zach,
Bjørke, Støren, and Maaø (2008); and (2) a Gauss-Newton inversion scheme de-
scribed in Amaya (2015). An inversion based on the Gauss-Newton scheme con-
verges faster and is less dependent on the starting model as compared to the quasi-
Newton inversion, but this comes at the cost of increased computational complex-
ity. We refer to Habashy and Abubakar (2004) for a detailed discussion of the
theoretical differences between the two inversion schemes. One key difference is
the number of RHSs that needs to be handled at each inversion iteration. For the
quasi-Newton scheme it scales with the number of receivers nr , while in the Gauss-
Newton scheme one should include computations also for all source shot points ns.
In a typical marine CSEM survey one has ns À nr, hence the number of RHSs re-
quired by the Gauss-Newton scheme is much larger than that by the quasi-Newton
scheme. For the chosen example based on the SEAM model, the quasi-Newton and
Gauss-Newton schemes require 968 and 3784 RHSs per inversion iteration for one
frequency, respectively.

In Table 7.8, we report the time for the complete resolution (analysis, factor-
ization, and forward and backward substitutions for all RHSs) using the FR and
BLR solvers on the eos supercomputer using 90 MPI × 10 threads setting and
ParMETIS (Karypis and Kumar, 1998) for ordering. For comparison, time esti-
mates for an iterative solver are also presented. This iterative solver was developed
following the ideas of Mulder (2006): a complex biconjugate-gradient-type solver,
BICGStab(2) (Van der Vorst, 1992; Gutknecht, 1993) is used in combination with a
multigrid preconditioner and a block Gauss-Seidel type smoother.

The first two rows of Table 7.8 show the result reported in Shantsev et al. (2017),
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Version Inversion scheme FR solver BLR solver (ε= 10−7) Iterative
(number of RHSs) Ta T f Ts Ttotal Ta T f Ts Ttotal solver

Old
Quasi-Newton (968) 87 2803 965 3856 103 1113 965 2181 803
Gauss-Newton (3784) 87 2803 3772 6663 103 1113 3772 4988 3141

New
Quasi-Newton (968) 87 1254 329 1670 103 232 301 636 803
Gauss-Newton (3784) 87 1254 1287 2628 103 232 1177 1512 3141

Table 7.8 – Suitability of BLR solvers for inversion. We report run times for the FR
and BLR direct solvers on the eos supercomputer as well as for a multigrid precon-
ditioned iterative solver to perform CSEM simulations for a large number of RHSs.
We report two version of the results: the old results, presented in Shantsev et al.
(2017) (based on MUMPS 5.0 and using the FSCU BLR variant), and the new ones
(MUMPS trunk version, using the UFCS+LUAR BLR variant, and a preliminary
version of the BLR solution phase). We consider two different inversion schemes ap-
plied to CSEM data over the SEAM model: a quasi-Newton scheme with 968 RHSs
and a Gauss-Newton scheme with 3784 RHSs. The simulations are carried out for
the system matrix S21 using 900 computational cores. For the direct solvers, Ta
is the analysis time, T f is the factorization time, Ts is the solve time (for forward-
backward substitutions for all RHSs), and Ttotal is the total time, all measured in
seconds.

which were obtained with MUMPS 5.0; in the case of the BLR solver, the factoriza-
tion is using the FSCU variant and the solution phase is still performed in FR.
While the BLR solver already showed potential to accelerate the factorization, the
overall BLR solver remained 2.5 and 1.5 times slower than the iterative one, using
the quasi-Newton and Gauss-Newton schemes, respectively.

Since then, many improvements have been made to both the FR and BLR solvers.
The last two rows of Table 7.8 show the new results, obtained with the trunk ver-
sion of MUMPS. Both the factorization and solution phases of the FR solver have
been accelerated; moreover, the gains due to the BLR solver are higher due to the
use of the improved UFCS+LUAR factorization variant presented in this thesis; a
preliminary version of the BLR solution phase is also used to provide a moderate
speedup with respect to the FR solver. With these improvements, the BLR solver
achieves moderate gains with respect to the iterative solver using the quasi-Newton
scheme, and outperforms it by a factor over 2 using the Gauss-Newton scheme.

These new results show the suitability of BLR solvers for CSEM inversion, as
they start to become more attractive than iterative solvers for 800 or more RHSs.

7.2.7 Section conclusion

We have demonstrated that the application of BLR multifrontal solvers to solve
linear systems arising in finite-difference 3D EM problems leads to significant re-
ductions in matrix factor size, flop count and run time as compared to a FR solver.
The savings increase with the number of unknowns N; for example, for the factor-
ization flop count, the O (N2) scaling for the FR solver is reduced to O (Nm) with m

198



between 1.4 and 1.6 for the BLR solver. This is slightly better than the theoreti-
cal complexity computed in Chapter 4. For shallow-water EM problems, we have
shown that the reduction due to BLR approach is less than for deep water. This may
be related to the highly resistive air layer that increases connectivity between sys-
tem unknowns and hence decreases low-rank compression rates. The BLR solver
runtimes were compared to those of an iterative solver with multigrid precondition-
ing in an realistic inversion scenario where simulations at multiple source locations
are necessary. For a few thousand RHSs, which is typical in Gauss-Newton CSEM
inversion schemes today, the BLR solver outperforms the iterative solver by a factor
over 2; once the BLR solution phase is optimized, this gain will certainly further
increase (cf. Section 9.2).
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CHAPTER

8
Comparison with an
HSS solver: STRUMPACK

In this chapter, we compare our BLR multifrontal solver described in the previ-
ous chapters with STRUMPACK, an HSS multifrontal solver developed at Lawrence
Berkeley National Laboratory (Rouet et al., 2016; Ghysels et al., 2016; Ghysels et
al., 2017).

The goal of this comparison is to shed light on the differences between these low-
rank formats, and how these differences impact the complexity and performance of
the solvers.

In all this chapter, the BLR variant considered is the UFCS+LUAR factoriza-
tion.

8.1 The STRUMPACK solver
STRUMPACK (STRUctured Matrices PACKage) is a fast linear solver and pre-

conditioner for both dense and sparse systems using HSS factorization with ran-
domized sampling. This comparison concerns the sparse component of STRUMPACK,
which is based on the multifrontal approach.

A detailed description of the solver can be found in Ghysels et al. (2016). Here,
we summarize the main differences with the MUMPS solver.

STRUMPACK currently provides the LU factorization only; therefore, the ex-
periments in this chapter concern unsymmetric matrices (symmetric matrices are
unsymmetrized).

Both solvers are fully-algebraic. In this chapter, the METIS 5.1 ordering is used.
In all the experiments of this chapter, the BLR solver refers to the UFCS+LUAR

factorization variant. We therefore consider a non fully-structured factorization;
the contribution block of the frontal matrices are not compressed. On the other
hand, STRUMPACK is a fully-structured solver; the matrix is initially compressed
and the assembly is performed in low-rank, based on the randomized sampling
algorithm described in Martinsson (2011).

