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Abstract: The development of formulations for thermoplastic sizing on carbon fibers requires water dispersions of small 

polymer particles (< 20 µm). PolyEtherKetoneKetone (PEKK) is a high-performance polymer used as a matrix in Carbon Fiber 

Reinforced Polymers (CFRP) or as a sizing agent. To limit the formulation steps and the use of organic solvents, the 

sonofragmentation process can be used to deagglomerate polymers, directly in the final aqueous formulation. The 

sonofragmentation process is controlled by multiple parameters and, in order to identify the key parameters, a quantitative 

structure property relationship (QSPR) study was performed using artificial neural networks (ANN). The 40 formulations of this 

study were characterized with the aim of quantifying the sonofragmentation effect. Various physicochemical techniques were 

used: Photon Correlation Spectroscopy (PCS), destabilization velocity of the dispersions by analytical centrifugation, and 

scanning electron microscopy. The results obtained showed that only two parameters (mass concentration of surfactant and 

duration of sonication) had a notable effect on the sonofragmentation process. By controlling these two parameters, it was 

possible to define a design space in the stability domain of the formulations and to calculate a sonofragmentation efficiency (ϕ) 

for four singular zones. Image analysis showed that the sonofragmentation process was accompanied by an increase in the 

number of particles with Particle size (Ps) < 20 µm. In optimized aqueous formulations, the majority of particles should have Ps 

< 20 µm.  

Keywords: Processing Technologies, Quantitative Structure Property Relationship, Aqueous Formulations,  

Polymer Composites, Thermoplastic Sizing, PEKK, Artificial Neural Network 

 

1. Introduction 

Coating by high-performance polymers is being 

increasingly used to protect chemically and thermally 

sensitive materials [1–3]. Thermoplastic polymers are often 

used to coat materials at high temperature, and among them 

PolyEtherEtherKetone (PEEK) and PolyEtherKetoneKetone 

(PEKK) are polymers of choice [4, 5]. The latter is largely 

used in the automotive and aerospace industries [6, 7] and 

has very good chemical and thermal resistance, but its high 

melting temperature (300-360°C) makes it unsuitable for 

coating very sensitive materials. In this context, waterborne 

coatings, such as latexes, could provide a very interesting 

alternative to hot coating, [8–10] and the use of organic 

solvents (toxicity, flammability). Unfortunately, the synthesis 
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of PEKK does not lend itself the direct preparation of stable 

latexes and, for a waterborne coating, this polymer must be 

subdivided and dispersed in water.  

Other uses of polymer coating exist, especially in the field 

of aeronautics to enhance the mechanical performance of 

Carbon Fiber Reinforced Polymers (CFRPs) by improving 

the fiber/matrix interface. This coating is called sizing.  

Sizing is an aqueous or organic dispersion of polymer 

particles deposited on the surface of the carbon fibers. 

However, in order to promote its action, its particle size must 

be compatible with the diameter of the filaments constituting 

the fiber.  

At present, many sizings are organic formulations or 

involve an organic solvent during the production process, 

[11–16] and the development of green sizing formulations 

requires stabilized water dispersions. 

The design of materials with novel properties often 

requires the fine subdivision of solids (organic or mineral). 

The final properties of the product depend on the size of the 

particles and their distribution [17]. For example, size 

reduction may improve the stability and reactivity of 

colloidal dispersions [18]. Fine particles can be produced by 

“bottom-up” processing, in which the material is synthesized, 

aggregated or condensed, [19–21] or by a “top-down” 

approach, in which large particles are reduced by grinding or 

milling [22]. Size reduction to produce small particles of 

solid materials can be carried out by mechanical means using 

dry or wet milling techniques, including ball milling, jet 

milling, media milling, and homogenization [23–25]. In 

addition to these mechanical processes, the use of ultrasonic 

milling (sonofragmentation using ultrasonic devices) to 

deagglomerate solids into liquids is becoming increasingly 

common [26–28]. The mechanical stress generated by 

ultrasonic cavitation breaks the agglomerates apart and can 

erode the particles to much smaller sizes [29]. Generally, to 

avoid reagglomeration, the sonofragmentation is assisted by 

dispersing agents such as surfactants or polymers [30, 31]. 

