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Solvent-free fatty acylation of cellulose and lignocellulosic wastes.
Part 2: reactions with fatty acids 1

C. Vaca-Garcia, M.E. Borredon*
Laboratory of Agro-Industrial Chemistry (Associated INRA unit 31A1010) ENSCT, Institut National Polytechnique de Toulouse, F-31077 Toulouse 

Cedex 04, France

Abstract

The mixed acylation of cellulose with fatty acids and acetic anhydride was accomplished in an excess of fatty acid, thus avoiding 
the addition of a toxic solvent. The experimental design enabled the parameters of a model reaction with octanoic acid to be op-
timized. The products contained both acetyl and octanoyl acyl groups in a 2.4/1 ratio and the maximum degree of substitution (DS) 
was 2.2. The use of fatty acids higher than C8 resulted in a decrease of the DS. The model reaction was applied to the esteri®cation of 
four lignocellulosic wastes (LW). Their reactivity was comparable to that of cellulose when no pretreatment was used. A solvent-
exchange pretreatment improved the acylation of LW by about 60%, whereas that of cellulose was increased by more than 400%. 
The hydrophobic character of the esteri®ed products was con®rmed. 

Keywords: Cellulose esteri®cation; Mixed esters; Solvent-free techniques; Fatty acids; Acetic anhydride; Lignocellulosic wastes; Pine sawdust; Wheat 
straw; Olive stones; Agave tequilana (Weber)

1. Introduction

Cellulose derivatives are readily synthesized when a

cellulose solvent is used. The crystalline structure of the

biopolymer is destroyed, resulting in the maximum ac-

cessibility of its hydroxyl groups. The cellulose solvents

used for chemical modi®cation are usually binary sys-

tems composed of a salt and an aprotic solvent, e.g.,

lithium chloride/dimethylacetamide (LiCl/DMAc)

(Johnson, 1985) or tetraethyl ammonium chloride/di-

methyl sulfoxide (Kamata et al., 1985). The ecological

impact and the price of such compounds limit their

utilization to a laboratory scale and demand that re-

search groups develop alternative free-solvent tech-

niques.

When no cellulose solvent is used in the chemical

modi®cation of cellulose, cellulose reactivity is severely

decreased. Indeed, the accessibility of the reactive sites is

reduced due to the intermolecular and intramolecular

hydrogen bonds between hydroxyl groups. This limita-

tion can be reduced in two ways. First, by using a cel-

lulose-swelling organic compound that can break some

of the intermolecular hydrogen bonds in cellulose. These

compounds are proton acceptors of low molecular

weight such as dimethylformamide (DMF), pyridine or

dimethyl sulfoxide (Robertson, 1970). However, the

toxicity of such swelling compounds is comparable to

that of the cellulose solvents. The second alternative is

the use of a dispersing agent in which the cellulose de-

rivative dissolves progressively as the reaction advances.

Thus, the hidden hydroxyl groups become accessible as

a result of the ``peeling'' of cellulose. This strategy has

been successfully applied in the industrial production of

cellulose acetate and other short aliphatic (6C4) cellu-

lose esters (Serad and Sanders, 1979). In this case, the

corresponding carboxylic acid, which is relatively inex-

pensive and innocuous, is used as a dispersing agent.

Even if the solid dissolves in the dispersing agent, we

refer to such techniques as ``solvent-free'' since the dis-

persing agent is intrinsically present in the reaction

medium (i.e., as a reagent or a product) and it is not a

toxic added solvent.

Concerning the production of long aliphatic (fatty)

cellulose esters, few attempts have been made to facili-

tate production scale-up. Cellulose fatty esters are usu-

ally prepared from fatty acid chlorides in a pyridine-DMF
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medium. In previous works (Thiebaud and Bor-

redon, 1995; Kwatra et al., 1992), the fatty acylation of

cellulose and wood without these solvents was achieved.