Both solvers use the same compression kernel, a truncated QR factorization
with column pivoting (via random sampling in the case of STRUMPACK). However,
the low-rank threshold ε is absolute in MUMPS, while it is relative in STRUMPACK
(i.e. the stopping criterion is |rk,k| < ε in MUMPS and |rk,k| < ε|r1,1| in STRUMPACK).
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This intuitively seems reasonable, because the norm of the HSS blocks is expected
to be comparable, while that of the BLR blocks can vary significantly, but should be
the object of further research.

Finally, both solvers only compress fronts larger than 1000.

8.2 Complexity study
In this section, we compare the experimental complexity of the two solvers.
We use the same experimental setting as in Chapter 4. We use the same two

test problems: the Poisson problem with 7-point discretization, and the Helmholtz
problem at frequency 4 Hz with 27-point discretization and with 4 grid points per
wavelength. We also use the same methodology to compute complexity estimates
based on a least-squares fitting.

8.2.1 Theoretical complexity

operations factor size

r =O (1) r =O (N) r =O (1) r =O (N)

FR O (n2) O (n2) O (n
4
3 ) O (n

4
3 )

BLR O (n
4
3 ) O (n

5
3 ) O (n logn) O (n

7
6 )

HSS O (n) O (n
4
3 ) O (n) O (n

7
6 )

Table 8.1 – Theoretical complexity of the multifrontal factorization, for a 3D prob-
lem of order n = N3 and with a rank bound r.

In Table 8.1, we report the theoretical complexity of the full-rank (FR), BLR,
and HSS multifrontal factorizations in the 3D case (a similar analysis for the 2D
case is possible). We consider two types of rank bounds, r =O (1) and r =O (N).

For the Poisson problem, the rank bound is O (1) for BLR (Bebendorf and Hack-
busch, 2003), but O (N) for HSS (Chandrasekaran, Dewilde, Gu, and Somasun-
deram, 2010). This is due to the weak admissibility condition of the HSS format.

For the Helmholtz problem, although there is no rigorous proof of it, we assume
a rank bound O (N), both for BLR and HSS, as is done in the related literature (Xia,
2013a; Wang et al., 2016; Engquist and Ying, 2011).

8.2.2 Flop complexity
We first analyze the flop complexity results reported in Figure 8.1.
For the Poisson problem, the BLR and HSS complexity exhibit the same asymp-

totic behavior, as expected since the theoretical complexity is O (n
4
3 ) in both cases

(because r = O (1) in BLR and r = O (N) in HSS). BLR has a lower prefactor and
therefore outperforms HSS by a significant factor.

For the Helmholtz problem, the BLR complexity has a higher exponent but a
lower prefactor compared to the HSS one; thus, while BLR outperforms HSS for
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Figure 8.1 – BLR and HSS flop complexity comparison.

the smaller problems, there is a cutoff point after which HSS gains the upper hand.
The exact value of this cutoff point depends on several parameters including the
tolerance choice.

Thus, the experimental complexity results are in good agreement with the the-
ory. Note that, in the BLR case, the complexity results of this chapter may be
slightly different from those of Chapter 4 due to a different experimental setting
(METIS reordering, block size chosen to optimized performance rather than flops,
etc.).

8.2.3 Factor size complexity
Next, we analyze the factor size complexity results reported in Figure 8.2.
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Figure 8.2 – BLR and HSS factor size complexity comparison.

Overall, the factor size results lead to the same conclusions as the flop results.
For the Poisson problem, the asymptotic cost of BLR is slightly lower than that of
HSS due to the higher HSS rank bound (O (n logn) with BLR, O (n1.17) with HSS).
This gives the upper hand to BLR on this problem and range of sizes. Conversely,
for the Helmholtz problem, HSS achieves a better asymptotic experimental com-
plexity (whereas the theory predicts the same bound). This means that HSS leads
to much better compression rates for the larger mesh sizes, although this observa-
tion should be slightly attenuated by the fact that the low-rank threshold is set to
a higher value (ε= 10−1 in HSS compared to ε= 10−3 with BLR).

8.2.4 Influence of the low-rank threshold on the complexity

Finally, we analyze the influence of the low-rank threshold ε.
For both BLR and HSS, the theory states the threshold ε should only play a

role in the constant factor of the complexity, not the exponent. However, that is not
exactly what the numerical experiments show. For Helmholtz, the threshold does
seem to play a role only in the constant factor. However, for Poisson, the exponent
lowers as the threshold increases, both for BLR and HSS.

In the BLR case, this trend has been explained in Chapter 4 by the presence of
zero-rank blocks, which become asymptotically dominant.

In the HSS case, the large off-diagonal blocks are rarely zero-rank; however,
the ranks of the intermediary blocks appearing at the different levels in the HSS
tree are often lower than the maximal rank bound: in fact, they often follow a rank
pattern, that may depend on the threshold. By considering such a rank pattern,
the theoretical bound can be relaxed to match the experimental observation (Xia,
2013a).
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8.3 Low-rank factor size and flops study
In Figures 8.3 and 8.4, we compare the size of low-rank factors and flops for the

low-rank factorization, respectively, with respect to the full-rank ones both the BLR
and HSS solvers.

For the bigger thresholds BLR and HSS achieve comparable compression rates,
although BLR is consistently slightly better than HSS on this set of problems. The
difference in factor size is greater than in flops. For these medium-sized problems,
the constant in the HSS complexity is too big to outperform the smaller BLR con-
stant.

For the smaller thresholds, the difference between BLR and HSS becomes much
more important: while the BLR compression rate slowly decreases, that of HSS
degrades much more rapidly; in terms of flops, HSS is not even beneficial compared
to FR due to the compression overhead.

This result could be explained by the different admissibility conditions of BLR
and HSS. Indeed, with the flat BLR format, it is simple to select which blocks are
approximated by a low-rank structure and which are kept dense, depending on their
rank. Thus, when the threshold decreases, the rank growth can be easily controlled
by reverting to FR the blocks that correspond to strong interactions. This leads
to a relatively slow, smooth increase of the low-rank factor size as the threshold
decreases.

On the contrary, the weak admissibility condition of the HSS format means that
any off-diagonal block has to be represented by a low-rank structure, even if that
rank is quite big. This could also lead to a higher factor size, as illustrated in
Figure 8.5.

8.4 Sequential performance comparison
In this section, we compare the performance of the two solvers in a sequential

setting. Runs were performed on one node of the cori supercomputer, using one
thread only.

8.4.1 Comparison of the full-rank direct solvers
We first compare the full-rank solvers in Figure 8.6. It can be observed that

the factor nonzeros, and the flops and time for the factorization are all very sim-
ilar for both solvers, with a variation always under 20% and often much smaller
than that. However, regarding the solve, STRUMPACK is consistently and signifi-
cantly faster than MUMPS. Given the factor nonzeros are comparable, this proba-
bly means there is some performance optimization to be done in MUMPS.