Concerning the solid to be subdivided, there are many more 

examples of minerals and small organic molecules than of 

polymers. 

In this work, a commercially available PEKK was chosen 

with a Terephthalic/Isophthalic ratio [32] T/I = 60/40, that 

was compared with corresponding extractible fractions that 

might be most easily obtained as small particles (PEKK 

oligomers). Sonofragmentation could be a promising method 

for reducing and controlling their size. The parameters 

controlling the sonofragmentation process have been studied 

[33]. Temperature, sonication power and duration play 

important roles in particle breakage. For more complex 

formulations, requiring the addition of surfactant to stabilize 

the particles, the number of parameters to be controlled 

becomes very large. To optimize the sonofragmentation in 

these cases, it is necessary to understand the relationships 

between each parameter that influences the process and the 

properties of the treated polymer. Quantitative structure 

property relationship (QSPR) studies have shown their utility 

in revealing the quantitative relation connecting the structure 

of polymers to their properties [34]. In this study, a QSPR 

method was used in association with an artificial neural 

network (ANN) to identify the parameters involved in the 

process. From these key parameters, an experimental design 

space optimizing the sonofragmentation process for PEKK 

polymer was explored. To evaluate the properties of the 

polymer particles, two physicochemical methods were 

compared: photon correlation spectroscopy and 

destabilization velocity of the dispersions. 

The formulation process developed provided an optimized 

formulation of sizing agent of low molecular weight (PEKK 

oligomers). Subsequently, CFRPs with sized carbon fibers 

were compared to a unsized carbon fiber reinforced 

composite. Their fracture surfaces were observed by SEM in 

order to compare the efficiency of the sizing through the 

fiber/matrix interface. 

2. Material and Methods 

2.1. Materials for Sonofragmentation Process 

2.1.1. PEKK Extractible Fraction Fragmentation 

 

Figure 1. Scheme of the experimental sonofragmentation setup. 

For this study, 40 experiments were carried out. Every 

aqueous dispersion (deionized water) contained 0.4 g of 

PEKK extractible fraction (Arkema, France) and 

cetyltrimethylammoniun chloride (CTAC) surfactant 

(Sigma-Aldrich, USA). Sonofragmentation was used to 

disperse and to fragment the PEKK extractible fraction or 

(PEKK oligomer), according to 7 controlled experimental 

parameters: volume of liquid (V), mass concentration of 

surfactant (CCTAC), duration of sonication (t), percentage of 

active cycles (A), dissipation of heat (DHEAT), and intensity of 

ultrasound (I). To investigate the effect of liquid oxygenation 

(OXeffect), the deionized water was gas saturated by bubbling 

O2 (Alpha gaz 1, Airliquide, France) through it for 24 h, or the 

deionized water was left in its native, unsaturated state. Figure 

1 shows the experimental setup used for all water dispersions. 

A Bioblock Scientific sonicator (Fisher Bioblock Scientific, 

France, model: 72402) was used at a frequency of 20 kHz, 

with 600 W input power, and a probe 13 mm in diameter. 

During the sonofragmentation, the probe was immersed in the 

dispersion to a depth of 10 mm. 
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2.1.2. PEKK Polymer Fragmentation 

PEKK (Arkema, France) with a Terephthalic/Isophthalic 

ratio T/I = 60/40 and particle size of 20 µm was used. Every 

aqueous dispersion was made of 0.4 g of PEKK dispersed in 

10 ml of native deionized water. The dispersion system was 

similar to that described above (Figure 1). The 

sonofragmentation conditions applied for this study were the 

following: A = 50 %, without DHEAT and I = 4. Every sample 

was defined by two parameters: CCTAC, between 0 and 20 

wt. %; and t, between 0 and 45 min. 

