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Abstract 
The initial encoding of direction by mammals occurs in striate cortex by 

neurons with small receptive fields that are tuned to narrow bands of the 

spatiotemporal frequency spectrum. Individual neurons are unable to signal 

the global direction of 2D motion and are instead sensitive to the 1D 

component of motion perpendicular to a moving edge. To compute 2D 

velocity, it is necessary to integrate over a range of 1D velocity sensors. In this 

work I probe the ability of the visual system to compute 2D velocity from a 

range of stimulus classes, including naturally contoured scenes, natural 

scenes and a global-Gabor array. My research shows that the motion stream 

is highly sensitive to the distribution of local orientations present in a moving 

image, but is largely insensitive to their spatial second-order statistics. I present 

a computational model of two-dimensional motion processing that is able to 

derive precise estimates of 2D motion directly from complex natural scenes. 

The model produces errors when confronted with stimuli composed of 

anisotropic orientation configurations and is able to capture many of the 

biases and errors experienced by human observers. Finally, I argue that 

observers’ misperceptions of 2D motion does not reflect a sub-optimal 2D 

motion strategy, but reflects a compromise between the competing 

requirements of defining motions in a spatially discrete manner across space, 

and the ability to accurately estimate 1D motions, on which the computation 

of 2D velocity must rely. 
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PREFACE 

The ability of the primate brain to visually infer the temporal dynamics of the 

world has been the subject of intensive investigation. The study has revealed 

regions of the primate brain that are highly specialized for motion processing 

and the identification of a processing hierarchy in which progressively more 

complex motion signals are inferred from the visual environment. The primary 

factor through which the hierarchy can be described (and the focus of this 

thesis) is in terms of the incremental increase in the dimensionality of motion 

sensitivity in each ascending region of the motion stream; The earliest 

direction selective cells are found in area V1 of the primary visual cortex and 

are sensitive to the one-dimensional component of motion orthogonal to a 

surface orientation. These cells synapse with area MT where a proportion of 

cells are selective for the two-dimensional component of motion. In turn the 

cells in area MT synapse with area MSTd that is associated with full field 

motions such as optic flow. 

 

The focus of this thesis is on the progression from one-dimensional to two-

dimensional motion processing. The problem is commonly referred to as the 

‘aperture problem’ because when a moving straight edge is viewed through 

an aperture, the two-dimensional motion of the edge is ambiguous. In theory 

when two or more oriented surfaces are present (either locally, or distributed 

across space), the ‘aperture problem’ may be resolved, however despite this 

theoretical possibility human observers are often systematically biased when 

asked to judge the two-dimensional motion of objects. Despite considerable 

research into brain regions V1 and MT associated with one- and two-

dimensional motion processing there is no consensus on how the established 
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properties of motion sensitive cells may lead to observers’ miss-perceptions of 

direction.  

 

The work in this thesis attempts to link the established properties of motion 

sensitive cells (in area V1 and MT) and the psychophysical literature on the 

‘aperture problem’. To do so I rely heavily on the motion energy model of 1D 

velocity processing to allow the construction of a model of two-dimensional 

motion processing that can (a) work upon unconstrained natural scenes and 

(b) incorporates biologically realistic constraints into the model. 

 

The experimental chapters examine the influence of natural contour and 

natural orientation statistics on motion processing; statistics that are not 

present in the majority of stimuli used to probe the ‘aperture problem’. The 

approach stems from the argument that a system can only be truly measured 

or understood in terms of the natural environment is has evolved to cope 

with. In this regard I examine the influence of natural contour statistics in 

motion processing (experimental chapter 1) and I employ a reverse-

correlation paradigm to examine the role of naturally occurring textures in 

motion processing (experimental chapter 2). A model of two-dimensional 

motion processing is then introduced that is able to work within a few degrees 

of accuracy upon natural scenes but performs very poorly on the artificial 

stimuli (e.g. plaids) used to study the aperture problem. A final experimental 

chapter is designed specifically to test how well the model is able to predict 

observers’ errors in estimating the 2D direction of a global-Gabor array. 



 6 

(1)	   INTRODUCTION............................................................................................ 12	  

The	  motion	  stream.......................................................................................................................................12	  

Overview:	  The	  ‘Aperture	  Problem’. ........................................................................................................20	  

Equations	  relating	  1D	  motion	  to	  2D	  motion..................................................................................................... 22	  

How	  the	  distribution	  of	  1D	  motions	  varies	  with	  2D	  motion ..................................................................... 23	  

Solving	  the	  ‘aperture	  problem’ ................................................................................................................25	  

The	  curse	  of	  dimensionality..................................................................................................................................... 25	  

The	  Geometric	  Solution ............................................................................................................................................. 27	  

Intersection	  of	  Constrains ........................................................................................................................................ 31	  

Non-‐veridical	  solutions.............................................................................................................................................. 33	  

Biological	  Vision............................................................................................................................................37	  

The	  Early	  Visual	  System ............................................................................................................................................ 37	  

Linear-‐systems	  theory ............................................................................................................................................... 39	  

Fourier	  analysis	  and	  wavelets ................................................................................................................................ 41	  

Ganglion	  cells ................................................................................................................................................................. 43	  

Lateral	  geniculate	  nucleus........................................................................................................................................ 44	  

Orientation	  and	  direction	  selectivity ................................................................................................................... 46	  

Spatiotemporal	  frequency	  domain ....................................................................................................................... 48	  

Model	  of	  V1	  motion	  energy...................................................................................................................................... 50	  

The	  ‘aperture	  problem’	  -	  Psychophysics ..............................................................................................58	  

Temporal	  aspect	  in	  the	  computation	  of	  2D	  velocity .........................................................................63	  

EXPERIMENTAL	  CHAPTERS.......................................................................................................................66	  

(2)	   EXPERIMENTAL	  CHAPTER	  NO.1 .................................................................... 73	  



 7 

The	  influence	  of	  Natural	  Contours	  in	  motion	  processing ...............................................................73	  

Contour	  Structure.........................................................................................................................................74	  

Co-incidence	  of	  structure	  across	  spatial	  frequencies.......................................................................78	  

Methods............................................................................................................................................................83	  

Subjects............................................................................................................................................................................. 83	  

Apparatus......................................................................................................................................................................... 83	  

Stimuli ............................................................................................................................................................................... 84	  

Procedure......................................................................................................................................................................... 85	  

Experiment	  1:	  Dependence	  of	  direction	  discrimination	  on	  spatial-‐frequency	  structure............. 87	  

Experiment	  2:	  The	  role	  of	  second-‐order	  statistics......................................................................................... 89	  

Stimuli ............................................................................................................................................................................... 90	  

Results ..............................................................................................................................................................92	  

Experiment	  3:	  Low	  SFs	  and	  the	  effect	  of	  scrambling	  carrier	  location ........................................94	  

Methods ............................................................................................................................................................................ 94	  

Results ............................................................................................................................................................................... 94	  

Controls............................................................................................................................................................97	  

Discussion .......................................................................................................................................................99	  

Model ............................................................................................................................................................. 102	  

Model	  Results.............................................................................................................................................. 105	  

Implications	  for	  models	  of	  global	  motion	  processing................................................................... 108	  

Experiment	  4	  Number,	  Density	  or	  Area ............................................................................................. 110	  

Subjects/Apparatus.................................................................................................................................................. 112	  



 8 

Stimuli ............................................................................................................................................................................ 112	  

Procedure...................................................................................................................................................................... 113	  

Results ........................................................................................................................................................... 115	  

Discussion .................................................................................................................................................... 115	  

(3)	   EXPERIMENTAL	  CHAPTER	  NO.2 .................................................................. 119	  

The	  aperture	  problem	  in	  natural	  scenes........................................................................................... 119	  

Methods......................................................................................................................................................... 121	  

Subjects.......................................................................................................................................................................... 121	  

Apparatus...................................................................................................................................................................... 121	  

Stimuli ............................................................................................................................................................................ 122	  

Procedure...................................................................................................................................................................... 123	  

Conditions..................................................................................................................................................................... 124	  

Observers’	  error......................................................................................................................................................... 125	  

Bootstrapping ............................................................................................................................................................. 127	  

Results ........................................................................................................................................................... 127	  

Scene	  Statistics ........................................................................................................................................................... 132	  

Results ........................................................................................................................................................... 136	  

Results ........................................................................................................................................................... 137	  

Results ........................................................................................................................................................... 139	  

Discussion .................................................................................................................................................... 144	  

Appendix....................................................................................................................................................... 147	  

Scene	  statistics............................................................................................................................................................ 147	  



 9 

(4)	   GLOBAL	  MOTION	  MODEL ........................................................................... 150	  

Methods......................................................................................................................................................... 153	  

Local	  1D	  motion	  sensors	  (V1).............................................................................................................................. 153	  

Global	  motion	  sensors	  (MT) ................................................................................................................................. 156	  

Model	  Details............................................................................................................................................................... 157	  

Results ........................................................................................................................................................... 158	  

Artifical	  Stimuli........................................................................................................................................................... 158	  

Natural	  Scenes ............................................................................................................................................................ 161	  

Discussion .................................................................................................................................................... 163	  

Experimental	  Chapter	  No.	  3 ................................................................................................................... 170	  

Testing	  the	  global	  motion	  model.......................................................................................................... 170	  

Methods......................................................................................................................................................... 173	  

Subjects/Apparatus.................................................................................................................................................. 173	  

Stimuli	  (experiment	  1)............................................................................................................................................ 173	  

Procedure	  (experiment	  1) ..................................................................................................................................... 173	  

Data	  Analysis ............................................................................................................................................................... 174	  

Results ........................................................................................................................................................... 175	  

Psychophysics............................................................................................................................................................. 175	  

Equivalent	  noise......................................................................................................................................... 177	  

Methods......................................................................................................................................................... 182	  

Subjects/Apparatus	  /Procedure/Stimuli ....................................................................................................... 182	  

Ideal	  observer ............................................................................................................................................................. 182	  

Results ........................................................................................................................................................... 185	  



 10 

Equivalent	  Noise ........................................................................................................................................................ 185	  

Results ........................................................................................................................................................... 188	  

Testing	  the	  2D	  model............................................................................................................................................... 188	  

Discussion .................................................................................................................................................... 193	  

(5) ...................................................................................................................... 196	  

(5)	   CONCLUSION.............................................................................................. 197	  

Summary ....................................................................................................................................................................... 197	  

Biological	  plausibility .............................................................................................................................................. 204	  

Model	  limitations....................................................................................................................................................... 207	  

Predictable	  errors ..................................................................................................................................................... 208	  

Biological	  realism ...................................................................................................................................................... 215	  

References.................................................................................................................................................... 224	  



 11 

                

 

 

 

 



 12 

(1) Introduction  

The motion stream 

Visual motion has been the studied extensively in the field of visual 

neuroscience. This is in part due to the identification of brain regions highly 

specialized for the detection of motion and the identification of a 

hierarchical motion stream in which increasingly complex motion signals are 

processed at each ascending stage of the motion stream (illustrated in Figure 

1;Bartels, Zeki, & Logothetis, 2008; Maunsell & van Essen, 1983a; Movshon, 

Adelson, Gizzi, & Newsome, 1986a; Zeki, et al., 1991). 

 

 
Figure 1-1. The primate motion processing stream. The visual signal from the retina is passed via 

the lateral geniculate nucleus to the primate visual cortex. In area V1 the first direction and 

orientation selective cells are found. Direction selective cells in area V1 are sensitive to the one-

dimensional component of motion orthogonal to an oriented surface. These cells are known to 

synapse with cells in the medial temporal (MT) area that are sensitive to both the speed and 

direction of two-dimensional motion.  In the nearby medial superior temporal area cells are 

found which are sensitive to full field motion such as those generated by an organism passing 

through a three-dimensional environment. 

Primate visual sensitivity begins with the rod and cone cells found in the retina 

that are sensitive to the wavelength and intensity of light. The visual signal is 

then relayed via the lateral geniculate nucleus (LGN) to the primary visual 

Retina LGN V1 MT MST
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cortex located in the posterior region of the brain. Unlike some mammals (e.g. 

rabbits; H. B. Barlow & Hill, 1963) which have direction selective (DS) cells in 

the retina, direction selectivity is not noted in the primate visual stream until 

area V1 of the primary visual cortex. However the direction selective (DS) cells 

found in area V1 are not sensitive to the two-dimensional velocity of an 

object across the retina but are instead sensitive to the one-dimensional 

component of motion perpendicular to a surface orientation (Hubel & Wiesel, 

1962). Given that the retina records a spatially two-dimensional 

representation of the world across time, the rationale behind such a 

mechanism is unclear, however it can be argued that the approach reflects 

a rational approach because two-dimensional motion is not always 

resolvable within a narrow region of time and space. This problem (detailed in 

depth in the next section) is referred to as the ‘aperture problem’ and 

concerns the fact that the two-dimensional motion stemming from a straight 

edge is locally ambiguous. Theoretically, the motion signal from two or more 

straight edges is sufficient to disambiguate the two-dimensional motion of an 

object, however in unconstrained natural environments the region of space 

and time needed to achieve disambiguation is an unknown variable. 

Accordingly any system (artificial or biological) that attempts to solve this 

problem in unconstrained environments will have to dynamically alter the 

region and time period of integration.  

 

Many authors claim the ‘aperture problem’ is solved in the medial temporal 

(MT) region of the primate brain. The homologue of primate area MT in 

humans is sometimes referred to as area V5. In area MT an unusually high 

proportion of cells are sensitive to motion (~90%). Cells in area MT are 

reciprocally connected to area V1 (Maunsell & van Essen, 1983a), have 
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receptive fields 10 times the area of V1 cells and are known to receive 

projections from directionally selective cells in area V1 (Movshon & Newsome, 

1996). Functionally this structure makes area MT ideally suited to resolving the 

ambiguity inherited from V1 DS cells. The key evidence in support of this 

notion comes from the observation that around a third of cells in area MT are 

responsive to the two-dimensional direction of motion even if the 1D velocity 

signals are oblique to the two-dimensional vector (Movshon, Adelson, Gizzi, & 

Newsome, 1985; Rodman & Albright, 1989).  Speed tuning is also refined as we 

move from area V1 to area MT. The temporal frequency tuning of V1 DS cells 

is either low-pass or high-pass (Foster, Gaska, Nagler, & Pollen, 1985) and the 

V1 DS cells are not speed tuned because their spatial and temporal 

frequency tuning functions are separable (Foster, et al., 1985). In contrast, the 

majority of MT cells have inseparable spatial and temporal frequency tuning 

(Perrone & Thiele, 2001) and are thus tuned to stimulus speed. MT cells are 

tuned to all directions and a broad distribution of speeds (DeAngelis & Uka, 

2003), but the distribution of speed tuning is heterogeneous with the majority 

of cells tuned to high angular speeds (~32°/s) (Cheng, Hasegawa, Saleem, & 

Tanaka, 1994). The speed tuning properties of MT cells are heterogeneous 

and are either low-pass, band-pass, broadband or high-pass (Lagae, Raiguel, 

& Orban, 1993; Mikami, Newsome, & Wurtz, 1986) 

 

The notion of a hierarchical motion stream receives further support by the 

identification of reciprocal axons terminals from area V1 to MT and from MT to 

the medial superior temporal area (MST) (Maunsell & van Essen, 1983a). Within 

the dorsal regions of MST (MSTd) cells are selective to a range of full field 

motions such as rotation, radiation and translation, or to combinations these 

motions (Graziano, Andersen, & Snowden, 1994). With the exception of full 
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translations, such motion patterns require more than two-dimensions to 

describe them, because they describe a change in velocity over space. 

More recently it has been shown that nearly all cells in area MSTd are 

‘pattern’ selective (Khawaja, Tsui, & Pack, 2009).  

 

 
Figure 1-2. Full field motions generated by specific movement and fixation parameters. (a) The 

pattern of 2D motion (Vector-flow-field) generated by an organisms moving towards the point 

of fixation. (b) The Vector-flow-field generated by an organism moving orthogonal to the 

direction of unfocused gaze (c) The Vector-flow-field generated by an organism moving 

orthogonal to the direction of focused gaze. Note, the sign of motion switches at the point of 

fixation. 

The result of the above anatomical and functional studies have led to the 

notion that motion processing occurs in a hierarchical and feed-forward 

manner with ascending regions becoming selective for more complex 

representations of visual motion. A number of additional factors contribute to 

this idea, including the development of phase-insensitivity in area V1 (Hubel & 

Wiesel, 1968), the development of disparity (Uka & DeAngelis, 2003) and 

speed (Perrone & Thiele, 2001; Priebe, Lisberger, & Movshon, 2006) selectivity 

in area MT, and the position invariance of MST cells (Duffy & Wurtz, 1991). 

However the primary dimension in which motion selectivity develops (and the 

primary topic of this thesis) is in the increasing dimensionality of the motion 

sensitivity in ascending regions of the primate brain; specifically the thesis will 

(a) direction of heading (a) orthogonal to heading 
      (no !xation)

(a) orthogonal to heading 
      (!xation)
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examine how motion signals are combined across space to improve 

estimates of 2D motion. In this regard I will describe the component of motion 

orthogonal to a surface orientation as 1D motion. 

 

One may ask why the motion stream utilizes this hierarchal structure; why not 

infer the necessary motion defined information directly from the retina image 

of the world? A clue may come from a search of the literature on the 

computation of optic-flow and the observation that a large number of optic 

flow models rely on a representation of motion known as the vector-flow-field 

(see Perrone, 2001 for a review). The vector-flow-field is a representation of 

two-dimensional motion at each point in the visual field. In other words a 

large number of models that infer motion-defined properties about the world 

assume the ‘aperture problem’ has been solved. This presents a problem; 

although area MT is commonly considered to ‘solve’ the ‘aperture problem’ 

and the output from MT can be correlated with behavior (Britten, Shadlen, 

Newsome, & Movshon, 1992; Newsome, Britten, & Movshon, 1989; Salzman & 

Newsome, 1994) there is still no consensus on how the known properties of V1 

and MT cells may account for human observers’ misperceptions of two-

dimensional motion. Specifically, human observers are often systematically 

biased towards the direction of 1D motion, even when there is sufficient 

information to correctly compute the 2D velocity (K. Amano, M. Edwards, D. 

R. Badcock, & S. y. Nishida, 2009; Bowns, 1996, 2002; Burke & Wenderoth, 1993; 

Loffler & Orbach, 2001; Mingolla, Todd, & Norman, 1992; Wilson & Kim, 1994; 

Yo & Wilson, 1992). Despite a number of proposed theories there is no 

commonly accepted model that can account for observers’ solve the 

‘aperture problem’. (Adelson & Movshon, 1982; Johnston, McOwen, & 
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Buxton, 1992; Nowlan & Sejnowski, 1995; Perrone, 2004; Simoncelli & Heeger, 

1998; Weiss, Simoncelli, & Adelson, 2002; Wilson, Ferrera, & Yo, 1992). 

 

 

 

The work in this thesis attempts to reconcile the know properties of area V1 

and MT with the psychophysical literature on two-dimensional motion 

processing. To do so I first set out the ‘aperture problem’ from a theoretical 

perspective. The point is made that our current theories about how the 

‘aperture problem’ may be solved do not lead to a ready explanation of why 

observers may sometimes misperceive two-dimensional motion. This has led 

some authors to propose that two-dimensional motion is computed via a non-

veridical mechanism (e.g. Yo & Wilson, 1992), whilst others have proposed a 

number of overlapping motion systems selective for a number of motion 

defined attributes such as zero-crossings, minima or maxima (Bowns, 1996), 

contrast defined motion and feature tracking mechanisms (Stoner & Albright, 

1996).  

 

In contrast, I argue that the misperceptions of humans observers results from a 

feed forward, two-stage model of two-dimensional motion processing that is 

optimal in a theoretical sense, but is constrained by the necessity to derive 

motion estimates from the natural environment. To make this argument (after 

detailing the theoretical nature of the ‘aperture problem’), I introduce the 

major theories that dominate our thinking about primate vision. Particular 

emphasis is given to the concept of the wavelet filter (Daugman, 1980; 
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Gabor, 1946) and the competing constraints of extracting visually defined 

information that is both localized in time and space and accurately extracts 

the desired stimulus features (Graham, 1989). This structure is useful because it 

allows us to incorporate the constraints imposed upon the visual system by 

the initial detection of motion into our understanding of the psychophysical 

literature on the ‘aperture problem’. 
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Overview: The ‘Aperture Problem’. 

The ‘aperture problem’ refers to the inherent ambiguity of a motion signal 

arising from a stimulus containing one orientation (i.e. a straight edge). The 

problem is highlighted in Figure 1-3 which depicts a bar rigidly translating in 

the rightward direction. The endpoints of the bar are occluded such that only 

one surface orientation is exposed. The motion stemming from this orientation 

is inherently ambiguous and is potentially consistent with an infinite range of 

global velocities as depicted by the graph in Figure 1-3(b). In other words an 

object moving in any of the velocities denoted in (b) may give rise to the 

physical stimulus shown in (a).  

 

 
Figure 1-3 (a) a bar rigidly translating rightward is occluded and the only visible portion is a 

straight edge. The red arrow denotes the 2D direction and the blue denotes the component of 

motion perpendicular to the surface orientation. (a) The range of possible 2D motions with 

which the motion signal from the edge is consistent. Observers perceive motion in the direction 

orthogonal to the edge orientation (also the slowest possible 2D motion consistent with that 1D 

velocity). 

In the absence of any disambiguating cues human observers tend to 

perceive locally ambiguous motion in the direction orthogonal to the line’s 

orientation (Wallach, 1935), a percept consistent with the established 

properties of V1 direction selective cells (Hubel & Wiesel, 1968). Although this 

(a)

s
p
e
e
d

direction (º)
0 90270

(b)
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2D percept may be incorrect, computing the 1D component of motion, 

normal to an edge orientation serves a clear and useful purpose as it allows 

one to lawfully relate the distribution of 1D velocities (speeds and directions) 

to the 2D motion of an object and the orientation structure of that object.  

 
Figure 1-4 (a) the 1D velocity perpendicular to each surface orientation (b) the pattern of 1D 

velocities as a function of the speed and direction. 

To illustrate this point in Figure 1-4 I replace the bar with an octagon rigidly 

translating in the leftward direction. In (a) the blue arrows denote the 

component of motion perpendicular to each surface orientation. I will term 

the component of motion orthogonal to a surface orientation as 1D motion in 

the rest of this thesis. In (b) I plot the speed and direction of each 1D velocity 

(blue dots). If the dots are joined, it can be the seen that 1D speed is related 

to 1D direction in a cosine manner. The equations defining this relationship 

are shown in the next section. 

sp
ee

d

(a) (b)
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Equations relating 1D motion to 2D motion 

 
Figure 1-5 If 1D velocitiy is defined as being in the direction orthogonal to a surface orientation 

(blue arrow), then the speed (magnitude) of each 1D velocity is lawfully related to the angle 

between the 1D velocity and the 2D motion (see next Figure). 

The 1D component of motion orthogonal to an edge orientation is denoted 

by the blue arrow (Figure 1-5). The speed of 1D motion, measured normal to 

an edge orientation, varies in a sinusoidal manner with the angular separation 

between the edge orientation and the 2D direction. As a result, the range of 

1D velocities a 2D velocity may illicit, lie upon a sine wave defined by 

Equation 1.1, where 

€ 

ϑ  denotes the orientation of an edge, 

€ 

φ1D  the speed of 

1D motion and 

€ 

θ2D,φ2D  the speed and direction of 2D motion.  

 

€ 

φ1D = sin(θ2D −ϑ)φ2D  

 
Equation	  1.1	  

According to Equation 1.1 orientations 180° apart will generate speeds of 

identical magnitude but opposites speed (i.e. the same 1D velocity). To 

constrain the description of 1D motions in a stimulus to positive speeds, I first 

calculate the angular separation between each orientation and the 2D 

global

local

relative
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direction, across the half circle (Equation 1.2). This calculation produces a 

number between ±90° which I will term relative orientation. This relative-

orientation term is used throughout the thesis when referring to the 

orientations of a moving object. The speed and direction of 1D motion can 

then be computed from the relative orientation term through Equation 1.3.  

 

€ 

θ relative = tan−1 sin(θ2D −ϑ)
cos(θ2D −ϑ)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

Equation	  1.2	  

 

€ 

θ1D = θ2D + θrelative
φ1D = sin(θrelative )φ2D

 

Equation	  1.3	  

 

 

How the distribution of 1D motions varies with 2D motion 

 
Figure 1-6 Speed vs. direction plot of the relationship between 1D and 2D velocities (a) red 

arrow denotes the 2D velocity of an object rigidly translating in the leftward direction, the blue 

line denotes all the possible 1D motions that are consistent with this global motion. (b) The 

distribution of 1D motions for upward and downward motion (c) The distribution of 1D motions 

for faster and slower motions. 

sp
ee
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direction
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Figure 1-6 (a) demonstrates how the pattern of 1D velocities varies with an 

object’s 2D velocity. In (b) the 2D direction of motion is shifted clockwise or 

anticlockwise and respectively shifts the cosine left or right. In (c) the speed of 

2D motion is either increased or decreased, stretching or squashing the 

cosine.   

 

To probe the ‘aperture problem’ many studies have used just two 

orientations, as this is the minimum needed to constrain an estimate of 2D 

velocity. Interestingly observers often miss-perceive the direction of motion 

across a range of stimulus classes (Bowns, 1996; Bowns & Alais, 2006; Burke & 

Wenderoth, 1993; Heeley & Buchanan-Smith, 1992; Mingolla, et al., 1992; 

Wilson, et al., 1992; Wilson & Kim, 1994; Yo & Wilson, 1992), leading some 

authors to suggest the problem is solved via a sub-optimal processing scheme 

(Wilson, et al., 1992), accordingly the next section details a number of optimal 

and non-optimal models of two-dimensional motion processing. 
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Solving the ‘aperture problem’ 

In this section I briefly outline potential veridical and non-veridical solutions to 

the ‘aperture problem’. For the purposes of this section it is sufficient to say 

that the psychophysical percept of motion is not always veridical and can be 

systematically biased towards the direction of the 1D motions in a stimulus 

(Mingolla, et al., 1992; Rubin & Hochstein, 1993; Weiss, et al., 2002; Wilson, et 

al., 1992; Wilson & Kim, 1994; Yo & Wilson, 1992) and there is still much debate 

regarding the mechanisms of two-dimensional motion detection.  

 

Before moving on to potential solutions to the ‘aperture problem’ it is worth 

noting the difference between the Velocity-space representation of motion 

and the Speed-Direction representation, that latter of which I have already 

used in Figure 1-4 and Figure 1-6. The Velocity-space is a Cartesian 

representation of motion where a 2D motion may be described by its 

component in the x and y dimension. The advantage of using a Velocity-

space representation is that a straight line describes the range of possible 1D 

velocities that an individual 1D motion is consistent with, whilst a circle that 

passes through the origin describes the range of 1D motions that is consistent 

with a specific 2D velocity.  

 

The curse of dimensionality 

The distribution of 1D velocities is determined not only by the speed and 

direction of 2D object motion but also by the orientation structure of the 

stimulus. This presents a problem for a standard template-matching model of 
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2D motion because an infinite number of 1D velocity distributions are 

consistent with any 2D velocity. 

 

Instead I introduce two veridical solutions that circumvent this issue, the first is 

an adaption of the geometric solution commonly used by computer scientists 

searching for circles or ellipses in digital imagery or other unconstrained data 

(Gander, Golub, & Strebel, 1994). The algorithm is designed to work upon 

noisy data and thus provides a good source for an ideal-observer-model 

used in the final section of this thesis. The second, more commonly cited 

solution is the Intersection of Constraints (IOC) solution. This mechanism was 

first described by Adelson and Movshon (1982) and takes advantage of the 

fact that each individual 1D velocity is consistent with an infinite range of 

possible global velocities, but constrained upon a line in Velocity-space 

known as the constraint line. Accordingly a veridical solution to the ‘aperture 

problem’ can be achieved by looking for the point of intersection between 

two or more constraint lines.  

 

The IOC solution is commonly referred to in the literature as a system that 

correctly specifies the conjoint two-dimensional velocity consistent with a 

range of 1D velocities. As the solution to the ‘aperture problem’ is still 

debated the work in this thesis will move away from such theory-laden 

language. The use of IOC is pervasive throughout the literature (perhaps for 

historical reasons), for instance the review paper by Bradley & Goyal (2008) 

described the global motion model of Simoncelli & Heeger (1998) as 
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performing an IOC-like computation, Bradley likely means that the solution is 

capable of solving the ‘aperture problem’ rather than with reference to the 

specific computations made for which there is little comparison. Arguably the 

geometric solution I present below is closer to the biologically inspired model 

of Simoncelli & Heeger (1998) than the IOC model. 

 

The Geometric Solution 

The geometric solution is an iterative procedure that searches for the best 

fitting circle or ellipse among a number of data points. The algorithm is 

typically used in Cartesian space for problems in which the centre of the 

circle and the radius of the circle is unknown. As the pattern of 1D velocities 

generated by a rigidly translating two-dimensional object can be described 

by a circle in the Cartesian representation of motion (Velocity space), the 

procedure can be readily adapted to the ’aperture problem’.  

 

The geometric solution can be contrasted against the algebraic solution that 

attempts to minimize the distance between all data point and an equation 

for a circle (i.e. all points on a circle). The algebraic solution is inappropriate 

when only a small arc of the circle is present (Gander, et al., 1994) because 

the approach attempts to fit all points on a circle to the available data. The 

algebraic solution tends to place the circle centre just inside of the arc and 

underestimate the circle radius, as highlighted in Figure 1-7. 
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Figure 1-7 Algebraic versus geometric solutions. An algebraic fit (red line) and a geometric fit 

(green line). Note how the algebraic fit tries to minimize the distance between the data points 

(black dots) and the full circle; in contrast the geometric fit minimizes the distance between a 

small region of the circle and the data points. 