8.4.2 Comparison of the low-rank solvers used as
preconditioners

For the low-rank comparison, each solver is tested with several low-rank thresh-
olds ε, from 0.9 to 10−6. We then apply a GMRES iterative algorithm until the
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Figure 8.3 – Size of BLR and HSS low-rank factors (in % of FR one). Blue circle plot
is BLR and red triangle one is HSS. Tolerance varies from 0.9 to 10−6.
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Figure 8.4 – Flops for BLR and HSS factorizations (in % of FR one). Blue circle plot
is BLR and red triangle one is HSS. Tolerance varies from 0.9 to 10−6.

207



b

r

(a) BLR partitioning of a big off-
diagonal block

(b) Hierarchical partition-
ing: the block is not refined

Figure 8.5 – Illustration of how a weak-admissibility condition can result in higher
storage. The BLR storage is equal to b2 +6br = b2 +O (b); the hierarchical storage
is equal to 4b2.
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Figure 8.6 – MUMPS and STRUMPACK sequential full-rank comparison.

required accuracy of 10−6 is achieved. The stopping criterion is relative (i.e. con-
vergence is achieved when ‖rk+1‖/‖r0‖ < 10−6).

In Table 8.2, we report the best choice of threshold, i.e., the one that minimizes
the total time for factorization and solution.

In the BLR case, that optimal threshold is often quite small, close to the required
accuracy of 10−6. We refer to this as direct solver mode, because the time spent in
the iterations (solution phase) is small compared to the setup time (time spent in
the factorization).
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BLR HSS
ε time ε time

A22 1e-5 136.7 FR 983.4
A30 1e-4 141.3 FR 906.1
atmosmodd 1e-4 81.0 9e-1 129.7
cage13 1e-1 174.7 9e-1 109.8
Geo_1438 1e-4 283.5 FR 1001.2
Hook_1498 1e-5 162.4 FR 471.0
ML_Geer 1e-6 65.2 FR 137.4
nlpkkt80 1e-5 195.3 5e-1 234.8
PFlow_742 1e-6 56.1 FR 96.5
Serena 1e-4 272.3 1e-1 712.4
spe10-aniso 1e-5 87.7 FR 360.5
Transport 1e-5 118.7 FR 301.3

Table 8.2 – Best tolerance choice for BLR and HSS solvers and associated time
for factorization+solve, using 1 thread. The shaded rows correspond to the three
representative problems discussed in Section 8.5 (cf. Figure 8.7).

Conversely, in the HSS case, the optimal threshold tends to be much bigger. We
refer to this as preconditioner mode, because the bulk of the time is spent in the
iterations while the cost of the factorization is cheaper.

This difference in the behavior of the two formats could again be explained by
the rank growth due to the weak admissibility of the HSS format, as suggested in
the previous section.

8.5 Discussion
We provide in Figure 8.7 detailed results for three test problems (shaded rows

of Table 8.2: cage13, spe10-aniso, and atmosmodd) which are representative of dif-
ferent types of situation.

• On one hand, cage13 is a numerically easy problem, for which preconditioning
techniques work very well. Indeed, even for aggressive compression strategies
(with a very large threshold such as 0.9), the solver converges after just a few
iterations. In this case both BLR and HSS are best when used in “precondi-
tioner mode”; as the problem size increases, HSS will gain the upper hand.

• On the other hand, spe10-aniso is a much more difficult problem. Both the
BLR and HSS solvers fail to converge when used in preconditioner mode. In
this case, the solvers must be used in “direct mode”, with a smaller low-rank
threshold. However, due to the rank growth, HSS is less suited for this type
of problem than BLR.

• The atmosmodd problem lies in the middle ground: there is a compromise to
be found between accuracy and compression. As analyzed, BLR favors being
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(a) cage13 problem.
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Figure 8.7 – Sequential performance comparison. Blue and yellow represent the
time spent in the factorization and solution phases, respectively. The numbers
above the bars indicate the number of iterations; ’F’ stands for ’Failed to converge’.
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used in direct mode, while HSS favors being used in preconditioner mode. The
relative performance of the two solvers will depend on the size of the problem
and its numerical difficulty (i.e. convergence rate to the required accuracy).

Therefore, these results seem to suggest the trend depicted in Figure 8.8. This
is an intuitive, informal trend based on preliminary results. In particular, the con-
cept of “difficulty” (which here means difficulty to converge to the required accuracy)
merits to be properly defined. Furthermore, other constraints such as the memory
consumption would influence this trend: indeed, the FR solver will run out of mem-
ory before the BLR one, which in turn might consume more memory than the HSS
one.

size

difficultydifficulty

FR

BLR

HSS

Figure 8.8 – Which solver is the most suited in which situation? Trend suggested
by Figure 8.7 and Table 8.2.

These preliminary results should be completed with further experiments. First,
this study has focused on 3D problems. It is not clear whether a study on 2D prob-
lems would lead to the same results and conclusions. Second, the performance com-
parison should be extended to multicore and distributed-memory environments.
Finally, to truly understand the differences between these low-rank formats, this
comparison should be extended to the non-nested formats (such as HODLR) as well
as the strongly admissible formats (such as H ).
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CHAPTER

9
Future challenges for
large-scale BLR solvers

In this chapter, we discuss some of the future challenges that BLR solvers are
likely to encounter when solving increasingly large problems.

We discuss three aspects of BLR solvers that we have scarcely mentioned so far
in this thesis, but that will be of growing importance when targeting large-scale
systems and applications: the BLR analysis and solution phases, and the memory
consumption. Indeed, because the factorization time has been greatly reduced in
BLR, the time for the other two phases can become critical. Moreover, while BLR
helps reducing the overall memory consumption, it paradoxically lowers the mem-
ory efficiency of the solver, as we will show. Finally, we illustrate these challenges
by reporting experiments on a set of very large problems (of order up to 90 million
unknowns).

9.1 BLR analysis phase
The time for computing the BLR clustering (cf. Section 1.4.3.1) represents an

overhead. For some problems, we have observed that this overhead can represent
an important part of the total analysis time, and therefore of the overall solver time.
The BLR clustering time should thus be reduced.

A key parameter is the halo depth dh, which controls how the halo subgraph
GH (on which we perform the clustering) is built from the separator subgraph GS,
as explained in Section 1.4.3.1. In the original BLR solver presented in Amestoy
et al. (2015a) and Weisbecker (2013), dh was set to 2. This was partly due to the
observation that on regular grids, a halo depth of two is enough to reconnect the
separators. However, as reported in Table 9.1 for several problems, the BLR clus-
tering time with dh = 2 can be very large with respect to the FR analysis time. For
example, for the perf00{8d,8ar,8cr,9d,9ar} matrices coming from our EDF applica-
tion (cf. Section 1.5.2.2), the BLR clustering represents an overhead between 25
and 50% of the FR analysis time.