2.2. Photon Correlation Spectroscopy Analysis 

The mean diameter of the particles (Ps) and the distribution 

size index (Ds) were determined at 25°C by Photon 

Correlation Spectroscopy (PCS) at a scattering angle of 173° 

(Zetasizer
®
 Nano ZS, Malvern PCS Instruments, UK). Every 

dispersion was measured 3 times for 10 runs of 10 seconds. 

2.3. Scanning Electron Microscopy for Characterization of 

PEKK Particles 

The microstructure of the dispersion was observed by 

scanning electron microscopy (SEM) (FEG SEM JEOL JSM 

7800F-Prime). The micrographs obtained were used for 

additional estimation of the particle size, morphology and 

fragmentation efficiency (ϕ) calculation. ϕ was calculated on 

an average of 100 objects per image defined by Image J 

software (Image J 1.50e, National Institutes of Health, USA) 

as the number of particles with Ps < 20 µm on the 100 

measured objects (%). Cryocut observations were observed 

according to the same protocol. 

2.4. Destabilization of the Dispersions by Analytical 

Centrifugation 

The destabilization velocity of the dispersions (v) expressed 

in %/min was determined by analytical centrifugation 

(LUMiFuge
®
 110 Stability Analyser, LUM GmbH, Germany).  

The sample was subjected to centrifugation (200 rpm to 

4000 rpm) leading to an accelerated destabilization of the 

dispersion at 25°C. LUMiFuge
®
 operations is analyzed 

evolution of sedimentation profile of dispersion sample 

submitted a centrifugation cycle, depending on the time. 

2.4.1. PEKK Extractible Fraction 

Before analytical centrifugation analysis, all the PEKK 

extractible fraction dispersions were re-dispersed using a 

shaker table (Ika HS 260, Germany) for 4 h at 270 

oscillations/min. Every sample was analyzed by LUMiFuge
®
 

according to the following method: 4000 rpm, 255 profiles, 10 

s/profile at 25°C. 

2.4.2. PEKK Polymer 

The PEKK dispersions were analyzed by LUMiFuge
®

 

using: 2000 rpm, 100 profiles, 10 s/profile at 25°C. 

2.5. Implementation of CFRP 

Carbon fiber was sized by dip-coating in thermoplastic 

sizing of PEKK oligomer. The carbon fiber sized was 

impregnated by PEKK polymer and the composite was 

implemented at 360°C for 15 min. Cryocut observations were 

obtained by freezing and cutting the CFRP material in liquid 

nitrogen (5 min) before SEM. 

3. QSPR Theory and Utilization of 

Neural Network 

The bases of QSPR studies were laid down in a joint work 

by Hammett [35], Taft [36], Hansch and Fujita [37], and Free 

and Wilson [38]. QSPR modelling consists of constructing 

predictive models of properties as functions of structural and 

reaction or physicochemical information from a compound 

library or experiments. Broderick and Rajan [39], have shown 

an example of the utilization of QSPR in development 

incorporating the impact of data uncertainty, which allows 

new databases to be developed rapidly.  

The development of a QSPR model typically comprises two 

steps: (1) description of molecular structures or controlled 

reaction parameters and (2) multivariate or ANN analysis to 

correlate molecular descriptors or controlled parameters with 

observed properties. The first application of ANN in the 

search for correlations between molecular structure and 

biological property was achieved by Hiller et al. [40], using 

perceptron to classify substituted dioxanes as active or 

inactive according to their physiological activity. The 

algorithms generally used in applications of ANN in 

quantitative structure activity relationship (QSAR) or QSPR 

studies are characterized by a wide variety of neural network 

architectures and different approaches to represent chemical 

structures, parameters or properties. The multilayer feed 

forward ANN associated with a back propagation algorithm 

are generally used in QSAR and QSPR studies.  