Such e�orts are only partially successful because acid

chlorides are relatively noxious and they produce

hydrochloric acid during acylation reactions. Other

methods of fatty esteri®cation combine the use of a fatty

acid and a co-reagent. The latter reacts in situ with the

fatty acid to form a more reactive entity capable of

grafting the fatty chain to cellulose. These co-reagents

are toxic compounds such as tri¯uoroacetic anhydride

(Arni et al., 1961), tosyl chloride (Shimizu and Hayashi,

1989), mesyl chloride (Talaba et al., 1996) or

dicyclohexylcarbodiimide and pyrrolidinopyridine (Sa-

maranayake and Glasser, 1993).

In a recent work (Vaca-Garcia et al., 1998), the use of

acetic anhydride as a non-toxic co-reagent of fatty acids

to synthesize cellulose mixed acetic-fatty triesters was

reported (Fig. 1). The study of the reaction mechanism

was carried out with cellulose previously dissolved in

LiCl/DMAc. The mixed cellulose esters showed good

hydrophobic and mechanical properties. In the present

work, we proposed to simplify this technique by elimi-

nating the cellulose solvent and to apply it to the acyl-

ation of lignocellulosic residues. Cellulose was

pretreated by the solvent-exchange technique and the

fatty acid was used in excess as a dispersing agent.

In the ®rst part of this report, the investigation of a

solvent-free model reaction using cellulose and octanoic

(caprylic) acid is described. The generalization of this

reaction to other higher linear fatty acids and the ap-

plication of the optimized model reaction to four

lignocellulosic wastes (LW) obtained from agro-indus-

trial factories is then presented. The selected LW were:

pine sawdust and wheat straw, which are common

vegetal residues, as well as olive stones and bagasse of

agave (Agave tequilana Weber), which are non-utilised

residues produced in considerable amounts from the

industrial production of olive oil and tequila.

2. Methods

Materials. Reagent grade chemicals were purchased

from Aldrich France and were used without further

puri®cation. Alpha cellulose (4% pentosans) was fur-

nished by Sigma France. The characteristics of the LW

are presented in Table 1.

Solvent-exchange pretreatment. Two grams (dry ba-

sis) of cellulose or LW were stirred in 200 ml of deion-

ized water for 5 min then ®ltered over fritted glass. The

swollen substrate was washed on the ®lter with ethanol

then twice stirred in 80 ml of ethanol for 5 min and

®ltered each time. The solid was washed on the ®lter

with fatty acid (the same as used in the acylation reac-

tion) at a temperature 20°C above the melting point of

the fatty acid, then stirred twice in 80 ml of fatty acid for

10 min at the same temperature and ®ltered each time.

Acylation reaction. A mixture composed of fatty acid

(5.6 eq/cellulose OH), acetic anhydride (2 eq/OH) and

H2SO4 catalyst (3±7 meq/OH) was heated at 90°C for 1

h. Solvent-exchanged cellulose (2.0 g dry basis) was

added to the reaction medium. The whole mixture was

stirred at 110±130°C for 1±3 h. At the end of the reac-

tion, 150 ml of ethanol were added to precipitate the

solubilized fraction. The solid was separated by ®ltra-

tion over fritted glass and puri®ed by Soxhlet extraction

with ethanol for 8 h. The puri®ed product was then

dried at 105°C to constant weight. The same procedure

was used with LW and the amounts of reagents were

calculated as if the substrate was cellulose.

Degree of substitution (DS). The fatty acyl and acetyl

groups in cellulose mixed esters were determined using

the reported aminolysis method (Mansson and Sa-

muelson, 1981) in which the ester groups are split by

reaction with pyrrolidine and the acyl amides formed are

quanti®ed by gas chromatography.

Ester content (EC). One gram of pulverized sample

was stirred for 30 min in 40 ml of aqueous ethanol

(70%). After addition of 40 ml of a 0.5N NaOH aqueous

solution, the stirring was continued for 48 h at 20°C.