Therefore, we consider using a lower halo depth. We must check whether this
can lead to a significant degradation of the compression rate. With dh = 0, the
BLR clustering is computed with the lowest times, but it is not robust. Indeed, as
reported in Table 9.1, the compression rate for the atmosmodd and kkt_power ma-
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trices drops to much lower values than those with dh ≥ 1. On the other hand, with
dh = 1, the compression rate of atmosmodd is satisfying, while that of kkt_power
remains significantly higher than with dh = 2. We have not observed a degrada-
tion of the compression rate for any other of the matrices in our test suite (which
includes, in addition to those reported in Table 9.1, all the matrices from the Janna
group of the UFSMC). In fact, the compression rate is often slightly better than
that with dh = 2, which may illustrate the fact that the clustering is computed on a
graph that matches more closely the actual separator that we want to cluster.

We conclude from these experiments that a halo depth of 1 seems to be a good
compromise between compression rate and cost of the BLR clustering, and that is
the value that we have used for the experiments presented throughout this thesis.

matrix FR analysis time (s) BLR clustering time (s) compression rate (%)
dh = 0 dh = 1 dh = 2 dh = 0 dh = 1 dh = 2

A22 8.0 3.9 10.8 24.6 12.4 13.2 13.8
atmosmodd 19.7 0.2 0.7 0.9 56.9 9.2 9.1
audikw_1 18.8 2.4 6.3 13.5 32.1 32.0 32.5
cage13 26.5 0.7 3.0 7.2 11.0 10.2 11.8
Cube_Coup_dt0 27.4 4.2 7.8 14.0 15.5 15.4 15.3
Geo_1438 19.7 1.9 3.4 5.7 5.5 5.5 5.5
Hook_1498 20.1 1.8 3.6 6.3 23.7 23.6 23.6
HV15R 135.3 17.7 38.8 76.9 11.5 11.3 12.1
kkt_power 33.8 0.5 1.0 2.2 90.6 51.2 30.9
ML_Geer 27.7 1.8 2.7 3.9 18.2 18.1 18.1
nlpkkt80 15.2 1.8 1.8 1.8 12.3 12.3 12.3
perf008d 33.9 4.3 8.8 16.8 21.8 21.6 21.6
perf008ar 89.8 10.5 21.0 39.5 14.8 14.8 14.7
perf008cr 196.6 20.6 40.7 76.3 10.0 10.0 10.0
perf009d 15.1 1.3 2.3 3.7 50.6 51.2 51.1
perf009ar 129.8 10.9 22.1 39.7 28.1 27.8 28.0
Queen_4147 73.6 9.7 20.1 39.3 8.3 8.3 8.3
Serena 22.0 2.0 4.1 7.7 16.2 16.3 16.4
spe10-aniso 24.8 0.9 1.4 2.2 10.7 10.7 10.6
StocF_1495 28.5 0.9 1.5 2.4 10.2 10.1 10.2
Transport 28.4 1.0 1.4 2.1 17.4 17.7 17.7

Table 9.1 – Influence of the halo depth parameter dh on the BLR clustering time
and on the compression rate. The total BLR analysis time is equal to the sum of
the FR analysis time and the BLR clustering time. Experiments are performed on
1 core on brunch.

Nevertheless, with dh = 1, the BLR clustering time remains important for some
problems. For example, for the perf00* matrices, it still represents an overhead
between 15 and 25% of the FR analysis time.

Therefore, to further accelerate the BLR clustering, we have parallelized it with
OpenMP directives to exploit multiple threads. One difficulty is that to build the
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halo subgraph GH , the threads must access the global adjacency graph of the matrix
GA (in order to mark already visited nodes), which thus leads to conflicts between
different threads. To avoid these conflicts, a simple solution is to hold a private copy
of the graph on each thread. With this strategy, the BLR clustering time using 8
threads on brunch is reported in Table 9.2 (column “mt. private”) and we compare
it to the sequential case (column “seq.”). We do not include in the table matrices for
which the sequential clustering time was inferior to 2 seconds; for these matrices,
no gains are achieved by multithreading the clustering. For the rest of the matrices,
important gains are achieved, even though the potential speedup of 8 is far from
captured, due to the operations being very memory-bound.

To solve very large problems, holding a copy of the graph on each thread is not
acceptable in terms of storage cost. Therefore, we implemented a multithreaded
strategy where the graph is shared by all threads. To avoid conflicts, the halo build-
ing phase is protected by critical regions; the other phases (mainly, the clustering
of the halo subgraph) can be executed in parallel. The performance of this strategy
is evaluated in Table 9.2 (column “mt. shared”). It is very close to that of the “mt.
private” strategy, which means the addition of critical regions has only slightly im-
pacted the performance. With this strategy, the cost of the BLR clustering is kept
under 20% of the FR analysis time and often much less than that. Moreover, be-
cause the speedup increases with the size of the problem, the relative cost of the
BLR clustering actually decreases as the problem size increases.

matrix seq. mt. private mt. shared

A22 10.8 3.7 4.5
audikw_1 6.3 3.6 3.9
cage13 3.0 2.1 2.2
Cube_Coup_dt0 7.8 6.3 6.0
Geo_1438 3.4 2.7 2.4
Hook_1498 3.6 2.7 2.8
HV15R 38.8 17.0 19.7
ML_Geer 2.7 1.9 1.8
perf008d 8.8 5.6 5.9
perf008ar 21.0 13.9 14.5
perf008cr 40.7 25.2 26.4
perf009d 2.3 1.5 1.5
perf009ar 22.1 12.9 12.9
Queen_4147 20.1 13.2 12.9
Serena 4.1 3.2 3.3

Table 9.2 – Acceleration of the BLR clustering with multithreading. We report
the time for BLR clustering in seconds for three versions: sequential (seq.), multi-
threaded with a private copy of the graph on each thread (mt. private), and multi-
threaded with one graph shared by all threads and protected by critical regions (mt.
shared). The experiments are performed on brunch; the multithreaded versions
use 8 cores.

Therefore, we conclude that, with a halo depth of 1 and the use of multiple
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threads to speed up the computations, the cost of the BLR clustering can be kept
limited with respect of the FR analysis time, without sacrificing the quality of the
computed clustering.

The overall analysis time will then be dominated again by the computation of
the matrix reordering rather than the BLR clustering. For very large problems,
technologies to reduce the cost of the matrix reordering will thus become criti-
cal. For example, we could consider the use of multithreaded or parallel graph
partitioners, such as MT-METIS, ParMETIS (Karypis and Kumar, 1998), and PT-
SCOTCH (Chevalier and Pellegrini, 2006). In the case of parallel partitioners,
the impact on the quality of the ordering has been studied (Amestoy, Buttari, and
L’Excellent, 2008). Their impact on the low-rank compression rate should also be
carefully analyzed.