The back propagation algorithm was originally proposed by 

Rumelhart et al. in 1986 [41]. An ANN approach mimics the 

operation of the human brain by using interconnected 

processing elements to rule on relationships between 

experimental and calculated data. The “neurons” are 

connected processing elements. The data are exchanged using 

a transfer function modulated by variable weights. 

Every neuron performs three operations on all the data: 

(1) Activation by transformation of the sum of all inputs 

into a function (linear or sigmoid) producing an output 

value.  

(2) Weighting, with the determination of a multiplication 

factor for each input. 

(3) Summation: summing of weighted inputs. 

The multi-layer perceptron is generally composed of three 

independent layers: the input, hidden and output layers [42, 

43]. This structure, named Hopfield’s network, is commonly 

used for prediction and validation processes. 

In the input layer, each neuron is connected to an 

experimental parameter of the system under study. 

Information is “fed forward” to the hidden and output neurons 

[44]. In a QSPR study, the output neuron is associated with 
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physicochemical properties. The hidden layer acts as an 

intermediary for the operations of summation and activation. 

Generally, the number of hidden neurons is half the number of 

input neurons. 

SNNS (Stuttgart Neural Network Simulator) v4.2, software 

developed at the University of Stuttgart, Germany, was used to 

model the relationships between sonofragmentation controlled 

parameters and the characteristics of the polymer particles 

obtained in this study, through a back propagation algorithm. 

SNNS software has been successfully used in the prediction of 

trihalomethane concentrations for drinking water [45], 

simulation of neutron scattering spectra [46], elimination of 

dual radionuclide 
99m

Tc/
123

I images crosstalk [47], 

optimization of optical fiber sensor cross-sensitivity [48], and 

optimization of the free radical scavenging properties of thiol 

and amino thiol derivatives [49]. The optimization of the 

parameters controlling the particle size, dispersity and 

stability of formulations used for the development of fiber 

sizing for composite material design was also performed with 

an ANN QSPR study.  

4. Results and Discussion 

4.1. Optimization by ANN with PEKK Extractible Fraction 

The datasets used in this study were organized starting from 

all 7 parameters that influenced the sonofragmentation 

process, as described in Table 1. The data were coded and 

normalized (Table 1), before being organized as input 

parameters in 21 different datasets connected with 3 

experimental physicochemical parameters: particle size (Ps), 

distribution size (Ds) or destabilization velocity (v) (Table 2). 

The dataset files were then used with the different ANNs, 

(Table 3). These 21 datasets were created by operator 

depending on statistical weight obtained by neural network: 

NN0A, NN0B and NN0C for samples before destabilization 

velocity analysis. NN0D and NN0E after destabilization 

velocity analysis. 

Table 1. Details of input parameters used in the QSPR study, showing parameter type, experimental range level and coded values. 

Parameter type Abbreviation Range level: Coded level 

Volume of liquid (ml) V 10:0.5; 15:0.75; 20:1 

Mass concentration  CCTAC 0: 0; 1:0.05; 2:0.1; 5:0.25;  

of surfactant (wt. %) t 10:0.5; 20:1 

Duration of sonication (min) A 15:0.5; 30:1 

Percentage of activity (%) OXeffect 20:0.25; 50:0.625; 80:1 

Liquid oxygenation DHEAT With: 1; Without: 0 

Heat dissipation  I With: 1; Without: 0 

 

After the sonofragmentation process, every of the 40 

dispersions was analyzed by PCS, measuring two output 

parameters: distribution size (Ds) and particle size (Ps). In a 

first step, an ANN without a hidden layer was used (NN0A, 

Table 3) with dataset 1 (Table 2), in order to obtain the weight 

as an absolute value for each of the 7 controlled parameters 

according to the learning cycle. By modifying these weights, 

NN0A calculated the most important input parameters for Ds 

or Ps. For Ds, key parameters were not really defined because 

their statistical weights were lower than 1 (Table 4). For Ps, 

CCTAC (6.27) and I (3.15) were the key parameters with the 

greatest weight values, after 15 000 learning cycles (Table 4). 