 

In contrast, the class of solutions known as the geometric solution attempts to 

estimate which point on a circle the data point may have arisen. In terms of 

two-dimensional motion processing this is like estimating which orientation led 

to a 1D velocity. If the noise source is defined in Cartesian space and is 

normally distributed around the mean, then an optimal solution is to draw a 

line between each data point and the centre of a circle as illustrated in 

Figure 1-8. The line bisects the circle at two points; by taking the smaller of the 

two Cartesian distances and taking the root-mean-square error I can arrive at 

an optimal error signal.  

x

y

Geometric !t

Algebraic !t
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Figure 1-8 The geometric solution. The green circle depicts the range of 1D velocities consistent 

a particular 2D velocity and the black dot indicates 1D velocity. The Geometric solution works 

by estimating the points on a given circle that may have led to a particular 1D velocity and 

then minimizing the root-mean-square distance between all data points and a circle. In this 

example the model assumes that the noise is equal in x and y. Under such conditions the most 

likely point on the circle to have led to the 1D velocity can be found be drawing a line 

between the data point and the centre of the cosine. The line will bisect the circle at two 

points and the distance between the 1D velocity and the closest point of intersect is taken as 

the error.   

 

This geometric solution is typically designed to fit a circle to a distribution of 

noisy data points but can be modified to solve the ‘aperture problem’ in 

Velocity-space when the 1D velocities are defined in velocity-space. 

 

We know that a global motion is constrained to pass through the origin and 

the centre of each circle (defining the range of 1D velocities consistent with a 

2D velocity) 

€ 

cxcy in Velocity space can be defined as follows: 

 
Equation	  1.4	  

€ 

cx = sin(θ2D )
φ2D
2

 

Equation 1.5 

€ 

cx = cos(θ2D )
φ2D
2

 

Geometric !t

Vx

Vy
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If we assume that the noise is equal in x and y, then our best guess as to what 

point on the circle led to a given data point can be achieved by drawing a 

line that bisects the data point and the centre of the circle. As the line will 

bisect the circle twice, we chose the point of intersection that is closest to the 

data point as the best estimate. To create a solution, I modify equations for 

calculating the point of intersection between a line and a circle from 

(Weisstein, 2009). 

 

For each data point 

€ 

px py the points of intersection

€ 

ixiy  can be defined as 

 

Equation 1.6 

 

Equation 1.7 

 

Where, 

 

Equation 1.8 

And 

€ 

dxdy  is the distance in x and y between each data point and the closest point on a circle. 

 

Equation 1.9 

Equation 1.10 

	  

 

Equation 1.11 

! 

dy = cy " py

! 

dx = cx " px

! 

ix =
"Ddx ± sign*(dy )dx r 2dr

2 " D 2

d2

! 

iy =
"Ddx ± dy dx r 2dr

2 " D 2

d2

! 

sgn*(x) "
#1
1
$ 
% 
& 

for x < 0
otherwise

! 

dr = dx
2 + dy
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Equation 1.12  

 

 

Intersection of Constrains 

The Intersection of Constraints (IOC; Adelson & Movshon, 1982)  solution is a 

rapid means of estimating 2D velocity from two or more discrete 1D velocities. 

Unlike the geometric solution it does not require an exhaustive search of 

potential 2D motions across the speed and direction dimensions, but instead 

efficiently achieves an arithmetic estimate of 2D velocity. 

 

 
Figure 1-9 The Intersection of Constraints solution. The Intersection of Constraints solution 

calculates the point of intersection (green dot) between lines denoting the possible global 

velocities (blue line) consistent with each 1D velocity (black dot) 

 

The IOC solution takes advantage of the fact that the range of 2D velocities 

that a 1D velocity is consistent with, lies upon a line in Velocity-space, known 

as a constraint line. Thus by combining two or more such constraint lines and 

looking for the points of intersection a unique veridical solution can be found 

(assuming no noise on the estimation of 1D velocities). 

IOC solution

Vx

Vy

! 

D = cx py " cy px
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The IOC can be computed as follows; 

First take the angle orthogonal to the angle between each 1D velocity and 

the origin. 

€ 

m = tan(θlocal + 90)  

Equation 1.13     

Then calculate the point the each line bisects the y-axis. 

€ 

c = y −mx  

Equation 1.14     

Once you have c and m, for two or more constraint lines, the point of 

intersect can be calculated through Equation 1.15 & Equation 1.16. 

€ 

ix =
c1 − c2
m2 −m1

 

Equation 1.15  

€ 

iy = m2ix + c  

Equation 1.16     

 

Both solutions discussed so far are defined in Velocity space. This is a problem 

if we want to incorporate biologically realistic constraints such as directional 

or temporal bandwidths (Dakin, Mareschal, & Bex, 2005b; Matthews & Qian, 

1999) which are described in the polar dimensions. 
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Non-veridical solutions 

The perception of coherently moving plaids or drifting bar like stimuli is often 

not in the direction of predicted by an IOC/veridical combination of 1D 

velocities, but closer to the mean of the individual components (Bowns, 1996; 

Mingolla, et al., 1992; Rubin & Hochstein, 1993; Yo & Wilson, 1992). This finding 

has lead authors to suggest that global motion is achieved through a Vector-

Sum (VS) or a Vector-Average (VA) computation. The two solutions are 

computed by first deconstructing the stimulus into their respective x and y 

components (Equation 1.12  & 1.14), the components are then either 

summed (VS; Equation 1.14) or averaged (VA; Equation 1.14) and the 

resulting vector is the estimate of 2D motion. Both procedures have the 

advantage that they can be computed efficiently in one step. The Vector-

Sum and Vector-Average represent a plausible strategy because the 

orthogonal/fastest component of motion, closest to the object velocity will 

contribute most to the final estimate of motion and the fastest 1D velocity is 

the closest to the true 2D velocity. The Vector-Sum solution will predict 

increasingly fast velocities with an increasing number of 1D signals and does 

not represent a plausible mechanism for the decoding of speed (see, Figure 

1-10) Accordingly the Vector-Average solution has been introduced because 

this mechanism does not produce increasing speed estimates with increasing 

number of inputs, instead the Vector-Average solution tends to 

underestimate the global speed. 

 

€ 

x = cos θ local(i)φlocal( i)( )
i=1:n
∑ x = x

n
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Equation 1.17   

€ 

y = sin θ local(i)φlocal( i)( )
i=1:n
∑ y = y

n  

  

Equation 1.18  

€ 

VS = arctan( x
y
) 

Equation 1.19 

€ 

VA = arctan( x 
y 
)  

Equation 1.20     

 

Figure 1-10 Type I, Type II stimulus classes; (a) the Vector Average solution applied to a Type II 

stimulus, the solution is biases away from the veridical direction denoted by the green dot 

towards the 1D directions in the stimulus. As the fastest of the two 1D velocities has the greatest 

magnitude the final estimate is closer to the fastest 1D velocity (b) the Vector Sum solution, 

note how the addition of the two 1D velocity signals leads to an unrealistically fast motion 

estimate but the direction estimate is the same as in (a). (c) a Type I stimuli, the red line 

denoted the Vector Average solution which correctly estimates the speed but underestimates 

the speed. 

 

In order to distinguish between veridical methods such as the geometric-

solution and the IOC solution, potential stimuli are classified in terms of their 

(a) Vector Average (Type II)

Vx

Vy

(b) Vector Sum (Type II)

Vx

Vy

(c) Type I

Vx

Vy
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orientation structure. Stimuli whose 1D directions lie to one side of the 2D 

direction are classed as Type I (Figure 1-10c) because both averaging class of 

solutions and the geometric and IOC solutions will generate veridical 

estimates. In contrast when the 1D velocity signals are defined to be one side 

of the veridical direction (Figure 1-10, a&b) different predictions are 

generated and stimulus classes that can distinguish between an averaging 

and a veridical solution to the ‘aperture problem’ are know as Type II. 
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Biological Vision  

An object moving relative to the eye will generate a changing pattern of light 

upon the retina, however it is not until we reach the primary visual cortex that 

cells becomes selective for the direction and speed of motion (Hubel & 

Wiesel, 1968). These cells known a directionally-selective (DS) cells are not 

only sensitive to the direction and speed of the stimulus but are selective for a 

number of other stimulus attributes such as spatial frequency, (K. K. De Valois, 

De Valois, & Yund, 1979) shape and orientation (Basole, White, & Fitzpatrick, 

2003; Gizzi, Katz, Schumer, & Movshon, 1990; Mante & Carandini, 2005; 

Movshon, Adelson, Gizzi, & Newsome, 1986b), not directly related to the 2D 

motion of an object through space. However, these aspects of motion 

detection must constrain our thinking of how two-dimensional motion is 

computed. Accordingly, in the following sections I will review the major 

computations that occur in the early-visual stream. I then re-examine the 

‘aperture problem’ within the context of the established properties of 1D 

velocity detectors and in particular the motion energy model (Adelson & 

Bergen, 1985). 

 

The Early Visual System 

The initial registration of the visual world is achieved in the retina by two main 

classes of photoreceptors: rods and cones. Rods are the most sensitive, able 

to capture individual photons of light and have the most rapid temporal 

response duration. Cones are less sensitive and require more photons to 

achieve a single spike, but different cone cell morphologies generate 
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differential selectivity’s for the long (red), medium (green) and (short) blue 

wavelengths and a greater number of cone cells across in the foveal retina 

result in a finer-scale representation of the world.  

 

Although the spatiotemporal dynamics of retinal sensitivity provides primates 

with a rich description of the visual world, decoding higher level features 

directly from a two-dimensional representation of light intensity and 

wavelength is fraught with difficulties. Imagine the task of detecting chair in a 

natural environment - the chair could vary across a number of dimensions 

(e.g. viewing angle, colour, ambient lighting), which radically change the 

retinal image. Generating a simple template incorporating all possible 

patterns of light intensities or wavelengths generated by even an individual 

instance of a chair rapidly becomes computationally impossible.  

 

The process of going from a low-level representation to a higher-level percept 

is known as local-to-global. Converging evidence from neurophysiology, 

psychophysics and imaging studies suggest that the primate visual system 

does not go directly from a representation of local intensities and 

wavelengths to high-level global percepts; instead a series of operations 

occur in the early-visual system that transform the initial retinal input from a 

temporarily varying representation of image intensities and wavelengths into 

representations defined by other stimulus dimensions such as contrast, 

orientation, direction, speed and spatiotemporal-frequency (Hubel & Wiesel, 

1968). Since the computations of the early-visual system cannot increase the 
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information content of the initial retinal encoding (except for stereopsis, 

where depth is inferred from disparity between the two eyes perspectives), 

the computations that occur presumably serve to refine the initial 

representation of the world in a manner more amenable to the extraction of 

information pertinent to the organisms’ survival. The main transformations 

appear are often described by linear-systems-theory and a wavelet-style 

decomposition of the world into its localised Fourier components.  

 

Linear-systems theory 

 A class of model known as linear-systems–theory captures the main 

functional transformations that occur in the early visual system and is built on 

the concept of the linear-receptive-field. The linear-receptive-field is a 

weighting function that works across the dimensions of space and time in 

early areas (e.g. ganglion cells and the LGN) and upon increasing abstract 

dimensions further up the visual stream. Filtering involves multiplying each filter 

weight by the underlying input structure and summing the result.  The aim of 

filtering is to transform the original input into another modality defined by the 

weighting function and is the primary means through which initial registration 

of the visual world in terms of intensity and wavelength of light is transformed 

in to other stimulus modalities such as orientation or spatiotemporal 

frequency. Each filter can be thought of as a template for a particular 

stimulus feature (e.g. orientation), the more a stimulus resembles the filter, the 

greater the magnitude of the filter response. The greatest problem with this 

approach is that the response of a filter is determined not only by the relative 
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structure of input but also the total energy of the stimulus. This leads to 

ambiguity in the output of a sensor known as the principle of univariance; for 

instance a particular sensor may respond equally to a low-contrast stimulus 

that closely matches the filter as it does to a high contrast stimulus that is a 

poor match for the stimulus. This is a key source of ambiguity that I will return 

to later in the thesis. 

 

The successes of linear-systems-theory in describing the major transformation 

that occur in the early visual system is surprising considering the number of 

non-linearities associated with neural architecture not being incorporated 

into the model.  This has lead to the suggestion that non-linear processes 

related to neural coding are undesirable and that the visual system 

effectively attempts to re-linearise the signal. Evidence for this broad 

hypothesis comes from the study or orientation tuning in the primate brain. 

Here, the linear-model is able to capture the contrast invariance of 

orientation tuned cells noted in area V1 (Ferster & Miller, 2000) but is unable to 

model the firing rate of neurons which are by definition, only positive. This 

deficiency can be overcome by the addition of a rectification stage which 

provides greater neural plausibility but also leads to the iceberg-effect 

(Carandini, 2007), where the orientation bandwidth of a signal increases with 

(local) stimulus contrast. It is only after the addition of a squaring operation 

(Heeger, 1992a) and a divisive normalisation mechanisms (Heeger, 1992b) 

that contrast invariance is recovered (Finn, Priebe, & Ferster, 2007). This is 

encouraging because it means the complex and non-linear gain mechanism 
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just described can be well approximated by energy in the Fourier spectra 

(the square of the amplitude) that does not take into consideration non-linear 

threshold operations or the limited dynamic-range of cortical neurons. 

 

Fourier analysis and wavelets  

Early auditory and visual psychophysics could either describe the stimulus in 

terms of a series of discrete units across time and/or space, or in terms of the 

spectral or Fourier components of the signal (e.g. Campbell & Robson, 1968). 

A Fourier transform is a technique that can deconstruct a stimulus of arbitrary 

dimensionality into its spectral components. The notion seemed to gain 

support because human observers where found to be highly sensitive to 

spectral components of a signal and a number of low-level response 

properties such as contrast sensitively are best described with reference to 

the spectral aspects of a stimulus (Anderson & Burr, 1989; Campbell & Robson, 

1968). However it was noted by Dennis Gabor (1946) that the Fourier 

transform model could not account for how humans processed sound 

because the Fourier transform threw away any temporal localisation of the 

signal. Instead Dennis Gabor introduced the concept of the wavelet that can 

jointly encode both localisation and spectral components. The wavelet filter 

operates through two components: the carrier and the envelope. The carrier 

is the weighting function that determined the features to be extracted, whilst 

the envelope is a weighting function that limits the operation of the carrier to 

a limited region of space or time. The point is illustrated by the construction of 

a Gabor filter. The Gabor filer was introduced by Daugman (1980) and 
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named after Dennis Gabor and is the most commonly accepted model of 

local orientation processing in area V1 (Parker & Hawken, 1988) and by 

extension the direction selective cells of V1 explored in depth in the following 

sections (Adelson & Bergen, 1985). The carrier component of the Gabor is 

shown in (a), it is a sinusoidal modulation across the horizontal plane at 2 

cycles per image. Alone the grating/filter is sensitive to vertically oriented 

elements across the full visual field. The envelope is shown in (b) and is a 

Gaussian centred upon the middle of the image and will be most sensitive to 

structure located at centre of the receptive field. By multiplying (a) and (b) a 

filter is generated which jointly encodes both spatial position and Fourier 

information. 

 

 
Figure 1-11 (a) a carrier filter tuned vertically oriented structure at 2 cycles-per-image. This filter 

is works across the entire visual field. (a) a Gaussian envelope, the filter is most sensitive to 

image structure falling with the center of the 2D Gaussian. (c) is constructed by multiplying (a) 

with (b), this generates a filter which jointly encodes spectral and spatial components. 

 

The wavelet represents a compromise between the spectral sensitively and 

the localisation of a filter. If we take the filter in (a) and assume it works over 

an infinite spatial region then it is sensitive to, and only to, image structure 

(a) carrier (b) envelope (b) carrier * envelope
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vertically oriented at 2 cycles per image. In contrast the filter in (b) is not 

sensitive to a specific image feature, but is localised in space. (c) is the 

product a (a) and (b) and is jointly sensitive to both spectral and spatial 

information. However the flip side is that the sensor is also sensitive to structure 

near by its peak orientation and spatial frequency tuning. The interplay 

between spatial localisation and spectral sensitivity is determined by the 

relative width of the envelope and the carrier wavelength; increasing the 

spatial extent increases the spectral specificity of the filter but reduces its 

localisation, at the other extreme if the envelope was confined to a point in 

space it would have very precise spatial encoding but no stimulus selectivity. 

Thus the wavelet represents a fundamental compromise between spatial and 

spectral localisation, and this compromise must be inherited by later state 

visual processing. In the context of the ‘aperture problem’, one can consider 

the joint requirement of integrating over the finite but unknown region 

contained by a moving object and the ability to accurately determine the 1D 

velocities in the stimulus (that are in turn required to compute 2D velocity). For 

equations defining the play off between spectral sensitivity and localisation in 

space or time for the Gabor filter the reader is advised to look at Graham 

(1989), 

 

Ganglion cells 

The concept of wavelets is common to many theories of the early visual 

system and filtering using wavelet filters occurs as early as the Ganglion cells 

in the primate retina. These cells receive input from rods and cones spread 

over a region of retinotopic space known as the receptive-field. The basic 
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architecture of the receptive-field is that of a centre and surround and 

generates selectivity for features of a certain size and polarity (contained with 

the centre region but not the surround). Alternatively the receptive field 

configuration can be described as a carrier and an envelope. Here the 

carrier is a radial-sin wave, which provides spectral tuning, whilst the envelope 

is a Gaussian that constrains the frequency filter to a narrow region of space.  

 

Lateral geniculate nucleus 

Nearly 90% of ganglion cells axons relay to the LGN before passing on to the 

striate cortex (Silveira & Perry, 1991). Accordingly the response properties of 

the LGN are interesting because the majority of processing in higher visual 

areas must inherit the signal passed from the LGN and it has been shown that 

lesions of both pathways abolishes almost all input to later visual areas 

(Shapley & Perry, 1986). The distinction between the magnocellular and 

parvocellular systems continues in the LGN with parasol ganglion cells and 

midget cell axons terminating in different layers of the LGN, This distinction 

continues as the axons of the magnocellur LGN cells synapse in layers 4Cβ of 

area VA and the parvocellualr cells of the LGN synapse in layers 4A and 4Cα 

of area V1. The response properties of both layers are strikingly different in a 

few dimensions, but very similar in a number of others. The most striking 

difference is in colour with the parvocellular path cells having colour 

opponency in the red/green or blue/yellow wavelengths meaning they 

respond to colour change regardless of the relative luminance. In contrast 

magnocellular cells are insensitive to colour. Mano- and parvo cellular cells 

also differ in their temporal frequency response profile. Parvo cellular cells are 
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low pass and known as sustained, whilst the magnocellular cells achieve 

band-pass temporal-frequency selectivity though a biphasic modulation of 

the ON and OFF regions of the cells spatial receptive field (Cai, DeAngelis, & 

Freeman, 1997). Although neither parvo- nor magno-cellular cells are tuned 

to direction tuning they are important for the perception of motion (and 

vision in general) because higher visual areas must inherit their signal. For 

instance the properties of sustained and transient are also present in the 

response of V1 Direction Selective cells (Foster, et al., 1985) and are thought 

to account for behavior of observers’ in masking paradigms (Anderson & Burr, 

1989; Hess & Snowden, 1992). 

 

Cells in LGN have spatial frequency profiles that smoothly sample to the 

spatial frequency dimension, however the same is not true for the temporal 

frequency tuning of LGN cells which are broadly divisible into low-pass and 

high-pass temporal frequency tuning. This presents a problem for down-

stream processing to 2D velocities that require accurate estimates of 1D 

speed and it is the subject of much debate how such broad tuning is 

converted into precise speed estimates. It has been shown that speed 

selectivity can be obtained from the ratio of activity in the two channels to 

produce cells whose activity positive correlates with stimulus speeds (e.g. 

Johnston, et al., 1992; Thompson, 1982) and through the selective 

combination of sustained and transient responses to generate speed tuning 

(Perrone & Thiele, 2002). 
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Orientation and direction selectivity 

The axon terminals from area LGN predominately synapse in layer 4 of area 

V1 of the primary visual cortex, it is here that cells are identified which are 

selective for orientation and direction (Hubel & Wiesel, 1962). By integrating 

across receptive fields with positive and negative regions aligned in space a 

filter can achieve selectivity for particular surface orientations. This function 

(described above, see Figure 1-11) is known as the Gabor (Daugman, 1980) 

and is maximally sensitive to structure of a certain spatial-frequency and 

orientation. Thus while LGN cells are selective for spatial-frequency content at 

all orientations, V1 orientation cells are maximally selective for a specific 

spatial-frequency at one particular orientation. 

 

The most commonly accepted model of V1 directionally selective cells is the 

motion-energy model (Adelson & Bergen, 1985) and is an extension of the 

Gabor Filter already described; The Gabor filter can develop temporal 

frequency selectivity by modulating the phase of the Gabor carrier (sinusoid) 

in time. This process can alternatively be though of as a rigid translation of the 

carrier in the direction orthogonal to the orientation of the Gabor. Either way 

the process generates band-pass temporal frequency selectivity in the sensor 

in the direction orthogonal to the Gabor orientation. Thus the motion-energy 

model is not sensitive to 2D motion across the retina, but to the 1D 

component of motion that is perpendicular to the orientation of the sensor. In 

the introduction I introduced the ‘aperture problem’ as a problem of 

overcoming the motion signal elicited by a moving straight edge, however 

the selectivity of an individual motion energy sensor is inherently ambiguous 
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regardless of the stimulus class. In the case of an object with a broad local 

orientation structure the ambiguity may be resolved locally by integrating 

across a bank of motion energy sensors tuned to different spatiotemporal 

frequencies and orientation, but in the case of a straight edge the signal from 

a local bank of sensors must also be combined with other filters across space. 

This property has been exploited by Pack & Born (2001) who examining the 

response properties of MT cells to moving bars whose spatial extent (3°) 

exceeded the receptive field size of V1 cells, but was smaller than the 

receptive field of MT cells (Albright & Desimone, 1987). By recording the 

output of MT cells they were able to show that the initial response was in the 

direction orthogonal to the bar, but with time the selectivity of a cell moved 

towards the 2D direction of the bar and it is argued this pattern of firing may 

underlie the changing perception of bar stimuli (Lorenceau, Shiffrar, Wells, & 

Castet, 1993) away from the 1D velocity(s) towards the veridical 2D direction 

with time. 

 

The extension of the Gabor described thus far is often used as a model of a 

subset of V1 DS cells know as simple cells because they are sensitive to the 

phase and polarity of the visual stimuli (Hubel & Wiesel, 1962). In contrast cells 

known as Complex cells have a degree of position invariance, as their 

response is invariant with regard to the phase and polarity of a stimulus. Such 

response properties can be achieved by summing across simple cells tuned 

to opposite phase but otherwise identical tuning properties. In the case of the 

motion energy model of V1 direction selective cells operates by combining 
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the output of two simple cells with identical direction and spectral tuning but 

opposite phase. The output of each sensor is squared and then summed to 

produce a phase invariant output (Adelson & Bergen, 1985). The motion 

energy can be shown to be formally equivalent to a correlation-based 

method under some conditions (Adelson & Bergen, 1985; Reichardt, 1961; 

van Santen & Sperling, 1984), but only when the input to the ‘correlate 

mechanism’ are derived from orientation tuned cells (van Santen & Sperling, 

1984).  

 

Spatiotemporal frequency domain 

The spatiotemporal frequency domain is useful because the selectivity of a 

motion energy filter (Adelson & Bergen, 1985) filter is well described by a 

Gaussian in the spatiotemporal frequency domain (Figure 1-12a) and a rigidly 

moving broadband and iso-oriented object is well described by a plane in 

spatiotemporal space (Figure 1-12b)  (Watson & Ahumada, 1983). To uniquely 

specify a plane, a minimum of three points are needed, however given that 

the plane describing a global motion is constrained to pass through the 

origin, only two points are necessary. Pattern selectivity in MT cells are 

commonly thought to arise via a selective integration of motion signals across 

a plane in spatiotemporal space (Ahumada & Lovell, 1971; Perrone, 2004; 

Perrone & Thiele, 2001; Priebe, et al., 2006; Simoncelli & Heeger, 1998), a 

finding that is supported by psychophysical evidence that contrast detection 

is best when the motion energy is spread equally across a plane rather than 

confined to a subset of the plane (Schrater, Knill, & Simoncelli, 2000). 
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Figure 1-12 (a) The response profile of a motion energy filter in the spatiotemporal frequency 

domain. (b) A set of motion-energy filters tuned to one 2D velocity at one spatial-frequency. 

 

Recent work has extended the modelling of the motion energy model to a 

bank of filters (Mante & Carandini, 2005) and demonstrated that the pattern 

of results in optical imaging studies in response to moving bars of different 

speeds, lengths direction and orientation (Basole, et al., 2003) is well 

described by the spatiotemporal properties of the stimulus. However the 

strength of Mante & Carandini (2005) is in demonstrating how the motion 

energy of a elongated structure may appear similar to the motion of a dot 

moving at a different velocity in the spatiotemporal frequency domain - in 

other words perceptually distinct visual stimuli appear similar in the 

spatiotemporal frequency domain. In this thesis I introduce a new means of 

representing the output of a bank of motion-energy filters in terms of the 

speed and direction of a sensor’s tuning. This configuration is useful as it is 

common for a psychophysicist both to conceptualise the ‘aperture problem’, 

and to generate stimuli, in terms of the speed and direction of the 
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component of motion perpendicular to a surface orientation (e.g. Lorenceau 

& Alais, 2001; Lorenceau & Shiffrar, 1992; Mingolla, et al., 1992; Rubin & 

Hochstein, 1993).  

 

The next section will introduce the methodology behind the modelling of 1D 

velocity estimation used in this thesis. The output of the bank of filters across a 

range of spatial frequency channels is then illustrated in response to rigidly 

translating stimuli with either a band-pass or 1/f spatial frequency profile. 

 

Model of V1 motion energy 

This section details the configuration of motion energy (Adelson & Bergen, 

1985) sensors used to model the one-dimensional motion selectivity used 

throughout the thesis and putatively represents the direction selective cells 

that are found in area V1 of the primate brain. The aim of the 1D motion 

stage was to detect the full range of 1D velocities that the stimulus (moving at 

a known speed but unknown direction) may elicit. To do so, we created a 

bank of filters tuned to directions between 0-360° and to pseudo-speeds 

between 0-150% of the 2D speed, where the sensors pseudo-speed tuning is 

defined by the ratio of the spatial and temporal frequency tuning of the 

sensor (Equation 1.21) 

 

€ 

speed =
t freq
sfreq  

Equation	  1.21	  
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The 1D motion energy (Adelson & Bergen, 1985) filters were constructed in the 

spatial domain and were the product of a Gaussian envelope 

€ 

G and a 

Carrier signal 

€ 

S  (Equation 1.22) 

 

€ 

DG =G(x,y,t)S(x,y,t) 
Equation	  1.22	  

The Gaussian envelope was centred upon the middle frame 

€ 

tm  and upon the 

coordinate 

€ 

(xa ,ya ).  
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Equation	  1.23	  

The Carrier signal was a sinusoidal modulation in x and y with a wavelength 

€ 

λspatial , an orientation 

€ 

θ . The phase of the spatial sinusoid was shifted on each 

frame by 

€ 

Δλtemporal . 

 

€ 

S(x,y,t) = sin 2π
λspatial

sin(θ)x + cos(θ)y( ) + Δλtemporal t + λphase

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

Equation	  1.24	  

where 

€ 

λphase = 0  for even phase, and

€ 

λphase =
π
2  

for odd phase sensors. 

The phase shift per frame 

€ 

Δλtemporal  was calculated from the desired pseudo-

speed tuning 

€ 

φ1D  of each local motion sensor, given the spatial frequency of 

the sensor using Equation 1.25 & Equation 1.26. 
 

€ 

t freq = φ1Dsfreq  

Equation	  1.25	  



 52 

€ 

Δλ = t freq2π  
Equation	  1.26	  

As the desired temporal frequency for a particular speed increases in with 

spatial-frequency, the range of temporal frequencies is greatest in the high-

spatial frequency channels. As the phase shift per frame cannot exceed 90° 

this sets a limit of the highest spatial frequency used (a phase shift of 90° per 

frame will lead to ambiguity in the direction tuned of the cell because a 

phase shift of (90° + x°) is identical to a phase shift of (–x°). 

 

The Gaussian envelope was always a constant ½ of the wavelength of each 

filter (to maintain a constant direction and temporal bandwidth across filters) 

and the output of each filter was divided by the sum of the absolute of the 

respective field. This had the effect of flattening the response of filter to stimuli 

with a 1/f spatial frequency profile. 

 

Convolution was achieved through multiplication of the signal and the sensor 

in the Fourier domain. The square root of the sum of the square of the real 

and imaginary components was taken to represent the motion energy at 

each point in space for each DS filter, a computation that is formally 

equivalent to the full rectified square of odd and even phase neurons to 

generate a phase invariant output (Adelson & Bergen, 1985).  

 

€ 

E = geven
2 + godd

2  
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Equation	  1.27	  

A global motion analysis was achieved by collapsing the spatial domain and 

summing across all DS filters tuned to the same spatiotemporal frequency and 

direction. Each spatial frequency channel could then be represented as a 2D 

pseudo-speed and direction image (Figure 1-13a), in which the intensity of 

each region represents the global sum of motion energy across DS filters 

whose velocity tuning is denoted by the regions position in the image. The 

only filter normalisation employed was to divide the output of each neuron by 

the sum of the absolute of the receptive field across space and time; this had 

the effect of evening out the expected 1/f spatiotemporal frequency 

spectrum. No gain control, normalisation or inhibition occurred between 

neurons. 

 

A full bank of filters could then be defined as follows; 

1. Sixteen directions evenly spaced around the clock. 

2. Thirteen evenly spaced pseudo-speeds from 0% (static) to 200% of the 

carrier signal speed (3.95 deg/s).  

3. Five spatial frequencies from 1 cycle per image to 64 cycles per 

image. 

 

In order to allow the reader to move from the spatiotemporal frequency 

domain a single spatial-frequency bank of filters (tuned across directions and 

speed) is plotted in Figure 1-13(a). The output of the channel to a translating 

moving dot is shown in Figure 1-13 (b). A dot is an iso-oriented and 



 54 

broadband stimulus; encouragingly the configuration of motion energy filters 

just described is able to capture the cosine relation ship between the speed 

and direction of 1D velocities. This is a key observation of the thesis because it 

inspired the creation of a model of two-dimensional motion processing 

described later in the thesis. 

 

 
Figure 1-13 (a) bank of filters tuning to one spatial frequency channel and a range of speed 

and directions (b) the output of the bank of filters in (a) to a rigidly translating dot stimuli. 

