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An Unambiguous Radar Mode with a Single PRF
Wideband Waveform

M. Lasserre, S. Bidon
ISAE / University of Toulouse,
Toulouse, France
Email: name.surname @isae.fr

Abstract—In this paper, we consider the problem of unam-
biguously estimating targets, including in blind velocities, using
a single-low-PRF wideband radar signal. We present a Bayesian
sparse recovery algorithm able to estimate the amplitude and
location of range-migrating targets possibly straddling range-
velocity bins embedded in colored noise. Numerical simulations
on synthetic data and experimental data show that the proposed
algorithm is able to mitigate velocity ambiguity and estimate
targets in blind velocities.

I. INTRODUCTION

Using conventional radars that transmit a train of pulses with
constant pulse repetition frequency (PRF) leads to two types
of ambiguities: range ambiguities (if the PRF is too high) or
velocity ambiguities (if the PRF is too low) [1], [2]. Besides,
the ambiguous range and ambiguous velocity are related such
that their product only depends on the carrier frequency:
increasing one will decrease the other. Wideband radars offer
an alternative to the problem of ambiguity removal: as range
resolution is increased, fast moving targets are likely to
migrate during the coherent processing interval (CPI) leading
to range-velocity coupling [3], [4]. Assuming that a low
PRF is used, many velocity ambiguities appear; however, the
above-mentioned “range walk phenomenon” gives additional
information that can be used to obtain unambiguous velocity
measurement [4].

Sparse signal representations (SSR) can be of particular
interest when trying to remove velocity ambiguities since they
allow the estimation of a sidelobe-less signal of interest (SOI)
[5], [6]. In [7], SSR is used to obtain unambiguous estimation
of fast moving targets. More precisely, a hierarchical Bayesian
approach is adopted and sparsity is enforced on the target
amplitude vector via a mixed-type prior distribution. Yet, the
algorithm from [7] is limited to the case of targets whose
features match that of the analysis grid used to discretize
the range-velocity domain (“on-grid” targets, as opposed to
“off-grid” targets); they are also embedded in white noise.
However, as experimental radar scenes often contain off-
grid targets and/or colored noise, this algorithm needs to
be robustified with respect to (wrt) these two phenomena to
prevent false-estimations in the clutter and targets’ sidelobes
and hence mitigate velocity ambiguities. This work focuses
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on the robustification of the algorithm from [7] towards these
two phenomena using the sampling scheme modifications
described in [8] and [9]. In [8], robustification towards grid
mismatch is investigated. The mismatch between the target’s
features and the analysis grid is modeled by two vectors, called
“mismatch vectors”, that are also estimated by the Bayesian
algorithm. Hence, migrating targets potentially off-grid and
embedded in white noise are unambiguously estimated. In
[9], the colored noise case is studied: an auto-regressive (AR)
noise model is adopted and its parameters are estimated. Thus,
“on-grid” migrating targets embedded in colored noise are
discriminated from their ghosts and from the clutter sidelobes.

In this paper, we present a new algorithm robust to both
grid-mismatch and colored noise using the hypothesis pre-
sented in [8] and [9] resp. The technical novelty consists in
merging two branches of the hierarchical Bayesian schemes
presented separately in [8] and [9]. This modification affects
non-trivially the sampling scheme, especially that of the mis-
match vectors. The new algorithm is able to mitigate velocity
ambiguity and estimate targets hidden in the clutter sidelobes
for both synthetic and experimental data.

In Section II, the wideband signal model and SSR formu-
lation are recalled. In Sections III and IV the hierarchical
Bayesian model and estimation scheme adopted are presented.
The proposed algorithm is then evaluated via numerical sim-
ulations on synthetic and semiexperimental data in Section V.