In a second step, for Ps, we carried out a cross-validation 

process to evaluate the validity of the different ANNs 

constructed with all the input controlled parameters (NNA5, 

Table 3), or the ANN constructed with the 2 key parameters 

CCTAC and I (NNA8, Table 3). To confirm the key parameters, 

NNA6, containing the 5 parameters of weight > 1, and NNA7, 

containing CCTAC and V, were built (Table 3). For all NNAx, 

where x is the NN number (Table 3), a training set was 

prepared with 39 experiments having the desired number of 

inputs. The experiment that was not present in the training set 

was used as a validation set. This procedure was repeated until 

the 40 experiments had been calculated in the validation set. 

After this cross-validation procedure, it was possible to 

correlate the predicted Ps value (nm) with the experimental 

value for the 40 experiments.  

For all the validation agreement plots corresponding to 

NNAx, the correlation coefficient values (R²) were lower than 

0.5, indicating an absence of linear relation and invalidating 

the models. There are two hypotheses that may explain why 

the model with particle size measurements proved invalid. 

The first reason could be a high sedimentation of the larger 

particles before PCS analysis and the second could be that the 

stable suspended particles had a size outside the measurement 

range for the PCS analysis. 

This Ps value corresponds to the upper limit of detection of 

the device and small particles were mixed with aggregates. Ps 

was determined from fluctuations in scattered light intensity 

due to Brownian movement of the particles [50]. Dust 

particles or small amounts of large aggregates could invalidate 

the size determination if the main component exhibited a 

smaller size [51]. Before sonofragmentation, PCS results for 

the different samples were 0. For ANN, the value 0 is very 

complex to interpret: an absence of particles in the 

formulation or Ps equal to or larger than 10 µm. This suggests 

that PCS analysis is irrelevant in our case. 
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Table 2. Details of input parameters used in the QSPR study. 

Data set Number of input parameters Input parameters Output parameter 

1 7 V, CCTAC, t, A, OXeffect, DHEAT, I Ds 

2 7 V, CCTAC, t, A, OXeffect, DHEAT, I Ps 

3 7 V, CCTAC, t, A, OXeffect, DHEAT, I v 

4 3 A, OXeffect, DHEAT Ds 

5 2 A, DHEAT Ds 

6 2 OXeffect, DHEAT Ds 

7 5 V, CCTAC, OXeffect, DHEAT, I Ps 

8 2 V, CCTAC Ps 

9 2 CCTAC, I Ps 

10 4 V, CCTAC, t, I v 

11 3 V, CCTAC, t v 

12 3 CCTAC, t, I v 

13 2 CCTAC, t v 

14 2 CCTAC, t Ds 

15 4 V, CCTAC, A, I Ps 

16 3 V, CCTAC, A Ps 

17 3 V, CCTAC, I Ps 

18 3 V, A, I Ps 

19 2 V, CCTAC Ps 

20 2 V, A Ps 

21 2 V, I Ps 

Table 3. Architecture of ANNs with the datasets used, the associated number and type of nodes, and the type of output parameter. 