9.2 BLR solution phase
In this work, we have mostly focused on reducing the cost of the factoriza-

tion phase, which is usually considered to be the most computationally demanding
phase.

However, as we have illustrated in our two applicative case-studies in Chapter 7,
the solution phase can represent a significant part of the total cost, or even be the
bottleneck in some large-scale applications with many right-hand sides.

This observation becomes even more relevant in BLR, which leads to a lower
factorization complexity. Indeed, even though the complexity of the solution phase
is also reduced by BLR approximations, it follows the reduction of the factor size
complexity, which is lower than that of the flops. Therefore, the BLR solution phase
is likely to become the bottleneck when dealing with many right-hand sides.

We mention several challenges and opportunities to accelerate the BLR solution
phase that should be the object of further work.

First, as we have explained in Section 2.2.3, it is not straightforward to use the
LAPACK style of pivoting with the BLR factorization, because it may require to per-
form column swaps between different low-rank blocks. One could of course switch
to the LINPACK style, but as mentioned in Section 1.3.2.6, the cost of swapping
the right-hand sides may severely hinder the performance of the solver if there are
many of them. Therefore, the different strategies we have described to use the LA-
PACK style in conjunction with the BLR factorization may become critical. Their
performance should be assessed and compared.

Second, in the case of multiple right-hand sides, the computations taking place
during the BLR solution phase are very similar to those of the factorization phase.
Indeed, both the forward elimination and backward substitution require low-rank
products to be summed together. This is illustrated in Figure 9.1 in the case of
the forward elimination; the same holds for the backward substitution. As a conse-
quence, three key algorithmic properties analyzed in the context of the factorization
also apply to the solution phase:

• The left-looking pattern minimizes memory transfers: we have explained in
Section 5.3.3 that the left-looking factorization leads to a lower volume of
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memory transfers due to the fact that it tends to access more often low-rank
blocks than full-rank ones, whereas the right-looking factorization has the
opposite behavior. In Figure 9.1, a similar effect takes place due to the fact
that the LU factors are compressed but the right-hand side is not. The anal-
ysis is somewhat more complex because part of the RHS is still accessed at
each step regardless of the pattern. It is likely that the left-looking pattern
also reduces the volume of memory transfers, although this should be for-
mally proved. Note that this observation is even more critical than for the
factorization, because the solution phase is often more memory-bound.

• In left-looking, the low-rank updates can be accumulated to increase the gran-
ularity of the outer products: all inner products take the form of a block from
the LU factors multiplied by a RHS block; if the factors block is low-rank,
then the result is also low-rank and can thus be accumulated with low-rank
blocks before being decompressed into the RHS. Again, due to the solution
phase being very memory-bound, the accumulation is likely to be even more
critical than for the factorization.

• In left-looking, the low-rank updates can be recompressed to reduce the cost
of the outer products: since the low-rank updates can be accumulated, they
can also be recompressed. The strategies discussed in Chapter 3 also apply.
Contrarily to the factorization (cf. Section 4.5), the recompression does not
asymptotically reduce the number of operations for the solution phase. In-
deed, the inner products, whose cost is left unchanged by the recompression,
already represent half of the total computations. Thus, even though the com-
plexity of the solution phase remains asymptotically the same, its cost can
potentially be divided by at most a factor 2.

L

U X /B

(a) BLR forward elimination (right-looking).

L

U X /B

(b) BLR forward elimination (left-looking).

Figure 9.1 – BLR right- and left-looking frontal forward elimination.

Finally, the complexity of the solution phase deserves to be further studied. In
particular, consider the ratio between the total number of operations and the num-
ber of operations performed in any given branch of the assembly tree. It has been
proved (Amestoy, L’Excellent, and Moreau, 2017g) that this ratio is asymptotically
larger for the solution phase than for the factorization, due to the surface to volume
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effect. More interestingly, it is also asymptotically larger in BLR than in FR; this is
because the fronts at the top of the tree compress more than those at lower levels.
This observation has in particular the following two crucial consequences. First,
the theoretical speedup resulting from tree parallelism (which can be computed as
the total number of flops over the flops performed on the critical path) is higher
in BLR than in FR, and is also higher for the solution phase with respect to the
factorization phase. This means that tree parallelism will be of the utmost impor-
tance in the BLR solution phase, even more so than for the factorization (as it was
shown in Chapter 5). Second, for several applications, including the two presented
in Chapter 7, the right-hand sides are sparse. Recent work based on the approach
described by Gilbert and Liu (1993) aims at exploiting the sparsity of the RHS to
reduce the cost of the solution phase (Amestoy, Duff, L’Excellent, and Rouet, 2015f;
Amestoy, L’Excellent, and Moreau, 2017f). This often amounts to pruning the as-
sembly tree to only traverse a constant number of branches. Therefore, one may
expect the gains due to the exploitation of sparse RHS to be asymptotically larger
in BLR than in FR.

9.3 Memory consumption of the BLR solver
In this section, we briefly comment on the memory consumption and scalability

of the BLR solver with respect to the FR one.
To illustrate the behavior of the BLR solver, we consider the factorization of

matrix 7Hz (matrix ID 2, cf. Table 1.3) on an increasing number of MPI processes,
from 1 to 96. We analyze in Table 9.3 the total memory consumption (average
per process and maximum over all processes) of the FR and BLR factorizations;
in the BLR case, we compare the full-rank CB (CBFR) and low-rank CB (CBLR)
strategies described in Section 2.5, which control whether the contribution block is
also compressed.

number of Total memory consumption Active
processes FR BLR (CBFR) BLR (CBLR) front

avg. max. avg. max. avg. max.

1 216.8 216.8 85.5 85.5 72.9 72.9 10.7
2 112.2 112.2 52.6 54.6 42.7 44.9 10.7
4 60.0 61.5 32.3 33.2 27.7 28.9 10.7
8 33.0 34.3 18.0 19.6 16.6 17.8 6.2

16 18.5 20.3 12.3 15.3 10.4 11.9 5.1
32 9.2 10.3 5.9 8.4 4.8 8.0 1.8
64 5.4 6.3 4.4 5.3 3.9 5.0 1.5
96 3.8 4.4 3.2 4.3 2.7 4.4 0.9

Table 9.3 – Memory consumption analysis of the FR and BLR factorizations. All
values are provided in GB. Experiments are performed on brunch.

We analyze the average total memory consumption per process (fourth to sixth
columns of Table 9.3). The total storage for the LU factors is equal to 205.0 GB in
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FR and 57.3 GB in BLR. The factors are distributed over the processes and their
storage per process scales very well, both in FR and BLR. Unlike the factors, the
scalability of the total memory is not ideal. This comes from the fact that the total
memory consists of two parts, the factors and the active memory, as described in
Section 1.3.2.5. The active memory is known to scale much less than the factors,
and therefore limits the total memory efficiency.
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Figure 9.2 – Memory efficiency of the FR, BLR CBFR, and BLR CBLR factorizations.

