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A B S T R A C T

The sodium-cooled fast nuclear reactor (SFR) is one of the most promising designs of the fourth generation (Gen
IV) nuclear power reactors. Sodium-gas heat exchangers (SGHE) using nitrogen is being investigated as an
alternative to improve operational safety associated with the use of steam Rankine cycles. This alternative
eliminates the potential risk of chemical reactions. It is known that cracks inside an SGHE can cause the acci-
dental leakage of nitrogen into the sodium-side. Due to the pressure difference between the secondary and
tertiary loops, this nitrogen jet is therefore under-expanded. When the nitrogen leak is strong enough to flush the
liquid sodium outside the SGHE channel, the nitrogen jet can be considered as single-phase. In this context, this
work focuses on the influence of geometrical parameters of cracks (size, cross-section shape, transverse locali-
zation and inclination angle) on the impinging under-expanded nitrogen jet and its shock-wave system. A nu-
merical study of impinging under-expanded nitrogen jet has been carried out using large eddy simulation (LES)
technique. We applied a stagnation pressure upstream of the crack of 180 bar while the nozzle pressure ratio
(NPR) ranged from 6.0 to 9.2. We were able to identify the link between the nozzle geometry and the Mach disk
diameter and its localization. The vorticity distribution at the nozzle can be used to explain the structure of the
jets and the entrainment. The central cross-section of the gas jet tends to turn 45° and 90° for square and
rectangular cross-section nozzles respectively. The Taylor-Görtler instability is enhanced with a reduction in the
nozzle diameter. These instabilities are also increased with square, rectangular and inclined nozzles.

1. Introduction

In sodium cooled fast nuclear reactors (SFRs), equipped with a
conventional energy conversion system based on a Rankine cycle with
steam, a chemical reaction between sodium and water can occur. In
order to avoid this potential event and its deleterious consequences, we
decided to investigate innovative energy conversion systems based on a
Brayton cycle. This required imagining several types of heat exchangers
between the secondary liquid sodium loop and the tertiary inert gas
loop. Firstly, within the framework of the Generation IV forum (GIF),
the supercritical CO2 Brayton cycle is currently being investigated due
to its very appealing thermodynamic efficiency (i.e. up to 44%) com
pared with the Rankine cycle (up to 42%). The stability of the whole
energy conversion systems based on super critical CO2 has to be de
monstrated. Moreover, if a leak occurs, CO2 reacts chemically with
sodium through an exothermic reaction leading to solid (sodium car
bonate) and gaseous reaction products, depending mainly on the local

temperature conditions (Vivaldi, 2013; Gicquel, 2010). Nevertheless,
the kinetics of interaction are somewhat slower than the sodium water
interaction kinetics, thus avoiding any wastage effects (Roger et al.,
2014). The sodium gas heat exchanger (SGHE) using nitrogen as inert
gas for the secondary loop is also an alternative to a conventional steam
Rankine cycle in the short term as it is possible to extract the heat,
despite its lower thermodynamic efficiency (up to 38%).

The geometrical description of SGHE is shown in Fig. 1. As we can
see in a SGHE module in Fig. 1a, the compact patches form the channels
for sodium, which is flowing from left right. While the nitrogen flow
crisscrosses the sodium flow, see in Fig. 1b. In addition, the height of
the sodium channel is 3 mm where the thickness of the channel is 1 mm.
In SGHE channels, the pressures of the tertiary nitrogen loop and the
secondary sodium loop are 180 bar and 5 bar respectively, leading to a
pressure ratio of 36. The temperatures of two loops are around 753 K
and 773 K respectively. A shell crack can accidentally lead to the for
mation of an under expanded nitrogen jet into the sodium. In this case,
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the safety analysis aims at detecting the leak and its impact parameters.
Furthermore, according to a numerical study by Vivaldi (2013), it ap
proves that the nitrogen leakage can be strong enough to flush the li
quid sodium outside of the channel. In the case in point, a steady state
under expanded nitrogen jet into a sodium channel can be simulated by
a single phase model instead of a two phases model. This means that
the sodium side is also initialized with nitrogen. This simplification
shortens the computation time. Our work sets out to identify the in
fluence of the geometrical parameters of cracks (size, cross section
shape, transverse localization and inclination angle) on the impinging
under expanded nitrogen jet into nitrogen and its wave system.