 

As the motion-energy filter is not truly speed tuned it is important to examine 

the response properties of the model for stimuli of various spatial frequency 

profile. As such Figure 1-14 plots the output of the filter bank to random noise 

patterns of either band-pass and 1/f spatial-frequency profiles. Like the dot 

stimuli, random noise patterns are iso-oriented and the cosine pattern of 

energy across speed and direction is present in all spatial-frequency 

channels. However in response to the band-pass stimuli the pattern of activity 

varies across the spatial-frequency channels; appearing squashed at low 

spatial frequencies and stretched in the high spatial frequency channels. The 
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cosine is only where we would intuitively expect when the peak spatial 

frequency of the stimulus matches the peak of sensitivity of the filter bank. This 

pattern results from the fact that motion energy filters exhibit an 

independence of spatial and temporal frequency tuning, consistent with the 

response properties of V1 DS cells (Foster, et al., 1985). The result is that when 

the spatial frequency of the sensor and stimuli do not match, the speed 

tuning of sensor is no longer reliable. Fortunately the filters responds best when 

both the spatial-frequency and temporal-frequency of the filter and stimulus 

are matched; accordingly summing across the spatial-frequency channels 

will allow the recovery of speed, assuming the spatial-frequency profile is 

symmetric (i.e. not skewed) or the profile is flat across the spatial-frequency 

channels.  

 

Although natural scenes may vary across a huge number of dimensions, the 

spatiotemporal properties of natural scenes are relatively stable and exhibit 

an approximately 1/f drop of in amplitude (Dong & Atick, 1995; van Hateren, 

1997). The is evidence in the both neurophysiology (Atick & Redlich, 1992; 

Carandini, et al., 2005; Dong & Atick, 1995) and psychophysics that the visual 

system accounts for this profile by whitening the distribution of natural scenes 

such that the response to natural scenes across all channels is even 

Psychophysically evidence in support of the idea is found as observers over-

estimate the high spatial and temporal frequency structure of a stimulus 

(Brady & Field, 2000; Cass, Stuit, Bex, & Alais, 2009), further subjects contrast 

detection functions are flat as a function of spatial and temporal frequency 
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when the stimulus is embedded within (masked by) a natural scene (Bex, 

Dakin, & Mareschal, 2005; Bex, Solomon, & Dakin, 2009). 

 

 

 
Figure 1-14 Output of the bank of motion energy filters tuned to a range of speed and 

directions and to five spatial-frequencies. The first row denotes the bank of motion energy filters 

in the spatiotemporal frequency domain (see Figure 1-13) (a) the second row shows the output 

of the filters in response to a band-pass moving dot; the spatial-frequency of the dot and filters 

are matched in column three and the amplitude of the filters produces a cosine as predicted 

from Equation 1.1 in the introduction, however when the spatial-frequency of the filter is lower 

than that of the stimulus the cosine is squashed, when the spatial-frequency of the filter is 

greater than the stimulus the cosine is stretched. There is also less energy in the channels with 

non-matching spatial-frequencies. (b) In row three the output of the bank of filters to a 

broadband dot is shown, the cosine is centered upon the correct speed and direction in each 

spatial-frequency channel. 

 

 

(a) bandpass

(b) broadband

spatial frequency
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The ‘aperture problem’ - Psychophysics  

The 1D distribution of motions is determined not only by an objects speed and 

direction but by the orientation content of the stimulus. Accordingly by 

manipulating the range of orientations present in the stimulus, one can alter 

the computational requirements for the successful estimation of global 

motion. Experiments exploiting this paradigm have often used plaid stimuli 

composed of two superimposed gratings whose 1D velocities specify a 

unique two-dimensional direction. By exploiting configurations in which the 

two-dimensional motion is not in either of the 1D directions of motion one can 

separate between one and two-dimensional selectivity. This paradigm was 

first exploited by Adelson and Movshon (1982) who showed that the percept 

of a symmetric Type I plaid was consistent with the conjoint two-dimensional 

motion. Soon after Movshon et al. (1985) were able to show that a proportion 

of cells in area MT were consistent with the property, leading to the notion 

that MT is the area where the ‘aperture problem’ is solved. However a 

number of subsequent psychophysical studies have shown that the 

perception of plaid motion is often not is always in the conjoint two-

dimensional direction but towards the direction of 1D motion (Bowns, 1996; 

Burke & Wenderoth, 1993; Wilson & Kim, 1994; Yo & Wilson, 1992) and no firmly 

established model has been able to account for these differences. 

 

Without an accepted model of two-dimensional motion processing it cannot 

be ascertained whether the pattern of results stems from a sub-optimal model 

of two-dimensional pooling (e.g. Wilson, et al., 1992), whether the pattern of 
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results is due to a number of stimulus attributes such as second-order structure 

(Yo and Wilson, 1992) or features such as zero-crossings, maxima or minima 

(Bowns, 1996; Stoner & Albright, 1996) or whether the pattern of results is 

optimal under some unknown behavioural or biological constraint.  

 

To avoid the feature complications (e.g. zero crossings) associated with plaid 

stimuli, a number of other have studied the ‘aperture problem’ using stimuli 

composed of spatially disparate locally one-dimensional motions. As a 

discrete object cannot be described by just two orientations experimenters 

use an  ‘aperture paradigm’ in which the orientation content of a stimulus is 

selectively occluded/exposed by viewing the stimuli passing under apertures. 

Using Type II stimulus classes both Mingolla et al. (1992) and Rubin & Hochstein 

(1993) demonstrated the perception of line elements passing under apertures 

was not in the conjoint 2D direction, but was also (like work using plaids 

stimuli) biased towards the direction of 1D motion. More recently the same 

problem has been studied using a global-Gabor array (K. Amano, M. 

Edwards, D. R. Badcock, & S. Nishida, 2009). The global-Gabor array is 

composed of number of local Gabor elements whose local one-dimensional 

velocities were configured to be consistent with a two-dimensional motion 

vector. Using a Type II orientation configuration paradigm Amano et al. also 

showed that observers’ perception of motion was biased in the direction of 

1D motion, consistent with previous research. 
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Contrary to studies employing Type II stimuli a number of lines of evidence 

point indicate that two-dimensional motion is often correctly estimated. By 

using a stimulus that rotated through space, rather than following a single 

trajectory, Lorenceau et al (1998) were able to simultaneously probe the 

perception of speed and direction (unlike the majority of studies on the 

‘aperture problem’ which just probe direction judgements). If the 

computation of velocity were non-veridical either in direction of speed then 

perception of a structure in circular motion would be perceived as moving 

elliptically, yet observers correctly estimate the trajectory of motion. It was 

also shown by Amano et al (2009) that both the speed and direction 

estimates of global Gabor arrays was consistent with a veridical estimate of 

motion, whilst the combination rule used to infer the global speed and 

direction of locally unambiguous elements (plaids) employed a different rule, 

closer to the vector average. The studies employing the ‘aperture paradigm’ 

also note that the percept of direction is more accurate than would be 

predicted from a simple averaging solution (K. Amano, et al., 2009; Bowns, 

1996; Mingolla, et al., 1992; Rubin & Hochstein, 1993), suggesting that some 

level of disambiguation is being achieved. 

 

 In an effort to consolidate or rationalise the mixed psychophysical results 

work by Weiss, Simoncelli and Adelson (Weiss & Adelson, 1998; Weiss, et al., 

2002) used a Bayesian probabilistic framework and invoked the assumption 

that global IOC-like motion computation relies on a prior expectation of slow 

motion. This prior not only helps predict why slower speeds are generally 
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perceived at low contrasts (Johnston, Benton, & Morgan, 1999; Thompson, 

1982) but also biases the perception of Type II stimuli towards the 1D motion 

signals. The sign of bias is always in the direction of 1D motion because the 

speed of a 1D motion must be either equal to, or slower than the global 

velocity, thus the influence of the prior is to draw the percept of motion 

towards the slower component motions and closer to the predictions of a 

vector-averaging scheme, consistent with psychophysical observations 

(Mingolla, Todd et al. 1992; Yo and Wilson 1992; Rubin and Hochstein 1993; 

Bowns 1996; Burke and Wenderoth 1993). The rational behind the model is 

that the majority of motion occurs at low-temporal frequencies (Dong & 

Atick, 1995); because all perceptual judgement are noisy, the prior maximises 

the likelihood of correctly estimating motion. This approach is welcome 

because it attempts to provide a framework from which observers’ miss-

perceptions may be understood. However the use of a speed prior has not 

been constructed with reference to the behavioural or environmental 

context needed to determine optimality (Geisler & Ringach, 2009; Simoncelli 

& Olshausen, 2001), instead the prior was constrained by the capacity of the 

prior to determine psychophysical performance. Although this approach 

(also see; Stocker & Simoncelli, 2006) makes predictions about the ‘shape’ 

and function of a prior, the statistical advantage of the model has yet to be 

demonstrated. At this stage the use of a prior is open to the critique that the 

prior was simply a factor through which the model could be made to match 

the psychophysical data.  
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The psychophysical literature on motion transparency provides the inspiration 

for an alternative explanation; It is know that the ability to perceive multiple 

motions is contingent the upon the difference in speed (Greenwood and 

Edwards 2006) and direction (Braddick, Wishart et al. 2002) difference 

between overlapping motion fields (i.e. the greater the speed or directional 

difference, the higher the probability that transparency will be perceived). 

This phenomenon is believed to result from the bandwidths of motion sensitive 

neurons; rather than each motion being described by discrete vector, 

motions are represented by distributions of activity; when the distributions of 

activity elicited by separate motions is spatiotemporally close the distributions 

overlap and are hard to distinguish. For instance it is claimed that transparent 

motions are harder to detect around the oblique directions (Greenwood & 

Edwards, 2007) due to the increased directional bandwidth of motion sensors 

in these directions (Dakin, et al., 2005b; Gros, Blake, & Hiris, 1998; Li, Peterson, 

& Freeman, 2003). 

 

Evidence that this same line of argument can be applied to the ‘aperture 

problem’ comes from studies in which the angular separation of the 1D 

velocities has been systematically manipulated (Burke and Wenderoth 1993; 

Bowns 1996). In both studies misperception only occurred when the stimulus 

were in Type II configuration and when the 1D velocities were close in 

Velocity space. The reader is advised to look at (Weiss & Adelson, 1998) for a 

re-plot of the (Bowns, 1996) data in which observer bias is plotted as a 

function of the angular separation between the component gratings of a 
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plaid. If the motion stream can correctly identify the 1D velocities in a moving 

stimuli then the motion stream can theoretically solve the ‘aperture problem’ 

in a unbiased manner, however it is know from studies of transparency that 

motion signals may interact and cause a phenomena known as motion 

repulsion in which the angle between two motions is overrepresented 

(Marshak & Sekuler, 1979; Rauber & Treue, 1999). Regardless of the underlying 

mechanism, evidence from motion transparency and motion repulsion 

demonstrate that the veridical discrimination of motions is harder when the 

signals are close in velocity space and it may be suggested that the inability 

to correctly determine the 1D velocities of a stimulus, is the primary cause of 

observers’ errors in the estimation of 2D direction. Note, this theory is in sharp 

contrast to those authors who propose that 2D velocity is computed by a sub-

optimal model such as a Vector-Average scheme. 

 

Temporal aspect in the computation of 2D velocity 

Studies employing perceptual (Lorenceau, et al., 1993; Yo & Wilson, 1992), 

oculomotor (Masson, Rybarczyk et al. 2000) and neurophysiological (Pack 

and Born 2001) paradigms have revealed that the response of the motion 

stream is initially biased in the direction orthogonal to the locally dominant 

orientations, but then switches (partially or fully) to the direction of 2D motion. 

The temporal duration of the switch appears to depend on the exact nature 

of the stimuli, for instance suprathreshold stimuli with distinct but locally 

overlapping components appear to refine relatively quickly (~160 ms; Yo and 

Wilson 1992), whilst studies employing translating lines oriented obliquely to 

the direction of motion (Lorenceau, et al., 1993; Masson, Rybarczyk, Castet, & 
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Mestre, 2000) are resolved more slowly (~400ms). Thus although the visual 

system appears capable of responding to the unambiguous signals that arise 

from local elements with broad orientation structure, the detection of motion 

signals stemming from ambiguous line elements appears more immediate.  
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EXPERIMENTAL CHAPTERS 

Overview of methodology and rational 

 

Psychophysics is the process of relating a stimulus to behaviour. To do this, the 

psychophysicist makes inferences about the internal mechanisms that bring 

about an observers’ behaviour. Broadly speaking two main classes of 

experiment can be conducted: the hypothesis-driven test and the 

explorative test. In the former, experiments are designed to falsify specific 

hypothesis whilst in the latter the aim is to identify which aspect of a stimulus 

drive observers’ behaviour and to speculate upon the mechanism. The 

choice of stimulus will often reflect the aim of the study; hypothesis-driven 

experiments tend to employ highly constrained stimulus classes so that 

behaviour can be easily related to the stimulus and theory to hand, whilst 

more explorative experiments may incorporate more complex stimuli with the 

aim of indentifying which of a number of stimulus dimensions drive behaviour. 

Each approach is open to criticism; if the experimenter employs a very 

complex stimulus he or she runs the risk of not being able to constrain any 

conclusions; conversely incorporating too little detail runs the risk of throwing 

the proverbial ‘baby, out with the bathwater’.  

 

Interestingly, this axiomatic debate (common to all scientific practice) has 

recently lifted its head in vision science (Felsen & Dan, 2005; B. A. Olshausen & 

Field, 2005; Rust & Movshon, 2005). Here the argument concerns the stimulus 

class used with a contemporary drive to move away from highly constrained 

stimuli such as bars or gratings towards stimuli that incorporate richer or more 
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naturalistic statistical properties (Bex, Mareschal, & Dakin, 2007; Carandini, et 

al., 2005; Dakin, et al., 2005b; Dumoulin, Dakin, & Hess, 2008; Felsen & Dan, 

2005; Felsen, Touryan, Han, & Dan, 2005; Geisler, Perry, Super, & Gallogly, 

2001; Geisler & Ringach, 2009; van Hateren, Ruttiger, Sun, & Lee, 2002). While 

the success of highly constrained stimuli to reveal the primary properties of 

the transformation that occur in the early visual system has been rigorously 

defended (Rust & Movshon, 2005), it is argued that many of the properties of 

the visual system are not revealed without exposure to the stimulus classes 

they have evolved and adapted to process (Felsen & Dan, 2005), or in the 

case of natural-system-theory, the behavioural context in which a visual task 

is carried out (Geisler & Ringach, 2009). Such claims are largely based on 

principles of efficiency and the observation that maximal efficiency can only 

be defined as function of both the sensor system and the range of stimuli (i.e. 

statistics) a system is designed to process (Simoncelli & Olshausen, 2001). The 

approaches may be viewed as complimentary (Carandini, et al., 2005); 

naturalistic stimuli can both help identify which important dimensions are 

absent from constrained, artificial stimuli (Felsen & Dan, 2005) and allow us to 

build a picture of how well existing models predict response to natural scenes 

(e.g. David & Gallant, 2005; Hsu, Borst, & Theunissen, 2004; van Hateren, et al., 

2002).  

 

The approach taken in the first two experimental chapter of this thesis is 

consistent with the contemporary drive to incorporate more ‘naturalistic’ 

statistics into the stimuli used to probe the ‘aperture problem’. In the first 
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experimental chapter I examine whether the contour statistics of natural 

images influence our ability to determine two-dimensional motion. 

Specifically, it is know that human observers are better at detecting contours 

when the orientation statistics conform to those in naturally occurring images 

(Geisler, et al., 2001) but it is less clear whether contour statistics affect the 

ability of observers to group local motion across space (i.e. solve the 

‘aperture problem’). Experiment one probes this issue by manipulating the 

second-order contour statistics of a scene across space, whilst maintaining 

the identical local motion signals and examining observers’ direction 

thresholds in the two-alternative forces choice paradigm.  

 

In the second experimental chapter a reverse-correlation paradigm is 

employed to examine which stimulus dimensions in natural images influence 

observers ability to determine two-dimensional motion. This approach is 

notably different from the majority of studies that probe the ‘aperture 

problem’ using highly constrained stimulus classes. Such studies probe the 

‘aperture problem’ using stimuli composed of just two oriented elements (the 

minimum number needed to uniquely specify a two-dimensional velocity), 

whilst natural scenes tend to contain much broader orientation content. The 

results from such experiments using just two orientations have yielded very 

little consensus as to how two-dimensional motion processing occurs and the 

behaviour of observers has not easy to express in terms of a rational solution 

(but see; Weiss & Adelson, 1998; Weiss, et al., 2002). Given the observation 

that the optimality of a biological system may only be described in the 
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context of the environment the visual system has evolved to process 

(Simoncelli & Olshausen, 2001) I ask whether the psychophysical data may be 

better understood in terms the response to naturally occurring stimulus 

classes.  

 

Experimental chapter II uses natural scenes whose exact stimulus properties 

are unknown. To relate the underlying statistics of the natural scene to 

observer behavior it is necessary to estimate the stimulus properties. The 

chosen method was to use biologically inspired filtering with Gabor 

(Daugman, 1980) and motion-energy (Adelson & Bergen, 1985) filters. This has 

the disadvantage that the results of the analysis are dependant on the 

choice of filter parameters, but it has the advantage that it forces the 

experimenter to incorporate practical and biological constraints into the 

analysis. The reverse engineering approach reveled that the observers’ 

behavior could be reliably related to the output of Gabor filters in response to 

natural scene. Moreover the application of a bank of motion energy filters 

revealed that the theoretical distribution of 1D velocities (i.e. a cosine) was 

apparent in the response of the filters to natural scenes. This observation 

inspired the construction of a template-matching model of two-dimensional 

motion processing in the proceeding chapter that was shown to produce 

qualitatively similar behavior to observers. 

 

The approach taken in the first two chapter of the thesis is to use more 

complex and ‘naturalistic’ stimuli when probing the ‘aperture problem’, 

however the work does not ‘go all the way’ and probe vision using type of 

visual diet that humans are exposed to on a day-to-day basis. The visual diet 

that humans or primates are exposed to is typically referred to as natural 
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vision and it is the end goal of vision science to build models that are able to 

capture human or primate visual function in response to natural scenes. To a 

limited extent this had been achieved in neurophysiology for models of early 

visual function such as retinal and LGN processing (for a review, 

see;Carandini, et al., 2005). The advantage of such an approach is that is 

allows for a robust test of our models of visual processing.  

 

In this work I confine the experimental stimuli to full-field translations in the 

fronto-parallel plane. This clearly limits the extent of the research because the 

range of naturally occurring motions may occur in any plane and I do not 

consider the problems associated with extracting the motion of a object from 

a static background, a question directly confronted in (Johnston, et al., 1992), 

the computation of 3D motion (e.g. Harris & Drga, 2005), natural motion (e.g. 

Neri, Morrone, & Burr, 1998) or any other of a multitude of additional problems 

associated with natural vision. Instead the work is best viewed as a small step 

towards the end goal of natural vision. I ask whether the pattern of observers’ 

responses to highly constrained stimulus (e.g. plaids) translating the fronto-

parallel plane is consistent with observers’ response to my complex visual 

stimuli translating in the fronto-parallel plane. 

 

The final experimental chapter differs from the previous two chapters in that it 

was designed specifically to probe the ability of the model described in the 

computational chapter to predict observers’ errors in a two-dimensional 

motion task. In this regard the stimulus was a global-Gabor array (K. Amano, 

et al., 2009) in which the experimenter had close control over the orientation 

content of the stimulus (unlike the proceeding chapters). A double pass 

technique was used to divide the observers’ variance into predictable and 
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unpredictable components. This procedure allows one to compare the total 

variance the model is able to capture against the total variance captured by 

the observer on stimulus retrials. 
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(2) Experimental Chapter No.1 
The influence of Natural Contours in motion 
processing  

 

When global motions are composed of locally ambiguous elements (e.g. 

straight edges or lines) the local motion they produce must be integrated 

across space to achieve an unambiguous motion estimate. The ‘aperture 

problem’ then becomes both the problem of correctly integrating across 

speed and direction and the problem of correctly grouping elements 

belonging to individual objects and segregating those motions belonging to 

other objects. This experimental chapter will examine the role of natural 

contour structures in determining our ability to solve the ‘aperture problem’ 

by combining motion signals across space.  

 

Relative to noise with a spatial frequency matched to that of natural scenes, 

contours in natural scenes exhibit two statistical regularities that I will probe in 

this chapter. Firstly, contours are regions in which the phase structure across 

spatial-frequency channels is aligned (Attneave, 1954; Barlow, 1961), this 

property is not always present in other studies designed to probe contour 

integration because it means the signal from each contour element is not 

constrained to a limited region of space. Secondly, contours tend to vary 

smoothly across a scenes and it is know that observers’ are more likely to 

detect contours that conform to the second-order orientation statistics of 

natural scenes (Geisler, et al., 2001). Accordingly this chapter will probe 2D 
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motion processing using a two-alternative-forced-choice paradigm (2-AFC) 

for stimuli containing natural and disrupted contour structure and for stimuli 

with a broadband or high-pass spatial-frequency structure.  

 

 

Contour Structure 

Natural scenes contain a preponderance of edges (Attneave, 1954; Barlow, 

1961) whose properties tend to vary smoothly across a scene, a characteristic 

termed ‘good continuity’ by the Gestalt psychologists (Wertheimer, 1958.). 

More formally the relationship has been defined in terms of the probability 

that one edge point predicts the occurrence of another edge point at a 

given distance (d), orientation difference (ϕ) and contour angle (θ) (Geisler, 

Perry, Super, & Gallogly, 2001). Broadly speaking the smaller ϕ, θ & d, the more 

likely one is to encounter another edge point. Psychophysicists have 

examined if and how the visual system exploits such regularities using 

paradigms in which small oriented elements (typically Gabor) are used to 

build contours with particular second-order relations (e.g. co-circularity) 

which are then embedded in a field of randomly-oriented distracter elements 

(e.g. Field et al, 1997). In this paradigm, contour detection must involve global 

integration since it operates over spatial distances and across spatial phase in 

a manner that could not be achieved by conventional V1 neurons (Hess & 

Dakin, 1997). Sensitivity to contours has been shown to increase with lower 

curvature (smaller ϕ & θ) and contour length (Field, Hayes, & Hess, 1993), 

consistent with the statistics of natural scenes. 
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While it is clear that the second-order distribution of orientations across the 

visual field is critical for determining our ability to see static extended 

contours, the role of such statistics in motion processing is less clear. Second-

order orientation statistics can certainly influence motion processing when the 

underlying elements are locally ambiguous. This point is illustrated by 

Lorenceau & Shiffrar (1992) who demonstrate that the perceived directions of 

four moving bars (Figure 2-1) can be dramatically altered by changing the 

appearance of occluding elements. Although the bars in Figure 2-1(a&b) 

move in an identical fashion (sinusoidaly translating in the direction 

perpendicular to their orientation) the perceived directions of motion are 

different. In Figure 2-1(a) the bars are perceived to move as independent 

pairs, but when the occluders are present in Figure 2-1(b), the individual 

components ‘cohere’ and appear to move as a rotating diamond whose 

vertices are occluded. This dramatic change in percept is thought to arise 

from a change in the classification of the end points from ‘intrinsic’ (i.e. part 

of the object) to ‘extrinsic’ (arising from occlusion by another object). This 

argument is intuitive. When the endpoints are considered part of the object 

eliciting motion there is only one physically realistic interpretation: 

independent motion. However, if the endpoints are due to an occluding 

object, the motion signal generated at the intercept bears no relation to 

object motion. In isolation, this leaves ambiguous the speed and direction 

(velocity) of each bar (Figure 2-1d) and motions must be combined across 

space to achieve a veridical 2D motion estimate.  
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The stimulus of Lorenceau & Shiffrar (1992) is ideal for study because without 

information that can correctly constrain the percept in one direction or 

another, it is possible to probe the priors and assumptions the visual system 

uses to bind elements or individuate elements. A number of factors increase 

the probably that elements will be integrated; observers’ are more likely to 

individuate elements presented in the fovea and more likely to integrate 

eccentrically viewed elements. If the occluding elements are sharp squares 

then segregation is more likely than for blurred edges (Lorenceau & Shiffrar, 

1992), reducing the contrast of the stimulus promotes integration (K. Amano, 

et al., 2009; Lorenceau & Shiffrar, 1992; Lorenceau & Zago, 1999) and 

changing the percept of the intersection from intrinsic (to the moving object) 

extrinsic (occluding the object) promotes integration (Shimojo, Silverman, & 

Nakayama, 1989). 

  

Recent research has indicated that one-dimensional (1D) and two-

dimensional (2D) signals are treated differently by the motion stream; by 

measuring the perceived direction of multiple Gabor stimuli Amano et al. 

(2009) have shown that integration of 1D plaids occurs in a veridical manner, 

whilst integration of 2D plaids produces answers in line with predictions from a 

Vector average (VA) rule. Furthermore Bowns and Alais (2006) have shown 

that adaptation to stimuli yielding a VA solution generates a large shift in the 

perceived direction towards the IOC interpretation and vice-versa. Such 

adaptation suggests that the two solutions operate independently and 

compete to determine the overall percept of motion.  



 77 

 

 

 

 
Figure 2-1 Occluded diamond. The influence of form on motion integration (Lorenceau & 

Shiffrar, 1992). The movement of the bars is identical in (a) and (b) (sinusoidal translation in the 

direction perpendicular to their orientation). In (a) the bars appear to move independently of 

each other, but in (b), when the apertures are made explicit, the individual components 

‘cohere’ and appear to move in directions consistent with a rotating diamond. (c) The 

ambiguity associated with a moving bar. The exact speed and direction (velocity) of the bar is 

unknown, however it is known that the veridical velocity must fall on a ‘constraint’ line that can 

be inferred from the speed perpendicular to the bars’ orientation, as shown in (d) – By solving 

for two or more such lines, a unique vector can be found, in the case of a rigid object moving 

in 2D space this vector reflects the veridical velocity. 
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Co-incidence of structure across spatial frequencies 

As well as the second-order spatial regularities discussed so far, natural scenes 

have the tendency for content across spatial frequencies to be spatially 

aligned (Attneave, 1954; HB Barlow, 1961). The early decomposition of retinal 

signals cannot fully encapsulate this property, as their spatial frequency 

tuning is too narrow (Anderson & Burr, 1989; Blakemore & Campbell, 1969), 

accordingly signals must be recombined to achieve the broad SF tuning 

observed in the integration of both static (Dakin & Hess, 1998) and moving 

contours (Bex & Dakin, 2003; Ledgeway & Hess, 2006; Ledgeway, Hess, & 

Geisler, 2005). Such broadband integration is not without danger - an 

inflexible integration mechanism increases the risk that inappropriate or noisy 

signals may be integrated. Variation in the extent of integration across scale 

has been shown in static contour tasks, with contour integration being 

spatially broadband along straight elements but narrowband at areas of high 

curvature (Dakin & Hess, 1998). Functionally, this arrangement should reduce 

the impact of noise by integrating where the signals are likely to be the same 

across scale (straight edges) but selectively integrating when the signal will 

vary across frequency (curved edges). 

 

In the motion domain global integration has been shown to be broadband in 

detection tasks (Bex & Dakin, 2002) and in motion after effects (MAE) when 

isotropic flickering test stimuli are employed (Ashida & Osaka, 1994; von 

Grunau & Dube, 1992). For instance, while participants are unable to detect 

the motion of locally band-pass dots whose spatial frequency content do not 
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overlap (Bex & Dakin, 2003; Ledgeway, 1996) the perception of global motion 

(rotation, translation & expansion) can be masked by noise elements at 

spatial frequencies that are remote from signal elements (Bex & Dakin, 2002). 

This suggests that global motions detectors are not only SF broadband but are 

unable to selectively tune their input with respect to the stimulus type at 

hand. Such ‘rigid’ integration has also been observed in the orientation 

domain where Schrater, Knill & Simoncelli (2000) found that thresholds for a 

signal embedded white noise are near optimal when the energy is uniformly 

spread around one speed plane, but sub-optimal when the energy in 

confined to isolated sub-sets of the space.  

 

The study of apparent motion has established that dmax (the greatest distance 

that motion may be detected over two successive frames), scales inversely 

with SF under most conditions (Baker, Baydala, & Zeitouni, 1989; Cleary & 

Braddick, 1990; Eagle & Rogers, 1996; Morgan, 1992) but much less work has 

studied the influence of SF in global motion tasks. There is some evidence that 

low SFs play a special role. In Bex & Dakin (2002), masking was strongest for 

low SF noise elements, even when matched for visibility, suggesting that 

coarse information is preferentially integrated. Further evidence that low SFs 

are used to ‘bind’ high SF comes from the phenomenon of ‘motion capture’, 

where high SF structure is perceived as moving in the direction of the low SFs, 

even when the directional signals are centred on opposing directions 

(Ramachandran & Cavanagh, 1987). 
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This chapter introduces uses a novel stimulus to explore the influence of 

second-order statistics and spatial-frequency in a 2AFC direction 

discrimination task. Stimuli are generated by band-pass filtering white noise 

and then performing a thresholding operation. The results are binary blob 

images (Figure 2-2) containing smooth and relatively sparse contours, which I 

term “naturalistic” simply because this form of contour structure is more 

commonly observed in natural scenes than in e.g. two-dimensional noise. The 

SF profile may be described as low-cut: The initial filtering is band-pass  (0.75 

c/deg), but the threshold operation introduces high spatial-frequencies to the 

signal. Thus, the spatial-frequency profile has a low-cut off, but not a high-cut 

off. 
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Figure 2-2 Examples of the stimuli employed. (a) Broadband (b) Low-pass, Gaussian filtered 

version of (a) (c) Leaky high-pass – generated by subtracting a Gaussian blurred version of (a) 

from (a)  (d) (Strictly) High-pass stimulus – generated by further subtracting a Gaussian blurred 

versions of (c) (see methods). (e) Amplitude spectra of (a, b, c & d), note how the low 

frequency component of (c) is leaky but the no-illusion stimuli reaches an amplitude of zero at 

a low SF.  
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The stimuli used are a significant deviation from the type of stimuli used in 

most motion studies. For instance, while dot-stimuli may be resolved locally, 

the use of drifting-Gabors or straight edges forces the visual system to 

combine signals over space to disambiguate 1D velocities (Kaoru Amano, et 

al., 2009; Lorenceau & Alais, 2001) In contrast the ability of the visual system to 

locally resolve motion signals stemming from curved elements is unclear. In 

this regard there is an interesting inter-play between the ability of the motion 

stream to accurately identify component motion (presumably easier for 

straight edges) against the ability to resolve signals locally (presumably easier 

for areas of high-curvature). Furthermore areas of low-curvature may aid the 

binding of spatially disparate elements (as shown in coutour detection 

paradigmns e.g. Geisler, et al., 2001). For the purpose of the current study it is 

worth noting that increasing the area of the carrier signal exposed to the 

observer leads to large improvements in discrimination thresholds. Thus when 

the aperture size is small, if any disambiguation is occurring on a local level, 

the precision of such estimates is poor. 