We illustrate this by plotting the total memory efficiency of the FR, BLR CBFR,
and BLR CBLR factorizations in Figure 9.2. The FR solver achieves a satisfying
memory efficiency, which gradually lowers as the number of processes increases,
achieving around 59% on 96 processes. However, in BLR CBFR, the factors are com-
pressed and therefore the active memory has a much higher relative weight with
respect to the total. The BLR CBFR factorization thus inherits the poor memory
scalability of the active memory, achieving a significantly lower memory efficiency
compared to the FR solver (e.g., 28% on 96 processes).

To overcome this issue, we must thus also reduce the active memory. The ac-
tive memory is itself composed of two parts: the contribution blocks, and the active
front. Therefore, the memory consumption can be reduced by compressing the CB
(CBLR strategy). As reported in Table 9.3, the absolute memory gain obtained by
compressing the CB is significant. Unfortunately, compressing the CB is not enough
to improve the memory efficiency, as shown in Figure 9.2. This is because on large
number of processes, the active and thus total memory is actually dominated by
the storage for the active front. This comes from the fact that, in the context of
the non fully-structured BLR factorization, the active front is allocated in full-rank
before being compressed. To overcome this issue, three solutions can be consid-
ered. First, we could simply switch to a fully-structured factorization, although we
would have to perform slow and relatively complex low-rank assembly operations.
Second, memory-aware strategies (Agullo et al., 2016) could be used to map the crit-
ical active fronts on all available processes, at the expense of some serializations.
Third, and perhaps most promisingly, we could interlace the allocation, assembly,
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and compression of the active front panel by panel. This can be hard to achieve
especially in a distributed-memory parallel code with a very asynchronous execu-
tion behavior. Therefore, novel algorithms must likely be developed and studied to
make sure parallelism is not hampered. As we illustrate in next section, the active
front storage is the next memory bottleneck to be addressed.

9.4 Results on very large problems
We conclude this chapter by illustrating the future challenges for large-scale

BLR solvers by reporting results on our largest problems coming from the three
applications described in Section 1.5.2.2: matrices 15Hz and 20Hz (seismic mod-
eling, SEISCOPE), D5 (electromagnetic modeling, EMGS), and perf008ar2 (struc-
tural mechanics, EDF). The full-rank statistics of these matrices are reported in
Table 9.4.

matrix arith. fact. type n nnz flops factor size

15Hz c LU 58.0M 1523M 29.6 PF 3.7 TB
20Hz c LU 129.9M 3432M 150.0 PF 11.0 TB
D5 z LDLT 90.1M 1168M 29.2 PF 6.1 TB
perf008ar2 d LDLT 31.1M 1267M 24.1 PF 2.1 TB

Table 9.4 – Set of very large problems: full-rank statistics.

In Table 9.5, we provide the low-rank statistics obtained by running the BLR
factorization with (CBLR) and without (CBFR) compression of the CB. On these very
large problems, both the factors and CB achieve a very high compression rate; the
flops for the factorization are also greatly reduced with respect to the full-rank
flop count. In particular, it is interesting to compare this compression to that of
the smaller matrices of the same problem class that were studied in the previous
chapters. For example, on matrix 10Hz, the flops for the BLR factorization were
7.5% of the FR flops (cf. Table 7.3); on matrices 15Hz and 20Hz, that value drops to
3.7% and 2.4%, respectively.

matrix ε factor size CB compr. flops (×1015)
rate CBFR CBLR

15Hz 10−3 719 GB (19.5%) 16.9% 1.11 (3.7%) 1.29 (4.4%)
20Hz 10−3 1831 GB (16.7%) 4.7% 3.57 (2.4%) 3.87 (2.6%)
D5 10−7 1008 GB (16.4%) 14.6% 0.33 (1.1%) 0.38 (1.3%)
perf008ar2 10−9 571 GB (26.8%) 27.7% 0.94 (3.9%) 1.01 (4.2%)

Table 9.5 – Set of very large problems: low-rank statistics. Percentage of the full-
rank metric is provided between parenthesis.

The high compression rate allows for considerable savings in memory, as ana-
lyzed in Table 9.6. According to the predictions of the analysis phase, the sequen-
tial shared-memory FR factorization would require 4.7 TB, 8.8 TB, and 3.2 TB for
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matrices 15Hz, D5, and perf008ar2, respectively. Matrix 15Hz would also require
120 GB per process on 90×10 cores, while matrix 20Hz would require 120 GB per
process on 200×12 cores. These values largely surpass the available memory on
brunch and eosmesca (shared-memory, 1.5 and 2 TB, respectively), and eos and
occigen(distributed-memory, 64 GB and 128 GB per node, respectively), and there-
fore the FR factorization runs out of memory (OOM) in all cases.

FR BLR (CBFR) BLR (CBLR) Active
front

15Hz 4660∗ (OOM) 1208 971 185
1 process D5 7663∗ (OOM) OOM∗∗ 1628 549

perf008ar2 3187∗ (OOM) 1156 975 525

avg. max. avg. max.
90 processes 15Hz 79∗ 91∗ OOM∗∗ 37 53 18
200 processes 20Hz 125∗ 151∗ OOM∗∗ 54 81 27

Table 9.6 – Very large problems: total memory consumption (average per process
and maximum). All values are provided in GB. In shared-memory, matrices 15Hz
and perf008ar2 were run on brunch while matrix D5 was run on eosmesca. In
distributed-memory, matrices 15Hz and 20Hz were run on eos and occigen, re-
spectively. ∗ estimated memory at the analysis; the experiment ran out of memory
(OOM) during the factorization. ∗∗ ran out of memory; estimated memory required
cannot be predicted at the analysis due to low-rank compression.

Thanks to the low-rank compression, the memory requirements for the prob-
lems to fit in-core are greatly reduced. Compressing the CB also significantly re-
duces the total memory, and is even necessary in the case of matrices 15Hz and
20Hz on 900 and 2400 cores, respectively. Matrix 15Hz on 90 processes achieves
an average and maximum memory efficiency of 29% and 20%, respectively. These
relatively low values illustrate the issue discussed in Section 9.3: the active front
storage becomes dominant on large number of processes, requiring 18 GB out of
53 GB (compared to 185 out of 971 GB on 1 process).

Finally, in Table 9.7, we analyze the computational cost of the BLR CBLR solver.
We measure the elapsed time in the analysis (FR analysis + overhead for computing
the BLR clustering), factorization, and solution phases.