An under expanded jet may be formed when a fluid is injected
through a crack of a given diameter. We consider a case where the crack
exit pressure Pe is greater than the ambient pressure ∞P . The single
phase free jet structure mainly depends on the nozzle pressure ratio
(NPR) (Love et al., 1959; Cumber et al., 1994; Cumber et al., 1995) and
the jet pressure ratio (JPR) (Dam et al., 1998; Crist et al., 1966). The
NPR is defined as the ratio between the static pressure at the nozzle exit
Pe and the ambient pressure ∞P (see Eq. (1a)). The JPR is the ratio

between the stagnation pressure Pa and the ambient pressure ∞P , (see
Eq. (1b)). If the gas flow at the nozzle exit is supersonic, the jet struc
ture therefore also depends on the Mach number at the nozzle exit Me
(Antsupov, 1974; Antsupov et al., 1970; Lewis and Carlson, 1964). The
nozzle geometry (convergent, divergent or convergent divergent
nozzle) and the specific heat ratio also influence the main character
istics of the jet (Hatanaka and Saito, 2012; Addy, 1981).
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The structure of free gaseous jets is classified according to the NPR
(Cumber et al., 1995):

1. For < <1.1 NPR 2.0, the jet is slightly under expanded and has a
diamond structure.

2. For < <2.1 NPR 4.5, the jet is moderately under expanded and

(a) An SGHE module. (b) Cross-section configuration of an SGHE channel.

Fig. 1. Configuration of sodium-gas heat exchangers (SGHE).

Fig. 2. General structure of under-expanded gas jets. 1: Expanding shock waves; 2: barrel shock; 3: Mach disk; 4: reflected shock; 5: subsonic core; 6: slip line; 7:
external boundary of shear layer; 8: supersonic mixing of Mach disk; LC1: length of the first shock cell; LC2: length of the second shock cell; XDM : Mach disk position;
dDM : Mach disk diameter; dN : nozzle diameter; H: distance between the Mach disk localization and the target.



exhibits a supersonic zone delimited axially by a Mach disk and
radially by a barrel shock. This incident shock reflects in a new
oblique shock called a reflected shock, facing the outer part of the
jet (see Fig. 2a). At the nozzle exit, a Prandtl Meyer expansion fan
expands the fluid downstream. The expansion occurs from the lips of
the crack up to the external surface of the shear layer. This surface
corresponds to the jet boundary. The zone delimited by a white
dashed line downstream of the Mach disk is subsonic, while the flow
is supersonic upstream of the Mach disk.

3. For < <4.5 NPR 7, the jet is highly under expanded, and a second
shock cell may form. The shape of this shock can be straight or not.
The subsonic zone is surrounded by the Mach disk mixing zone
delimited by the slip line.

4. For <NPR 7, owing to the flowing shock cells downstream of the
Mach disk, the Mach disk diameter is smaller or near to the nozzle
diameter.

5. For >NPR 7, the jet is extremely under expanded and only one
normal shock (or one shock cell) is formed, because the first Mach
disk diameter is too large to form the second shock cell. Therefore,
the Mach disk diameter is higher than the nozzle diameter.

The NPR ranges between 6.0 and 9.2 in this study, thus the jet struc
tures in last two classifications are observed.

Due to the presence of channel walls in the downstream section, the
study therefore focuses on an impinging jet. Its structure mainly de
pends on the NPR, the target inclination and the shape of the target
(Kudoh et al., 2013; Donalson and Snedeker, 1971; Donalson et al.,
1971; Dauptain et al., 2010; Dauptain et al., 2012). It is characterized
by three different regimes (Donalson and Snedeker, 1971): free jet,
impingement and wall jet (see Fig. 2b). In the free jet regime, the wall
boundary does not affect the jet structure.