 

Like many studies designed to probe the aperture problem, I restrict the 

analysis to motion within two-dimensions, I concede that this excludes many 

of the spatiotemporal relationships present in natural environments, but note 

that 2D motion is consistent with the sub-set of naturally occurring motions 

that occur within the fronto-parallel plane. 
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Given the non-fractal nature of our stimuli, Experiment 1 probes the role the of 

the low and high SF components of our stimulus. This Experiment provides an 

essential control for Experiments 2&3, which explores the effect of disrupting 

the second order statistics in a direction discrimination paradigm. 

 

Methods  

Subjects 

Three psychophysically experienced observers (DK, SD, JG) with normal or 

corrected-to-normal vision took part in all experiments. In Experiment 2, 

subject JG was replaced with JC. 

 

Apparatus 

Stimuli were generated on an Apple iMac, running MATLAB (MathWorks) using 

elements of the Psychtool-box (Brainard, 1997; Pelli, 1997). Stimuli were 

displayed on a Dell, Trinitron CRT with spatial and temporal resolution set to 

1024 * 768 pixels and 85 Hz respectively. The screen was viewed from a 

distance of 1.5m so that one pixel sub-tended 0.35 arcmin. of visual angle. 

The monitor signal was passed through an attenuator (Pelli & Zhang, 1991), 

following which the signal was amplified and copied (using a line-splitter) to 

the three guns of the monitor resulting in a pseudo 12 bit monochrome 

image. Monitor linearization was achieved by recording the relationship 

between the signal and the monitor intensity (Minolta LS 110 photometer), to 

create a linearization look up table that was passed to the Psychtoobox 

internal colour look up table. 



 84 

 Stimuli 

The mean luminance of the stimuli was 30.5 cd/m2 with a root-mean-square 

contrast of 0.20. Stimuli were viewed through a large 2D raised cosine 

aperture (tapered annulus radius; 1.38 arc min) presented in the centre of the 

display. The radius of the aperture was either 2.95° or 1.17° (two viewing areas 

were employed to control against ceiling effects; see below). The smaller 

aperture size was equal to the total signal area in the locally apertured 

condition in Experiment 2. Due to the tapered annulus used, the visible area 

was taken to be the area above contrast detection threshold in keeping with 

the detectable area of Gabor stimuli (Fredericksen, Bex, & Verstraten, 1997). 

 

Stimuli were generated by spatially band-pass filtering random noise using a 

2D Laplacian-of-Gaussian filter - σ =22.8 arc min - and then thresholding the 

result at mean luminance to generate binary “blob” images. An example 

stimulus is illustrated in Figure 2a. This procedure allowed us to rapidly 

generate complex shapes with a broad SF profile. 200 such images were 

generated. On each trial a random image was selected, with replacement. 

Low-pass images were generated by convolving the broadband images with 

a Gaussian filter (σ=5.4 arc min., Figure 2b). One set of high-pass images 

(Figure 2c) was generated by subtracting a Gaussian (σ=2.1 arc min.) filtered 

version of the broadband images from the source image.  This process is 

“leaky” – allowing through some low-frequency information and leading to 

the Craik–Cornsweet–O’Brien (CCOB) illusion (Cornsweet, 1970; Craik, 1966; 

O'Brien, 1958) to be present in our stimuli (observe how the areas within the 

contours appear to be light or dark even though the luminance of each 
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patch is equal). To control the potential influence of this illusory coarse-scale 

structure the low-pass image was subtracted twice more (Figure 2d). This 

procedure has previously (Dakin & Bex, 2003) been shown to completely 

abolish the CCOB effect by both further attenuating the low-frequencies and 

nulling the effect by reversing the polarity of the inter-blob areas. 

 

The carrier component of stimuli translated at a speed of 3.93 deg/s for 0.3 

seconds (refresh rate 85 Hz = 26 frames) in near-upwards directions. Motion 

was generated using operations built in to the computer’s graphics card, ac-

cessed using the OpenGL programming language. During each trial, the 

stimulus was passed to the graphics card buffer. Stimuli (11.5 X 11.5 deg.) 

were greater in size than the viewing aperture (radius 2.95 deg./1.17 deg.), 

during each frame a segment of the original image was displayed. By 

smoothly varying the region of the original image presented to the 

monitor/subject a percept of rigid translation of the image through the 

aperture was generated. To avoid the potential effects of an orientation bias, 

the underlying image was randomly flipped from left to right between trials. 

Between trials a phase-scrambled version of the original broadband stimulus 

was placed within the viewing area and the following trial was initiated 

immediately following the observer’s response. 

 

Procedure 

A method of constant stimuli (MCS) was used to assess fine direction-

discrimination with such patterns. A small offset clockwise (CW) or 
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anticlockwise (ACW) was added relative to vertical upwards motion. The 

observer’s 2AFC task was to fixate on a continuously present cross at the 

centre of the monitor and to indicate the direction of motion (CW or ACW of 

vertical upwards motion), guessing if necessary. Audio feedback was 

provided following incorrect answers. The offset was between ±7° (large 

radius) and ±10° (small radius) at 17 equally spaced intervals. Each point was 

measured 17 times per run and all participants completed at least 2 runs (i.e. 

578 trials per condition), extra trials were added if the psychometric function 

was under or over constrained. All conditions where randomly interleaved.  

 

The procedure for deriving thresholds was identical to (Dakin, Mareschal, & 

Bex, 2005a); the psychometric function was fit with a wrapped Gaussian and 

the standard-deviation parameter of the best fitting function was taken as 

the estimated threshold. A bootstrapping technique was employed to 

estimate 95% confidence intervals on these estimates; data were re-sampled 

with replacement across each point (assuming binomial error) in the 

psychometric function a total of 1024 times and the function refit. In all plots, 

error bars indicate 95% confidence intervals on the threshold estimates. 
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Experiment 1: Dependence of direction discrimination on spatial-
frequency structure 

 

 
Figure 2-3 Results, experiment 1 (a, b & c) Direction discrimination thresholds for three observers 

(DK, JG & SD), measured with four underlying carrier signals (broadband, leaky high-pass, 

strictly high-pass and low-pass – see text for description). Error bars indicate 95% confidence 

intervals. Note that performance was worse over the smaller aperture (dark grey) condition 

indicating that performance was not at ceiling. (d) Mean thresholds for the three observers 

after normalization (ie centering psychometric functions on zero) to correct biases, then 

pooled across participants. Thresholds were lower for high-pass than broadband conditions, 
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but not significantly so. Thresholds were significantly higher for low-pass stimuli in the smaller 

aperture condition.  

 

In the first experiment, I sought to determine the relative influence of 

information across SF channels in our ‘naturally’ contoured stimuli. Figure 2-3 

plots direction discrimination thresholds for DK, JG & SD, measured with four 

underlying carrier signals (broadband, leaky high-pass, strictly high-pass and 

low-pass). Error bars indicate 95% confidence intervals. Note that 

performance is worse with the smaller aperture (dark grey), indicating that 

performance in the smaller aperture conditions is not at ceiling. In Figure 2-3d, 

thresholds for DK, JG & SD were first mean adjusted to zero to correct for 

biases (i.e. the mid point of the psychometric function were centred on 0 

deg), then pooled across participants. Thresholds were broadly similar for the 

high-pass and broadband conditions, but thresholds were significantly higher 

for low-pass stimuli in the smaller aperture condition. Thus, direction sensitivity 

increases either by increasing spatial frequency or increasing aperture size (at 

least for the conditions tested). This indicates that the signal is less reliable at 

the low SF’s, despite there being an identical number of cycles in the contour 

structure of each SF channel. Finally, these results reveal no special role for 

low SFs, unlike that observed motion capture (Ramachandran & Cavanagh, 

1987). Given that I tested only four spatial frequency and two aperture-size 

conditions, I cannot make more general assertions about the relationship 

between these parameters and direction discrimination performance. For 

example, there may be subtle inter-actions between parameters, effects that 

saturate with increasing SF, etc. 
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Experiment 2: The role of second-order statistics 

Given that removing the low SF information from broadband images did not 

substantially impair direction discrimination thresholds, I next asked if the 

“naturalistic” contour structure within our stimuli was promoting the integration 

of high SF motion signals. It is certainly the case that motion signals can inform 

observers about the form of objects as shown in slit-motion studies (Nishida, 

2004) and studies of spatiotemporal boundary formation (e.g. Shipley & 

Kellman, 1993) but much less work has demonstrated the influence of form on 

motion processing (Lorenceau & Alais, 2001; McDermott, Weiss, & Adelson, 

2001). To test this hypothesis, I assessed the impact of disrupting the second-

order motion/orientation statistics of our stimuli by placing apertures over the 

stimuli (Figure 4a). Global structure could then be disrupted by randomly 

switching the signals passing under each aperture with another randomly 

chosen aperture (Figure 4b,d). Scrambling in this manner across all apertures 

preserved local signals, but disrupted global structure. Note that breaking 

global structure in this way disrupts both the second-order statistics and the 

low SF components of the signal. Therefore the effect of scrambling can only 

be identified by comparing performance across both the high-pass and 

broadband stimuli. Thus if motion processing exploits the statistical regularities 

of second-order structure in naturalistic images, then performance should 

deteriorate in both the high-pass and broadband conditions as this structure 

is abolished. Alternatively, if a detriment to performance is observed only in 
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broadband stimuli, then disruption to the low SFs is driving any observed 

reduction in performance. 

 

Stimuli 

Stimuli were identical to the broadband (Figure 2a) and high-pass (Figure 2c) 

stimuli of Experiment 1 but were viewed through a mask consisting of a series 

of circular raised-cosine apertures (radius 16.2 arc min.; tapered region radius 

1.38 arc min.). All apertures were positioned within a circular region (radius of 

2.95 deg) centred upon the fixation point. The underlying noise carrier 

translated upwards and each contour passed through the middle of each 

aperture during the middle frame of the trial (Figure 4f). This arrangement of 

the apertures and contours rendered the global structure of the stimuli easily 

apparent to the observer. Further, centring the apertures over the contours 

reduced between-trial variability that would have resulted from a random 

placement of the apertures. Due to the random nature of the stimuli the 

number of apertures varied, with a mean of 86.4 and a standard deviation of 

6.8. Scrambling was achieved by swapping the signal under one aperture 

with that of another randomly chosen aperture. Scrambling in this manner 

preserved local signals but disrupted global structure. 
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Figure 2-4 Stimuli (a-d) Middle frames of the four conditions used in Experiment 2 (contrast has 

been maximised to improve visibility). (a) Underlying stimuli were similar to Experiment 1, but 

were viewed through a series of small stationary apertures that were centred on the contours in 

the middle frame of the sequence. (b) Global structure was disrupted by randomly swapping 

the signals viewed behind each aperture. (c,d) Shows a high-pass filtered version of the same 

image. (e-g) depict the first, middle and last frames of an example broad-band unscrambled 

trial. For illustration purposes the underlying image is superimposed upon the occluding surface 

of the apertures. Note that apertures were densely place over the whole contour structure of 

the image and that the contour passes through the middle of each aperture during the middle 

frame (f). 
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Results 

 
Figure 2-5 Results, experiment II Direction discrimination thresholds measured with locally 

apertured stimuli for three observers (DK, JC & SD). Dashed lines indicate the mean direction 

discrimination threshold for each subject for the non-apertured, broadband stimuli from 

Experiment 1. Thresholds for the broadband stimuli (grey triangles) are always higher than the 

high-pass (black circles) stimuli. The effect of scrambling is highly significant in the broadband 

stimuli whilst only a small effect is observed in the high-pass stimuli. This suggests that ‘coherent’ 

global structure is not necessary to achieve low discrimination thresholds but that disrupting 

global structure is detrimental to performance when the low frequencies are present. (d, e) 

depict the motion energy at 3.6 c/deg  and 0.75/cdeg respectively across a channel of V1 

neurons tuned to the object speed, note how the distribution of motion energy is identical in 

(d) but not in (e) highlighting how scrambling dramatically increases the direction bandwidth 

of the signal at low SFs (see appendix for model details). 
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Results from Experiment 2 are plotted in Figure 2-5 and show two main effects. 

First, thresholds for the broadband stimuli (grey triangles) are higher than 

thresholds obtained without the obscuring apertures (dashed lines). Second, 

scrambling increased thresholds two-fold across the broadband condition 

but only had a weak effect on the high-pass stimuli. Interestingly participants 

reported a percept of rigid translation under all conditions except the 

broadband scrambled condition where a small amount of spatial 

incoherence was observed. This pattern of results suggests that the second-

order statistics do not significantly influence motion processing in our 

experiment because scrambling would have predicted an equivalent effect 

in both the high-pass and broadband signals. Instead, our results are 

consistent with a global motion mechanism that pools directional information 

across space and SFs but is insensitive to the relative motion information in 

nearby locations. In this model, scrambling increases the directional 

bandwidth at low SF’s (Figure 2-5; d,e) leading to a loss of sensitivity. The 

weaker effect observed in the high-pass conditions reflects the weak signal in 

the low SFs (see Figure 2-2e). Later sections attempt to justify this position 

further by isolating the low SF component of the signal (Experiment 3) and 

assessing the variability in the signal though a model of V1 neurons (see 

Model).  
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Experiment 3: Low SFs and the effect of scrambling 
carrier location 

 

Experiment 3 was designed to probe the role of low SFs in the scrambling 

effect observed in Experiment 2. This was achieved by progressively 

attenuating the high SF component of the broadband signal to isolate the 

low SF component by convolution of the carrier signal with Gaussian filters of 

progressively larger spatial extent.  

   

Methods 

Subjects, procedure and apparatus were identical to Experiment 2.  Stimuli 

were low-pass versions of the broadband stimuli in Experiment 1 from which 

five low-pass conditions were created by convolving the broadband images 

with a Gaussian filters set to σ=5.4 7.8 11.4 16.2 or 22.2 arc min. After 

convolution, the contrast for all conditions was set to a root-mean-square 

contrast of 0.20 (6.0 cd/m2). The five new stimuli were then tested across both 

the scrambled and unscrambled conditions of Experiment 2 to generate 10 

new conditions. 

 

Results 

Figure 6 shows the results of Experiment 3, which are in good agreement with 

the results of Experiment 2. Scrambling induced a twofold increase in 

thresholds at low levels of stimulus blur (σ=0.09). To examine the effects of 

increasing blur, a straight line was fit to the log of thresholds across the 

scrambled and unscrambled conditions. The exponent of the fit was 
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recorded and error bars were generated using a bootstrapping procedure 

with 1024 iterations. The results of the fitting procedure (Figure 6 d-f) show that 

the exponent is higher in the scrambled condition (significantly so for DK and 

SD). This means that motion discrimination thresholds increase more quickly 

with blurring for scrambled than unscrambled conditions. Since increasing the 

level of blur in the images does not alter the second order statistics I conclude 

that it is the disruption of low SF components of the signal that is driving the 

effect of scrambling. An alternative interpretation of the data is that lateral 

interactions occur over increasing distance with de-creasing SF (e.g. Polat & 

Sagi, 1993) - given the fixed radius of the display this may lead to an 

increased impact of lateral interactions with increasing blur. 
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Figure 2-6 Results of Experiment 3 for three observers (DK, SD & JG). Direction discrimination 

thresholds for scrambled (black circles) and unscrambled (grey triangles) apertured stimuli are 

shown as a function of the standard deviation of Gaussian blur applied to the underlying 

contour image. The curves show the line of best fit generated by fitting a straight line to the log 

of the data, the slope of which is shown in (d - f) for unscrambled (grey bars) and scrambled 

(black bars) conditions. Error bars show 95% confidence intervals on all graphs. The exponent is 

always greater in the scrambled condition, (significantly for DK and SD). This suggests that 

increasing reliance upon the low frequency component is of greater detriment to the 

scrambled stimuli, further indicating that it is the low-frequency component of the signal rather 

than the second order statistics that is driving the effect of scrambling. 
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Controls 

The above analysis has implicitly assumed that the psychophysical data is the 

result of local signals being combined across space to yield a global estimate 

of direction. However, the stimulus used is theoretically resolvable at the local 

level. To ascertain what level of disambiguation is being achieved at the 

local level, I perform a control in which I vary the number of apertures. The 

control experiment was identical in all regards to the broadband un-

scrambled condition of Experiment 2, except I vary the area of the image 

presented to the observer by varying the number of apertures presented from 

1, 4, 16 or 32. In all conditions the spatial positioning of the apertures was 

random but constrained to fall within a radius of 2.95° from fixation. Results are 

shown in Figure 2-7. Discrimination thresholds improve with increasing aperture 

number, strongly suggesting that the degree of precision achieved in 

Experiment 2 could not have resulted from a local analysis alone and that 

information must have been combined across space. Note that performance 

in the single aperture condition is better than if the information were truly 

ambiguous (i.e. straight edges) in which case a simple model which detects 

the direction orthogonal to an elements orientation will produce 

discrimination thresholds of around 65°. Thus some level of local 

disambiguation is being achieved. 
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Figure 2-7 Control experiment 1 examined the ability of the observers to locally resolve the 

information presented in each aperture of Experiment 2. Results demonstrate that 

performance improves rapidly with increasing aperture number and strongly suggests a global 

analysis is needed to achieve the level of precision observers achieved in Experiment 2. Closed 

symbols represents thresholds when random aperture positions. Open symbols denote 

performance when the aperture position was held constant. 

 

A second criticism is that the second-order statistics of Experiment 2 are only 

present during the middle frames of our experiment as the apertures largely 

obscure the contour structure during the beginning and end frames. The 

criticism is valid because the strength of the second-order relations falls with 

increasing distance between elements (Geisler, et al., 2001). Since the full 

contour structure of the stimulus is only exposed during the middle frames of 

the trial, the mean distance between elements will be larger during the 

beginning and ends frames thus reducing the strength of the second-order 

statistics. To address this criticism I repeated Experiment 2 in full, but slowed 
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down the translation of the underlying carrier to 1 deg/s so that the contour 

structure was exposed for the full duration of the trial. The results are shown in 

Figure 8 for subjects DK, JG and SD. Results are consistent with Experiment 2 

and reveal no significant difference between the high-pass un-scrambled 

and scrambled conditions but again reveal that the scrambling significantly 

lowers the precision of observers in the broadband conditions. It should be 

noted that performance is worse at the slower carrier speeds of the control 

experiment, a finding that is expected because a slower carrier speed and 

identical trial duration will reveal much less of the carrier to the observer. 

Figure 2-8 Control Experiment 2 repeats Experiment 2 using a slower carrier speed so that the 

full contour structure is present on each frame. Results follow the same pattern as Experiment 2 

with scrambling always causing a significant increase in observers’ threshold in the broadband 

(grey triangles) but not the high-pass condition (black circles). 

 

Discussion 

The accurate estimation of motion-direction is trivial for isolated objects 

containing isotropic orientation structure. Under such conditions the 

distribution of motion energy is predictable and veridical estimates of the 

direction of motion can be obtained by simply calculating the centre of 

0

4

8

12

16

DK JC SD

(a)        (b)            (c)

d
ir
e

c
ti
o

n
 d

is
c
ri
m

in
a

ti
o

n
 (º

) 

Unscrambled Scrambled Unscrambled Scrambled Unscrambled Scrambled

Broadband

High-pass



 100 

motion energy. However in natural, unconstrained environments this is rarely, 

if ever the case and biases in motion energy render such a strategy 

unreliable. The paradigm I have described is able to probe the influence of 

imbalances in motion energy simply because the stimuli used exhibited 

anisotropies in the orientation structure that varied randomly from trial-to-trial. 

In Experiment 2&3 scrambling will induce ‘spurious’ correlations in the low SF 

component of the signal (see model), increasing anisotropies in the motion 

energy and in turn raising psychophysical thresholds.  

 

The lack of an effect of disrupting the second order statistics is surprising 

considering the importance of second-order statistics in the detection of 

static (Field, Hayes, & Hess, 1993) and moving contours (Bex, Simmers, & 

Dakin, 2001; Ledgeway & Hess, 2002, 2006). More directly, this work appears 

to contradict the findings of Lorenceau and Alais (2001) who show 

performance on a motion discrimination task is better for ‘closed’ forms than 

‘open’ forms. Although both studies used very similar paradigms, the stimuli 

employed differed in terms of their perceptual ambiguity: The class of stimuli 

employed by Lorenceau and Alais (2001) has been well studied and the 

percept of global motion is ambiguous and bi-stable (McDermott, et al., 

2001) reflecting the potential of such displays to be consistent with more than 

one physical interpretation (see Figure 2-1). In contrast, the signal presented in 

the current paradigm was consistent with only one interpretation. This 

suggests that global second-order statistics may only influence performance 

in motion discrimination tasks when there are very high levels of uncertainty in 
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the binding of spatially disparate elements. The finding also implies that 

studies of global motion with random second-order orientation statistics (e.g. 

Kaoru Amano, et al., 2009) are designed to an appropriate level of 

abstraction. 

 

Although our results suggest no role for the second-order statistics (within one 

SF channel) like that shown in contour detections paradigms (Field, et al., 

1993) the effect of scrambling highlights the importance of the low SF 

component of motion and how manipulations of spatially disparate elements 

can dramatically influence the directional signal at this frequency. This 

observation has implications for a number of other studies using apertured but 

broadband stimuli (e.g. Lorenceau & Alais, 2001; Mingolla, et al., 1992) where 

the directional signal of the low-pass component may play an important role. 

 

The rigid integration of the disrupted low SF component observed in our study 

indicates the motion stream is unable to filter out or ‘ignore’ SF channels on 

the basis of a high directional bandwidth in the distribution of motion energy. 

Although in the present stimuli ‘ignoring’ the low frequency component of 

motion would likely improve psychometric thresholds, the relationship 

between signal bandwidth and reliability is not straightforward. For instance, a 

broad directional bandwidth is often the hallmark of an unambiguous 

directional signal (e.g. small dot stimuli) - an observation has been 

incorporated into the model of Weiss and Adelson (1998) where signals with a 

broad directional bandwidth are able to constrain estimates of global 
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judgements to a greater extent than signals with narrow directional 

bandwidths.  

 

The present work does not distinguish between the predictions of IOC or VA 

theories, as the stimuli used are essentially Type I. Using the aperture positions 

of Experiment 2 to restrict the range of orientations presented to the observer 

may provide a promising route through which this issue may be investigated. 

 

 
Model 

In this section, I explore the interaction between the motion energy model of 

V1 directionally selective (DS) neurons (Adelson & Bergen, 1985) and the 

stimuli used in Experiment 2. The theory behind the applications of the motion-

energy model is discussed in the introduction and the full battery of DS filters 

across direction, pseudo-speeds and spatial-frequency is defined as follow; 

 

1. Thirty-two directions evenly spaced around the clock. 

2. Thirteen evenly spaced pseudo-speeds from 0% (static) to 150% of the 

carrier signal speed (3.95 deg/s).  

3. Eight SFs from 50% to 700% of the peak SF of the broadband carrier 

signal (0.75 c/deg) in eight half-octave steps.  

 

The spatial frequency and directional bandwidth of all the model neurons 

was held constant at 1.5 octaves and 45° (half width and full height) 
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respectively in keeping with the observed bandwidths of primate area V1 (R. 

L. De Valois, Yund, & Hepler, 1982; Snowden, Treue, & Andersen, 1992) 

 

The stimuli were accurate reconstructions of trials used in Experiment 2 in 

terms of the aperture positions and the spatial (256*256) and temporal 

resolution (26 frames). However, to avoid the artefacts introduced by the 

horizontal/vertical pixel raster, the direction of motion on each trial was 

randomised. 

 

Convolution of the signal and sensor took place in the Fourier domain and 

was inverse-transformed back into the spatial domain. The square root of the 

sum of the square of the real and imaginary components was taken to 

represent the motion energy at each point in space for each DS filter, a 

computation that is formally equivalent to the full rectified square of odd and 

even phase neurons to generate a phase invariant output (Adelson & 

Bergen, 1985). A global motion analysis was achieved by collapsing the 

spatial domain and summing across all DS filters tuned to the same 

spatiotemporal frequency and direction. Each spatial frequency channel 

could then be represented as a 2D Speed-Direction image, in which the 

intensity of each region represents the global sum of motion energy across DS 

filters whose velocity tuning is denoted by the regions position in the image. 

The only filter normalisation employed was to divide the output of each 

neuron by the sum of the absolute of the receptive field across space and 

time; this had the effect of evening out the expected 1/f spatiotemporal 
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frequency spectrum. No local gain control, normalisation or inhibition 

occurred between motion filters. 

 

Noise and the sampling rate of neurons were not considered essential to the 

model output because discrimination thresholds were not derived from the 

output of the motion filters. Additional factor such as the addition of Possion 

noise (e.g. Dakin, et al., 2005a) would have been necessary if direction 

discrimination thresholds were to be predicted. Further, additional complexity 

could have been added by varying the bandwidths of the motion filters that 

simulated V1 neurons as a function of spatial or temporal frequency as both 

the physiology (e.g. Bair & Movshon, 2004) or psychophysics (e.g. Burr, 1981) 

would deem necessary, however this would make the resulting motion energy 

more complex to analyse. For instance, it would be more difficult to ascertain 

whether the directional bandwidth of the signal was the result of the stimulus 

or the sensor: By keeping the bandwidth of the sensor fractal across the SF 

domain and constant across the speed tuning of the sensor, the changes in 

signal bandwidth across these dimensions could be attributed to the stimulus, 

not the sensor. 
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Figure 2-9 Motion-energy (experiment II) ‘raw’ motion energy plots for the 4 conditions used in 

Experiment 2. Motion energy is plotted as a function of the pseudo-speed and direction tuning 

of the model DS filters as illustrated in the inset and previously in the introduction (see Figure 

1-13b). (a); each SF is plotted separately in each column from ‘fine’ to ‘coarse’ scale. (a) 

Motion energy for the band-pass unscrambled condition of Experiment 2, note how the peak 

of motion energy follows the temporal frequency tuning of the DS filters, not the pseudo-speed 

tuning (owing to normalisation within, but not across SF) and that the motion energy is centred 

on the veridical direction only when the SF of the carrier signal and DS filters are matched (0.75 

c/deg). (b) Motion energy for the band-pass scrambled condition, note how the directional 

bandwidth is higher the low SFs relative to the unscrambled condition. (c&d) Motion energy for 

the high-pass conditions; the motion energy is concentrated in the high-SF channel, and the 

directional bandwidth is least in the high-pass conditions, reflecting decreased superposition of 

signals from the lower SF channels. 

 

 

 

 

Model Results 

Figure 2-9 reveals the interaction between the stimulus used in Experiment 2 

and the motion energy model of V1 directionally sensitive neurons (Adelson & 

Bergen, 1985). Each row illustrates the averaged motion energy across 256 
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example trials for one of the four conditions of Experiment 2 (depicted in the 

leftmost row). The illustrations in each column show the motion energy as a 

function of the speed and direction of the DS filter within each SF channel. For 

image clarity, the motion energy across each condition (each row of Figure 

2-9) was normalised between 0-1 and the conditions and sensors are 

depicted at the same spatial scale in the leftmost column and bottom row 

respectively. Note, the spatial frequency of the broadband carrier signal and 

DS filter are matched at 0.75 c/deg.  

 

Initial inspection reveals the motion energy of the high-pass condition to be 

(unsurprisingly) concentrated in the high SF channels. However the pattern of 

motion energy in the broadband condition is more complex. To understand 

the distribution of motion energy in the broadband conditions, it is important 

to note that the spatial and temporal frequencies are independently coded 

in many V1 neurons (Foster, et al., 1985; Priebe, et al., 2006; Tolhurst & 

Movshon, 1975) - when there is a mismatch between the SF of a stimulus and 

the sensor, the speed tuning of the neuron is lost and the motion energy (in 

this SF channel) will be greatest when the temporal frequency of the DS filter 

and the stimulus is matched. For a rigidly translating band-pass (or low-cut) 

stimulus such as ours, this results in component motion (occurring at slower 

speeds) only being captured in the high-SF channels in accordance with 

Equation 1.25.. To highlight this point, Figure 2-10c plots the difference 

between the temporal frequency tuning of the DS neurons and the peak 
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temporal frequency tuning of the stimulus. Note how the peak of motion 

energy in Figure 2-10c closely follows the zero temporal frequency difference. 

 

Figure 2-10 (a) hypothetical motion energy of a rigidly translating isotropic stimulus plotted in 

the speed-direction space used in Figure 11. The x-axis depicts the angular separation 

between the veridical object direction and the direction tuning of the DS filters whilst the y-axis 

plots the speed tuning of the DS filters as a percentage of the object speed. (b) Plot of the 

changing temporal frequencies used as a function of the spatial frequency tuning of the DS 

filters. (c) The temporal frequency tuning of the DS filters minus the peak temporal frequency of 

the stimulus. Note that the pattern of motion energy shown in Figure 11 closely follows the peak 

temporal frequency tuning of the stimulus. 

 

Comparison of Figure 2-9 (a) and (b) shows that the effect of scrambling is to 

dramatically increase the bandwidth of the signal in the lower SFs indicating 

that scrambling leads the motion sensors to detect spurious correlations at 

low SFs. Finally, the directional bandwidths are sharper in the high-pass 

conditions, reflecting a lower superposition of signals across SF channels. This 

suggests the low frequency component of the broadband stimuli leads to 

‘masking’ of the high frequencies and provides a plausible explanation for 

the higher psychophysical thresholds observed in the broadband conditions. 