II. SIGNAL MODEL

We consider a wideband radar system sending M pulses
with PRF f,, meaning that the wideband B is non-negligible
compared with the carrier frequency f.. Processing of the data
is done on a low-range resolution (LRR) segment consisting
of K adjacent range bins. After applying a range transform,
one can say that the samples are expressed in the fast-
frequency/slow-time domain by a K x M data matrix Y [7],
whose row-vectorized version denoted y is expressed as

N
Y= Z anQp + 1 (1)
n=1
The signature of the nth target is the product of a conventional
2D-cisoid and a cross-coupling term modeling range migration
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where 7 is the initial round-trip delay of the nth scatterer,
(2vf.)/(cfr) is the usual normalized Doppler frequency. In
the following we use the fractional bandwidth per subband

n=B/(Kfe).
A. SSR formulation

Following the approach used in [7], [8], the received signal
y is reformulated within the scope of SSR as

y=Hx+n 3)

where H is a sparsifying dictionary that stems from a dis-
cretization of the range-velocity dimensions (KM being the
dimensions of reconstruction of the scene) and x is a sparse
vector representing the target amplitude. Then, using (2) the
ith column of the dictionary H is expressed as

= e {i2n (— Lk + fa(l+pbm)} @
where f.; and fg; are the normalized range and Doppler
frequencies from the range and velocity analysis grids. The
table indices k, m, 4 and k, /m, 7 used to index the sparsifying
dictionary H are related as ¢ = m + kM (k € {0,K —
1}, m € {0,M —1}) and similarly for 7, k, m.

B. Grid-mismatch modeling

As presented in [8], the range and velocity analysis grid
are divided into K (resp. M) bins with a possible zero-
padding factor denoted n7, (resp. n7,) and an unfolding
factor n,, on the velocity axis in order to mitigate velocity
ambiguity. The number of range and velocity analysis bins
are then K = n[,K and M = nY,n,,M resp. Besides,
two mismatch vectors (e¥,€") are introduced to address the
mismatch problem on the velocity and range axis resp. and
directly parametrize the sparsifying dictionary H [8]. Hence,
a target located at the ith analysis bin is characterized by
its normalized Doppler frequency f4; and normalized range
frequency f,;

m' +e¥ k+er
faz = Tlnvaa fri= i o &)
where (assuming M is even) ' = m if m € {0,..., M /2—1};

m' =m— M if m e {M/2,..,M — 1}.

C. Noise modeling

Using the method of [9], the following assumptions are
made on the noise vector i 1) it models both thermal noise
and clutter and is centred Gaussian: n ~ CN (0, R); 2) it is
decorrelated from subband to subband; 3) it is correlated in
the slow-time according to a stationary auto-regressive (AR)
process with finite order P; 4) the clutter is locally homo-
geneous (i.e., the AR coefficients are subband-independent).
These assumptions imply that the KM x KM covariance
matrix R has the following structure

R=Ix®T
P = 032 (L — ) (I — @)
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Fig. 1. Directed acyclic graph associated with the proposed hierarchical
Bayesian model. The upper part of the model (orange) corresponds to the
noise modeling proposed in [9] while the bottom part (blue) corresponds to
the target amplitude and grid mismatch modeling of [8].

(e",¢€")

where T™! is a P-banded M x M matrix; its Cholesky
factorization is given by (6b) where ® is a lower-triangular
Toeplitz matrix with zero diagonal elements that gives the AR
coefficients: ® = Toeplitz { [0 ¢1 op O 0] };
o3y is the variance of the white input to the AR model.

Hence, the likelihood function is given by

e~ (y—H(e",e")x)" R~ (y—H(e" e"))

f (y|€7j7€T) w? R) =

TKM|R|
_exp {0l Tx ® Iy — )] (y — H(e", ")) | }(7)
WKNIJ/%RKAI
Note that || - || designates the ¢o-norm || - |2 throughout the

document.

III. BAYESIAN MODEL

A hierarchical Bayesian model is used to estimate the
parameters of interest, namely x, (¢”,€"); it is graphically
represented in Fig. 1. The unknown parameters are considered
as random variables and a prior distribution is assigned to each
of them; these prior pdfs are briefly detailed hereafter since
they are the ones presented in [8], [9].