Moreover, the vorticity distribution in the shear layer explains the
structure of the jet and the entrainment (Totoda and Hiramoto, 2006;
Heeb et al., 2014; Liepman and Gharib, 1992). The study of He et al.
(2015) describes the characteristics of a supersonic free jet into a liquid
through a rectangular nozzle. It is more challenging to observe the
Taylor Görtler instability in a shear layer between the nozzle and Mach
disk (Arnette et al., 1993; Zapryagaev et al., 2010). In a cross section,
the Taylor Görtler vortices are arranged in counter rotating pairs
(Görtler, 1954) so that the total pressure distribution looks like a flower
petals arrangement (Zapryagaev et al., 2010) (see Fig. 3). Downstream,
the development and the merging of these vortices lead to a decrease in
their number (Zapryagaev et al., 2010). The Görtler number is the ratio

between the centrifugal force and the viscous force in the shear layer,
defined as:

⎜ ⎟= ⎛
⎝

⎞
⎠

G δυ
ν

δ
ς

.
0.5

(2)

where δ is the momentum thickness, υ the axial velocity, ν the kinetic
viscosity and ς the curvature radius. The Taylor Görtler instability can
lead to the formation of vortices for >G 0.3.

2. Numerical model

The vast literature presenting RANS computations for flows with a
high complexity (stemming from either the geometry or the physical
phenomena) shows that they are quite sensitive to model parameters.
There are usually quite a few constants in RANS models that require
tuning to the flow topology (open jet versus internal flows, non reacting
versus reacting, etc.). This is the reason for the indisputable success of
LES for most practical applications. Recent studies have shown that the
LES framework is suitable for the simulation of compressible supersonic
impinging jets (Vuorinen et al., 2013; Dauptain et al., 2010; Dauptain
et al., 2012). Our work performed with the AVBP code. This code is
jointly developed by CERFACS and IFP EN. It solves the compressible
Navier Stokes equations on unstructured grids. Integration is performed
in the cell vertex formalism with a two step Taylor Galerkin (Colin and
Rudgyard, 1993) scheme called TTG4A (Colin and Rudgyard, 2000).
This scheme is fourth order in time and third order in space. Closure of
the subgrid stress tensor in the momentum equation is performed with
the wall adapting linear eddy (WALE) model (Nicoud and Ducros,
1999). An eddy viscosity approach is chosen for the thermal diffusion
using a constant Prandtl number, =Pr 0.6t . The TTG4A has very low
dissipation and dispersion levels, which is a prerequisite for LES. The
downside is its relative lack of robustness in the regions of steep gra
dients, namely the shocks. Stability is achieved through the addition of
bulk viscosity in the regions where numerical errors are detected (Cook
and Cabot, 2005).

During operating conditions without defects, the nitrogen side has a
pressure of 180 bar and a temperature of 753 K. The sodium side has a
pressure of 5 bar and a temperature of 773 K. In order to estimate
leakage behaviour, a system mimicking a single SGHE gas channel is
modelled by a high pressure reservoir (initial conditions: nitrogen
pressure of 180 bar, temperature of 773 K). It feeds one SGHE sodium
channel filled by nitrogen through a crack. It is assumed that the
equilibrium (pressure, temperature) is achieved between the sodium
inside pool (manifold) and the nitrogen inside the leaking channel
normally devoted to sodium. The initial conditions for the nitrogen in
this channel are: a pressure of 5 bar and a temperature of 753 K.

The dimensions of the channel are: 1 m length (Y direction), 6 mm
height (Z direction) and 3mm width (X direction). The computational
domain is shown in Fig. 4. The wall thickness is 1 mm. The general
objective of our work is to identify the effect of crack geometry (size,
cross section, location and angle) on the development of strongly
under expanded gas jets corresponding to a nitrogen leak in an SGHE
channel. A crack in this wall is modelled with different cross section
shapes: round, rectangular and square. The reference case, denoted D5,
consists in a round cross section nozzle with a diameter of 0.5mm,
located at the centre of the channel. The influence of the nozzle size is
studied by comparing round cross section nozzles of different diameters
(0.28 mm and 1mm, denoted D28 and D1, respectively) and the re
ference case D5. Configurations with rectangular ( ×1.5 0.3 mm) and
square ( ×0.5 0.5 mm) cross sections (denoted SR and SC, respectively)
were chosen to study the influence of the crack shape. We learned that
the Z15 case tends to be off centred by 1.5mm on the Y axis from the
D5 case. And the Y45 case is rotated by °45 around the +Y axis from the
D5 case. All cases are summarised in Table 1.