Neural Network Data set used (Table 2) 
Number of parameters 

Type of output parameter 
input hidden output 

NN0A 1 7 0 1 Ds 

NN0B 2 7 0 1 Ps 

NN0C 3 7 0 1 v 

NN0D 1 7 0 1 Ds 

NN0E 2 7 0 1 Ps 

NNA1 1 7 4 1 Ds 

NNA2 4 3 2 1 Ds 

NNA3 5 2 2 1 Ds 

NNA4 6 2 2 1 Ds 

NNA5 2 7 4 1 Ps 

NNA6 7 5 3 1 Ps 

NNA7 8 2 2 1 Ps 

NNA8 9 2 2 1 Ps 

NNL1 3 7 4 1 v 

NNL2 10 4 3 1 v 

NNL3 11 3 2 1 v 

NNL4 12 3 2 1 v 

NNL5 13 2 2 1 v 

NNB1 1 7 4 1 Ds 

NNB2 14 2 2 1 Ds 

NNB3 2 7 4 1 Ps 

NNB4 15 4 3 1 Ps 

NNB5 16 3 2 1 Ps 

NNB6 17 3 2 1 Ps 

NNB7 18 3 2 1 Ps 

NNB8 19 2 2 1 Ps 

NNB9 20 2 2 1 Ps 

NNB10 21 2 2 1 Ps 
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Table 4. Statistical weights in absolute value before analytical centrifugation for each output parameter after 15 000 learning cycles for NN0A (Ds) and NN0B 

(Ps). 

Input parameters 
Output parameter measured in direct experiments 

Distribution size (Ds) Particle size (Ps) 

V 0.21 2.00 

CCTAC 0.03 6.27 

t 0 0.71 

A 0.78 0.22 

OXeffect 0.90 1.40 

DHEAT 0.81 1.41 

I  0.39 3.15 

 

In order to obtain a relevant output parameter for every 

sample, an analytical centrifugation was used to study the 

destabilization velocity of the dispersions. This analysis 

allowed the v to be determined according to the centrifugation 

speed, the number of profiles, the interval value between the 

profiles and the temperature of the sample. Then, the 

statistical weight of the 7 input parameters controlling 

sonofragmentation was determined according to a QSPR 

procedure with NN0C (Table 3). It appeared that 2 parameters 

had a high weight: CCTAC: 4.49 and t: 3.19 (Table 6). After 

destabilization velocity analysis, the supernatant of the sample 

was analyzed  

by PCS for Ps and Ds determination. The statistical weight 

of each of the 7 input parameters controlling 

sonofragmentation was determined with NN0D and NN0E 

(Table 3). CCTAC: 4.55 and t: 3.19 were the 2 parameters with 

the strongest weight for Ds. For Ps, all the parameters had a 

weight close to 1 (Table 6). 

This study shows that velocity v is an important output 

parameter for the comparison of sonofragmentation samples. 

It is possible to match a low velocity with small or more stable 

particles in the suspension. To validate the 2 key parameters 

linked to v, a cross-validation process was achieved with 

NNL5 (Table 3). R² for this plot was 0.58, suggesting a trend 

for this model (Figure 2) and showing the influence of CCTAC 

and t in the control of the destabilization velocity of the 

dispersions, after sonofragmentation. 

For the 2 key parameters, CCTAC and t, linked to Ds of the 

supernatant after centrifugation, a cross-validation process 

was achieved with NNB2. For Ps, different ANNs were built: 

from NNB4 to NNB10 with the 7, 4, 3 or 2 parameters of 

highest weights (Table 4). The performances of these ANN 

were compared by calculating the sum of the errors between 

the experimental value and the calculated value, after the 

learning cycle, for the 40 samples (Table 5). NNB8 showed 

the smallest total error (Table 5) with CCTAC and t linked to Ps. 

Table 5. Sum of errors for each ANN. 

Neural networks Sum of errors 

NNA1 3.63 

NNA2 3.01 

NNA3 4.69 

NNA4 3.23 

NNA5 7372.72 

NNA6 6763.19 

NNA7 4948.20 

NNA8 5498.39 

NNL1 611.38 

NNL2 583.68 

NNL3 536.24 

NNL4 560.77 

NNL5 526.84 

NNB1 3.35 

NNB2 2.44 

NNB3 3200.46 

NNB4 3208.31 

NNB5 3092.57 

NNB6 3020.82 

NNB7 3971.49 

NNB8 2934.74 

NNB9 3846.85 

NNB10 3734.84 

Validation agreement plots for Ds and Ps in the supernatant 

were plotted for NNB2 and NNB8. The only model that could 

be validated was NNB2, with a linear coefficient R²NNB2 = 

0.8. For this model, CCTAC and t were linked to Ds of the 

supernatant after centrifugation. 