A. Target amplitude vector x

The elements of the target amplitude vector x are considered
iid a priori; they are distributed according to the following
mixed-type pdf

CC2
i) = (1= o) + v e { -] 9

x x
This prior, denoted BerCN (w,0,02), decorrelates sparsity
level and target power via its mixed-type structure.
B. Mismatch vectors (€¥,e")

The elements of (¥, &") are supposed iid and conditioned
by the corresponding value of target amplitude

m(e7, 7 |laz = 0)=0(e7)d(e7)
m(ef, e5|as # 0)=I 0.5,0.5]2(5%5%)

where ]I[,(]_57(),5]2(5%’ ,€7) is the indicator function of the set
[—0.5,0.5] x [—0.5,0.5].

(9a)
(9b)
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C. Disturbance parameters oy, ¢

The prior distributions assigned to the disturbance parame-
ters oag, @ are that of [9]: conjugate priors are chosen, namely
an inverse-gamma prior for o3, and complex-Gaussian prior
for ¢

(10a)
(10b)

oxrl70s 711 ~ ZG (y0,7)
Plig, Ry ~ CNp (py: Ry)

where (v0,71) are the shape and scale parameters of (10a)
and (p,, Ry) are the a priori mean vector and covariance
matrix of ¢. In practice, both priors are adjusted to flat
non-informative distributions since prior knowledge about the
disturbance parameters may not be available:

1
T(0AR) % —5—I[0,100) (TAR) (11a)

OAR
m(¢) x 1.

D. Hyperparameters 02 and w

(11b)

The hyperparameters of (8) are unknown so a final stage
is added to the hierarchical Bayesian model. Following the
approach used in [7], an inverse-Gamma prior is assigned
to the target power o2 and a uniform prior to the level of
occupancy w

a2|Bo, B1 ~ ZG (Bo, B1)

w ~ u[O,l]'

(12)
13)

IV. BAYESIAN ESTIMATION SCHEME

As mentioned in Section III, the target scene is estimated
via the parameters of interest x, (€¥, ") by deriving Bayesian
estimation based on the hierarchical model described in Fig. 1.
More precisely, the MMSE estimators of x and (e”,e") are
calculated

ﬁfMMSEZ/ x f(x|y)dz, (14a)

(EA”,éT)MMSE:/ (€', €") f(e”,€"|y)de"de”. (14b)

As (14) seems intractable to derive analytically, a Monte-
Carlo Markov Chain (MCMC) algorithm is used. Compared
to the sampling schemes of [8] and [9], several iterative
steps are highly impacted by the mismatch and colored noise
hypothesis. First, compared to the sampling scheme under
white noise hypothesis of [8], the sampling of the target
amplitude vector x and that of the variance of the white
noise input o3, must take into account the whitened version
of parameters y and H, ie., § = [Ix ® (In, — ®)]y and
H 2 [Ix ® (I —®)] H. Most importantly, the sampling
of the mismatch vectors (¢¥,€") is a very demanding task
wrt the white noise case of [8]. More precisely, the joint-
sampling of (e, ") must take into account the cross-coupling
terms (due to migration) and unfolding factor (for velocity
disambiguation) of the sparsifying dictionary H, as well as
the AR noise model.