Additionally, the present simulations require 3500 14,400 CPU

Fig. 3. Schematic of (a) streamlines and (b) distribution of total pressure in the
cross section of an under-expanded gaseous jet near the nozzle (Zapryagaev
et al., 2010).



hours for one ms, which means that return times are typically lower
than one day for parallel computations on 100 1000 CPUs. For all
computations, the mesh resolution is 20 μm in the nozzle and the su
personic jet. This is similar to the work of Dauptain et al. (2010, 2012)
who showed good predictions of steady and unsteady features of the
jets.

3. Results

3.1. Flow at the nozzle exit

This subsection analyses the differences of the gas flow at the nozzle
outlet with respect to its shape. The features of under expanded gas jet
are mainly governed by the JPR, the NPR and the Mach number at the
nozzle exit as discussed in Section 1. The mean Mach number and
central Mach number at the nozzle exit are respectively denoted Me and
Mj. The values obtained from the numerical simulation of these vari
ables are shown in Table 1. Me and Mj values are greater than 1, which
is attributed to a Fanno flow effect. The limited length of the straight
orifice involves that the streamlines take a converging/diverging path.
It results that the flow accelerates to the supersonic regime.

The theoretical pressure at the nozzle exit can be calculated under
the assumption of the incompressible adiabatic flow, see in Eq. (3). For
the D5 case, =P 180a bar and =M 1.152e , the theoretical value is

=P 92.6e bar, thus the NPR is 18.85. For all the cases in the present
work, the maximum NPR observed in the simulation is 9.2 (see in
Table 1). The maximum value of Pe ( × ∞PNPR ) is about 52 bar. This
lower pressure is due to the compressibility of gas flow. The Y45 case
has the weakest NPR; it drops by 27% compared with the D5 case. This
suggests that the nozzle length is the most significant parameters for the
pressure drop at the nozzle exit. Comparison of the results of the three

round cross section nozzles shows that the pressure drop increases with
the decrease in the nozzle diameter. The NPR difference between the
square (or rectangular) cross section nozzle and the D5 case is about
2.0%. This indicates that the influence of corners in the crack cross
section on the pressure drop can be neglected.
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The Fanno flow effect and the pressure drop influence the structure of
the under expanded jet development in the channel. The viscous force
inside the nozzle influences the NPR. This latter is linked to the Mach
number at the nozzle exit due to Eq. (3). Sections 3.2 and 3.3 show that
the NPR and the Mach number Me control most of the characteristic
lengths described in Fig. 2a. It will be then shown in Section 3.5 that the
Mach disk shape is a consequence of the vorticity inside the nozzle. This
vorticity is created by the actions of viscous forces in the boundary
layer. Thus all the geometrical features of the jet are controlled by the
drag forces at the wall inside the nozzle.

3.2. Qualitative analysis of jet shapes in longitudinal cuts

Owing to the different NPR for each case described in the previous
subsection, under expanded nitrogen jets can be classified into 2
groups. Fig. 5 shows longitudinal cuts of the norm of the density gra
dients for all cases. As discussed in Section 1, a classification based on
the NPR allows us to distinguish the different jet shapes. From Table 1,

< <6.0 NPR 9.2.

1. For cases D28 (see Fig. 5b) and Y45 (see Fig. 5d): < <4.5 NPR 7.

Fig. 4. Schematic of numerical model.

Table 1
Mean values over cross-section for each simulation result case.

Size Localization Inclination Shape

Nomenclacture D5 D28 D1 Z15 Y45 SC SR

D (mm)N 0.5 0.28 1.0 0.5 0.5 0.5 0.5
Nozzle Shape Round Round Round Round Round Square Rectangular
Nozzle exit (y,z) (0, 0) (0, 0) (0, 0) (0, 1.5) (1.0, 0) (0, 0) (0, 0)
Me 1.152 1.057 1.238 1.173 1.176 1.160 1.075
Mj

a 1.39 1.47 1.34 1.39 1.44 1.41 1.33
NPR 8.22 6.89 9.18 8.10 6.0 8.0 8.98
JPR 15.77 12.21 18.84 15.81 9.89 15.4 16.1
Hb D/ N 6.0 10.7 3.0 6.0 6.5 6.0 6.0

a Mach number at central streamline at the nozzle exit.
b Distance between nozzle exit and target.