 

-0 90-90

polar orientation (°)

sp
ee

d 
(°

/s
)

(a)

 

 

0

5

10

15

20

25

30

 

 

!20

!10

0

10

20

(b) (c)

spatial frequency (cyc/°)

3.6 1.6 0.8 0.3
 

3.6 1.6 0.8 0.3

100 %

50 %

0 %

te
m

po
ra

l f
re

qu
en

cy
 (c

yc
/s

)

te
m

po
ra

l f
re

qu
en

cy
 (c

yc
/s

)



 108 

 

 

Implications for models of global motion processing 

The changing nature of the signal across SF channels highlights the 

independence the spatial and temporal tuning of V1 neurons (Foster, et al., 

1985; Priebe, et al., 2006; Tolhurst & Movshon, 1975) while simultaneously 

showing that stimulus variables such as orientation and speed are not 

independently coded in area V1 (see; Mante & Carandini, 2005). It should be 

noted that the distinct pattern of motion signals across SF channels is 

determined by the low-cut SF profile of our stimuli. In contrast, if the stimulus 

were fractal and isotropic, the full expression of component motion may be 

found within each SF channel. However in naturally occurring stimuli the SF 

profile is likely to vary between a broadband and a band pass profile and is 

unlikely to be isotropic. Accordingly the broadband integration of signals 

across spatial frequencies observed in global motion studies (Bex & Dakin, 

2002; Simoncelli & Heeger, 1998) appears necessary to capture the full 

expression of component motion (occurring across a range of speeds and 

orientations) despite the increased vulnerability to noise that such broadband 

integration brings (Bex & Dakin, 2002). 
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Experiment 4 Number, Density or Area 

In Experiment 3 above, the following variables all co-varied; the number of 

elements, the density of elements and the region of integration, (I will term 

these variables number, density and area). This means that one variable 

cannot be manipulated independently of the other two variables; for 

instance changing the number of elements within a given area alters the 

density of stimulus. If an experimenter wants to isolate the influence of each 

variable (s)he must generate three functions; in each function one variable 

(either number, density or area) is held constant whilst the other two variables 

are manipulated. The relative slope of each of the three functions can then 

be used to ascertain the relative role of each variable. For instance, if the 

number of elements is held constant and the function remains flat as a 

function of area then it can be concluding that number is the primary 

determinant of performance. 

 

Dakin et al. (2005a) applied this strategy in combination with an Equivalent 

Noise paradigm to explore the influence of number, density and area in the 

integration of moving random-dot patterns. The results showed that the 

number of elements was the primary factor driving performance and 

revealed only a very minor role for density that was attributed to 

correspondence noise. The equivalent noise analysis demonstrated that the 

observers’ were performing like an ideal-observer whose sampling efficiency 

was equal to the square root of the total number of samples present. This 

section asks whether the pattern of data revealed in response to spatial-
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frequency band-pass random-dot stimuli holds for the contoured stimuli used 

in the present experiment. While the integration of a single dot element can 

be very accurate; a precision of σ ~3° when embedded in noise 

(Watamaniuk & McKee, 1998), by contrast the integration of individual 

contoured elements is relatively poor (precision σ > 25°, see Figure 2-7) 

Accordingly, the need to integrate across space is greater in the contoured 

stimuli. I propose that observers’ difficulty in ascertaining the two-dimensional 

motion of individual contoured elements stems from the motion stream being 

unable to resolve the ambiguities associated with the ‘aperture problem’ and 

being biased by the orientation content of the stimulus, (i.e. the contoured 

elements often resemble a straight edge). In this respect, research has 

suggested that locally 1D and 2D motion signals may be treated differently 

by the visual system; Amano et al. (2009) who demonstrate that the 

integration of 2D stimuli (plaids) is constant with an averaging scheme, both in 

terms of the direction and speed of motion estimates but that the integration 

of locally 1D elements (Gabors) was consistent with a more complex 

integration rule that is able to ascertain both the 2D speed and direction from 

locally 1D signals (except for Type II stimulus classes). Moreover the percept of 

locally 1D elements is demonstrably unstable under some conditions, 

switching from a global percept to a local percept with decreasing time and 

the influence of various non-motion parameters such as contrast or the shape 

of occluders (Lorenceau & Shiffrar, 1992; McDermott, et al., 2001). 
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Accordingly I have reason to expect the pattern of results demonstrated in 

(Dakin, et al., 2005a) may be different in response to stimuli of greater local 

ambiguity and I apply the co-variance technique documented in (Dakin, et 

al., 2005a) to the contoured stimuli used thus far in this chapter. 

 

Subjects/Apparatus 

Subjects and apparatus were identical to previous experiments in this 

chapter. 

 

Stimuli 

To simultaneously probe area, number and density, 7 conditions were tested. 

The number of moving elements was either 4, 16 or 64, the radius of the 

viewing area was either 1.52, 2.92 or 5.92 ° and the density was either 0.13, 0.44 

or 2.2 apertures per degree squared. The conditions are depicted in the inset 

of Figure 2-11. The representation of the conditions in a grid allows us to 

highlight which conditions are consistent with a single dimension being held 

constant. By looking across the diagonal column one can examine data in 

which the density of elements was held constant; by looking across the 

horizontal column one can see data when area is held constant and by 

looking across the vertical column the data corresponds to when number is 

held constant. Here I collected data for both scrambled and unscrambled 

conditions (described above). 
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Procedure 

A method of constant stimuli was applied; on the first experimental run all 

conditions began with broad upper and lower bound on the maximum cue 

size presented (±64°) and the function was sampled at 17 points. The 

thresholds varied considerably and it was necessary to adjust the range as 

the data was collected; after the first run the upper and lower bounds were 

adjusted such that the range was extended to ~2.5 times the estimated 

standard deviation. 
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Figure 2-11 Exploring the role of area, number and density. Seven conditions are employed as 

denoted by insets on the left-hand side. As the factors of area, number and density co-vary the 

only way to isolate the influence of each factor is to co-vary two factors and hold the other 
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constant. In row one density is held constant, in row two area is held constant, in row three 

number is held constant. When number is held constant the changes in threshold are modest 

indicating that number is the primary determinant of performance, however unlike pervious 

global motion tasks (Dakin, et al., 2005a) the role of density or area is still a strong moderator of 

performance. 

 

Results 

The results of Experiment 4 are shown in Figure 2-11. The flattest function 

occurs when the number of elements is held constant. This demonstrates that 

number is the primary determinant of performance, consistent with the 

findings of Dakin et al. (2005a) and Barlow & Tripathy  (1997) using band-pass 

random dot stimuli. When number is held constant, the function is the flattest 

of the three, but there is still a small increase in thresholds with stimulus area; 

performance gets worse with increasing area (i.e. decreasing density) 

demonstrating that either area (and therefore the density) of elements is an 

important factor in the integration of contoured elements. This effect is 

strongest in the four-element condition but also present in the 16 and 64 

aperture conditions. The data for the unscrambled and scrambled conditions 

do not appear to differ substantially.  

 

Discussion 

The finding that density/area plays a role in the integration of contoured 

stimuli can be contrasted with the conclusion of previous studies (H. Barlow & 

Tripathy, 1997; Dakin, et al., 2005a) in which density was considered to play a 

role due to correspondence noise (i.e. when local elements overlap the 

number of 'false matches' increases; Qian, Andersen, & Adelson, 1994). 

Correspondence noise is unlikely to play a role in the present paradigm 
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because elements do not overlap.  In particular the work of Dakin, et al., 

2005b) may be compared to the present study because the dimensions of 

number, density and area were covaried in their study; that work 

demonstrated a small decrease in both sampling efficiency and internal 

noise (as infered from an equivalent noise analysis) when number was held 

constant and the area of intergraton was increased. The overall effect on 

performance is very small as the two effects move in opposite directions. In 

the present work, I do not examine the data in terms of sampling efficiency 

and internal noise but in terms of the absolute thresholds of observers and it is 

found that thresholds increase with increasing area. This indicates a facilatory 

role of density in our paradigm and our stimulus, although it is unclear whether 

this effect is due to a decrease in internal nosie or an increase in sampling 

efficiency and it is not clear whether the effect is mediated by the low-

frequencies in the stimulus. However, given that sampling efficiency was 

found to decrease in Dakin, et al., (2005b) and corresponence noise cannot 

play a role in our current paradigm because elements never overlap (e.g. 

Qian, et al., 1994) it may be that density improves the sampling efficiency of 

both stimulus classes. To provide a firmer test, a paradigm is needed in which 

the orientation bandwidth of the signal may be smoothly varied to produce a 

continuous transition between a 1D and 2D motion signal. I suggest that an 

adaption of the Global-Gabor array in which the sinusoidal carrier is replaced 

with a rigidly translating band-pass spatial-frequency noise stimulus in which 

the orientation bandwidth may be manipulated in the Fourier domain would 

be appropriate. The paradigm employed by Dakin, et al., (2005b) can then 
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be used to infer the sampling efficiency and internal noise across the number, 

density and area functions, i.e. equivalent noise functions (based on 

discrimination thresholds) should be generated for each of the seven 

conditions used in the present experiment and for low, medium and high 

orientaiton variance band-pass filtered noise stimuli. 

 

Recent research in neurophysiology suggests that an effect of density may be 

mediated by the response properties of MT pattern selective cells; Majaj, 

Carandinin & Movshon (2007) demonstrate that when the component 

gratings are separated in space (but still constrained within the receptive field 

of an MT cell), the MT cell will respond of the component motion rather than 

the pattern motion. Thus the ‘pattern’ selectivity of such neurons is contingent 

upon the proximity or degree of overlap between the component gratings. 

The data from Majaj et al. (2007) are however insufficient to determine 

whether the 1D velocities need to be locally overlapping or simply closer in 

space to achieve ‘pattern’ selectivity, but an extension of the paradigm did 

reveal that as the number and density of the pseudo-plaids was increased 

(but not overlapping) ‘pattern selectivity’ returned (M. Jazayeri & A. J. 

Movshon, 2007), in support of the notion that MT ‘pattern’ cells may provide 

the neurological site for the effect of density noted. 
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(3) Experimental Chapter No.2 
The aperture problem in natural scenes 
The majority of studies probing the ‘aperture problem’ have used highly 

constrained stimulus classes often containing just two orientations. In contrast 

natural scenes contain a variety of different textures, end points and 

contours. The purpose of the present study is to reveal which components of 

natural images drive subjects’ performance in a motion task. To this end, I 

introduce a novel variant of the image classification paradigm (Eckstein & 

Ahumada, 2002; Gosselin & Schyns, 2001). Broadly speaking, the aim of the 

classification image paradigm is to identify which aspects of a stimulus drive 

performance on a particular task. Such techniques work on the principle that 

if the information in a scene is important to the task at hand, then degrading 

the information through the application of additive (reverse correlation) 

(Eckstein & Ahumada, 2002) or multiplicative (Bubbles) (Gosselin & Schyns, 

2001) noise will impair performance. Image classification techniques sum all 

the noise fields weighted by the observer’s responses, an operation that is 

formally equivalent to performing a reverse correlation procedure (Chauvin, 

Worsley, Schyns, Arguin, & Gosselin, 2005), to generate a “perceptive field” 

that maps the relationship each part of the stimulus to the observers’ 

response. 
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Figure 3-1 I measured subjects’ ability to estimate the direction of motion of rigidly translating 

natural stimuli viewed through 16 apertures. (a) A linear greyscale natural image from the Van 

Hateren (van Hateren and van der Schaaf 1998) image set (b) A sample frame from the movie 

stimulus presented to subjects. (c) The test phase. Observers manipulated the orientation of a 

line composed of 4 Gaussian patches that radiated from the centre of the display (i.e. at 

fixation) to the edge of the potential viewing area until it matched the perceived direction of 

the translating natural scene. A phase-randomized version of the stimulus was presented during 

the test phase and between trials to mask the structure and onset/offset of the natural image. 

 

The aim of the present work is to identify which features in natural images 

influence subjects perceived direction of motion. As discussed previous 

studies have shown that the apparent global direction of motion depends on 

the local orientations present in the stimulus. Natural scenes have much 

broader orientation content than many artificial stimuli used to probe the 

‘aperture problem’ and it is not known how naturally occurring textures and 

contours influence observers’ perception of motion. In this chapter I introduce 

a novel variant of the reverse correlation paradigm that allows one to 

examine how natural scene statistics affect the apparent direction of motion.  

 

The reverse-correlation paradigm used in the present study differs from the 

reverse-correlation paradigms described above: In this work subjects viewed 

a natural image that was rigidly translated in a random direction on each trial 

(Figure 3-1a). The translating natural image was viewed through an opaque 

(a)              (b)                (c)
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mask, punctured by 16 randomly positioned apertures (Figure 3-1b) and the 

observer’s task was to indicate the direction of perceived motion using a 

method of adjustment (Figure 3-1b). On each trial a continuous error signal 

was generated (the angular separation between the reported direction of 

motion and real direction of motion). A reverse-correlation paradigm was 

then used to relate observers’ distributions of errors to the underlying stimulus 

statistics. Observer errors were analyzed as a function of (1) the absolute 

direction of motion, (2) the orientation structure of the natural scene exposed 

to the observer on each trial (specifically the mean orientation and the 

orientation variance of the natural scenes viewed through each aperture on 

each trial) and (3) as a function orientation structure of aperture pairings. 

 

Methods 
Psychophysics 
 

Subjects 

The procedures complied with the tenets of the Declaration of Helsinki. Three 

psychophysically experienced observers (DK, SD, JG) each with normal or 

corrected-to-normal vision took part in all experiments. 

 

Apparatus 

Stimuli were generated on an Apple iMac computer running MATLAB 

(MathWorks) using functions from the Psychtoolbox (Brainard, 1997; Pelli, 

1997). Stimuli were displayed on a Dell, Trinitron CRT with a spatial and 

temporal resolution of 1080 X 768 pixels and 85 Hz respectively. The display 
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was viewed at a distance of 97cm such that 64 pixels subtended 1 degree of 

visual angle. The video signal from the computer’s graphics card was first 

passed through an attenuator (Pelli & Zhang, 1991) and was amplified and 

copied (using a line-splitter) to the three guns of the monitor to give a pseudo 

12-bit monochrome image. Monitor linearization was achieved by recording 

the relationship between the signal and the monitor luminance (measured 

using a Minolta LS 110 photometer), to create a linearization lookup table that 

was passed to the Psychtoobox internal colour lookup table. 

 

Stimuli 

Stimuli were natural images selected from the linear Van Hateren “.iml” image 

set (van Hateren & van der Schaaf, 1998). The mean luminance of the stimuli 

was 40 cd/m2 and the root-mean-square contrast of the image prior to 

occlusion was fixed at 0.20. No local contrast normalization procedure was 

used. The native resolution of the Van Hateren images is 1536*1024 pixels; 

images were presented at this resolution. Due to the use of apertures, only a 

subset of the full image was ever presented - a region contained within a 

radius of 256 pixels (4°) from the centre of the original image.  

 

Motion was generated using operations built in to the computer’s graphics 

card (NVIDIA GeForce accessed via OpenGL) that allowed for sub-pixel 

resolution via linear interpolation. On each trial, a full size image was passed 

to the graphics card buffer. By shifting the source coordinates of the image 

on each frame of the movie, a percept of rigid translation was generated. 
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The speed of translation was one pixel-per-frame and lasted 32 frames, 

corresponding to a speed of 1.33°/sec, a total distance of 0.5° and a duration 

of 0.3765 seconds. During each trial/movie the centre of the image was 

constrained to pass through the point of fixation on the middle frame of each 

movie. Between trials, a static, phase-scrambled version of the natural scene 

was placed within the viewing area to mask the onset and offset of the movie 

stimulus to mask the presence of after-images and to maintain a fixed display 

contrast. The observer’s response initiated the next trial.  

 

The translating natural scene was viewed through 16 apertures each with a 

radius of 0.25° and whose edges were smoothed with a raised cosine over 

0.05 arcmin. The apertures were presented at random locations (but avoiding 

overlaps) within a 4° radius from the point of central fixation (figure 1b). Thus 

during each frame 16% of the full area was visible to the subject. 

 

Procedure 

On each trial the underlying natural image was translated in a random 

direction (0°-360°). After presentation of the stimulus movie a mask image 

appeared. Subjects then indicated the perceived direction of the movie they 

had just seen by manipulating the orientation of a probe. The probe was 

constructed from four evenly spaced 2D Gaussian elements that radiated 

from the fixation point to the circumference of the global aperture (Figure 

1c). Subjects took as long as required to manipulate the probe (using the 

computer’s mouse) until it was aligned with the perceived direction of 
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motion. Subjects were asked to maintain fixation at all times upon a dot 

presented in the middle of the stimulus. 

 

Conditions 

Two images were used in the study (No. 44 & 206 of the Van Hateren set) as 

shown in Figure 3-2 (a&b) 

 
Figure 3-2 (a) image 44 (b) image 206 of the Van Hateren image set (c) Orientation energy as 

a function of the absolution orientation (see test for details). (d) The percent of pixels with a 

specified circular variance. Ten circular variance bins were used between 0 and 1, as such the 

expected number of pixels within each bin would be 10%. 
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Like most natural senses these images contained anisotropic orientation 

structure with relatively greater energy on the cardinal (horizontal and 

vertical) axes (see Figure 3-2c) (Switkes, Mayer, & Sloan, 1978). It is possible 

that these image-based anisotropies or sensitivity based anisotropies 

(Campbell, Kulikowski, & Levinson, 1966) could affect performance as a 

function of the direction of motion. To examine this question, the images were 

either translated at their original orientation, or were randomly rotated 

between 0°-360° prior to translation.  

 

Subjects DK and JG completed at least 3000 trails on each condition, whilst 

subject SCD completed at least 3000 trials for both images, but not the 

random rotation conditions. In total we ran more than 34,000 trials. 

 

Observers’ error 

On each trial, the signed angular separation between the real direction of 

motion 

€ 

θ2D  and the perceived direction 

€ 

θ per  was calculated using Equation 

3.1. Negative and positive angular separations denote errors in the perceived 

direction that are respectively, clockwise and anticlockwise of the true 

direction of motion. 

 

€ 

θerr = tan−1 sin(θ2D −θper),cos(θ2D −θper)( ) 
Equation	  3.1	  

 

In each section of the results, error histograms were compiled. To do so, errors 

between -90 and +90° were binned at one degree intervals (errors greater 
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than |90°| were excluded). To relate observers’ errors to the stimulus, 

separate histograms were compiled and the input to each histogram was 

weighted according to the presence of absence of particular stimulus 

features. The calculations used to do this are described at the beginning of 

each results section. 

 

Once compiled, the mean and variance of each histogram was calculated 

and used as estimates of observers’ bias and precision. The mean error 

€ 

θ err  

was calculated using the four quadrant arctangent of the sum of the 

weighted sine’s and cosines (Equation 3.2) where 

€ 

θ  represents the error of 

each bin and 

€ 

Wθ  the weighting given to each error bin.  

 

€ 

θ err = atan2 sin(θ )Wθ
θ

∑ , cos(θ)Wθ
θ

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 
Equation	  3.2	  

The variance 

€ 

Verr  in each error histogram was then calculated using Equation 

3.3 & Equation 3.4. 

 

€ 

R2 =

sin(θ)Wθ( )2
θ

∑ + cos(θ)Wθ( )2
θ

∑
Wθ

2

θ

∑
 

Equation	  3.3	  

 

! 

V
err
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Equation	  3.4	  

The variance term 

€ 

Verr  (between 0-1) is then converted into a more 

conventional circular standard deviation 

€ 

σ term (Mardia & Jupp, 1972). 

 

 

Equation	  3.5	  

 

Bootstrapping 

The estimates of observers’ bias and precision reported throughout the paper 

are plotted with 95% confidence intervals. The confidence intervals were 

estimated using a bootstrapping operation: We assumed that each trial was 

independent, and 1024 bootstrapped data sets were compiled by re-

sampling (with replacement) from the total number of trials. For each re-

sampled data set the error histogram were recompiled and the bias and 

precision of observers’ recalculated to generate 1024 estimates. The 

estimates were sorted from low to high and the 26th and 998th estimates 

were used as the upper and lower 95% confidence intervals. 

 

Results 
Absolute direction of motion 
 

Data Analysis 

In this section we relate observers’ performance to the absolute (2D) direction 

of motion. To do so, separate histograms of observers’ errors are generated as 

a function of the absolute direction of motion, at one-degree intervals 

! 

"
err

= #2ln(1#V
err
)
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between 0-360°. The error signal on each trial is entered into every histogram, 

but is weighted by a circular/wrapped Gaussian (σ=6°) function of the 

angular separation between the 2D direction (on each trial) and the 

histogram’s direction tuning. Once the error histograms have been compiled, 

the mean and standard deviation of each histogram are taken as estimates 

of observers’ bias and precision (column two and three, Figure 3-3). An 

analogous procedure is used to compile the number of reported and 

presented directions, and the ratio of the reported to presented directions is 

shown in column 1 of Figure 3-3. A bootstrapping procedure is used to 

generate 95% confidence intervals (as described in the methods section). 

 

Results 
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Figure 3-3 Analysis of the reported 2D direction as a function of the presented 2D direction. 

Data for each subject are presented separately in each row. In column one the ratio of 

reported to presented directions is shown as a function of the presented direction. In column 

two and three observers’ bias and variability are shown as a function of the 2D direction. The 

green regions in column one denoted the expected ratio of reported to presented directions 

(one). The green region in column two denotes a bias of zero. The insets show the pattern of 

direction estimates for the canonically oriented natural scenes (blue) and the randomly 
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rotated natural scenes (red). The results are highly anisotropic; this pattern is not due to the 

stimulus anisotropies as the pattern is similar across both the canonically and randomly oriented 

conditions. 

 

The ratio of reported to presented directions is plotted in the first column of 

Figure 3-3. The results demonstrate that all three observers’ infrequently report 

oblique directions (45°, 135°, 225° and 315°). There is also a smaller dip in the 

frequency that cardinal directions are reported. Intuitively the data appear to 

reflect two effects previously noted in the literature, one pushing responses away 

from the cardinal directions towards the oblique directions (Rauber & Treue, 

1998) and a second larger effect that pushes responses away from the oblique 

directions, towards the cardinals (Loffler & Orbach, 2001). 

 

The second column of Figure 3-3 shows bias as a function of the direction of 

motion. The pattern of bias is idiosyncratic, but stable for each observer. The 

pattern of bias is nearly identical for the canonical and randomly oriented 

conditions (blue and red lines; inset). This demonstrates that the pattern of 

bias as a function of direction is not stimulus led, but is an internal function of 

each observer. It is not clear what factors may cause the biases in 

perception, but it is worth noting that experimental procedures that seek to 

measure bias for specific absolute directions may be confounded by 

observers’ idiosyncrasies. It is for this reason that we use random directions in 

this reverse correlation experiment and collapse across the dimension of 

absolute direction when computing observers’ response statistics in the next 

two sections of this thesis. 
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The third column of Figure 3-3 depicts precision as a function of the direction 

of motion. The ‘oblique effect’ is a loss in precision around the oblique angles 

(45°, 135°, 225° or 315°) (Dakin, et al., 2005a; Gros, et al., 1998) and the’ 

oblique effect is clearly present in the current data. A weaker effect is also 

present in the data with subjects DK and SD exhibiting a small decrease in 

precision around the cardinals. This effect is consistent with subjects being 

unwilling to report cardinal directions – an effect that would normally manifest 

itself as an increase in the precision of a discrimination task that utilized a 

cardinal direction as a decision boundary (M. Jazayeri & J. A. Movshon, 

2007). 

 

 

 

Figure 3-4 Scatter plot of the centre of mass of each quadrant of observers’ 

precision against the bias measured at this angle. Results show a negative 

correlation (R = -0.9) indicating that the oblique effect is to be found in the 

perceived direction of motion, not the actual direction of motion. 

 

In the present data, the “oblique” is not always centred upon the oblique 

directions. To examine whether observers’ idiosyncratic biases influences the 
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location of the oblique effect, we first estimated the location of the oblique 

effect in each quadrant. This was achieved by taking the centre of mass of 

each quadrant of the variability statistics. This estimate was then subtracted 

from the nearest oblique direction (i.e. 45°, 135°, 225° or 315°), to estimate the 

extent that the oblique effect was offset from the true oblique directions. The 

oblique offset was then paired with the bias statistic (Figure 3-3, column 2) at 

the estimated location of the oblique effect. This process was repeated for 

each quadrant, for each condition and for each subject, to generate 40 

offset-bias pairings. Figure 3-4 shows a scatter plot of bias versus oblique offset 

and reveals a strong negative relationship (R = -0.952, p<0.0001). The near 

one-to-one relationship between the pairings demonstrates that it is the 

reported direction, not the actual direction that determines where observers’ 

responses are most variable. Thus the bias in direction estimates around 

oblique directions depends on the reported and not the physical direction. 

This mirrors earlier findings for elevated thresholds around perceived (not 

physical) oblique directions and orientations (Heeley & Buchanan-Smith, 1992; 

Meng & Qian, 2005).  

 

Scene Statistics 

In the next two results sections we examined observers’ errors as a function of 

the exposed orientation statistics of the natural scenes. The aim was twofold; 

firstly, we wanted to examine what the impact of orientation variance was on 

performance; To elaborate, the majority of studies probing motion perception 

use either locally ambiguous stimulus (e.g. translating bars), or locally 

unambiguous motion stimuli (e.g. translating dots). By examining observers’ 
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errors as a function of the orientation variance of the exposed natural scenes, 

we can examine the relative impact of naturally occurring texture and edges 

upon observers’ ability to compute 2D motion. Secondly, we wanted to 

examine the impact of the orientation of each element, relative to the 2D 

direction of motion. In a theoretical sense, only two differently oriented 

surfaces are required to compute 2D motion and it should not matter what 

the orientations on the components are. However, the literature on the 

‘aperture problem’ clearly demonstrates that observers’ are unable to 

correctly compute 2D motion under a variety of conditions and that this 

inability is linked to the orientation content of the stimuli (Kaoru Amano, et al., 

2009; Bowns, 1996; Burke & Wenderoth, 1993; Loffler & Orbach, 2001; Mingolla, 

et al., 1992; Yo & Wilson, 1992). Accordingly, we wanted to examine the 

impact of the orientation of naturally occurring contours on observers’ ability 

to compute 2D motion and to establish the capacity of the motion stream to 

overcome the ‘aperture problem’ given the heterogeneous orientation 

structure of natural scenes. Note, we are not interested in the absolute 

orientation of the natural scene elements, but the orientation of each 

element, relative to the 2D direction (as defined in the introduction). 

 

Unlike the majority of studies probing the ‘aperture problem’, the exact 

orientation content of the scene was not under direct experimental control 

and was estimated using a biologically inspired model of orientation 

processing; Specifically, the two Van Hateren images used in the present 

study were convolved in the Fourier domain with a bank of log-Gabor filters 

tuned to 12 evenly spaced orientations between the polar orientations 0° and 

165° (Figure 3-5 a&b). The peak spatial frequency of the log-Gabor’s were 

5.333 cycles per degree with a bandwidth of 0.65 octaves (ratio between the 
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centre spatial-frequency and the standard deviation of the log-Gaussian 

function) and their orientation bandwidth was 22.6° (half-width at half-

height). The scene statistics were then computed on a pixel-by-pixel basis by 

taking the sum, mean and variance of the filter responses (Appendix; 

Equation 3.10, Equation 3.11 & Equation 3.12). The resulting sum, mean, and 

variance for image 44 of the Van Hateren image set is shown in Figure 3-5 d, 

e & f, respectively.  

 

We were not interested in the absolute orientation of each element; instead 

we were interested in the orientation of each element relative to the 2D 

direction of motion. Accordingly, on each trial, the mean orientation of each 

pixel was converted into a relative orientation term (Appendix; Equation 

3.13); where relative orientation is the angular separation between the mean 

orientation of a pixel and the 2D direction, across the half circle. The relative 

orientation term was a number between ±90°, where 0° denotes angles 

parallel to motion, ±45° angles oblique to the 2D direction, and ±90° angles 

orthogonal to motion. This metric is pictorially represented in the results 

section, via a standardised 2D direction (red arrow) a black line, oriented 

relative to the red arrow and a blue arrow denoting the 1D velocity stemming 

from the oriented element. 
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Figure 3-5 (a) A linear greyscale natural image from the Van Hateren (van 

Hateren and van der Schaaf 1998) image set was convolved with a set of log-

Gabor tuned to one of 16 orientations. (b, c) example orientation energy for the  

pink and blue spatial regions in (a). The distribution of orientation energy at each 

pixel was classified in terms of (d) the sum of the energy across orientations (e) 

the mean orientation and (f) the orientation variance 
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Results 
Relative orientation and orientation variance 
 

Data Analysis 

In this section, observers’ errors were related to the underlying orientation 

statistics of the exposed natural scenes. To do so, the orientation statistics of 

the natural scenes were estimated (as described in the preceding section 

Scene Statistics). Specifically, the pixels exposed by the apertures on each 

trial, were assigned a relative-orientation and an orientation variance term. 

To relate performance to the orientation statistics, a number of error 

histograms were compiled. Each histogram was tuned to both the orientation 

variance and relative-orientation of a pixel: The relative orientation space 

was finely sampled between -90° to 89° at one degree intervals, whilst the 

orientation variance space was crudely sampled with three bins 

corresponding to low, medium and high, orientation variances. On each trial, 

each exposed pixel was binned in the error histogram corresponding to its 

conjoint relative orientation and orientation variance; importantly, the weight 

given to each error signal, corresponded to the sum of the orientation energy 

at that pixel. In this manner heterogeneous populations of errors were 

compiled that related to the expose natural image on each trial. Finally, a 

smoothing operation was applied across the relative orientation dimension 

(=6°), before the mean and variability of the error histograms were used to 

estimate of the observers’ bias and precision. 
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Results 
Absolute direction of motion 
 

Figure 3-6 plots response bias (column 1) and precision (column 2) as a 

function of the relative-orientation of each exposed pixel, where the relative 

orientation is the angular separation between the mean orientation of a pixel 

and the 2D direction. The abscissa denotes this function; the red arrow 

indicates a standardised 2D motion vector, the black line denotes the relative 

orientation of an element and the blue arrows denote the local (1D) direction 

of motion orthogonal to each contour orientation. Data is plotted separately 

for regions of high orientation variance (textures; blue line), medium 

orientation variance (green line) or low orientation variance (edges; red line). 

The pattern of data for edges (red lines) shows that observers’ errors are 

modulated by the orientation content of the stimulus; observers’ are more 

precise then average when the orientation of edges is orthogonal or parallel 

to the 2D motion vector. In contrast, when the orientation of contour 

elements is oblique to the 2D motion vector, observers’ are less precise than 

average and are more biased. This effect, which I term the relative-oblique 

effect, is modulated by orientation variance and is absent for textured 

regions (blue lines). The results indicate that observers’ suffer from the 

‘aperture problem’ in natural scenes with local orientations oblique to the 

global (2D) direction of motion generating biases of between 2-5° and 

increasing variability by 20%-25% relative to local orientations that are 

orthogonal or parallel to the 2D motion vector.  
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Figure 3-6 Bias and variability as a function of the relative orientation of pixels in 

the exposed areas for 3 observers (DK, JG and SD). Areas of high local 

orientation variance (Blue regions) are relatively flat across the dimension of 

relative orientation; in contrast, areas of low orientation variance (red data) 

exhibit a periodic dependence on the relative orientation of the pixels presented. 