The unreacted NaOH was back-titrated with 1N aque-

ous HCl. The solid was recovered by ®ltration and

thoroughly washed with deionized water and ethanol,

then dried at 50°C for 48 h. The absence of ester func-

tions in the saponi®ed solid was con®rmed by FTIR

spectroscopy. The EC was calculated as the number of

equivalents of reacted NaOH per gram of sample.

Degree of polymerization (DP). The cellulose mixed

esters were saponi®ed in mild conditions (as in EC de-

termination, above) to regenerate cellulose. The intrinsic
Fig. 1. Mechanistic scheme of the mixed esteri®cation of cellulose with

a fatty acid and acetic anhydride.



viscosity (g) of diluted solutions of cellulose in cup-

riethylendiamine was measured at 25°C with a capillary

viscometer according to the French AFNOR standard

NF T 12-005. The DP was calculated using the Mark-

Houwink-Sakurada equation (Brandrup and Immergut,

1975) which correlates g and the viscosimetric molecular

weight (Mv) of cellulose:

DP � Mv=162 � ��g=0:0133� ^ �1=0:905��=162;

where 162 is the molecular weight of the anhydroglucose

monomer, 0.0133 and 0.905 are the coe�cients corre-

sponding to the cupriethylendiamine system and g is

expressed in ml/g. Blanks were also carried out to

evaluate the reduction in DP due to the saponi®cation.

A decrease of 10% was detected and the measured values

were thus corrected.

Weight increase (WI) and recovery yield (RY). The

precipitated product was weighed (Wp) after puri®cation

and the WI was calculated as:

WI�%� � 100� �Wp ÿ Wo�=Wo;

where Wo is the weight of initial cellulose or LW. The

non-precipitated part was estimated by assuming that its

DS was the same as that of the precipitated fraction.

Thus, the RY was de®ned as the ratio of the precipitated

fraction to the theoretical total product given by the

equation below:

RY�%� � 100�
Wp

Wo �
162�DS2�43ÿ1��DSn�MMnÿ1�

162

� � ;

where DS2 and DSn are the DS of the acetyl and the

fatty acyl substituent and MMn is the molecular weight

of the fatty acyl substituent (127 for the octanoyl).

Experimental design. We used the least-squares

method to determine the coe�cients b0, bi and bij of a

second-order polynomial model, which linked a studied

response R to the normalized values, Xi, of three factors:

Rn � b0 �
X

i�3

i�1

biXi �
X

i�3

i�1

X

j�3

j�1

bijXiXj;

where Xi � �U o
i ÿ Ui�=DUi; Ui � actual variable, U o

i �
actual variable at the center of the experimental domain,

and DUi � the variation step of each variable.

Static contact angle measurements. Disks (10 mm di-

ameter) of the esteri®ed products were obtained by using

a laboratory press (10 ton) and a conventional pellet

mold. A water drop (2 ll) was placed on the surface of

the disk. For each sample, a picture of the magni®ed

drop was taken. The tangent line to the drop was drawn

on the picture to measure the contact angle. Four disks

were made for each sample.

3. Results and discussion

3.1. Solvent-free model reaction

On a model reaction between cellulose and octanoic

acid with acetic anhydride co-reagent, the e�ects of three

variables: the sulfuric acid catalyst concentration (C),

the temperature (T) and the time (t) of reaction were

studied. A central composite experimental design was

used to evaluate their simultaneous interaction on the

DS, the DP, the WI and the RY of the solid product.

Preliminary experiments suggested that the experimental

domain be con®ned to the following ranges: T� 110±

130°C, t � 1±3 h and C� 3±5 meq/OH. The matrix of

experiments and results is presented in Table 2.

In a previous work (Vaca-Garcia et al., 1998), it was

demonstrated that the mixed esteri®cation technique

does not consist of two independent acylation reactions.

When acetic anhydride is not added, the fatty acid reacts

with cellulose only in extremely low yields. The acety-

lation reaction is favored since the acetylium ion

(CH3C
�O) has a larger electronic de®cit and a smaller

size than the octanoylium ion (C7H15C
�O). The acetate/

octanoate ratio in a cellulose solvent medium was found

to be 2.7, which is not signi®cantly di�erent from the

value obtained in the solvent-free experiments of Ta-

ble 2 (2.4 � 0.3). It seems that the absence of cellulose

solvent does not interfere with the dissociation of the

mixed anhydride. Furthermore, the narrow range of

variation of this ratio indicates that the selectivity of

acylation is little dependent on the reaction conditions.