Double shock cells and a subsonic zone behind the Mach disk can be
observed. The supersonic mixing zone can be seen downstream of
the Mach disk if confinement due to the channel wall is minor.
Consequently, the flow is supersonic at the impingement on the
target. For case Y45, the nozzle inclination induces asymmetry in
the jet, which develops more in the direction of positive Y (see
Fig. 5d). Moreover, the stagnation point is not aligned with the
channel axis and is located at Y=2.3mm instead of Y=4.0mm.
This observation is consistent with the experimental study of
Donalson and Snedeker (1971), which shows that the stagnation
point at the target displaces with the inclination angle increase. The
curvature in the inclination direction is 0.65 −mm 1, which is larger
than that in the opposite direction: 0.18 −mm 1) (see Table 2). This is
an important parameter for the development of the Taylor Görtler
instability (see Eq. (2)).

2. For all other cases: < <7 NPR 10. Only the first shock cell is ob
served. All the cases are symmetric on the XZ plane. Supersonic
expansion and re compression zones can be observed behind the

shock cell. The gas flow is subsonic in the vicinity of the impact on
the target. The most intensive pressure gradients on the target are
located in a circle. The centre of this circle is located at the inter
section of the target and the axis symmetry of the nozzle. The re
circulation of a strong jet around the Y axis can be seen in cases D1
and SR. Otherwise, further analysis of case SC illustrates that the
shear layer is rectilinear shape and diverges with an angle of °26 , as
shown in Fig. 5f. This feature is close to the angle of °24 reported for
a gaseous jet in liquid sodium (Roger et al., 2014). In addition, the
reflected shock waves in the shear layer downstream of the Mach
disk increase the jet diameter. In contrast, the flow is convergent on
the diagonal plane because of the corners in the cross section, this
phenomenon agrees with the numerical observations of He et al.
(2015). The barrel shock is straight for the D1 case, for the other
cases the barrel shock is curved. For case SR, the barrel shock is
divergent from the nozzle widths; conversely it is convergent on the
nozzle lengths and the corners. It shows that the flow develops more
strongly in the direction of the nozzle width than length.

(a) D5 (b) D28 (c) D1 (d) Y45

(e) Z15 (f) SC (g) SR (Length direction) (h) SR (Width direction)

Fig. 5. Longitudinal cuts of the norm of the density-gradients show the expansion of the jets. Minimum and Maximum values of the colour bar is respectively 100 and
8 104.

Table 2
The Görtler number at the 0.2 mm to the nozzle exit.

D5 D28 D1 Z15 Y45 (Y+a) Y45 (Y b) SC(Z) SC (diagc) SR(Y) SR(Z) SR (diagd) SC (vortex)e

δ (mm) 0.0192 0.0209 0.0164 0.0180 0.0151 0.0151 0.0173 0.0091 0.0189 0.0264 0.0208 0.0255
ς (mm) 0.7545 0.8271 0.8241 0.9606 1.5384 5.1609 1.8987 2.4576 1.1305 1.2746 1.4812 1.2369
U (m/s) 954 977 876 965 986 945 935 926 939 903 915 933
G 673 743 456 547 337 176 356 117 528 787 517 782

a Inclined direction.
b Opposite inclined direction.
c Corner position of square cross-section nozzle.
d Corner position of rectangular cross-section nozzle.
e One vortice localisation of square cross-section nozzle.







3.5. Mass flow rate and cross section shape

In the safety analysis of the SGHE in SFRs, detecting the mass flow
rate of the nitrogen jet is one of the most substantial objectives. Being
able to predict the impinging pattern is also an appealing goal in order
to evaluate its effect on the sodium channel. Consequently, this section
investigates the mass flow rate and the cross section shape of the jet.
Fig. 9 shows the mass flow variation along the flow direction. For all the
cases, the mass flow in the X direction remains constant in the vicinity
of the nozzle exit. At this point, the mass flow rate is 4, 16 and 0.7 g/s
for the nozzle diameters of 0.5, 1.0 and 0.28mm respectively. This
means that the mass flow rate is proportional to the cross sectional area
of the nozzle. Therefore, the variation in the ρυ term (ρ and υ represent
the density and velocity of the gas flow respectively) is identical for all
the cases.