The data for intermediate levels of orientation variance (green data) lie between 

these points. Typically the bias is orthogonal to the direction of motion but there 

is some idiosyncrasy in the pattern of bias data. In contrast observers’ pattern of 

precision is stable across all observers: Precision is low when pixels are oriented 

obliquely to the direction of motion but high when pixels are oriented orthogonal 

or parallel to motion. 
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Results 
Second-order orientation statistics 

 

Data Analysis 

In the preceding section we examined observers’ errors as a function of the 

first order orientation statistics of the natural scenes. In this section we will 

examine observers’ errors as a function of the conjoint relative orientation 

statistics of aperture pairings (second-order orientation statistics). To do so, the 

orientation statistics were not processed on a pixel-by-pixel basis; instead the 

orientation energy was collapsed across all pixels that pass under an 

individual aperture, during each trial, before calculating the orientation 

statistics for the aperture (to reduce computational costs). On each trial there 

were 128 unique aperture pairings and observers’ errors were compiled as a 

function of the conjoint relative orientation of each aperture pairing. Unlike 

the preceding section, observers’ errors were weighted by the orientation 

variance of each aperture, not the sum of the orientation energy. This 

procedure allowed us to use all aperture pairings, but reduced the impact of 

high orientation variance patches for which the mean orientation statistic is 

less meaningful. In total 1792 histograms were compiled (179 across each 

relative orientation dimension, again corresponding the relative orientations 

between -90 to 89° at one-degree intervals). Finally, a two dimension 

Gaussian function (σx,y=6°) was used to smooth across the two relative 

orientation dimensions, before the mean and standard deviation of each 

error population was calculated. 
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Results 

In the previous section it was demonstrated that the relative orientation of 

low-variance regions of the natural scene, strongly influences the perceived 

direction motion. In this section, we extend the analysis to examine how 

observers’ bias and precision varies as a function of the conjoint relative 

orientation of elements across space i.e. we ask what the impact of relative 

orientation A is, in the presence of relative orientation B.  

 

Observers’ pattern of bias and variability is plotted in Figure 3-8, to help the 

reader understand the space used and to relate the findings to the literature, 

Figure 3-7 schematically illustrates the full range of second-order conjoint 

orientations. The abscissa and the ordinate of Figure 3-7 denote the relative 

orientation of aperture A and B respectively; where the orientation of an 

edge (black line) is depicted relative to a standardised 2D motion (red 

arrow). The conjoint relative orientation of each aperture pairing is denoted 

by the two-dimensional coordinate in this space. A line of symmetry runs 

thought the coordinate system from the lower left to the upper right (Figure 

3-7c; purple dashed line) and we note that the results were computed 

separately for each side of the line of symmetry. At all points along the line of 

symmetry the local direction of motion, within each aperture pair is identical, 

along the pink dashed line the local direction of motion within each apertures 

is the mirror opposite on the abscissa and ordinate. Figure 3-7(d) denotes 

regions of Type I (green) and Type II (grey) configurations of local motions 
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and Figure 3-7(e) denotes regions in which motion in the abscissa is faster 

than motions in the ordinate (blue), and vice-versa (green). 

 

 

Figure 3-7 Representation of the second-order statistics used in Figure 3-8. (a) 

An example stimulus moving vertically upwards. The large red arrow depicts the 

global direction of motion, whilst the blue-arrows depict the local (1D) motions 

orthogonal to each contour orientation (b) Schematic representation of the 

complete set of pair-wise relations. Along the green dashed-line aperture pairings 

have identical orientations and along the purple dashed line, the apertures have 

mirror-reversed orientations. In (c) the areas of green denote Type I pairings 

(local (1D) motions fall on either side of the global (2D) direction of motion) 

whilst grey regions denotes Type II pairings (local (1D) motions fall the same side 

of the global (2D) direction of motion). (d) Blue denotes regions in which the local 

motions are faster in aperture one than aperture two, whilst the converse is true 

for green regions. 
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Figure 3-8 Observers’ pattern of (a) bias and (b) precision as a function of the 

second-order relationships among aperture pairings for 3 observers (DK, JG and 

SD). (a) Light (positive) regions denote anti-clockwise bias and dark regions 

denote clockwise bias. (b) Warm regions denote high variability, whilst cool 

regions denote low variability. (c, d, e) One-dimensional slices from left to right 

though (a) and (b) as denoted by the insets. (c) Observers’ bias for apertures 
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with identical relative orientations (green) and for mirror-symmetric relative-

orientations (blue). (d) Non-symmetric Type I pairings, note how the bias tends 

to be in the direction of the fastest component of motion. (e) Same as (c) but for 

the variability statistics, there is no improvement for symmetric or identical 

aperture pairings. (f-h) bias and variability (i-k) statistics plotted individually for 

each subject. 

 

Data in Figure 3-8 depicts the (a) bias and (b) precision statistics as a function 

of the conjoint relative orientation of aperture pairings. To highlight the trends 

in our data and allow the reader to examine the 95% confidence intervals, 

Figure 3-8(c,d&e) plot one-dimensional slices (denoted by the inset). In Figure 

3-8(c) the blue line depicts the bias of observers’ when the local (1D) motions 

exposed by aperture pairings are symmetrically opposite the global (2D) 

motion vector and the green line depicts the bias of observers’ when the 

local (1D) motions are identical. In line with previous findings, the bias for 

symmetric pairing is low (Bowns, 1996; Yo & Wilson, 1992) whilst for Type II 

pairings the bias has a greater magnitude and is towards the direction of 

local motion (Bowns, 1996; Burke & Wenderoth, 1993; Mingolla, et al., 1992; 

Rubin & Hochstein, 1993; Yo & Wilson, 1992). The magnitude of the bias for 

Type II pairing is reduced when the angular separation between the two 

components is increased, again consistent with research on plaids (Bowns, 

1996; Burke & Wenderoth, 1993). It remains unclear whether this is due to the 

motion stream being better able to individuate motion signals when they are 

further apart in velocity space (as shown in motion transparency) (Braddick, 

Wishart, & Curran, 2002; Greenwood & Edwards, 2006a) or whether it simply 
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reflects the fact that as separation between the orientations in the stimulus 

increases then one or orientations move closer towards the (informative) 

static or orthogonal components of motion. 

 

Examining the variability statistics (Figure 3-8b) there appears to be little 

impact of opposite pairings as performance is invariably noisy when the 

orientation of the stimulus is oblique to motion, regardless of their relative 

signs. 

 

Discussion 
Psychophysics 

The aim of the psychophysics section was to investigate whether the results of 

studies investigating the perception of 2D motion using constrained stimulus 

classes (e.g. plaids or bars) generalise to the perception of motion when the 

stimulus is composed of naturally occurring textures; In the context of the 

‘aperture problem’, natural scenes are different from plaid or bar stimuli 

because their orientation bandwidth is broad and the luminance and 

contrast vary independently across the stimuli (Mante, Frazor, Bonin, Geisler, & 

Carandini, 2005). Specifically, most studies on the ‘aperture problem’ have 

exposed observers to moving scenes containing just two discreetly defined 

orientations, as this is the minimum number needed to uniquely specify a 2D 

motion. In contrast, naturally occurring textures contain a broader distribution 

of orientations and the aim of the psychophysics was to investigate the 

impact of naturally occurring contours and textures upon 2D motion 

perception. The reverse-correlation paradigm demonstrates that when low-
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orientation variance elements (i.e. contours) are exposed to the observer, 

performance varies as a function of the orientation of the exposed elements 

relative to the 2D motion vector; specifically observers’ estimates of direction 

are relatively imprecise and biased towards the direction of 1D motion when 

elements are orientated obliquely to the 2D direction. In contrast, observers’ 

are relatively unbiased and precise when low variance elements are oriented 

parallel or orthogonal to motion. In other words, observers’ are unable to 

discount the orientation structure of the natural scene when making 

directional judgements. This pattern of responses is consistent with 

psychophysical paradigms examining the perceived direction of translating 

bars; when a translating bar is oriented oblique to the 2D motion vector, 

observers’ are biased towards the direction orthogonal to the bars orientation 

(Loffler & Orbach, 2001), particularly at short time periods (Lorenceau, et al., 

1993).  

 

The majority of studies that examine observers’ ability to solve the ‘aperture 

problem’ use stimuli composed of two orientations, as this is the minimum 

number needed to uniquely specify a 2D motion vector. To parallel this 

research, the reverse correlation paradigm is extended to examine observers’ 

error distributions as a function of the second-order relationships between the 

conjoint orientations/directions that are exposed by pairs of apertures. In 

Figure 3-8 I estimate observers’ bias and variability over the full range of Type 

1 & II combinations of orientations/directions. Consistent with previous studies I 

reveal that when the distribution of local (1D) motions is biased to one side of 
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the global (2D) direction (Type II) that observers’ are biased towards the 

direction of local motion (Kaoru Amano, et al., 2009; Mingolla, et al., 1992; 

Wilson, et al., 1992; Yo & Wilson, 1992) and that the bias is reduced when 

there is a greater angular separation between the two orientations (Bowns, 

1996; Burke & Wenderoth, 1993). The results also demonstrate that when the 

local motions are non-symmetrically either side of the global (2D) motion, 

observers’ are biased in the direction of the fastest local motion, a finding not 

previously demonstrated.  
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Appendix 

Scene statistics 

In the results section the orientation statistics of the natural scenes were 

estimated by convolution of the natural scenes with a bank of log-Gabor 

filters tuned to directions between 0-165° at 15° intervals. The log-Gabor filters 

were constructed in the Fourier domain (Field, 1987) and the natural scenes 

were transformed into the Fourier domain using Matlabs’s fft2 function. The 

product of the log-Gabor and the natural scene was calculated in the 

frequency domain and the results transformed back to the spatial domain 

using Matlab’s ifft2 function. This procedure is equivalent is to performing 

convolution of the filter and the natural scene in the spatial domain. 

 

Each log-Gabor  was constructed in the Fourier domain and was defined 

by Equation 3.6. 

 
 

Equation	  3.6	  

Where 

€ 

R fxy( )  specifies the spatial frequency profile of the sensor and 

€ 

O θxy( )  

the orientation tuning of the sensor, where 

€ 

fxy  denotes the spatial frequency 

of each point in the Fourier domain and 

€ 

θxy  the orientation of each point in 

the Fourier domain. 

 

! 

G

! 

G = R fxy( )O "xy( )
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 is defined in Equation 3.9 where  is the filters central frequency 

and  is the ratio between the filters central frequency the standard 

deviation of the log-Gaussian, set to 0.65. 

€ 

p fx,y( ) =
−
ln( fx,y / f peak )

2

2 ln σ / fx,y( )2
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ e  

Equation	  3.7	  

€ 

O θxy( )  is defined in Equation 3.8 and is an angular Gaussian function, where 

 (defined in Equation 3.9) is the angular separation between the orientation 

tuning of the sensor 

€ 

θpeak  and the orientation of each pixel in the Fourier 

domain. 

€ 

O θxy( ) =
−

φ 2

2σ θ
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ e  

Equation	  3.8	  

€ 

φ = atan2 sin(θxy −θpeak ),cos(θxy −θpeak )( )  

Equation	  3.9	  

Once the energy at each orientation had been calculated the sum of the 

orientation energy, the mean absolute orientation  and the orientation 

variance was calculated. This was done on a pixel-by-pixel basis for Results 

section II and on an aperture-by-aperture basis on Results section III. The 

mean orientation  is calculated by Equation 3.10, where  is the orientation 

of each filter and  the filter output. 

 

 

€ 

θ =
1
2
tan−1 sin(2θ)Εθ , cos(2θ)Εθ ,

θ

∑
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∑
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Equation	  3.10	  

The orientation variance was calculated from Equation 3.11 & Equation 3.12. 
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€ 

R2 =

sin(2θ)Εθ( )2 + cos(2θ)Εθ( )
θ

∑
θ

∑
2

Εθ
2

θ

∑
 

 
Equation	  3.11	  

€ 

V =1− R 
Equation	  3.12	  

On each trial, the mean orientation of a pixel or aperture was converted to a 

relative orientation term by calculating the angular separation between the 

2D direction and the mean orientation of a pixel  

 

€ 

θrelative = tan−1 sin(θ2D −ϑ )
cos(θ2D −ϑ )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

Equation	  3.13	  
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(4) Global Motion Model 

In this section I show how the pattern of observers’ bias and variability may 

result from an interaction between the trial-by-trial spatiotemporal 

anisotropies in the stimuli (Adelson & Bergen, 1985) and a template-model of 

global motion (e.g. Nowlan & Sejnowski, 1995; Perrone, 2004; Simoncelli & 

Heeger, 1998) that is ‘optimally’ tuned for isotropic stimuli.  

 

Although the orientation structure of natural scenes can be described 

statistically, the motion stream does not know what the orientation structure 

of a particular stimulus will be at any moment. I propose that a reasonable 

global motion strategy is for velocity-tuned global motion (GM) sensors to 

integrate across all signals consistent with that global motion (i.e. a cosine 

across speed and direction). That human observers adopt such a strategy is 

supported by evidence from Schrater et al. (2000) who show least masking for 

detection of a moving noise pattern when the signal energy is evenly 

distributed across all orientations. 
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Figure 4-1 (a) Example trial in which the image rigidly translates in the leftward (180°) direction 

(b) sum of motion energy across all the apertures. (c) Motion-energy within the individual 

apertures 

 

This chapter tests whether the pattern of psychophysical data results from a 

mismatch between trial-by-trial anisotropies in the orientation structure of the 

stimulus and a template model of area MT in which each GM sensor is 

optimized for an isotropic stimulus. I first estimated 1D motion using 

directionally selective (DS) motion-energy filters (Adelson & Bergen, 1985) as 

described in the introduction. The peak spatial and temporal frequencies 

tiled the full range of motion signals that the present global motion stimuli 



 152 

could elicit (within one spatial-frequency channel) and the response of the 

motion sensor bank to an example trial is shown in Figure 4-1, encouragingly 

the pattern of activity is able to capture to cosine relationship between the 

speed and direction of 1D motions although the energy is not evenly 

distributed around the cosine. Averaging the response of DS filters to natural 

scenes allowed us to generate a series of GM sensor weighting profiles that 

were optimized to the stimulus and the filters configuration at hand (see 

Methods, below). GM filters were constructed over a broad range of speeds 

and directions. Selection of the final global motion estimate was achieved via 

a winner-take-all algorithm; such a procedure is equivalent to a maximum 

likelihood estimate of direction for a given set of GM filters. 

 

The inspiration for the model was threefold; first, the observation that response 

variability was greater for orientations oblique to the global direction of 

motion was consistent with the motion stream fitting a cosine to the pattern of 

motion energy, but not with the motion stream computing an IOC (Adelson & 

Movshon, 1982) solution - for which each orientation is equally informative. 

Second, the pattern of bias was typically in the direction of 1D motion and 

maximum likelihood estimators (MLE) are demonstrably prone to such 

systematic biases (Webb, Ledgeway, & McGraw, 2007). Thirdly, our 

psychophysical data demonstrate that orientations parallel and orthogonal 

to the 2D velocity  are informative, suggesting that models that only integrate 

over one temporal frequency channel (Rust, Mante, Simoncelli, & Movshon, 

2006; Webb, et al., 2007) would be insufficient to account for the data at 

hand. 
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The global motion stage is similar in principle to Simoncelli and Heeger’s 

(Simoncelli & Heeger, 1998) MT model, in that I employ a population of 

simulated MT neurons each with separate velocity tuning. The main 

difference between our approach and that of Simoncelli & Heeger (1998) is 

that the global motion sensors in our model are derived empirically whilst 

Simoncelli and Heeger (1998) derive their weighting functions 

mathematically. The data I report here are not able to differentiate between 

the models and a comparison between the two models is made in the 

conclusion. 

 

Methods 

A two-stage global motion model putatively representing the motion areas 

V1 and MT of primate motion stream is used to model the psychophysical 

data. The aim is to explore whether a global motion (GM) optimized for an 

isotropic stimulus class, exhibits the same pattern of bias and precision as our 

observers’ when presented with stimuli that were anisotropic on a trial-by-trial 

basis. 

 

Local 1D motion sensors (V1) 

In the previous chapter I examine observers’ ability to estimate the direction 

of motion as a function of the underlying orientation structure of the 

apertured image (during each trial). Orientation is used as an estimate of the 

direction of 1D motion in each aperture – a helpful simplification since it 
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allows us to reduce the variable of stimulus velocity to one-dimension. 

However, using orientation as a measure of 1D motion does not capture all 

the properties of V1 direction selective cells and a complete model of global 

motion processing must include a biologically plausible 1D motion stage. To 

this end I implemented a motion energy model of V1 directionally selective 

(DS) neurons (Adelson & Bergen, 1985). In order to capture the full range of 

1D motions, DS sensors were tuned to 16 evenly spaced directions around the 

clock (0-337.5° in 22.5° steps) and a broad range of speeds (from static to 

200% of global speed at 10% intervals) where a DS sensor’s pseudo-speed 

tuning is defined by the ratio between its (peak) temporal and spatial 

frequency tuning.  

 

Three simplifications were incorporated into the model:  

(1) The spatial sampling was determined by the aperture positions on 

each trial. I assume zero motion energy response at all locations except at 

the centre of the aperture, allowing us to perform multiplication and not 

convolution of DS templates with the stimuli 

(2) Only one SF channel was modelled 

(3) All DS sensors had identical spatiotemporal envelopes (σ(x, y) =7 

pixels, σf=7 frames ). 

 

I chose to pre-determine the ME filter positions in order to reduce the 

contribution of aperture edges that would otherwise introduce an isotropic 

signal across the static and slow temporal frequencies. This is problematic if 
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one wishes to model the psychophysical results, because the static 

component of motion (from the parallel orientations) led observers to make 

precise and unbiased 2D direction judgements and this static/parallel signal 

would be weakened by the isotropic static signal from the aperture edges. 

The relatively fine temporal frequency selectivity of the motion energy filters 

used means that the signal aperture edges would be less problematic for 

those sensors tuned to greater pseudo-speeds/temporal frequencies. The 

problem of aperture edges, would be even greater if the properties of the 

motion-energy filters used in this study conformed to the known properties of 

V1 DS cells (e.g. Foster, et al., 1985), and this issue has been discussed in 

(Johnston, et al., 1992). By providing the model with knowledge of the 

aperture positions we are able to circumvent the problem for the static 

aperture edges, but only by providing the model with extra information. I note 

that there is ample evidence that the motion stream can ignore the influence 

of aperture edges using both binocular and monocular cues (McDermott, et 

al., 2001; Shimojo, et al., 1989), although there is no firmly established 

mechanism through which this is accomplished.  

 

Restricting the analysis to one spatial-frequency channel presents a problem 

for the model, since the recovery of stimulus speed can only be achieved via 

a broadband integration of signals across spatial frequency channels due to 

the independence of spatial and temporal-frequency tuning observed in V1 

directionally-selective cells (Foster, et al., 1985; Tolhurst & Movshon, 1975) and 

also present in the motion-energy model (Adelson & Bergen, 1985). However 
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natural scenes exhibit two properties that minimize this problem; First, natural 

scenes have a broadband and approximately 1/f amplitude spectrum; 

Second, images contain structure (edges) that contain information that is 

phase aligned across spatial frequency bands (Attneave, 1954; HB Barlow, 

1961). These properties, combined with the relatively narrow temporal 

frequency tuning of the motion-energy sensors employed (relative to the 

temporal frequency relative to the bandwidth of V1 DS cells; Foster, et al., 

1985; Perrone & Thiele, 2002; Tolhurst & Movshon, 1975), result in the speed 

tuning of our model being ‘fit for purpose’. This point is justified by the precise 

estimates of velocity the model produces which produces estimates of 

direction with a precision σ ~= 3° in response to the natural scenes used in the 

psychophysical data. This greatly outperforms our human subjects. Figure 10 

highlights the motion-energy generated by an example trial and a clear 

cosine pattern of motion-energy is apparent as a function of speed versus 

direction.  

 

Global motion sensors (MT) 

The global motion (GM) stage utilized sensors tuned to a wide range of 

speeds and directions. The weighting profiles were derived from the response 

of the 1D motion stage to drifting natural scenes. The scenes were randomly 

selected from the Van Hateren image set (van Hateren & van der Schaaf, 

1998). Specifically a number of templates were created by averaging the 1D 

motion energy distribution elicited by stimuli travelling at a range of directions. 

During each trial the natural scene translated in a random direction but at a 
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specified global speed, the motion-energy derived on each trial was then 

phase-shifted to a standard direction (0°) and summed with the other trials. In 

total 21 templates were produced from zero speed (static) to 2 pixels per 

frame at 0.1 intervals. GM sensors tuned to the full range of directions at 0.1° 

intervals were constructed by phase shifting the averaged template. The 

resulting templates are homogeneous as a function of direction. 

Considerable complexity could be added to the model by generating 

separate templates for each direction of motion. 

 

Model Details 

1D motion sensors were convolved with the stimulus in the space and time 

domain (i.e. not in the Fourier domain). Sensors were centred upon the 

middle of each aperture and the middle frame – motion DS sensors and 

movies had dimensions of 0.5°, 0.5° & 0.37 seconds in x, y, and t (32 by 32 

pixels, by 32 frames). Motion energy sensors were constructed from Equation 

1.22 and had a peak sensitivity to structure at 4 c/deg. The spatiotemporal 

envelope was kept constant across all DS sensors (x, y = 0.2 arc min, t = 0.1 

seconds - 7 by 7pixels by 7 frames). This was beneficial because the 

directional bandwidth was kept constant at around 45° (half-wave at half 

height, as measured from the response to spatial frequency matched sine-

wave gratings) and the maximal sensor response was identical across all 

speeds and directions. 
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Global motion integrators were tuned to speeds from 0% to 200% of the 

actual object speed (1pixel per frame=1.33°/s) at 1% intervals and to 

directions around the clock at 0.1° intervals. Such a fine spacing was needed 

since it sets the limit on the precision of the winner-takes-all algorithm used to 

select the ‘winning’ GM sensor. 

 

No noise, normalization or gain was incorporated into the model because I 

wished to explore the ‘noise’ generated by convolving the GM sensors with 

anisotropic motion energy profiles without the complexity introduced by such 

mechanisms. 

 

Results 

The model was tested with both artificial-stimuli and with replicas of the stimuli 

used in the psychophysical trials. Testing across both stimulus classes allowed 

us to assess which features of the model output are due to the underlying 

mechanisms of the model, and which were the results of stimulus anisotropies.  

  

Artifical Stimuli 

The global-motion sensors perform optimally when presented with isotropic 

stimuli. Accordingly I was interested in how the model performed when 

presented with anisotropic motion energy profiles. To generate artificial stimuli 

and relate the analysis to the psychophysical data of Section III I took the 

motion energy profile for a rigidly moving object Figure 4-2 whose component 

motions are represented by the white dashed line. Imbalances in motion 

energy were added in a pair-wise manner along the cosine to allow us to 
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relate the models behaviour to the results of Section III. In Figure 11(b) two 

Gaussian energy profiles have been constructed lying along the cosine (at -

70° and +40° away from the veridical direction) that defines the global 

motion. 

 

 
Figure 4-2 The global motion model was tested with antistrophic motion energy distributions. 

The input to the global motion stage was generated by taking the motion energy for an 

isotropic stimulus in (a) and superimposing additional signals along the orientation structure of 

the object (denoted by the white-dashed arrow). Signal additions were in a pair wise manner 

to allow us to produce model estimates (d & e) that can be compared to the data in Section 

III (d) model direction estimates (e) model speed estimates. 

 

Figure 4-2(d, e) depicts the direction and speed estimates of the model. Each 

datum corresponds to only one trial, but in a noiseless model this provides a 

measure of the underlying biases of the system. The results reveal that the 

model’s estimates of direction and speed vary systematically with the motion 
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energy imbalances. Encouragingly, the bias results are in good agreement 

with the psychophysical data with the directional estimates being drawn 

towards the motion energy imbalance for Type II combinations and towards 

the fastest component of motion for Type I combinations. Speed estimates 

become biased towards slower speeds as the component motions move 

away from the orthogonal orientation. Two factors lead to this bias in the 

speed estimates: The first is simply that as the motion energy moves away 

from the orthogonal orientations it shifts to progressively lower temporal 

frequencies and the ‘winning’ template is shifted towards lower speeds. The 

second reason is less immediately obvious and results from the 1D velocities of 

a faster moving object being spread over a greater range of temporal-

frequencies/speeds than a slower moving object. Given that the total 

motion-energy is constant as a function of speed in our derived templates 

(Figure 4-3e) the motion-energy (or feed-forward weighting) must be more 

concentrated for templates tuned to slower speeds. To elaborate, two global 

motions travelling in the same direction, but with different speeds (Figure 4-3 

a, b) overlap substantially in the low-to-static temporal frequencies, but are 

distinct at high temporal frequencies (orthogonal to motion) – thus if the 

orientations orthogonal to motion are not well represented there is little to 

disambiguate competing speed estimates, in this case the stronger 

weightings of the slower global motion templates (Figure 4-3c) bias global-

motion estimates towards slower speeds. 
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Figure 4-3 Motion energy for a SF band-pass dot moving at (a) 2 pixels per frame or (b) 1 pixel 

per frame. The difference between (a) and (b) is plotted in (c). (d) The absolute motion energy 

difference of (c) collapsed across the speed dimension. (e) Demonstrates that the sum of the 

motion energy over both speed and directions is largely constant regardless of the underlying 

object speed. However as (a) is spread over a greater range of speeds, the concentration of 

motion-energy across each direction must be greater in (b). In (d) the greatest difference 

between the two signals is to be found in the direction of global motion but that (b) has 

greater motion energy in the overlapping low-speeds – this aspect leads to a global motion 

stage being biased towards low-speeds for stimuli with a weak orthogonal component of 

motion. (f, g & h) give insight into the pattern of motion energy shown in the row above. In (f) I 

plot a series of global motions (green dots) whose component motions (blue lines) pass though 

the velocity tuning of a DS sensor denoted by the red dot. In (g&e) I plot the response of the DS 

sensor in (f) to a grating stimulus (g) or dot stimulus (h). Note how the profile of (g) closely 

follows the red line of (f) but the motion energy in (h) falls with increasing speed. This is because 

the component motions which pass through the receptive field of the DS sensor (red dot, f) are 

more finely spread. 

 
 

Natural Scenes 

The global-motion model was next tested with the stimuli used during the 

psychophysical experiments. This allowed me to repeat the second-order 

analysis of Section III, replacing the observers’ directional response errors with 

those of the model. The patterns of bias and variability generated by the 

model are shown in Figure 4-4 and are in good qualitative agreement with 
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the observers’ data. Results also highlight unexpected anisotropies present in 

the observers’ response - but not in the models predictions to the artificial 

motion energy profiles.  

 

 
Figure 4-4 (a) Modal bias (b) and model variability as a function of the second-order relative-

orientations of aperture pairings (c, d) Scatter plots of the model against the observers’ bias (c) 

and variability (d). 

 

To provide a more robust statistical analysis, the model and observer bias and 

variability were recalculated using larger bins (10°) but no further smoothing 

operation. This generated 441 independent measures of bias and variability 
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and a Pearson’s correlation between the model and the observer bias 

revealed strong and significant correlations (R = 0.72 p < 0.00001 and R = 0.72, 

p < 0.00001 respectively).  

 

Despite success in predicting the observer bias and variability, a correlation of 

the model errors on a trial-by-trial basis was very weak (R = 0.025), but 

significant at p < 0.005 (N=34,000). Thus while I am able to model the statistical 

properties of observers’ bias and precision, I am unable to model observers’ 

trial-by-trial variability. 

 

 

Discussion 

In this chapter, I show that a simple template model of global-motion 

processing (putatively reflecting visual processes that occur in area MT of the 

primate brain) optimally tuned for isotropic stimuli exhibits a psychophysically 

realistic pattern of errors (biases and precision) when confronted with 

anisotropic natural stimuli. One of the key motivations behind the model is the 

observation that the pattern of psychophysical data is consistent with global-

motion being computed by fitting a cosine to the 1D motion energy 

distribution. Under such a model, the parallel and orthogonal components of 

motion are highly informative. To elaborate: the fastest component of motion 

is the signal closest to (if not identical to) the global velocity. Thus the more 

strongly this component of motion is represented at the 1D (motion energy) 

level, the more the model will be drawn to the veridical direction. 
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Interestingly, because the speed of 1D motion can never exceed that of the 

global motion and the receptive field profiles of lower speed tuned MT cells 

have relatively higher weightings in the low-temporal frequency component 

of the signal. Consequently, the model exhibits a bias for slower speeds 

(Figure 4-2e) similar to the model of Weiss et al., (Weiss & Adelson, 1998; Weiss, 

et al., 2002), but without the need for an explicit prior. 

 

At the other end of the temporal spectrum, the static (parallel) component of 

motion is only consistent with two global motions that are 180° apart, thus for 

a cosine-fitting model this signal is very informative. Existing evidence that the 

motion stream is able to utilize the static component of motion comes from 

studies of randomly refreshed Glass patterns, which exhibit a consistent static 

signal, but a noisy and isotropic motion signal. When presented with such 

stimuli, the observers’ percept is bimodal, switching between the two 

directions of motion predicted by the static component of motion (Ross, 

Badcock, & Hayes, 2000); furthermore, the inclusion of just a small percentage 

of coherently moving dots (~10%) can stabilize the motion percept (Ross, 

2004). These empirical observations are consistent with the key role of static 

temporal frequencies in the present global-motion model. 