The experiment at the center of the experimental

domain (120°C, 2 h, 5 meq/OH) was replicated four

times to evaluate the experimental uncertainty of each

response (s2DS � 0.0014, s2WI � 5.58, s2RY � 0.67,

s2DP � 304.7). The coe�cients of the second-order equa-

tion for every response are presented in Table 3. The

statistical signi®cance of every parameter was measured

by the t-test with 8 degrees of freedom. The statistical

signi®cance of every mathematical model was evaluated

Table 1

Characteristics and composition (dry basis, extractibles free) of lignocellulose wastes (LW) determined according to the ADF-NDF method (Van

Soest and Wine, 1967), ASTM standard D1106-84 and Tappi standard T 211 OM-03

Substrate Particles size Extractibles (%) a Cellulose (%) Hemicelluloses (%) Lignin (%) Ash (%)

Pine sawdust 2±10 mm 5 47 23 29 0.5

Wheat straw 5±20 mm 11 42 35 16 5.2

Olive stones 100±200 mesh 22 70 22 5 0.8

Agave bagasse 60±80 mesh 10 50 23 18 6.0

a In Soxhlet extractor with toluene-ethanol 50:50 v/v for 8 h, then with ethanol for 8 h.



by the F-test (F5;3 � uncertainty due to the lack of ®t/

experimental uncertainty). The contour plots of the

Fig. 2 polynomial equations are presented in Figs. 3±6.

Above a certain concentration, the sulfuric acid cat-

alyst can break the glucosidic bonds in the cellulosic

polymer, especially at high temperatures. Thus, low

molecular products may be formed as esteri®cation

proceeds. Since these oligomers cannot precipitate if

their DP is lower than a critical DP value, a fall in the

RY of the solid product may be observed, as represented

schematically in Fig. 2. Hence, we ®rst investigated the

evolution in time of the average DP of the precipitated

solid (Fig. 3). After 3 h of reaction, the DP can fall

below 150 in a relatively wide zone of T±C values, and

even fall below 100 (the minimum DP in commercial

cellulosic products) under the most severe conditions.

However, after 2 h of reaction, the product maintained a

DP higher than 100 in the whole T and C domain. Since

the DP-mathematical model was signi®cant only at the

86% level of con®dence, we considered it useless to es-

timate the exact time at which the DP falls below 100.

The e�ects of T and C on the DS, WI and RY were

therefore studied at t� 2 h. Recovery yields of almost

100% (i.e., minimal depolymerization) could be obtained

if at least one of the two variables, T or C, was kept at its

lowest value (Fig. 4). The line RY� 95% will delineate

Table 2

Experimental design for the mixed esteri®cation reaction of cellulose with octanoic acid and acetic anhydride. DS8 � degree of substitution with the

octanoyl group, DS2 � degree of substitution with the acetyl group, WI�weight increase, DP�degree of polymerization, RY� recovery yield

T t C

{X1} {X2} {X3} DS8 DS2 DStotal WI DP b RY

(°C) (h) (meq/OH) (%) (%)