On these very large problems, the analysis time is significant. For matrix 15Hz,
it remains limited in shared-memory (less than 8% of the factorization time), but be-
comes important in distributed-memory (51% of the factorization time). For matri-
ces D5 and perf008ar2, the analysis time is also significant even in shared-memory
(42% and 53% of the factorization time, respectively). This illustrates the neces-
sity to investigate strategies to accelerate the analysis phase, as mentioned in Sec-
tion 9.1.

The solution phase time is given for one RHS. For matrix 15Hz, it has been
computed based on a run with 116 sparse RHS, while for matrix perf008ar2 it has
been computed with 1 dense RHS, to fit the typical use in these applications. This
explains the performance difference because BLAS-3 operations can be used in the
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#processes matrix FR BLR factorization solution
×#threads analysis clustering

15Hz 337 82 5392 1.2/RHS∗

1×48 D5 3328 107 8083 N/A
perf008ar2 1777 190 3699 71.4

90×10 15Hz 337 100 856 0.2/RHS∗

200×12 20Hz 921 216 2641 N/A

Table 9.7 – Very large problems: elapsed time in seconds for the BLR CBLR
solver. In shared-memory, the matrices were run on brunch using 48 threads.
In distributed-memory, matrices 15Hz and 20Hz were run on eos and occigen, re-
spectively, using 900 and 2400 cores, respectively. ∗ time per RHS computed with a
run with 116 RHS.

former case. The time for the solution with one RHS is relatively small with respect
to the factorization phase. However, in the case of matrix 15Hz, the application
(seismic modeling) requires to solve simultaneously a large number of RHS (several
thousands); the total solution time can therefore be significant or even dominant
compared to the factorization time, even on very large problems. This remark also
applies to matrices 20Hz and D5. This has been illustrated on smaller size problems
in Chapter 7.

Thanks to the BLR feature, we have thus been able to solve in-core very large
problems at the accuracy required by the application with a very significant reduc-
tion of the memory footprint and of the number of operations required to factor the
matrices.
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Conclusion

Research contributions
In this thesis, we have investigated the suitability of Block Low-Rank solvers for

reducing the cost of sparse multifrontal solvers without sacrificing their robustness
and ease of use.

We first surveyed in Chapter 1 the existing low-rank formats that have been
proposed in the literature to reduce the complexity of sparse direct solvers. We then
focused on the BLR format, whose simplicity and flexibility make it easy to use in
a general purpose, algebraic multifrontal solver allowing for numerical pivoting.

In Chapter 2, we have described the standard BLR factorization from Amestoy
et al. (2015a), and introduced several variants to improve it. First, we proposed a
variant which performs the compression earlier to achieve a higher reduction of the
number of operations (Section 2.3.1). However, it is not straightforward to perform
numerical pivoting with this variant; we designed an algorithm to make it possi-
ble by taking into account the low-rank blocks (Section 2.3.2). Then, we proposed
an algorithm to reduce the cost of applying the low-rank updates by accumulating
and recompressing them (Section 2.6). We presented in Chapter 3 several strate-
gies to recompress these low-rank updates and performed a detailed analysis and
comparison.

We have investigated the theoretical complexity of the BLR factorization, that
was previously unknown, in Chapter 4. Simply applying the work done on hierar-
chical matrices does not lead to a satisfying result, so we extended it to prove that
the complexity of the BLR factorization is asymptotically lower than that of the
full-rank solver. For a three-dimensional problem, we computed that the factor size
complexity of the multifrontal factorization is reduced from O (n4/3) to O (n logn),
while the number of operations is reduced from O (n2) to O (n5/3) for the standard
BLR variant. Moreover, the improved BLR variants can further reduce the flop
complexity to O (n4/3). Theoretical complexity reduction results were also obtained
for two-dimensional problems. We provided an experimental study with numerical
results to support these complexity bounds.

After giving the theoretical justification that BLR solvers deserve to be consid-
ered because they can achieve low complexity, we turned to the problem of trans-
lating this low complexity into actual performance gains on modern architectures.
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We first presented in Chapter 5 a multithreaded BLR factorization, and an-
alyzed its performance in shared-memory multicore environments on a large set
of real-life problems. We showed that the standard BLR variant does not fully
translate the complexity reduction into time gains; tree-based multithreading, a
left-looking factorization, and the algorithmic properties of the BLR variants are
all critical to efficiently exploit multicore systems.

We then presented the distributed-memory BLR factorization in Chapter 6. We
analyzed that it suffers from a high relative weight of communications and load
unbalance. We showed both theoretically and experimentally that compressing the
contribution block of the frontal matrices can greatly reduce the volume of commu-
nications. Moreover, even though compressing the CB represents an overhead cost,
it can potentially also improve the time for factorization. We also revisited our map-
ping and splitting strategies to improve the load balance of the BLR factorization.

Throughout this thesis, we have illustrated the use of BLR solvers in three in-
dustrial applications coming from geosciences (seismic and electromagnetic model-
ing) and structural mechanics, as well as on numerous other matrices coming from
a variety of real-life applications. In Chapter 7, we have provided a detailed case-
study of the seismic and electromagnetic applications, which both rely on frequency-
domain inversion. We have shown that sparse direct solvers, coupled with BLR
acceleration, can be competitive with iterative solvers or time-domain approaches,
for frequencies up to 10Hz (problems of order few tens of millions).

In Chapter 8, we have compared our BLR solver with the STRUMPACK (Ghy-
sels et al., 2017) solver, based on the HSS format. Our results suggest that, among
low-rank approximated direct solvers, BLR solvers work best as accurate, high-
precision solvers, while HSS solvers tend to favor more aggressive approximations
to build fast preconditioners. We hope that this comparison can pave the way to-
wards a better understanding of the practical behavior and the differences between
low-rank formats.

Finally, in Chapter 9, we have discussed the future challenges that await BLR
solvers for large-scale systems and applications. Due to the reduction of the cost
of the factorization, the analysis and solution phases will become of growing im-
portance; moreover, to solve increasingly large problems, the memory efficiency of
BLR solvers will be critical. We have proposed some ways to tackle these chal-
lenges, and illustrated them by reporting results on very large problems (up to 130
million unknowns).

Software contributions
The algorithms presented throughout this thesis have been implemented within

the MUMPS solver. The standard BLR factorization algorithm was released to the
public in MUMPS 5.1. We hope that the improved BLR variants will follow soon
once they are mature and robust enough to be publicly exposed.

The simplicity of the BLR format has made it possible to integrate it within a
general purpose solver such as MUMPS. In particular, the numerous features of
MUMPS, such as out-of-core (Agullo et al., 2010) and memory-aware (Agullo et al.,
2016) factorizations, numerical pivoting, dynamic scheduling, asynchronism (Sid-
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Lakhdar, 2014), or the exploitation of sparse right-hand sides (Amestoy et al.,
2015f; Amestoy et al., 2017f), can all be coupled with BLR approximations.

We emphasize that the ideas presented in this work do not rely on a particular
implementation of the multifrontal method, and could therefore be applied to any
multifrontal (or even supernodal, see next section) solver.