The mass flow rate reaches its maximum at a distance of one nozzle

diameter from the nozzle outlet. It is due to ambient gas entrainment. In
the downstream of the nozzle, the mass flow rate slowly increases
owing to the jet recirculation near the target.

The variation in the jet structures defined by the ρυ term shown in
Fig. 10. Downstream, significant ρυ values develop towards the outer
part of the jet. This implies a change in the mass flow distribution from
a central concentration of 80%, towards the periphery of the jet with
60% of the total mass flow. This profile is inverse to the velocity profile
which means that the density change is predominant. However,
downstream of Mach disk, it becomes concentrated once again in the
central jet (seen in the D28 case in Fig. 10b). This pattern agrees with
the experimental study of target wastage shape in the case of a nitrogen
jet submerged in liquid sodium (Lécume et al., 1989). For the other
cases, the profile of ρυ re concentration is not observed, due to the short
distance between the Mach disk and the target (Table 1).

In the region adjacent to the nozzle exit, the cross section shape of
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Fig. 9. Variation in the mass flow as a function of the flow direction.



jet is similar to the nozzle cross section through which it is injected. For
each case shown in Fig. 10, the fourth cross section slice in the flow
direction represents the Mach disk. In the vicinity of the Mach disk, the
jet shape is disturbed; these disturbances coalesce downstream of the
Mach disk. The jet deformation is the strongest in the SR and SC cases.
Downstream of the Mach disk, the jet cross section shape of the D28
and Y45 cases remains the same as that at Mach disk, as seen in Fig. 10b
and g. For the Y45 case, however, the gas flow is more disturbed due to
the inclination of the nozzle compared with the D28 case. In the SC
case, the mass flow develops from the centre to the fours edges of the
nozzle respecting the nozzle cross section shape. The central jet shape is
round at the nozzle exit (see Fig. 10e) and then square which turns 45°
compared with the cross section of the nozzle. Farther downstream, the
central cross section of the jet looks like a cross. In the SR case (see
Fig. 10d), the mass flow develops from centre to the four edges of the
nozzle as in the SC case. For the SR case, the gas flow develops more
along the width direction (Z axis) than the length direction (Y axis). The
cross section jet shape downstream has a 90 degree rotation compared
with that upstream. Along the width direction, three disturbance peaks
can be seen; one disturbance peak is observed in the length direction.
This pattern is completely different from the observations in the SC
case. This illustrates that the disturbances are more intense along the
width direction of the nozzle.

Fig. 10 allows us to identify the development of the ρυ term. Near to
the nozzle exit, in a flow cross section, the most part of the ρυ passes
through a small area. This area is defined by the contour of level 1:

=r r/ 1N , where rN is the nozzle radius. At a distance of about one nozzle
diameter from the nozzle exit, most of the ρυ term is concentrated
around the radial coordinates =r r/ 3N . Downstream, this area of strong
ρυ term convergences on the centre line. This streamwise pattern is also

observed in the total pressure profile, as seen in Fig. 11. For a given
cross section (Mach disk position), the profiles of ρυ in Fig. 10 and the
contour of total pressure in Fig. 11 are identical. Then the dynamic
pressure leads the free jet regime by the means of density changes as
stressed out above. This fact was also observed (Zapryagaev et al.,
2010) experimentally. For all the round cross section nozzles, the cross
section shape of the Mach disk is the same as the nozzle cross section
shape. However, it is different for the SR and SC cases. Furthermore in
these two cases, the Mach disk shape of the SC case shown in Fig. 11d
apparently turns 45° compared with the nozzle cross section. In the case
of the rectangular nozzle shown in Fig. 11c, the Mach disk apparently
turns of 90°.

In addition, the total pressure are perturbed on the jet boundary for
the round cross section nozzle. For the Y45 case, the total pressure
contour has the same pattern with reference one in the opposite in
clination direction ( −Y ), see in Fig. 11b. Meanwhile, the maximum total
pressure in the inclination direction ( +Y ) has three picks. The dis
tribution of the total pressure of the SC case has a cross shape, as shown
in Fig. 11d. For SC case, the maximum total pressures are located at
four cardinal points. Compared with the SC case, the maximum total
pressures of the SR case exhibit a different pattern. This is due to the
more intensive development of the gas flow in the width direction than
in the length direction.