 

The pattern of bias in the model and psychophysical data in response to 

natural scenes is smaller in magnitude than that observed in response of 

artificial scenes containing just two orientations (K. Amano, et al., 2009; 

Mingolla, et al., 1992; Rubin & Hochstein, 1993; Yo & Wilson, 1992). To test  
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whether the model also produced large errors in response to stimuli with a 

more constrained orientation structure I developed a means of moving from 

a simple stimuli composed of just two orientations to a stimuli with an isotropic 

orientation structure. The approach was an adaptation of the approach 

illustrated in Figure 4-2. Instead of using a stimulus with a 50-50 balance 

between the isotropic and plaid stimuli, the percent of each signal was 

varied from 0 to 100%. The results are shown in Figure 4-5. When the percent of 

the signal is 100% anisotropic the system is biased by over 20° towards the 1D 

direction similar to that found in the psychophysical literature (Kaoru Amano, 

et al., 2009; Mingolla, et al., 1992; Rubin & Hochstein, 1993). However when 

the percentage of the isotropic signal is increased, the error steadily falls to 

zero at 100% isotopic. Thus, the model performs well on stimuli with broader 

orientation content, but poorly on stimuli with highly constrained and limited 

orientation content. 
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Figure 4-5 The model is tested on a range of stimuli composed of two orientations in a Type II 

configuration (100% Type II, 0% isooriented) to a signal composed of an isotrophic signal (0% 

Type II, 100% isooriented. Increasing the percentage of the isotrophic signal improves the 

model precision. 

It should be noted that the only source of noise in the model is the direction 

and speed bandwidth of the 1D motion sensors - if the 1D motion were 

represented as discrete points then a fitting procedure would always 

produce a veridical answer, provided two or more orientations are present. 

This suggests that models operating on discrete representation of the stimulus 

are designed to an inappropriate level of abstraction for modelling the 

human visual system.  

 

Although the model provides a good estimate of observer bias and variability 

as a function of the second-order orientation statistics, the model is unable to 

capture observers’ trial-by-trial variability. This likely reflects a number of 

factors. The first is simply that the relative-orientation of aperture patches may 

not be the main cause of observers’ trial-by-trial variability. Note, that the 

least variability was observed in the cardinal directions with a directional 

standard deviation of around ~8-10°. Given that the observed biases as a 

function of relative-orientation (Section II&III) are smaller (around 3-6°), it may 

be that observers’ stochastic response variability simply swamps the 

predictable variance caused by motion-energy imbalances. A second 

contributory factor could be that the model operates in a homogeneous 

manner as a function of direction, whereas the psychophysical data exhibits 

a number of anisotropies such as the oblique effect (Dakin, et al., 2005b; 
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Gros, et al., 1998), cardinal attraction (Loffler & Orbach, 2001) or reference 

repulsion (Rauber & Treue, 1998) that are not implemented in the model. 

 

A third reason why the model fails to capture trial-by-trial variation may be 

the lack of any gain control mechanisms in the model, which may serve to 

alter the relative energy responses across the natural scenes. This is 

particularly pertinent because both the psychophysical data and the model 

demonstrate how imbalances in the energy across the orientation structure of 

the scene can lead to systematic errors in performance. Previous studies have 

shown that the use of natural stimuli can alter observers’ response 

characteristics as a function of the underlying spatiotemporal frequency 

leading to the suggestion that heterogeneous factors are ‘whitened’ in 

response to natural scenes (Bex, et al., 2005). More specifically, the role of 

contrast saturation and gain control has been shown to be important in 

shaping the response properties of MT ‘pattern’ selective cells. For example, 

Rust et al. (Rust, et al., 2006), measured the response of MT pattern-selective 

neurons to plaid stimuli whose components spanned the full range of second 

order orientation relations (for one speed) that were consistent with the cell’s 

velocity tuning. When the component gratings were both oriented in a 

manner consistent with the global velocity and fell either side of the global 

direction, MT cells responded strongly. When the component gratings moved 

in the same direction, the overall energy in the stimulus was identical but the 

response of MT pattern cells response was less strong. Rust el al. (Rust, et al., 

2006) were able to model this property via a contrast saturation function 
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working within each directional channel or cell. This is important because the 

present study demonstrates that the impact of imbalances in motion energy 

is both to bias the percept of motion and to increase response variability – a 

contrast saturation function in combination with an un-tuned normalization 

function (Heeger, 1992a; Rust, et al., 2006) may serve to reduce this bias. 
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Experimental Chapter No. 3 

Testing the global motion model 
 

The previous chapter revealed that a model which fits cosine templates to 

the local motion energy (Adelson & Bergen, 1985) distribution could predict 

observers’ patterns of bias and variability as a function of the second-order 

combination of orientations in natural scenes. However I was unable to model 

observers’ performance on a trial-by-trial basis and a number of possible 

explanations were put forth. Given that the correlation between the 

observers’ and the model’s first and second moments were both strong 

(R~0.7-0.8) and significant (p<0.0001) we can conclude that the results were 

not spurious. I present two competing theories that could account for the 

inability to predict observers’ error on a trial-by-trial basis; firstly that a number 

of theoretically predictable factors (e.g. contrast gain (Rust, et al., 2006) or 

anisotropies in V1 or MT response profiles (Dakin, et al., 2005b; Gros, et al., 

1998)) were not incorporated into the model; or secondly that the lead cause 

of observers’ variability was stochastic (i.e. not driven by the stimulus) and was 

thus unpredictable.  

 

To explore this issue I ran a new experiment using the same task described in 

the natural scenes previous chapter but using (a) a more constrained stimulus 

class to allow greater control over the stimulus and (b) a “double-pass” 

technique to estimate the proportion of stochastic and deterministic 

variability in the data. The stimulus used was a global-Gabor array similar to 
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that used in a number of previous studies (e.g. Kaoru Amano, et al., 2009; 

Lorenceau & Zago, 1999). Unlike the natural scenes study, in this paradigm 

the exact configuration of the stimulus under direct experimental control 

allowing me to control for factors such as contrast and luminance (by 

keeping them constant across each element) and orientation (by directly 

specifying the orientation of each element). The basic configuration was of 

four Gabor elements that were randomly distributed within a 4° radius from 

fixation. The orientations of the Gabor’s were either random or evenly 

distributed from 0° to 180° and the speed of each element was configured 

such that the motion from each Gabor was consistent with an underlying rigid 

global 2D translation. The rational behind using random and even orientation 

distributions is that observers’ can be biased by the orientation content of the 

stimulus under Type II conditions (Kaoru Amano, et al., 2009; Bowns, 1996; 

Burke & Wenderoth, 1993; Loffler & Orbach, 2001; Mingolla, et al., 1992; Rubin 

& Hochstein, 1993; Wilson & Kim, 1994; Yo & Wilson, 1992). As the sign and 

magnitude bias will vary with the orientation configuration of the global-

Gabor array, randomizing the orientation structure on a trial-by-trial basis is 

predicted to increase in the total variability of observers’ error distributions 

and importantly the proportion of variability that is determined by properties 

of the stimulus, rather than stochastic factors such as neural noise. 

 

The aim of this experiment is to determine the proportion of stimulus-led (i.e. 

orientation led) errors that a model of 2D motion can account for. In other 

words, I predict that randomizing the orientation structure will increase the 
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amount of stimulus-led variability in observers’ errors and the test of the model 

is to what extent the model is able to capture such stimulus-led variability. In 

order to estimate the proportion of the variability that is stochastic 

(unpredictable) or stimulus-led (predictable), a double-pass technique was 

employed; in this approach multiple presentations of the same stimulus are 

interleaved within each run. The proportion of predictable and unpredictable 

variability can then be estimated by calculating the correlation (R) between 

the observers’ errors on stimulus retrial; R2 is an estimate of the percentage of 

the variability that is predicted by the stimulus retrials. The same approach 

can be taken to estimate the proportion of the observers’ variability that can 

be predicted by the model. Finally, the R2 of the observer on stimulus retrials 

and the R2 of the model and observer can be compared to measure what 

degree of the observers’ predictable variability the model can account for. 

 

The initial testing used four Gabor elements, however two subjects were 

unable to perform under these conditions so the number of elements was 

increased to sixteen. To keep the number of orientations used to a minimum 

only four orientations were used in the sixteen-element condition (i.e. each 

orientation was repeated four times). In total two observers (DK and SD) 

completed testing using four elements and three completed testing using 

sixteen elements (DK, JG & PB). The reason for the failure of two observers to 

perform in the sixteen-element condition is the subject of a later equivalent 

noise experiment.  
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Methods 

Subjects/Apparatus 

Four subjects completed the testing. The apparatus was identical to the 

system used in the earlier Natural Scenes chapter. 

 

Stimuli (experiment 1) 

Stimuli consisted four or sixteen Gabors randomly positioned within a circular 

region (4° radius, centred on fixation). In the four-elements condition the 

orientations were either randomly chosen or evenly spaced at 45° internals. In 

the even condition a random orientation-offset was added such that the 

absolute orientations of the elements were unpredictable on each trial (but 

the 45° separation was preserved). The speed of each Gabor was then 

specified to be consistent with a randomly chosen global 2D motion. The 

speed of the global 2D velocity was always 1.333 degree per second but the 

direction of motion was randomised each trial. In the sixteen-element 

condition, the same procedure was used except that each of the four 

Gabors was copied four times. The mean luminance of the stimuli was 40 

cd/m2 and the root-mean-square contrast of the each Gabor element was 

fixed at 0.20. 

 

Procedure (experiment 1) 

Observers’ were presented with a set of drifting Gabors, which appeared for 

0.3765 ms, before being replaced with a spatial-frequency matched noise 

mask. When the mask was present, observers were asked to manipulate the 
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orientation of a row of four Gaussian dots on a radius until it matched the 

perceived ”overall” direction of motion of the preceding stimulus (a 

procedure identical to that in the natural scenes chapter). Runs consisted of 

interleaved trials of the even orientation and random orientation conditions 

and stimulus retrials. Each trial from each condition was repeated twice 

during each run. The correlation between the observers’ data on the first and 

second pass was used to estimate the proportion of variance that was 

predictable and stimulus driven and the proportion of variance that was 

stochastic and unpredictable.  

 

Data Analysis 

Observers’ bias and precision were calculated for each condition in an 

identical manner to the experiments on natural scenes. To estimate the 

proportion of variance that was either stochastic or stimulus-led a Pearson’s 

correlation coefficient between errors on the first and second pass was 

computed and the R-score was used to infer the proportion of predictable 

and unpredictable variability using Equation 4.1 & Equation 4.2. A 

bootstrapping procedure was used to estimate 95% confidence intervals. 

 

€ 

σpredictable = R2σtotal  

 
Equation	  4.1	  

€ 

σunpredictable = (1− R2)σtotal  
Equation	  4.2	  ! 

" predictable = R
2" total
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Results 

Psychophysics 

 
Figure 4-6 Observers’ precision for the even and uneven orientation conditions. In all cases the 

precision is least for the uneven orientation condition. The data is broken into predictable 

(grey) and unpredictable (blue) proportions (see methods). The majority of the increase in 

variability in the uneven condition is potentially predictable and stimulus led. Error bars are 95% 

confidence intervals. 

Observers’ performance in the even and uneven conditions is shown in the 

stack plots in Figure 4-6. The full height of each stack is the total variability of 

observer responses whilst the red and blue sections denote estimated 

proportion of the variability that is either stochastic/unpredictable (blue) or 

stimulus-led/predictable (red). To estimate the proportion of the variability 

that was stimulus-led, a double pass technique was employed, whereby 

each trial was shown twice and the error on the first and second pass was 

correlated. The correlation for subject DK on the random orientation and 16-

element condition is shown in Figure 4-7. The resulting R-score was 0.62, the R2 

term is known as the coefficient of determination and describes the 

percentage of the total variance that is predicted by variable A on variable 
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B. The proportion of variability that was either stimulus-led or unpredictable 

was then estimated from the R2 score using Equation 4.1 & Equation 4.2 and 

The blue and grey regions of Figure 4-6 correspond to the values from 

Equation 4.1 & Equation 4.2. 

 
Figure 4-7 Correlation for the error on the first and second pass for subject DK in the 16 element 

condition. The black arrow depicts the total variability of the errors on the second pass. The 

blue arrow depicts the estimated proportion of variability that is left unexplained by the error 

on the first pass. Finally, the red arrow depicts the estimated variability that is explained by the 

error on the first pass (black minus the blue arrow) 
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The results of the analysis show that for all subjects the total variability is 

greatest in the random orientation condition and this increase in variability 

can be attributed to a corresponding increase in the percentage of stimulus-

led variability. This is encouraging because it suggests the model should 

(theoretically) be able to capture the additional variability caused by 

randomising the orientation structure of the stimulus.  

 

The next section extends the psychophysics of this section to an Equivalent 

Noise paradigm by adding direction noise. The aim of the EN section is 

examine what proportion of observers’ variability is due to internal noise or 

poor sampling efficiency and to examine how the estimates of both 

properties affect observers’ self-consistency. If poor sampling efficiency is the 

main contributory factor to observers’ stochastic noise then it might be 

possible to increase observers’ self-consistency by improving the binding 

between elements (e.g. by simulating an occluder, such that the signal 

appears to be passing under apertures). 

 

Equivalent noise 

Subjects JG and PB could only perform at a very poor level (σ=~55°) in the 

four elements condition suggesting that they were unable to ‘bind’ the 

spatially disparate 1D motions together (an interpretation supported by 

subjects’ comments). This idiosyncratic behaviour (two subjects were able to 

perform, two were not) is not entirely surprising considering the inherent 

ambiguity of the stimulus; i.e. there is no information in the stimulus that 
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conclusively determines whether elements should be bound or not. In this 

regard the stimulus is theoretically similar to previous work (Lorenceau & 

Shiffrar, 1992; McDermott, et al., 2001) that explores the inherent ambiguity in 

stimuli composed of locally ambiguous motions whose overall configuration is 

consistent with a two-dimensional motion. Like mine, this study used four 1D 

elements that could be perceived either as independent motions or as a 

coherent global motion. Studies using such stimuli reveal that the percept of 

motion is bi-stable and may be altered by non-motion cues (McDermott, et 

al., 2001). Moreover a comparable study by Amano et al. (2009) went to 

great lengths to ensure that the individual Gabor elements were integrated 

as a whole, by lowering the contrast of the stimuli  (Lorenceau & Shiffrar, 1992) 

and presenting the Gabors in the parafovea (Takeuchi, 1998). It has also 

been noted that stimuli containing a large number of orientations stabilises 

the percept’ (Kaoru Amano, et al., 2009). Clearly the ability to bind spatially 

locally 1D motion cues is a limiting factor when using global-Gabor stimuli and 

the aim of this section is to examine observers’ sampling efficiency and to 

determine whether poor sampling efficiency may account for the failure of 

observers’ JG and PB to perform in the 4-element condition. We also examine 

whether the estimates of observers’ sampling efficiency is correlated with 

observers’ self-consistency. This is of interest, because sub-optimal sampling 

efficiency could be due to a random or predictable under-sampling of the 

stimulus (e.g. just using the Gabor elements near fixation). 
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The notion that sampling efficiency (the number of motion samples used to 

calculate direction) may vary between subjects is plausible given the above 

discussion, but the interpretation is not consistent with the literature on the 

integration of elements in random-dot-displays (Dakin, et al., 2005b). In this 

work, the sampling efficiency of observers was found to be roughly equal to 

the square root of the total number of samples present in the stimulus. 

However the use of random dot stimuli is different from locally ambiguous line 

stimuli; in isolation the latter are ambiguous within ±90° and accordingly there 

may be a greater requirement to integrate information across space. 

Furthermore recent research has supported the idea that 1D and 2D signals 

are processed in a different manner by the motion-processing stream (Kaoru 

Amano, et al., 2009; Bowns & Alais, 2006).  

 

The hypothesis that observers PB and JG integrate over fewer elements than 

observers DK and SD cannot be directly tested on an individual measure of a 

system’s variability because both internal noise and sampling-efficiency 

cannot be uniquely specified from a single threshold data point. An 

equivalent noise (EN) technique can be used to get around this problem, the 

technique works by adding controlled levels of external noise (designed to 

mimic the effect of additive internal noise) into a system. By doing so the 

variability of a system can be measured at various noise levels to generate an 

equivalent noise function; as the influence of internal noise is additive but the 

influence of sampling efficiency is multiplicative both parameters are needed 

to uniquely specify an equivalent noise function.  
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To illustrate this point Figure 4-8 plots three EN functions defined by the 

standard EN equation on loglog axis. The influence of internal 

€ 

σ intexternal  

noise 

€ 

σ extand sampling-efficiency 

€ 

n  on the variance of a system can be 

described by Equation 4.3 for simple averaging operations. 

 

 

€ 

σobs
2 =

σint
2 +σext

2

n
 

Equation	  4.3	  

	  

Figure 4-8 Equivalent noise functions as defined by Equation 4.3. The blue is a baseline function 

from which we can compare the influence of increase internal noise (green line) and of 

decreasing sampling efficiency (red line). The impact of the sampling efficiency term is 

multiplicative and shifts the function up or down. The influence of changing internal noise is 

additive and shifts the function at low external noise levels, with performance converging at 

higher noise levels.  
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(red line); increasing the internal noise of a system increases the system’s 

variability at low-external noise levels but not at high. The impact of 

decreasing the sampling efficiency is to shift the function upwards, i.e. 

uniformly elevating thresholds. 
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Methods 

Subjects/Apparatus /Procedure/Stimuli 

Subjects, apparatus and stimuli were identical to the previous experiment (the 

number of elements was four for SD, DK performed in the both the four and 

sixteen element conditions and JG and PB used sixteen elements) except that 

four external noise levels were applied to the stimulus. The noise source was 

Gaussian-distributed directional variability and the pseudo-random noise 

distributions added to each stimulus had standard deviations of 0, 16, 32 and 

64°. The noise was independently added to each element regardless of the 

number of elements. 

 

Ideal observer 

The standard equivalent noise equation used in many psychophysical studies 

is inappropriate for the present experiment because the model does not 

incorporate stimulus-constraints associated with the ‘aperture problem’. 

Accordingly, I define an ideal-observer by adapting the geometric Solution 

described in the introduction. The geometric solution defined previously was 

ideal for noise defined evenly in the two dimensions of Velocity space. This 

section adapts the technique to be optimal for noise defined in just the 

direction dimension. 
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Figure 4-9 Schematic of an ideal observer that solves the ‘aperture problem’ for noise defined 

in direction only. The solution is derived from the geometric solution presented in the 

Introduction and in presented in both (a) Velocity space and (b) in the Speed-Direction space. 

The solution first attempts to estimate where on a potential 2D motion a 1D motion (black dot) 

may have arisen. As the noise is defined only in the direction dimension the problem reduces to 

finding the 1D directions on the cosine at the same speed as the 1D motion. In Velocity space 

this involves searching on a circle, whilst in the Velocity-Speed space this simplifies to searching 

along a line. In either case the cosine will be bisected in two places and the shortest distance is 

taken as the estimated 1D motion. 

 

For noise defined purely in the direction-dimension, the ideal-observer should 

know the speed, but not the direction of the 1D velocities. For each data 

point (with a given speed) I can ask which orientations (from a potential fit) 

are likely to have given rise to these 1D motion. This is depicted in Figure 4-9 in 

Velcoity space (a) and the Direction-Speed (b) space. In the Direction-Speed 

space the potential directions consistent with a 1D motion at a particular 

speed, correspond to the points of intersection between a line along the 

direction dimension (at the speed of each 1D motion) and a cosine defining 

the global motion in question. The line will bisect the cosine twice; the shotest 

angular seperation is taken as the estimated 1D fit. This is formally defined 

below; 
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As we know the speed of each local element 

€ 

(φlocal )  we can calculate the 

potential relative-orientation 

€ 

(θ relative )  for a given global speed 

€ 

(φglobal )  as 

below; 

 

 
Equation	  4.4	  

By adding in the direction of global direction 

€ 

(θglobal )  motion the relative-

orientations can be converted into local directional signals. 

 
	  

Equation	  4.5
	  

The angular seperation between the 1D motion esimtate and each 1D 

motion is taken 

 

Equation	  4.6
	  

 

and the mimimum distance found 

 

Equation	  4.7
	  

 

Finally the root-mean-square error of the the minimum seperation is 

calcuated 

€ 

θ relative = ±a cos(φlocal /φglobal )

€ 

θ localEst = θ global ±ϑ relative

€ 

θsep = θlocalEst −θlocal

€ 

θmin sep = argmin(θ sep )
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Equation	  4.8
	  

 

To fit the psychophysical data, equivalent noise functions were generated 

from simulations of the experiments across sampling-efficiencies from 2 to 16 

at 0.1 intervals and for internal noise standard deviations of 0° to 50° in one-

degree intervals.  For each point on the EN functions 10,000 sample trails were 

used and the variance of the system calculated for the resulting population 

of errors. 

 

The fitting procedure for each EN fit minimised the root-mean-square 

difference between the psychophysical and ideal observers’ variance across 

the entire EN function. 

 

Results 

Equivalent Noise 

The estimated internal noise and sampling efficiency of the each subject is 

shown in Figure 4-10. Equivalent noise functions were fit to both the even and 

random orientation conditions simultaneously to reduce the variance on the 

estimates equivelent noise fits, but individual fits revealed no significant 

differences. The results from the four-aperture condition are shown as circles 

and results from the sixteen-aperture condition are shown as squares. The 

estimates of internal noise are relatively consisent across subjects and 

conditions and there is a greater degree of variability in the sampling 

€ 

rms =
θmin sep
2

n
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estimates for our observers. Sampling efficiencies for DK and SD in the four-

aperture condition are high at around ~80%. The sampling efficiency drops 

(but not significanlty) for subject DK in the sixteen aperture conditon. 

Sampling efficiencies for subjects PB and JG are lower (significantly so for JG). 

This suggests that the failure of PB and JG to achieve good performance on 

the four aperture condition was due to poor sampling efficiencies leading to 

a catastrophic failure of integration; in the limit, integration of one signal  and 

simply estimating the two-dimensional direction orthogonal to a Gabor’s 

orientation would perform with a precision of σ ~54.4° (standard deviation) 

without external noise. This value is considerably more than the internal noise 

estimates of any of our subjects (Figure 4-10) indicating that the noise was not 

just a function of a subject’s internal stocastic noise (e.g. neural noise) but 

was exacerbated by an inability to overcome the ambiguities associated 

with the ‘aperture problem’. 

 

In Figure 4-10 (bottm right) I plot the estimated sampling efficiency for all 

subjects againt the R-Scores on the first and second pass. As the estimates of 

sampling efficiency where made across all conditions, the errors from all the 

conditions where appened before calcuating the double-pass R-Scores. The 

results show that the R-score increase with increasing sampling efficiency. This 

indicates that imperfect sampling efficiency was a key source of stocastic 

variability in observers data. This is of interest because it indicates that the 

imperfect sampling efficiency was not due to observers’ preferentially 
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intergrating across some elements (e.g. near fixation) but was due to a 

random process. 

 

 
Figure 4-10 In the top row I plot the observers’ EN functions (blue) and the ideal observer fits 

(red). The estimates of sampling efficiency and internal noise are shown in the bottom left and 

the sampling efficiency is plotted against the R-Scores in the bottom right. All error bars are 95% 

confidence intervals. The internal noise estimates are relatively stable across subjects at around 

30°. Data for DK and SCD on the four elements condition show high sampling efficiencies 

(~80%). The sampling efficiency for DK is reduced in the sixteen-element condition (~66%). The 

sampling efficiency of subjects PB and JAG is less than for DK (significantly so for JAG). This 

suggests that the inability of PB and JAG to perform on the four-element condition was due to 

a lack of binding between elements. The estimated sampling efficiencies are correlated with 

the observers R-scores (collapsed across all conditions). This suggests that imperfect sampling 

efficiency is a key source of stochastic variability in observers’ data. 
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Results 

Testing the 2D model 

The template-matching model presented in the proceeding chapter was 

able to capture observers’ first and second moments of their error distributions 

but was unable to predict observers’ errors on a trial-by-trial basis. This may 

have reflected a number of factors (e.g. contrast gain; Rust, et al., 2006) not 

incorporated into the model or alternatively it may be that the majority of 

observers’ response variability was stochastic, and thus unpredictable. The 

data in the natural scenes chapter is not sufficient to separate these two 

hypotheses. The present experiment uses a more constrained stimulus class to 

test the model in which the experimenter has direct control of all aspects of 

the stimulus. To estimate the proportion of variability that is stochastic and 

that which is stimulus-led a double pass technique was employed and the 

correlation between observers’ performance when retested with the same 

stimuli was used to estimates the degree of predictable and unpredictable 

variability. The R-scores are shown in the first row of Figure 4-11 as function of 

the external directional noise added to the stimulus. The results show that R-

scores are always higher for the random orientation condition at low external 

noise levels but that this effect drops off at high external noise levels. The R-

scores for the model-observer correlations are shown in the second row of 

Figure 4-11. The R-scores in the random orientation condition appear very 

similar for both the double-pass correlations and the model-observer 

correlations, suggesting that the model can capture the majority of 

observers’ predictable variability in this condition (the ratio between the R-
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scores is plotted in Figure 4-12. However, the model is unable to capture as 

much variability in the even orientation condition particularly at low external 

noise levels; this is unsurprising because the (noiseless) model makes no errors 

in the even orientation condition. 

 

 
Figure 4-11 R-scores for the observer on stimulus retrials (first row) and for the model and 

observer correlations (second row). The data for the even condition is presented with blue 95% 

error bars whilst the data for the uneven condition is presented with green error bars. The data 

show that for both the model and observer correlations, R-scores are higher for the uneven 

condition at low-external noise levels but that the effect drops away at high external noise 

levels. The effect is much more pronounced in the model-observer correlations primarily due to 

the fact that the model is unable to captures any of the data in the even condition at low-

external noise levels (as the model produces no errors). In contrast, R-scores for the retrials and 

model-observer correlations appear very similar across the entire EN-function. 

To examine the data further, Figure 4-12 plots the ratio of the R2 score of the 

observers’ error correlations on stimulus retrials over the R2 of the model-

observer correlations. In Figure 4-12(a) the ratio of R2 is plotted for the even 

orientation condition and in (b) for the random orientation condition, error 
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bars are excluded for clarity. To provide statistical verification of the pattern 

of results a straight line (y=mx+c) was fit to the data and estimates of both the 

constant (c) and gradient (m) are plotted in Figure 4-12(c). The plotted fits are 

to the original data and the 95% confidence intervals are estimated by 

bootstrapping (n=1024) the data with replacement from the full distribution of 

errors. The scatter plot depicts the gradient fit on the x-axis and the constant 

fit on the y-axis; fits in the even orientation condition are blue squares and the 

random orientation conditions are green circles. Figure 4-12(a) demonstrates 

that the model is not able to capture any of the stimulus-led variability at low-

external noise levels but is able to capture a proportion of the variability at 

high-external noise levels. The corresponding fits of a straight line show a 

gradient significantly greater than zero for all subjects thus statistically 

verifying this finding. The constant is not significantly greater than zero, 

verifying that the model is unable to capture any data when no external 

directional noise is added to the stimulus. In contrast to the even orientation 

condition, the model is able to captures data at all external noise levels in the 

random orientation condition (Figure 4-12b) and the fit of a straight line 

(Figure 4-12c) demonstrates the proportion of variance captured is 

significantly greater than zero for all subjects and has a mean of around 0.8. 

The proportion of variance captured does not vary significantly as a function 

of the external noise as the gradient is never significantly greater than zero, 

 

As the proportion of deterministic variability is not constant across conditions 

(Figure 4-12d&e), the R2 score is arguably an unfair assessment of the model’s 
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behaviour; at the extreme if there is no deterministic noise in observers’ 

variability then the R-score of the model will also be zero, this logic can also 

be applied to the R2 ratios. To overcome this criticism, Figure 4-12 d&e plot the 

absolute stimulus-led variability the model is unable to account for. There 

appears to be no overall effect of adding external noise in either the even 

orientation (c) or random (d) orientation condition and the fit of a straight line 

(e) reveals the gradient is never significantly different from zero. The constant 

fit effectively states the degree of variability the model is unable to account 

for and is between zero to six degree of variability. This is encouraging 

because it demonstrates that the proportion of predictable variability not 

accounted for the model is constant across conditions. This demonstrates that 

the model is able to captures all the additional variability caused by 

randomising the orientation structure and adding external directional noise.   
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Figure 4-12 The ratio between the trial-retrial R-scores and the observer-model R-scores in the 

(a) even condition and (b) uneven condition. The total predictable variance unaccounted for 

by the model in (d) even condition and (e) the uneven condition. Although the ratio between 

the R-scores varies with the condition the total predictable variance unaccounted for by the 

model appears relatively constant, this suggests that the model is able to capture all addition 

variability due to adding external noise or randomizing the orientation structure of the stimulus.  
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Discussion 

The aim of this chapter was to further assess the model presented in the 

proceeding chapters; a model that was able to capture observers’ first and 

second moments of their error distributions but not the trial-by-trial variability. It 

was proposed that this may either reflect factors not incorporated into the 

model (such as contrast gain or sensor anisotropies) or that the majority of the 

variability in the data was stochastic. The paradigm in this chapter does not 

definitively answer this question, but it does provide a constrained test of the 

model in which all stimulus parameters are under direct experimental control 

and is able to estimate the degree of predictable and unpredictable 

variability in the error distributions via a double-pass technique. The approach 

of estimating the degree of predictable variance in the data has been used 

in neurophysiology (e.g. David & Gallant, 2005; Hsu, et al., 2004; van Hateren, 

et al., 2002) as a means of testing well-developed models of retinal and LGN 

processing. Such tests are considered a strong test of a model when applied 

to natural scenes; if a model can account for all the data in the rich 

environment of a natural scene (that the system has evolved to process), 

then the full functionality of data has been captured. The present paradigm 

was not applied to natural scenes but it does demonstrate the model’s 

predictive power in estimating the additional variability due to external noise 

being added to the stimulus (arguably not errors, but estimates) and due to 

the randomisation of the orientation structure. The next stage then must be to 

test the model in response to natural scenes. In this respect, it should be 

noted that the degree of correlation between the observers’ error on stimulus 
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retrials was poor in the even orientation condition (only ~25% of the variance 

was captured by observers retrial data) and higher (~50%) in the random 

orientation condition. Due to the high orientation bandwidth of natural 

scenes, it is likely that the degree of stimulus-led variability will be closer to the 

even orientation condition than the random orientation condition and 

suggests that the inability to predict observer errors on a trial-by-trial basis was 

due to the low percentage of stimulus-led variability. Accordingly, if one 

wants to extend the work to natural scenes it would be necessary to increase 

the proportion of stimulus-led variability, perhaps by decreasing the number 

of apertures or the area of each aperture. However this raises an additional 

issue since it is likely that the high proportion of stochastic variability is primarily 

a function of incomplete sampling efficiency rather than internal stochastic 

factors such as neural noise. To elaborate, I have been able to demonstrate 

that altering the orientation structure of the stimulus is able to increase 

observers’ errors even when there is sufficient information to solve the 

‘aperture problem’. Comparable errors are also likely to arise if the sampling 

efficiency is incomplete because orientation imbalances will occur even 

when the orientation of the Gabor element is evenly distributed. Such errors 

will be unpredictable if the sub-optimal sampling of a system is itself 

unpredictable but not if the sub-optimal sampling efficiency were 

predictable. This is a question that merits further investigation. For instance if 

observers’ gave a greater weighting to those elements that occurred near 

fixation, this would increase the stimulus led variability of the system, not the 

stochastic variability. This question may be approached by applying a reverse 
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correlation paradigm that related the underlying stimulus, not to observers’ 

errors, but to observers’ trial-retrial correlations.  