110 {ÿ1} a 1 {ÿ1} a 3 {ÿ1} a 0.07 0.19 0.26 8 404 98

130 {+1} 1 {ÿ1} 3 {ÿ1} 0.10 0.25 0.35 18 299 100

110 {ÿ1} 3 {+1} 3 {ÿ1} 0.08 0.21 0.29 9 450 98

130 {+1} 3 {+1} 3 {ÿ1} 0.10 0.27 0.37 18 287 100

110 {ÿ1} 1 {ÿ1} 7 {+1} 0.26 0.76 1.02 32 215 95

130 {+1} 1 {ÿ1} 7 {+1} 0.69 1.31 2.00 ÿ7 100 50

110 {ÿ1} 3 {+1} 7 {+1} 0.41 0.80 1.21 57 136 100

130 {+1} 3 {+1} 7 {+1} 0.76 1.42 2.18 ÿ41 100 30

110 {ÿ1} 2 {0} 5 {0} 0.31 0.83 1.14 45 238 100

130 {+1} 2 {0} 5 {0} 0.66 1.47 2.13 45 189 76

120 {0} 1 {ÿ1} 5 {0} 0.27 0.66 0.93 33 130 97

120 {0} 3 {+1} 5 {0} 0.34 0.75 1.09 48 174 100

120 {0} 2 {0} 3 {ÿ1} 0.10 0.22 0.32 12 330 99

120 {0} 2 {0} 7 {+1} 0.41 0.94 1.35 44 138 92

120 {0} 2 {0} 5 {0} 0.25 0.66 0.91 31 190 96

120 {0} 2 {0} 5 {0} 0.23 0.64 0.87 28 223 95

120 {0} 2 {0} 5 {0} 0.29 0.67 0.96 33 183 95

120 {0} 2 {0} 5 {0} 0.26 0.66 0.92 33 200 94

a The numbers in brackets indicate the level of the coded variable Xi.
b DP of the starting a-cellulose� 972.

Table 3

Coe�cients b0, bi, bij of the second order polynomial model for each four studied responses. The level of con®dence (evaluated by the t-test) is

indicated in parentheses for the parameters whose statistical signi®cance is lower than 99%. See Table 2 for abbreviations

Coe�cient Studied responses

DStotal WI RY DP

b0 1.05 38.7 96.5 190

b1 0.31 ÿ11.8 ÿ13.5 ÿ47

b2 0.06 0.7 (62.4%) ÿ1.2 0 (1.4%)

b3 0.62 2.0 (97.2%) ÿ12.8 ÿ108

b12 0.00 (14.7%) ÿ7.5 ÿ3.1 3 (31.8%)

b13 0.22 ÿ19.5 ÿ14.9 15 (95.5%)

b23 0.04 (98.4%) ÿ1.3 (82.7%) ÿ1.9 ÿ14 (94.9%)

b11 0.46 ÿ1.2 (57.3%) ÿ10.1 33 (98.5%)

b22 ÿ0.17 ÿ5.7 0.4 (56.2%) ÿ29 (97.4%)

b33 ÿ0.34 ÿ18.2 ÿ2.6 53

Model's

con®dence level

(F-test) 99.5% 99.7% 99.9% 85.7%



the most convenient operation range for an economi-

cally feasible process.

On the other hand, after 2 h of reaction, the DS

values spread from 0.3 to 2.2 (Fig. 5). The maximum DS

value was obtained at the highest T and C values, but

the latter were associated with a low RY. The trade-o�

between the acylation and the formation of oligomers is

re¯ected in the WI values (Fig. 6). The maximum WI

was obtained when the lowest temperature was associ-

ated with a relatively high catalyst concentration (110°C

and 7 meq/OH). Under such conditions, esteri®cation

would be predicted to advance without extensive de-

gradation of the cellulosic chain. A new experiment

carried out at this point resulted in a medium DS value

(1.06) and a RY of 98%, which is in good agreement

with the values predicted by the mathematical model

derived from the experimental results.

Fig. 3. Isoresponse curves for the degree of polymerization (DP) of

cellulose after 2 and 3 h of acylation with octanoic acid and acetic

anhydride as a function of the temperature (T) and the H2SO4 catalyst

concentration (C).

Fig. 5. Isoresponse curves for the total degree of substitution (DS) of

the cellulose ester after 2 h of acylation with octanoic acid and acetic

anhydride as a function of the temperature (T) and the H2SO4 catalyst

concentration (C).

Fig. 4. Isoresponse curves for the recovery yield (RY) of cellulose ester

after 2 h of acylation with octanoic acid and acetic anhydride as a

function of the temperature (T) and the H2SO4 catalyst concentration

(C).