In order to explain the cross section shape of the jet, the vorticity
profile over the rectangular and square nozzles is studied in a cross flow
section located in the middle of the nozzle length. This location is far
from the inlet and the outlet to avoid section change effect. The vor
ticity near the edges (0.05mm from the edges) of this section and the
vorticity of the diagonal over this cross section are plotted, as shown in
Fig. 12.

Fig. 10. Variation in jets defined by the ρυ term. 1: =r r/ 1.0N , 2: =r r/ 1.5N , 3: =r r/ 2.0N , 4: =r r/ 2.5N , 5: =r r/ 3.0N . Maximum and minimum value of the colour bar
is 1.6e3 and 4e3 respectively.

(a) D5 (b) Y45 (c) SR (d) SC

Fig. 11. The total pressure pattern in the Mach disk localisation. The red curves are the initial cross-section of nozzles.



In the centre of the gas flow, the vorticity is around zero. This
proves the presence of a potential region. On all edges of the nozzle, the
gas flow develops outwards after the nozzle exit due to the high vor
ticity. The maximum value in the diagonal line is lower than that along
the edge. The vorticity in the corners is 5 times lower than that at the
edges. Then the gas flow from the nozzle exit develops less in the
corners than in the edges. For the square nozzle, the norm of vorticity is
higher on each edge than on corners. It exhibits a local maximum near
the middle of each edge. This will reshape the cross section of jet
comparing with the one of nozzle. Indeed, for each edge, the flow at
each maximum of vorticity will be strained the most in the radial di
rection. Then each maximum of vorticity represents a new corner.
Quadrangle that links the four new corners is necessary square because
the maximums of vorticity are the same at the four edges of the nozzle
exit. The reshaped cross section turns of 45° comparing to the initial
nozzle one, because the angle between the position of maximum of
vorticity in the edge (near to the middle) and the nozzle corner is of 45°,
see in Fig. 12. Due to the same for the SR case, the norm of vorticity in
the length edge is higher than the one in width edge; this is why the
cross section of jet in downstream will change of 90° comparing the
initial nozzle shape.Fig. 13.

3.6. Taylor Görtler instability

The flow pattern exhibits vortices caused by instabilities in the vi
cinity of the jet. Due to the strong curvature provoked by the features
detailed in Section 3.2, we chose to focus our research on the Taylor
Görtler instabilities. The methods for vortice identification are based
mainly on the velocity gradient tensor (Q , Δcritetion criterion) (Kolr, 2007),
vorticity (Kida and Miura, 1998; Moin and Kim, 1985) or directly from
the velocity field (Zhou et al., 1999; Holmen, 2012). A more complex

method aims at identifying the central position and the intensity of the
vortices (Graftieaux et al., 2001). A Görtler number G (Eq. (2)) higher
than 0.3 is a necessary condition for the formation of Taylor Görtler
vortices in a counter rotating pair shape. Nevertheless, this condition is
insufficient to observe these vortices.

The Taylor Görtler vortices are generated at the nozzle exit, the
Görtler number is thus studied at 0.2mm downstream of the nozzle exit
(data in Table 2). We consider that the possibility of vortices formation
at a given X position for the round cross section nozzles is uniform at
radial circle, the Görtler numbers in +Z direction are studied. For the
Y45 case, the Görtler at the inclined direction ( +Y ) et its opposite di
rection ( −Y ) is respectively studied. The Görtler numbers in Y, Z and the
diagonal directions are calculated for SR and SC cases. In addition, the
position of vortices of SC case are not exactly located at the centred
edge according the vorticity distribution in Fig. 12, because the max
imum norm of the vorticity is lightly centre off. A centre position of the
Taylor Görtler vortices can be obtained by the method of Graftieaux
(Graftieaux et al., 2001). One of vortices at Mach disk position is lo
cated at (Y, Z)= (0.196, 0.821) mm. In upstream (X=0.2mm) of this
position, the Görtler number is studied, noted SC vortex( ) in Table 2.

The Eq. (6) can be used to estimate the curvature radius ς by using
the jet diameter variation in the flow direction shown in Fig. 8.