Perspectives
We briefly discuss remaining challenges and open questions that could be the

object of further research.
We have already discussed in Chapter 9 some aspects of increasing importance

for large-scale systems and applications: the performance of the analysis and solu-
tion phases, and the memory efficiency of BLR solvers.

Out of all the BLR variants presented in this thesis, two would need to be fur-
ther studied: the offline compression FSUC variant (Section 2.1), and the CUFS
variant (Section 2.4). We believe that the FSUC variant, as simple as it is, may
be of interest in some applications with many right-hand sides. Moreover, as men-
tioned in Section 6.3.2, the CUFS variant is likely to greatly improve the perfor-
mance of the factorization in parallel settings where the contribution block of the
frontal matrices is compressed.

A rigorous error analysis of BLR solvers should be performed to better under-
stand the effect of BLR approximations on the accuracy and stability of the solver
and, in particular, answer the following four open questions. First, we have ex-
perimentally observed that the BLR solver generally yields a scaled residual of
the same order as the low-rank threshold ε. It is unclear whether this can be
proved theoretically. Second, because the error analysis in the hierarchical liter-
ature (Bebendorf, 2008) is based on block-wise norm estimates, the accuracy of the
low-rank approximation depends on the sparsity constant, which in turn, in the
BLR case, depends on the size of the problem (cf. Chapter 4). BLR solvers could
thus become unstable as problems get larger and larger. Third, the BLR variants
achieve a higher compression rate, which can potentially degrade the solution ac-
curacy; this effect should be formally quantified. Finally, the use of an absolute
low-rank threshold implies that the matrix is scaled before compressing it; the ef-
fect of the scaling choice should be studied.

The next bottleneck of the BLR factorization to be tackled is the compression
cost. Indeed, as mentioned in Section 5.2, the cost of the Compress step is not neg-
ligible in terms of time, especially after all the improvements proposed in this thesis
which have reduced the cost of the other steps. We have focused on the truncated
QR factorization with column pivoting, but other kernels should be investigated.
In particular, randomized approaches (Halko et al., 2011) attract growing interest.
One difficulty for BLR solvers will be that the blocks are relatively small and of
unknown rank; in this case, fixed-accuracy randomized sampling on small blocks
tends to be less efficient.

A possible way to overcome this latter issue, and more generally to improve
the performance of the low-rank operations, would be to use batched BLAS op-
erations (Haidar, Dong, Luszczek, Tomov, and Dongarra, 2015), or specialized li-
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braries for low granularity computations, such as LIBXSMM (Heinecke, Henry,
Hutchinson, and Pabst, 2016) or BLASFEO (Frison, Kouzoupis, Zanelli, and Diehl,
2017). These technologies are especially relevant when hardware accelerators such
as GPUs or MICs are used. In this context, the algorithms we have designed to
improve the arithmetic intensity of BLR solvers will be even more critical.

A task-based multithreading could further improve the performance of the BLR
factorization on multicores (Chapter 5). This approach, which has been described in
the dense case in, for example, Anton et al. (2016) and Sergent, Goudin, Thibault,
and Aumage (2016), would allow for a pipelining of the successive steps of the fac-
torization as opposed to the fork-join approach hereby presented. However, the
taskification of the BLR factorization is not straightforward as it raises two ques-
tions: how to control the memory consumption; and how much of the gain due to the
left-looking factorization, which also makes the accumulation and recompression of
low-rank updates possible, can be preserved?

Distributed-memory BLR solvers pose many challenges yet to be addressed. The
ideas we have proposed in Section 6.4 to improve the load balance of the BLR fac-
torization should be formalized and generalized. Robust mapping and scheduling
strategies should be specially designed to account for the low-rank compression.
Moreover, the influence of the splitting on the quality of the BLR clustering should
also be further investigated. Finally, as the number of processes increases, synchro-
nizations will become more expensive. Recent work by Sid-Lakhdar (2014) aiming
to avoid such synchronizations in the full-rank case should be extended to the BLR
case, for which it will certainly be even more critical.

As mentioned in the previous section, our BLR solver can benefit from a number
of recent advances in sparse direct solvers that have been implemented in MUMPS.
Some of them would deserve a dedicated study in conjunction with BLR approxima-
tions. For example, among the different strategies to reduce the memory consump-
tion of sparse direct solvers, we could investigate how to find the best compromise
between out-of-core, memory-aware, and low-rank approximation approaches.

Many of the algorithms proposed in this thesis can also be applied to supernodal
solvers; however, some challenges specific to the supernodal approach arise. For ex-
ample, Pichon, Darve, Faverge, Ramet, and Roman (2017) propose two methods to
accelerate the right-looking supernodal solver PaStiX, which are based on the non
fully-structured FCSU and fully-structured C;FSU variants. Unlike multifrontal
solvers, right-looking supernodal solvers based on a non fully-structured factoriza-
tion do not achieve memory gains (because all supernodes must be stored in full-
rank, rather than just the active fronts); on the other hand, a fully-structured fac-
torization suffers from the inefficient low-rank assembly operations, which require
padding and recompressing low-rank matrices (cf. Section 1.4.3.2). The strategies
we developed in Chapter 3 to recompress low-rank updates could be extended to
this context.

Even though this thesis has focused on the BLR format, we believe that some of
the ideas proposed in this thesis could be applied to hierarchical formats. For ex-
ample, the algorithm to factorize a low-rank panel with threshold partial pivoting
(Section 2.3.2); the accumulation and recompression of low-rank matrices (Chap-
ter 3); and the communication and load balance analysis in distributed-memory
settings (Sections 6.3 and 6.4) are all independent from the low-rank format used.
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Moreover, we believe that it is currently not clear which low-rank format is best
suited for which kind of system and application; we intend to pursue the compari-
son of the MUMPS and STRUMPACK solvers to improve the understanding of the
differences between low-rank formats.

More generally, we believe that, when considering the factorization of a dense
matrix of order m, there is a compromise to be found between the O (m2) monolevel
BLR complexity and the optimal O (m) hierarchical complexity. In particular, we
are working on a strategy to set the number of levels in the block hierarchy to some
constant value in order to achieve a desired O (mα) complexity, with 1≤α≤ 2. This
can be especially relevant for 3D sparse direct solvers, for which a dense complexity
lower than O (m1.5) already leads to an optimal sparse O (n) complexity. By strik-
ing a balance between the simplicity of the BLR format and the low complexity of
the hierarchical ones, this multilevel format will bridge the gap between BLR and
hierarchical matrices.
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to the thesis

Some of the work presented in this thesis has been the object of communica-
tions to the scientific community, as reported below. We have published the con-
tent of Chapter 4 in the SIAM Journal of Scientific Computing (Amestoy, But-
tari, L’Excellent, and Mary, 2017d). The applicative case-studies presented in Sec-
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