Table 6. Statistical weights in absolute values after analytical centrifugation for each output parameter after 15 000 learning cycles for NN0C (v), NN0D (Ds) 

and NN0E (Ps). 

 Output parameter measured in direct experiments 

Input parameters Velocity (v) Distribution size of supernatant (Ds) Particle size of supernatant (Ps) 

V 1.33 0.23 1.09 

CCTAC 4.49 4.55 0.85 

t 3.19 3.19 0.31 

A 0.58 0.09 0.83 

OXeffect 0.40 0.23 0.39 

DHEAT 0.23 0 0.45 

I  1.07 0.06 0.80 

 

In order to confirm the model, an experimental design space 

was defined, with the 2 key parameters, CCTAC and t, identified 

as controlling the performance of sonofragmentation by the 

destabilization velocity study of the dispersions. In order to 
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check that the model was not related to one particular polymer, 

a suspension of PEKK was used. 

4.2. Validation of Model with PEKK Polymer 

Every PEKK formulation was dispersed and analyzed by 

destabilization centrifugation. The design space representing v 

related to CCTAC and t was plotted (Figure 3). This design 

space contains 4 singular zones: A without CTAC for t values 

from 0 to 45 min; B with 2 wt.% for CCTAC and 

sonofragmentation duration of 30 min; C with 20 wt.% for 

CCTAC and t = 30 min; and D with 5 wt.% for CCTAC and 

without sonofragmentation. For B, C and D, CTAC 

concentration is higher than its critical micelle concentration 

(CMC). The CMC for CTAC has been reported to be 1.3 mM 

[52], whereas the molar concentration is 62.5 mM for B, 625 

mM for C and 156 mM for D. 

 

Figure 2. Validation agreement plot for v associated with CCTAC, t (NNL5) 

after analytical centrifugation analysis. The line corresponds to perfect 

prediction and squares to values predicted by ANN. 

B and C correspond to minima of v whereas D corresponds 

to a zone where the sonofragmentation was not carried out. 

For A, the absence of surfactant meant that the particles were 

not stabilized in the formulation, explaining the very low 

value measured for v which was thus considered out of the 

limits of measurement. These 4 zones were studied by 

scanning electron microscopy (Figure 4). In order to interpret 

the SEM observations, the particles were counted for ϕ 

calculation and then classified according to the histogram on 

Figure 5. For D without sonofragmentation, the majority of 

particles had Ps ranging from 20 to 30 µm. 

The process of sonofragmentation produced smaller 

particles, but the analysis also showed particles from 30 to 100 

µm, which were very quickly destabilized by the analytical 

centrifugation without surfactant, explaining the very low 

destabilization velocity observed on the design space for A 

(Figure 3). For B and C, the majority of particles ranged from 

5 to 15 µm, and particles < 5 µm were also found for B. This 

classification associated with the efficiency determination of 

sonofragmentation, showed that B (ϕ_B = 75 %) and C (ϕ_C = 

61 %) corresponded to domains with high levels of 

sonofragmentation, as observed on the design space (Figure 

3). 

A (ϕ_A = 53 %) corresponds to a domain with poor 

sonofragmentation yield compared to D (ϕ_D = 38 %), where 

sonofragmentation was not carried out. These results related 

to scanning electron microscopy observations are in 

agreement with the results obtained in the destabilization 

study of the dispersions by analytical centrifugation of all the 

samples. In the presence of surfactant, a low value of ϕ is 

connected with a large number of particles having Ps < 20 µm 

and with a high size distribution index. 

 

Figure 3. Design space representing v related to CCTAC and t for PEKK 

aqueous dispersion. 