V. NUMERICAL SIMULATIONS
A. Synthetic data

First, synthetic data is generated using (1), (2) and (6) with
P = 1. Each target is characterized by its post-processing
signal-to-interference-plus-noise ratio (SINR) calculated as

SINR = £ {|a|*} a”" R"a. (15)

Fig. 2 shows a target map estimated by the proposed
algorithm robustified towards grid mismatch and using an
AR noise model (“AR+mismatch algorithm”) and by the
different unrobustified and partially robutified versions of the
algorithm: “AR + no mismatch”, “WN + mismatch” (white
noise model), “WN + no mismatch”. One can see in Fig. 2(a)
that the algorithm unrobustified towards grid mismatch and
under white noise hypothesis leads to many false-alarms in
the clutter sidelobes and that target 3 and 4 are split on
the surrounding range bins. When robustified towards grid
mismatch, the algorithm does not split targets 3 and 4 anymore
but the numerous false alarms in the clutter sidelobes remain
and target 2 is hidden amongst these (Fig. 2(b)). On the
other hand, using an AR noise model without robustification
towards grid mismatch does remove the false-alarms in the
clutter sidelobes but targets 3 and 4 are split on both the
range and velocity sidelodes (Fig. 2(c)). Finally, one can see
in Fig. 2(d) that the four targets are accurately estimated
by the AR-+mismatch algorithm. Fig. 2(e) and 2(f) depicts
the spectrum resulting from the AR parameters estimated
by the AR+no mismatch and AR+mismatch algorithms resp.
They show good agreement with the true one, verifying that
the whitening operation required within the sampler is well
achieved.

B. Experimental data

The AR+mismatch algorithm is then tested on semiexper-
imental data consisting in synthetic targets added to exper-
imental clutter recorded by the PARSAX radar from Delft
University of Technology (TU Delft) [10]. As in the synthetic
case, one can see in Fig. 3(d) that the AR+mismatch algorithm
does mitigate velocity ambiguities while the unrobustified and
partially robustified versions of the algorithm lead to false
alarms in the blind velocities (Fig. 3(a) and 3(e)) and/or
split targets (Fig. 3(a), 3(b), 3(c)). Interestingly, one can see
in Fig. 3(f) that the proposed algorithm interprets PARSAX
clutter as the sum of a diffuse component and discretes, which
was already observed in [9].

VI. CONCLUSION

In this paper, a Bayesian sparse recovery algorithm able to
mitigate velocity ambiguities has been presented. It estimates
the unambiguous location and amplitude of possibly off-
grid migrating targets embedded in colored noise, even when
located in the blind velocities. More precisely, an AR noise
model has been adopted and associated with a robustified
sparsifying dictionary; the parameters of interest are then
estimated thanks to a Monte-Carlo Markov chain algorithm.
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Fig. 2. Synthetic data processed by the proposed AR+mismatch algorithm (2(d), 2(f)), the unrobustified (WN+no mismatch, 2(a)) and partially robustified
versions: WN+mismatch (2(b)), AR+no mismatch (2(c),2(e)); the scenario consists in 3 exo and one endo-clutter targets with SINR values 20, 15, 30 and
15 dB resp. (target 1 to 4). Coherent integration of the scene is represented in the background. K = 10, M = 32, f. = 10 GHz, B = 1 GHz, v, = 15 m/s.
Synthetic AR: UiR =15 6¢=.99. K=K, nye =3, M =3M, (mgazp, stdog) = (35,10) dB, flat prior on a'iR.
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Fig. 3. Semiexperimental PARSAX data processed by the proposed AR+mismatch algorithm (3(d), 3(f)), the unrobustified (WN+no mismatch, 3(a)) and
partially robustified versions: WN+mismatch (3(b)), AR+no mismatch (3(c),3(e)); the scenario consists in 3 exo and one endo-clutter targets with SINR
values 15, 20, 30 and 15 dB resp. (target 1 to 4). Coherent integration of the scene is represented in the background. K = 6, M = 64, f. = 3.315 GHz,

B =100 MHz, vq = 45 nv/s. K = K, nva = 3, M = 3M, (m,2, std,2) = (30,10) dB, flat prior on o.



The proposed algorithm is successfully evaluated on synthetic
and experimental radar data: velocity ambiguities are mitigated
and the diffuse clutter component is assimilated by the AR
model. In the future, a detection scheme has yet to be deter-
mined using the full Bayesian model and estimation technique
presented here.
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