Fig. 2. Schematic representation of the degree of polymerization dis-

tribution of the acylated cellulose after reaction. Only the molecules

with a DP higher than DPcritical can be recovered by precipitation.



3.2. Reactions with higher fatty acids

We have tested some linear fatty acids usually derived

from plant resources (Table 4) under the conditions

predicted to obtain the maximum WI without extensive

degradation of the cellulosic chain (110°C, 2 h, 7 meq/

OH). When the number of carbon atoms (n) of the fatty

acid increased, the degree of substitution of the fatty

substituent (DSn) decreased. This is not surprising since

a similar phenomenon was observed in the esteri®cation

of wood with fatty acid chlorides (Thiebaud and Bor-

redon, 1995). A longer fatty acid generates a bulkier

fatty acylium ion and the steric hindrance is more im-

portant. However, the fact that DS2 also decreased with

increasing n revealed that the dissociation of the acetic-

fatty mixed anhydride was weaker. At a ®rst glance, it

could be thought that the mixed anhydride increases its

stability when the fatty portion is longer, but in fact, the

more disymmetric the anhydride is, the less stable it

becomes. Therefore, the diminution of the DS can only

be accounted for by the fact that the real concentrations

of the catalyst and other reagents decreased. Since the

ratio 5.6 eq fatty acid/eq OH was constant for all the

experiments, a longer fatty acid represented a larger

amount of dispersing agent.

Another phenomenon that could be observed was the

progressive increase of the DS2/DSn ratio from 2.5

(n� 8) to 3.1 (n� 18), which was due to the unequal

competition between the small, reactive acetylium ion

and the fatty acylium ion, whose molecular weight in-

creases with n. The acetylation reaction was thus fa-

vored when the size of the fatty acid increased.

When passing from n� 8 to n� 12, the WI values

increased slightly because the molecular weight of the

substituent increased while DS values were relatively

constant. With longer fatty acids, particularly with ste-

aric acid, the DS values fall so abruptly that WI di-

minished even if the fatty substituent was heavier. It is

also noteworthy that in all cases the RY was higher than

95%, as predicted by the mathematical model derived

from the experimental results.

3.3. Reactions with lignocellulosic substrates

By eliminating the use of cellulose solvents, it was our

purpose to apply the mixed esteri®cation technique to

solvent-exchanged LW to modify their surface proper-

ties (hydrophobicity). The acylated LW can be inter-

esting for the fabrication of water-repellent

particleboards. We wanted to test the reaction condi-

tions that would lead to a high DS with octanoic acid,

i.e., T� 130°C, C� 7 meq/OH, t� 2 h.

The amount of reagents was calculated as if the

substrate was cellulose. This operational mode would

provide a reagent excess compared to the experiments

with cellulose. However, the main components in LW

other than cellulose (lignin, hemicelluloses) also contain

OH groups that can undergo esteri®cation. The selected

LW contained 70±90% holocellulose (cellulose + hemi-

celluloses) and the number of OH groups per gram of

holocellulose is not very di�erent from that in cellulose.

Therefore, the di�erences in yield that may arise from

the reagent excess are not substantial.

The evaluation of the esteri®cation yields in LW was

achieved by the determination of the ester content by

saponi®cation. The total amount of ester functions was

thus quanti®ed without di�erentiation of the acetate

from the octanoate groups. The aminolysis technique

previously used was avoided in the analysis of LW esters

because some non-volatile constituents may dissolve in

the pyridine-pyrrolidine mixture and deteriorate the

chromatographic column. Proton NMR, which is also a

common technique for the analysis of mixed esters

(Vaca-Garcia et al., 1998), was not suitable due to the

insolubility of the samples and to the interference that

other non-cellulosic components may produce in the

integration of the signals.