= + ′
″

ς d
d

(1 ) .
2 1.5

(6)

′d : the differential function of the jet diameter in the flow direction; ″d :
the second differential function of the jet diameter in the flow direction.
The momentum thickness δ is estimated by Eq. (7). υ: the local velocity
(m/s); U: the velocity in the centre of the flow.

∫= ⎛
⎝

− ⎞
⎠

δ υ
U

υ
U

dy1 .
(7)

The Görtler number at different radial positions is computed, see in
Table 2. The value of the Görtler number can reach into the hundreds, it
means that the Taylor Görtler instability exists in the jets. The Görtler
number decreases with the decrease in the nozzle diameter for the
round cross section nozzles. The vortices in inclined direction are
stronger than the opposite direction for Y45 case. For SC case, the value
G of the localisation of vortices is higher than the reference case but the
values in other two positions are smaller. The similar phenomenon is
shown in SR case, the value in Z direction (in which the vorticity is most
intensive) is higher than the reference one where the others are smaller.
It is not clearly to conclude the strength of Taylor Görtler instability
according to these values of Görtler number, because the Görtler
number varies significantly with the different positions. Therefore, the
Görtler number is not enough to identify the strength of Taylor Görtler
instability. In order to observe the counter rotating pair vortices, the
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Fig. 13. Vorticity distribution over cross-section nozzle of square and rectangular cases.





4. Conclusion

This paper discusses the simulation of under expanded nitrogen jets
injected into an SGHE channel using an LES method. The model re
produces the classical structures of highly under expanded jets. The
numerical results are in agreement with the empirical correlations
which depend on the NPR and the Mach number at the nozzle exit. This
work has mainly focused on the influence of the nozzle geometry on
under expanded jet structures. The Fanno flow effect and the pressure
drops inside the nozzle lead to different NPR and JPR values at the
nozzle exit. The different cross section nozzles (rectangular and square
nozzles comparing to the circle nozzle) have the lightest influence on
NPR and JPR. This point has never been investigated before. Analysis of
the NPR and the Mach number at the nozzle exit highlights two classes
of under expanded jets.

Rectangular and square cross section nozzles increase the distance
between the nozzle exit and the Mach disk localization. This is due to
the divergent feature of the barrel shock of the SR case on the one hand,
and the reflected shock waves of the SC case on the other hand. Despite
these cases having the same hydraulic diameter compared with the
reference case D5, the Mach disk diameter of these cross section shapes
is reduced. Furthermore, the nozzle’s aspect ratio has a significant in
fluence on the distance between the nozzle and the Mach disk. The
nozzle inclined at °45 in the +Y direction decreases the distance be
tween the nozzle exit and the Mach disk localization. This kind of
nozzle also decreases the Mach disk diameter DDM . This is caused by the
strongest pressure drops inside the nozzle and the inclination angle. The
D1 case is excessively influenced by the target wall. The nozzle locali
zation has no significant effect on the structures of under expanded gas
jets.

The jet diameter in the flow direction is identified by using the
radial profile of total pressure. The jet diameter increases the most in
the SR and SC cases. The increase in the mass flow rate occurs at the
distance of around one nozzle diameter from the nozzle exit. This is due
to the entrainment of the ambient gas. From this position, the mass flow
rate decreases and once again reaches the initial value. This is another
new key point that has never been studied before, but it is important
data for the technology of gas mass flow rate detection in SGHE acci
dent scenarios.

The momentum pattern over the cross section is identical to the
total pressure pattern. The variation in the total pressure radial profile
trend is in agreement with that observed in the experiments
(Zapryagaev et al., 2010). The cross section structures of the square
nozzle are in cross shape. However, the jet through a rectangular nozzle
develops more intensively in the width direction than in the length
direction. The non homogeneous distribution of vorticity inside the
nozzle makes it possible to explain the cross section shape of the jet for
the SR and SC cases.

The Görtler number is not enough to distinguish the intensity of

Taylor Görtler instability in this study because of the asymmetric gas
flow development. The Taylor Görtler vortices are not observed in the
round nozzle cases. The four counter rotating vortex pairs of Taylor
Görtler instability are clearly observed in downstream of nozzle edges
for square and rectangular nozzles. The Taylor Görtler vortices are lo
cated in the inclined direction for inclined nozzle.
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