 

Figure 4. Scanning electron microscopy of PEKK for the 4 typical zones of the 

design space of the sonofragmentation process: (A) without CCTAC; (B) with 2 

wt.% for CCTAC and t = 30 min; (C) with 20 wt.% for CCTAC and t = 30 min; (D) 

with 5 wt.% for CCTAC and without sonofragmentation. 

From the optimized formulation B (Figure 3), we evaluate a 

sizing procedure for CFRP as shown in Figure 6. This figure 

demonstrates the influence of the PEKK oligomer sizing on 

the fiber/matrix interface. The Figure 6 (A) shows a 

discontinuity between the matrix and fiber which is 

characterized by a delamination in unsized CFRP. This 
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adhesion is characterized by the attachment of the polymer 

matrix during the cryocut represent Figure 6 (B). This figure 

shows interest of PEKK sizing in matrix/fiber interface. This 

interface result is demonstrated with same sizing agent in 

PEEK matrix [11]. 

 

Figure 5. Histogram of particle size ranges and fragmentation efficiency, ϕ, 

calculated for: (A) without CCTAC; (B) with 2 wt.% for CCTAC and t = 30 min; (C) 

with 20 wt.% for CCTAC and t = 30 min; (D) with 5 wt.% for CCTAC and without 

sonofragmentation 

 

Figure 6. Scanning electron microscopy of cryocut of CRFP; (A) is composite 

reinforced on unsized carbon fiber and (B) is composite reinforced on carbon 

fiber sized by PEKK oligomer 

5. Conclusion 

This study led to the development of a methodology for the 

characterization and optimization of aqueous thermoplastic 

polymer dispersions, directly in solution, by the study of their 

destabilization velocity. The use of analytical centrifugation 

allowed the characterization of 40 samples subjected to a 

process of sonofragmentation, for which 7 experimental 

parameters were controlled. The application of a QSPR 

methodology with artificial neural networks allowed 2 

experimental parameters to be identified as strongly 

connected to the destabilization velocity of the formulations, 

after sonofragmentation. By controlling only these 2 

parameters (mass concentration of surfactant and duration of 

sonication), it was possible to define a design space for 

sonofragmentation with another thermoplastic polymers class, 

showing that the model was valid for PEKK family.  

Within this design space, 4 zones were studied by scanning 

electron microscopy and image analysis. These analyses 

showed that the process of sonofragmentation could be 

optimized by modulating the mass concentration of surfactant 

and the duration of sonication. The yield of sonofragmentation 

was calculated for the 4 zones and showed a direct relationship 

with the results obtained by measuring the destabilization 

velocity of the dispersions. The analysis also showed that the 

destabilization velocity of the dispersion was connected to Ds 

and the number of particles with Ps < 20 µm. 

The analysis of sonofragmentation images showed that the 

process was accompanied by an increase in the number of 

small particles with Ps < 5 µm. Particles with Ps < 20 µm 

made up the majority in the samples with high 

sonofragmentation yield. In all the samples, the presence of 

particles with Ps > 30 µm mixed with small particles explains 

the difficulty of precisely measuring Ps by PCS. In the case of 

complex formulations of polymers, the use of analytical 

centrifugation (LUMiFuge
®
) to determine the destabilization 

velocity of the dispersions can be useful. With this process, it 

is possible to study very complex granulometric profiles, 

directly in solution. The development of a QSPR study 

allowed the samples to be classified and notably reduced the 

number of experiments needed to obtain a design space 

displaying the optimized zones of sonofragmentation. The 

interest of this work is sustained by the potential of PEKK 

stable suspension for the processing of PEKK based materials 

used in a green sizing process. The novelty of this method is 

obtaining a PEKK stable suspension with formulation process 

without organic solvent.  

Thanks to realization of cryocut on polymer composite 

PEKK/CF with carbon fiber sized and un-sized, this study 

demonstrate the influence of thermoplastic sizing on 

matrix/fiber interface. A Thermoplastic sizing with an 

optimized formulation improves adherence of matrix on fiber 

which involve a better mechanical performance. 
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