Table 4

E�ect of the nature of the fatty acid on the mixed acylation of cellulose

with acetic anhydride (T� 110°C, t� 2 h, C� 7 meq/OH)

Fatty acid n DSn DS2 DStotal WI (%) RY (%)

Caprylic 8 0.30 0.76 1.06 42 98

Capric 10 0.28 0.75 1.03 44 96

Lauric 12 0.25 0.68 0.93 47 100

Myristic 14 0.22 0.64 0.86 44 98

Palmitic 16 0.19 0.55 0.74 40 95

Stearic 18 0.10 0.31 0.41 25 100

DSn �degree of substitution with the fatty acyl group. See Table 2

for abbreviations.

Fig. 6. Isoresponse curves for the weight increase (WI) of the cellulose

sample after 2 h of acylation with octanoic acid and acetic anhydride

as a function of the temperature (T) and the H2SO4 catalyst concen-

tration (C).



All the lignocellulosic residues, pretreated by solvent-

exchange, showed comparable reactivities (Table 5, left

part). Their EC varied in a narrow range, which was

about 3 times lower than that of the cellulose control.

However, they presented positive WI values, which re-

vealed that they were less attacked by the acid catalyst.

According to Thiebaud (1995), the formation of oligo-

mers by acid degradation is inversely proportional to the

lignin content of LW. In our case, this was true for pine,

straw and bagasse, as their WI values were larger if their

lignin content was high. However, olive stones behaved

di�erently; with a lignin content lower than straw and

bagasse, they showed a higher WI. It was concluded that

other parameters like porosity and speci®c volume of the

®bers (Rowell et al., 1986), which were not considered in

this work, may be useful in explaining this phenomenon.

As an ultimate attempt to further simplify the mixed

esteri®cation technique, we eliminated the solvent-ex-

change pretreatment (Table 5, right part). The compar-

ison of values shows that solvent-exchanged cellulose

was four times more esteri®ed than the unpretreated

cellulose and the latter was less degraded during acyla-

tion as indicated by its higher WI value. The weaker

reactivity of unpretreated cellulose may have arisen not

only from the crystallinity of cellulose, but also from the

collapsing of the ®ber pores that occurs when commer-

cial cellulose is dried after the pulping process. There-

fore, a bulky aliphatic compound (fatty acid or mixed

anhydride) cannot penetrate the tight compact structure

of the micro®bers. In the solvent-exchange pretreatment,

water swells cellulose easily as it interposes between the

cellulose chains, reducing intermolecular H-bonding.

Next, by washing and stirring with ethanol, the latter

replaces water in the interior of the swollen ®bers. The

fatty acid can be subsequently introduced into the cel-

lulosic micro®brillar structure in the same way. Thanks

to the intimate contact between the hydrophilic cellulose

®bers and the hydrophobic fatty compounds, the acyla-

tion yield of cellulose is increased by about 400%.

In the case of LW, the solvent-exchange technique

®nds the barrier of lignin and hemicelluloses in the

middle lamella surrounding the cellulosic ®bers. This

results in a positive but limited action of this pretreat-

ment (about 60% increase in acylation). It is worth

noting that unpretreated cellulose and LW showed al-

most no di�erence in acylation yields. This suggests that

the collapsing of the ®bers during the drying process is

the major factor a�ecting reactivity.

Finally, we tested the hydrophobicity of all the es-

teri®ed substrates presented in Table 5 by measuring

their contact angle with water. All the specimens showed

constant values ranging from 79° to 89°, but no corre-

lation with the ester content could be observed. Such

values are, however, signi®cantly superior to the dy-

namic contact angle of cellulose triacetate (70°) previ-

ously reported (Vaca-Garcia et al., 1998) proving that

the grafting of the fatty chains increases the hydropho-

bicity of the substrates even at low degrees of esteri®-

cation.

In conclusion, the mixed esteri®cation of cellulose

with fatty acids and acetic anhydride was successfully

adapted to a solvent-free reaction. Even though the es-

teri®cation yields were lower than in LiCl/DMAc me-

dium, the products obtained were highly hydrophobic.

This technique can be applied to the fatty esteri®cation

of lignocellulosic matter. The products thus obtained

can be interesting for the production of water-repellent

particleboards.
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