 

It should be noted that an attempt was made to explore the role of sampling 

efficiency and internal noise for global-Gabor arrays composed of either i) 

elements whole local 1D velocities did conform to a 2D vector or ii) those in 

which the speed and direction of Gabor elements was scrambled, however 

the equivalent noise estimates in the scrambled condition were so poor (due 

to a shallow EN function) that is was impossible to draw any conclusions. 
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(5) Conclusion 
Summary 

The thesis contained three experimental chapters and one computational 

chapter. The approach taken in the first two experimental chapters was to 

incorporate more naturalistic statistics into psychophysical paradigms that 

explore two-dimensional motion processing. Both chapters are motivated by 

the broad hypothesis that the visual system can only be fully understood in 

terms of the natural environment that it has evolved to process (Simoncelli & 

Olshausen, 2001). To this end the first chapter probes the role of ‘natural’ 

contour statistics in motion processing. Two aspects of natural contour 

statistics are identified that may influence the integration of local motion 

signals across space. The first is the spatially broadband and phase-aligned 

nature of natural contours (Attneave, 1954; HB Barlow, 1961) and the second 

is the second-order structure of contours across space (Geisler, et al., 2001). 

My results reveal that breaking the natural contour statistics does increase 

observers’ thresholds in a two-alternative forced choice (2-AFC) direction 

discrimination task, but only when low spatial frequencies are present. 

Application of the motion energy model (Adelson & Bergen, 1985) across 

spatial-frequencies demonstrates that the low-frequency component of the 

signal is made more variable when the orientation statistics across space are 

scrambled. This demonstrates that the motion stream is unable to ignore the 

low-spatial frequency component of the signal, consistent with previous 

research (Bex & Dakin, 2002) and may reflect the fact that spatial frequency 

broadband integration is needed to recover speed information from sensors 



 198 

that are sensitive to spatiotemporal frequency, not speed per se (Perrone & 

Thiele, 2001, 2002; Priebe, et al., 2006). Conversely, the work also 

demonstrates that disrupting the second-order relationship between each 

element of the high-pass stimuli did not influence observers’ ability to judge 

the 2D motion of the contoured stimulus. This finding contradicts a finding by 

Lorenceau and Alais (2001) who demonstrate that the spatial arrangement of 

features can influence observers’ ability to estimate 2D direction. The task in 

the two studies is broadly equivalent (both 2-AFC direction discrimination 

tasks) but the stimuli used in the two studies are different across a number of 

behaviourally relevant dimensions including the number (Dakin, et al., 2005a) 

and density of elements and the ambiguity of the 1D velocities (Kaoru 

Amano, et al., 2009). To elaborate I will first recap the stimuli configuration in 

the Lorenceau and Alais (2001) paper: The stimulus employed was a rotating 

stimulus composed of four moving bars (an example stimulus is shown in 

Figure 2-1) that were viewed through apertures such that only the 1D 

velocities were exposed to the observer. Theoretically the stimulus may be 

correctly perceived as moving either as a coherent structure rotating through 

space or as individual 1D velocities. The second-order spatial configuration of 

the elements was manipulated by changing the bar-orientations; the results 

showed that for ‘closed’ shapes such as a diamond observers’ were better 

able to determine the coherent 2D motion than for ‘open’ stimuli such as a 

chevron. This data can be interpreted in two ways; one interpretation argues 

that that some spatial arrangements improve the degree of integration 

between local elements, which in turn improves threshold in a discrimination 
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task. However the research in this thesis suggests a different interpretation; 

when Lorenceau and Alais (2001) manipulated the second order structure, 

they also altered the local distribution of motions In other words, changing 

shape alters the orientation of each element relative to the 2D motion vector 

and in turn alters the 1D velocity distribution. The research in this thesis has 

demonstrated that the orientation of elements relative to the underlying 

global motion plays an important role in determining 2D motion percepts; as 

such, the only way to isolate the influence of shape on motion is to 

manipulate the two factors independently.  

 

Despite the above critique there is good reason to expect that shape/form is 

likely to play a role in the stimulus class employed by Lorenceau and Alais 

(2001) as the percept of such stimuli are notably bi-stable (McDermott, et al., 

2001). Under these conditions, the inherent ambiguity of the local motion is 

much greater. This raises the broader question of how locally 1D and 2D signal 

are processed in the motion stream; recent research in both the 

psychophysical (Kaoru Amano, et al., 2009; Bowns & Alais, 2006; Lorenceau, 

et al., 1993) and neurophysiological (Majaj, et al., 2007) literature has 

suggested the motion stream may dynamically alter the nature of 2D motion 

estimation with respect to the ambiguity of local motion signal. 

Psychophysically, it has been demonstrated that locally 1D motion signals 

may be integrated in a manner that allows for the correct estimation of the 

speed and direction of motion under a number of conditions (K. Amano, et 

al., 2009; Lorenceau, et al., 1993), whilst the perceived speed of a series of 
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locally 2D elements is consistent with an averaging rule (Kaoru Amano, et al., 

2009). This research supports the notion that the manner in which a local 

signal is processed depends on the relative ambiguity of the signal. In this 

respect, I present two lines of evidence that support the notion that 1D and 

2D signals are subject to different patterns of integration; firstly the study 

probing the role of number, density and area for the contoured stimulus class 

can be contrasted against a study by (Dakin, et al., 2005a) who probed the 

role of number, density and area using band-pass filtered dots. The local 

ambiguity greatly differs in the two stimulus classes. While direction 

discrimination thresholds for individual contoured elements was at best σ  

~25°, but the ability to discriminate the 2D direction of an individual dot 

passing through noise is better than σ=3° (Watamaniuk & McKee, 1998). In my 

data, increasing density was shown to improve performance in the 2-AFC 

task. In contrast, the work of Dakin et al demonstrate that increasing the 

density of elements led to a small increase in both sampling efficiently and 

internal noise (attributed to correspondence noise) estimates with equivalent 

noise analysis when the task was to integrate band-pass dot stimuli. 

Increasing sampling efficiency improves performance while increasing 

internal noise impairs performance, so the overall impact on thresholds of 

these competing effects was minimal. Contrasting the two experiments 

suggests that density plays a stronger role in the integration of locally 1D 

stimulus than locally 2D stimuli.   
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A second line of evidence in favour of differential processing of 1D and 2D 

motion signals comes from the data on sampling efficiency. In Dakin et al. ‘s 

(2005a) study, the sampling efficiency of band-pass random dot stimuli was 

approximately the square root of the total number of elements. In contrast, in 

the present data, the sampling efficiency was idiosyncratic but nearly always 

higher than the square root of the total number of elements, approaching 

100% in the four-element condition and greater than four-elements in the 

sixteen-element condition (for two out of three subjects). This suggests that 

either that the square root law does not hold at low elements densities or that 

the sampling efficiency can be greater when the local elements are 

composed of 1D signals rather than 2D signals. To examine this question an 

additional experiment is needed in which the stimulus is smoothly varied 

between 1D and 2D, as this would allow for all experimental factors to be 

controlled and a definitive conclusion to be made.  

 

Edges oriented oblique to the 2D motion vector produced both biased and 

highly variable responses from observers. In contrast, elements oriented 

orthogonal or parallel to motion led to unbiased and relatively precise 

responses with low response variability. This finding is consistent with a study 

employing translating lines (Loffler & Orbach, 2001); when the orientation of 

the translating line was oblique to the direction of motion, the majority of 

motion estimates were biased towards the direction orthogonal to the 

contour, but a minority were biased or in the opposite direction. The final 

population of errors was bi-modal with the two peaks of responses either side 
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of the veridical 2D direction. The present analysis was extended to examine 

the influence of pairings of orientations in natural scenes. This approach 

allowed the results to be compared to studies that only use two orientations 

to study the ‘aperture problem’ (e.g. Yo & Wilson, 1992). Broadly speaking, 

the results are consistent with the literature using constrained stimuli with just 

two orientations (Kaoru Amano, et al., 2009; Bowns, 1996; Mingolla, et al., 

1992; Rubin & Hochstein, 1993; Wilson & Kim, 1994; Yo & Wilson, 1992); in both 

paradigms observers are biased towards the direction of local motion for 

Type II combinations of orientations. The present work extends the literature 

on the ‘aperture problem’ to detail observers’ bias and variability over the full 

range of Type I and Type II orientation combinations; this analysis also reveals 

that observers are biased towards the direction of the fastest component 

motion for Type I combinations. A more general finding of the present 

research is that although the pattern of observer bias was consistent with that 

reported in the literature using much more constrained stimulus classes, the 

magnitude of the bias observed in response to the natural scenes was smaller 

than that in response to Type II stimuli composed of just two oriented elements 

(Kaoru Amano, et al., 2009; Bowns, 1996; Mingolla, et al., 1992; Rubin & 

Hochstein, 1993; Wilson & Kim, 1994; Yo & Wilson, 1992). This suggests that the 

motion stream was relatively well optimized to process natural scenes and it is 

likely that the relatively broad orientation bandwidth of natural scenes aids 

subjects in making motion judgments. This pattern of responses is consistent 

with models of 2D motion processing that sum across all possible 1D velocities 

that are consistent with a global 2D velocity (Perrone, 2004; Schrater, et al., 
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2000; Simoncelli & Heeger, 1998; Watson & Ahumada, 1983) because such 

models assume isotropy in the orientation structure of a motion signal. In order 

to successfully relate observers’ errors to the natural scenes, some 

assumptions are needed about how to estimate image features. The 

approach taken was to use biologically inspired models of local orientation 

(Daugman, 1980) and direction (Adelson & Bergen, 1985) processing. 

Encouragingly, application of the motion energy model revealed that the 

cosine pattern of 1D velocities as a function of speed and direction 

(predicted by Equation 1.1) was well captured by a bank of filters tuned 

across a range of different directions and speeds. This motivated a model of 

2D motion processing based on the generation of templates for each 2D 

motion from the interaction between natural scenes and the responses of a 

standard motion-energy model. Application of the templates revealed that 

the model was able to captures the first (bias) and second (variability) 

moments of observers’ error distributions in the natural scenes paradigm. 

Somewhat surprisingly, the model was unable to capture a high percentage 

of observers’ variability on a trial-by-trial basis so an additional experiment 

was designed to directly test the model under more constrained conditions. 

The paradigm used a global-Gabor array in which the orientation of each 

element was under direct experimental control. Two conditions were tested 

under a number of external (directional) noise conditions; one in which the 

local orientation structure was evenly spaced and another in which the 

orientation distribution was randomly distributed. The results showed that 

performance was worse in the random orientation condition, consistent with 
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observers’ being biased by imbalances in the local orientation structure of 

the scene. The paradigm included a double-pass technique designed to 

estimate the degree of stimulus-led and stochastic variability in the observers’ 

response. The analysis showed that the increase in observers’ response 

variability in the random orientation condition was stimulus-led and thus 

predictable. Accordingly, a plausible model of 2D motion processing should 

be able to predict the additional errors produced in the random orientation 

condition. Correlations between the observers’ errors and the model of 2D 

motion processing were broadly consistent with the double-pass correlations 

in the random orientation condition, but were notably poorer in the even 

orientation condition. The level of variability the double-pass correlations 

allowed me to estimate how much stimulus-led response variability the model 

could be expected to capture and the residual unexplained variability. The 

analysis revealed that the residual variability the model could not capture 

was consistent across both conditions and all external noise levels. In other 

words, the model could capture all the additional variability induced by 

adding direction noise to the stimulus or by randomizing the orientation 

structure of the stimulus.  

 

 

 

 

Biological plausibility  

The argument that the ‘aperture problem’ is solved by a system which 

integrates across a pattern of local (1D) motion that is consistent with uni-
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directional/rigid two-dimensional motion (i.e. a template model) was 

proposed by Watson & Ahumada (1983) who demonstrated that an iso-

oriented object rigidly translating through space generates a plane in the 

spatiotemporal frequency domain (a class of model knows as the F-plane 

model; Bradley & Goyal, 2008). This notion gained empirical support from 

Simoncelli & Heeger (1998) who demonstrated that a number of response 

properties of MT ‘pattern selective’ cells are consistent with a model that 

integrates across a plane in spatiotemporal frequency space. The F-plane 

model has also received psychophysical support in that masked detection is 

best when signal energy is evenly spread across a plane in spatiotemporal 

space (Schrater, et al., 2000). Simoncelli & Heeger (1998) went to lengths to 

point out that their model of motion processing in MT does not encode the 2D 

velocity of objects in each cell, but it is a population model in which the 

pooled responses of a series of complementarily-tuned MT cells encode for 

the global (2D) velocity (i.e. the output of an individual sensor is not enough 

to determine 2D motion).  

 

It is worth noting at this stage that the receptive field profiles of the motion 

sensors in the Simoncelli & Heeger model (1998) are similar to receptive field 

profiles I derived from the interaction between the motion energy (Adelson & 

Bergen, 1985) model and natural scenes. I plot the weighting functions for 

both models in the Speed-Direction space in Figure 5-1. The Simoncelli & 

Heeger model (1998) of MT ‘pattern selective’ cells works by calculating the 

(shortest) distance between the spatiotemporal frequency tuning of each 

sensor and a plane which defines the 2D velocity tuning of an MT sensor. The 
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weighting of each local sensor is inversely proportional to that distance, 

Simoncelli & Heeger (1998) leave the exact function open to be constrained 

by neurophysiological data. To compare the receptive field properties of the 

Simoncelli & Heeger model (1998) to the model presented in this thesis, I use 

the same bank of local filters throughout. The distance of each sensor with a 

spatial frequency profile 
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Equation	  5.1	  

The distance was then converted to a weighting function by passing it though 

a Gaussian function. 
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Equation	  5.2	  

The weighting functions for both models are shown in Figure 5-1 as a function 

of both the speed and direction of local motion, the standard deviation of 

the Gaussian function was hand chosen, nonetheless it is clear that both 

models produce a similar cosine pattern of weighting in the Speed-Direction 

space. 
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Figure 5-1 2D Motion Templates (a) motion energy profile derived from the response of the 

motion energy model to a rigidly translating natural scene at 1 pixel per frame (b) the 

receptive field profile of the Simoncelli & Heeger (1998) plotted using the same underlying filter 

configuration as in (a) and used throughout the thesis. 

 

Model limitations 

The model described in this thesis has been designed to model the data to 

hand i.e. compute 2D velocity from (effectively) a full field motion stimulus. 

This is a constrained task and I now discuss the limitations of the model in the 

context of natural vision. Although I tested the model upon natural scenes, all 

motions were confined to the fronto-parallel plane and a multitude of 

problems associated with natural vision were not tested. Moreover, the model 

was provided with information about the location of the apertures when 

modelling the psychophysical data. The psychophysical data is consistent 

with observers’ being able to ignore the signal stemming from the apertures 

and the question of how this is achieved is open to question. It is possible that 

mechanisms of attention may allow observers’ to selectively monitor the 

spatial region of integration (Burr, Baldassi, Morrone, & Verghese, 2009) or a 
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mechanism to remove the static signal may be inherent to the motion stream 

(Johnston, et al., 1992) or may results from the classification of visual stimuli as 

‘external’ or ‘internal’ to the motion at hand (Shimojo, et al., 1989). In any 

case, the data presented throughout this thesis throws no light on this issue.  

 

Other major motion issues the model is not designed to and will not cope with 

include the segregation of multiple moving objects. To accurately compute 

2D velocity in the experiment use in this thesis the visual system integrates 

across space. This poses a particular difficulty in natural vision because of the 

risk of integrating across motion signals belonging to different objects, a 

problem known as superposition catastrophe (Lorenceau, Giersch, & Series, 

2005). In theory the present model may be extended to allow the extraction 

of multiply moving object though a localised summation of activity from the 

1D stage to the 2D stage and may also be expanded to allow the detection 

of transparency by allowing the read-out strategy to pick multiple winners. 

However these are large problems in their own right and are not examined in 

this thesis.  

 

 

Predictable errors 

Both the F-plane and cosine models are defined for 1D velocities which are 

defined discretely, in which case defining two or more points either by their 

speed and direction or their spatiotemporal frequency in x, y, and t would 

always allow for a veridical solution to be found. However it is unlikely that any 

system that attempts to derive local motion signals from complex natural 
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environments would be able to derive noiseless estimates; specifically the 

primate visual system uses a wavelet-style system (Adelson & Bergen, 1985; 

Daugman, 1980; Gabor, 1946) to derive estimates of local motion from the 

environment (detailed extensively in the Introduction) and such sensors are 

known to achieve a compromise between spectral sensitivity and spatial 

localization (Daugman, 1980; Gabor, 1946). This compromise means that all 

encoded signals are subject to the limits imposed by a processor with a finite 

bandwidth, i.e. a single orientation or direction will maximally stimulate a 

sensor tuned to that stimulus parameter but will also activate sensors tuned to 

nearby parameters on each stimulus dimension. Theoretically, in a noise free 

environment, the veridical stimulus parameter could be recovered if a 

stimulus were defined as a discrete point along a single dimension (e.g. the 

orientation of a straight edge). However as soon as the complexity of the 

stimulus increases, the computational requirements to solve the problem 

increase exponentially (the curse of dimensionality). In complex natural 

environments, the problem is sufficiently difficult that a more general and less 

accurate solutions is required. Furthermore, when sensory noise is 

incorporated, the effective resolution of a system drops, in turn increasing the 

ambiguity of any sensor’s response.  

 

Psychophysics has long studied this class of problem and human observers 

exhibit a number of non-optimal patterns of responses when observers are 

asked to identity stimulus features along two or more relevant stimulus 

dimensions. In terms of motion, the ability to detect and identity a stimulus 

composed of two or more motion velocities comes under the heading of 

motion transparency. In such studies, the aim is to understand what factors 

limit the observer’s ability to detect multiple velocities and the results show 
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that the probability of detecting multiple motions increases with increasing 

separation in speed (Greenwood & Edwards, 2006a), direction (Braddick, et 

al., 2002) and well as binocularity (Greenwood & Edwards, 2006b) and space 

(Greenwood & Edwards, 2009). A related finding is that the perception of 

direction can be biased by simultaneously presented motions (Marshak & 

Sekuler, 1979). This phenomena is know as motion repulsion and is reduced 

when there is less overlap between the 1D velocities of dot stimuli (Curran & 

Benton, 2003). The literature on motion repulsion and motion transparency 

demonstrates that the motion stream is unable to correctly estimate motions 

that are close on some stimulus dimensions (motion repulsion) and may fail to 

recover a single estimate of 2D motion when the underlying 1D signals are too 

close (motion transparency). Application of this logic to the aperture problem 

suggests that subjects’ misperceptions of motion are likely to result from an 

inability to correctly recover the velocity of 1D velocities, rather than a non-

optimal 2D pooling strategy. Evidence in support of this hypothesis comes 

from studies in which the angular separation between two 1D velocities (in a 

Type II configuration) was systematically altered (Bowns, 1996; Burke & 

Wenderoth, 1993). The results show that it is only when the two motions are 

close in velocity space that misperceptions occur and it can be argued that 

the local motion interfere when they are close in velocity space. 

 

Another model of global motion that is able to predict observers’ bias under 

a number of conditions is the Bayesian model of Weiss et al. (Weiss & Adelson, 

1998; Weiss, et al., 2002). The model is a modification of the Intersection of 

Constraints (IOC) solution detailed in the Introduction, where the lines of 

constraint are Gaussian blurred to represent the uncertainty originating from 

the finite bandwidths of motion-energy filters (Adelson & Bergen, 1985; 
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Daugman, 1980; Graham, 1989). This means that 2D motion is represented 

across a population of activity representing the likelihood of a given stimulus 

parameter given the sensory input. The distribution of likelihoods is multiplied 

with a Gaussian low-pass prior that draws the likelihood distribution towards 

slower speeds. This has the effect of drawing the final estimate of motion 

away from the correct solution towards the local component motions and 

towards the predictions of an averaging model. 

 

The Weiss model is feed-forward and biologically plausible in a theoretical 

sense, but lacks empirical support because area MT is commonly believed to 

compute 2D motion but is not thought to compute lines of constraint. It 

should be noted that the ‘noise’ or error of the system occurs at a late stage 

in this model. The strongest criticism of the model concerns the concept of 

optimality. Bayesian models are predicated on the notion that the 

incorporation of a prior increases the probability of correct motion-estimates 

given the low-temporal frequency bias of moving natural images (Dong & 

Atick, 1995) and the possibility of errors due to neural or other noise sources. 

The concept of ‘optimality’ is under-constrained, however. For instance, the 

behavioral “pay-off” of the sign of misestimates is not established. Moreover 

the prior of the Weiss model was not optimized for processing dynamic 

natural scenes, but rather with respect to the data to hand (i.e. it has not 

been demonstrated that the prior does produce optimal estimates given 

natural movie statistics/noise). Without a means of estimating the behavioral 

and environmental context the claim of optimality is hypothetical (Geisler & 

Ringach, 2009) and as such the use of a prior runs the risk of simply adding an 

additional parameter allowing empirical data to be better fit. 
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One area where Bayesian models have found particular application is in 

understanding the role of contrast in motion processing. For instance, it is 

known that contrast may cause human subjects to see slower speeds when 

the contrast of the element is low (Thompson, 1982). An additional finding in 

the literature on plaids and the ‘aperture problem’ concerns how observers 

may be biased by changing the contrast of one the component grating in a 

Type I stimulus (Stone, Watson, & Mulligan, 1990). Under such conditions the 

observer is biased towards reporting the direction of the higher contrast 

grating. Under these conditions, the template-matching model described in 

this thesis will maximize the product of the 2D sensor and the motion energy 

distribution and would not (qualitatively) capture this percept if it were not for 

the bias towards low-speed noted in the modeling chapter (see Figure 4-2 & 

4-3). This bias arises from the sum of the receptive field of each 2D sensor 

being approximately equal. Sensors tuned to greater speed integrate over a 

greater number of local motion sensors (i.e. a greater range of temporal 

frequencies) and thus have lower weightings for each spatiotemporal 

frequency within their receptive field. This has the property that if only one 

local motion is present (i.e. the motion of a straight edge) the output of the 

2D stage is at the lowest temporal frequency, ie in the direction orthogonal to 

the edge’s orientation, consistent with the human percept (Wallach, 1935). If 

the slow-speed bias were not present then the percept would also be 

unstable when noise was added to the model, because an infinite number of 

2D percepts are consistent an individual local motion within an aperture (as 

illustrated in Figure 1-3). The bias for slow speeds also has the effect of 

drawing the estimates direction of motion towards the component with 

greater contrast as shown in Figure 5-2. Although I criticize the slow prior in the 

Weiss model on theoretical grounds, the bias or prior is also present in the 2D 
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model presented in the thesis and can be derived from the interaction 

between the motion energy model (Adelson & Bergen, 1985) and natural 

scenes. 

 

 
Figure 5-2 The bias of the template model for a Type I plaid with the local motion +-60° from the 

2D direction; as the contrast ratio of the clockwise component compared to the anticlockwise 

component increases from 1:1 to 8:1 the direction estimate from model becomes biased 

towards the component with higher contrast 

 

The concept of optimality is powerful because it can lead to a formal and 

intuitive means of understanding a system that may be more informative then 

understanding a system in terms of an arbitrary task (the behavioral 

relevance of most psychophysical is not always fully justified). However 

defining optimality is also problematic, as assumptions need to be made 

about the requirements needed to define when a system is optimal and 

when it is not. For instance a recent branch of computational neuroscience 

defines optimality in terms of the response of low-level visual systems to 

natural scenes. The approach attempts to derive low-level filters from the 

environment by incorporating fitting constraints (assumptions) about what 

features of neural coding are desirable e.g. the independence of neural 
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coding (Simoncelli & Olshausen, 2001), or neural energy constraints (Attwell & 

Laughlin, 2001). Interestingly the results from such studies are consistent with 

the early decomposition of the visual world embodying a number of 

complimentary constraints (Simoncelli & Olshausen, 2001) and it will be 

interesting to see if the same approach can be applied to higher level 

processing further up the visual stream. Indeed recent work by Olshausen & 

Cadieu (2007) has attempted to derive two-dimensional motion filters from 

natural scenes. 

 

It can be argued that the bias (or prior) towards slower speeds in the 2D 

model presented in this thesis results from the filter parameters chosen. To 

elaborate the ‘prior’ is embedded within the feed-forward weightings 

between the local motion sensors and the global motion sensors. The 

weighting function from each local (1D) sensor to each global (2D) sensor 

was determined by the mean response of a local sensor to the rigid 

translation of a natural scene in the speed and direction of the desired global 

(2D) sensors tuning. It is possible to alter the mean response of each local (1D) 

sensor by changing the envelope parameters or incorporating a 

normalization term. Thus providing scope for the experimenter to ‘fit’ or refine 

the model to the data at hand. In defense of the model presented in this 

thesis the selection of local filter parameters was based on achieving a 

homogeneous amplitude response from each local motion sensor without the 

need for normalization (i.e. the peak response of a sensor to an optimal 

stimulus was identical for all sensors). Accordingly, the bias for slow speed 

exhibited by the model can be considered as an emergent property of the 

filter configuration. None-the-less it would be interesting to see if the 

approach taken by Olshausen & Cadieu (2007), utilizing a more rigorous 
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definition of optimality, will also reveal a set of global motion filters with a 

preference for slow speeds under some orientation configurations. 

 

 

Biological realism  

In the section Biological Plausibility I went to great length to argue that the 

cosine-fitting model presented in this thesis is theoretically vary similar to of the 

model of MT pattern selective cells proposed by Simoncelli & Heeger (1998). 

In this section I will argue that both models lack a number of features known 

about V1 DS cells. An important feature of both models is a fine sampling of 

the temporal frequency domain using filters that are tightly tuned for 

temporal frequency. Neither property is consistent with the known properties 

of V1 DS cells. Firstly, the temporal frequency tuning of such cells is described 

as either sustained (low-pass) or transient (band-pass) i.e. do not smoothly 

sample the temporal frequency domain. Secondly, the temporal frequency 

tuning of both sustained and transient cells is broad, non-symmetric and 

overlap to a large extent (Foster, et al., 1985; Hawken, Shapley, & Grosof, 

1996). In turn, psychophysical studies report two or at most three temporal 

frequency channel (Anderson & Burr, 1985; Hess & Snowden, 1992). These 

finding have led many authors to propose that speed is calculated by taking 

the ratio of the response of sustained and transient filters (Johnston, et al., 

1992; Thompson, 1982). Unlike the approach in this work, the activity of ratio 

based sensors increases monotonically with stimulus speed, rather then 

generating sensors that are tuned to specific speeds.  

 

The problem of incorporating more realistic properties into the ‘tiling’ models 

has been discussed in depth elsewhere (Perrone, 2004) and I will briefly review 
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the main points here. The main issue regards the mechanism designed to 

recover 1D speed for sensors tuned not to speed, but tuned independently to 

spatial and temporal frequency. In the Simoncelli & Heeger (1998) model the 

1D velocity sensors are inseparable for spatial and temporal frequency, 

meaning the sensors are speed tuned and thus inconsistent with the 

properties of V1 DS cells (Foster, et al., 1985; Hawken, et al., 1996). In the 

present work I use sensors that are separable for spatial and temporal 

frequency, however the temporal frequency tuning of the filter is narrow and 

the fine sampling of the temporal frequency dimension means that speed 

can be recovered from a broadband integration of the motion signals. 

Clearly the cosine pattern of activity recovered by the motion energy filters in 

Figure 1-14 & Figure 4-1 would be much harder to identify from just two 

temporal frequency channels (sustained and transient) with overlapping 

temporal frequency profiles. In turn, the capacity of the model presented 

throughout this thesis to compute 2D velocity is likely to be severely 

compromised. Accordingly, in its present state the model does not represent 

a complete model of 2D motion processing in the primate brain. To recover 

speed tuning from V1 sustained and transient filters an additional stage is 

required to refine the speed tuning of the sensors and this approach has 

been taken by Perrone (2004). In this work an additional Weighted 

Intersection Mechanisms (WIM) operates between the VA and MT stages.  

The operation of the WIM stage is described in (Perrone & Thiele, 2002): In 

short, by modeling the sustained and transient filter responses as Difference-

of-Gaussian functions, Perrone and Thiele are able to specify the shape of the 

transient function such that its product with the sustained functions is 

inseparable in the spatial and temporal frequency domain. The resulting WIM 
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sensors are speed tuned and have similar speed tuning properties to some 

cells identifies in area MT (Lagae, et al., 1993; Maunsell & Van Essen, 1983b). 

 

Given that the model presented throughout this thesis is not biologically 

realistic, it is reasonable to ask whether there are any general principles we 

can extract from the model. In the following section I will argue that it is the 

superposition of signals from 1D velocities that causes the model to produce 

errors. I speculate that the problem is not unique to the cosine-fitting model, 

but will present a problem for any other models that assume isotropy, 

including the model by Perrone (2004) that makes a stronger argument for 

biological plausibility. To make this point, I use a more constrained modeling 

approach to explore the influence of bandwidths in a cosine-fitting model of 

2D velocity processing.  

 

The first stage consists of a bank of hypothetical sensors that are sensitive to 

the velocity, normal to a contour’s orientation. The response properties of 

each sensor is described by 2D Gaussian function (Equation 5.3) where s and 

d denote the 1D speed and direction tuning of a sensor, 

€ 

σ s and 

€ 

σ d  denote 

standard deviations of a sensor in speed and direction, whilst the physical 

speed and direction, normal to a contour’s orientation is denoted by 

€ 

φ1D  and 

€ 

θ1D  (respectively). A bank of filters is created that spans directions between 0-

360° and to velocities between 0 and 2 unit distance, per unit time. The 

model stimuli will always have a speed of 1 unit distance, per unit time, but a 

random 2D direction. As such this configuration of filters is able to detect the 

full range of 1D velocities that the stimuli could elicit. 
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Equation	  5.3	  

The second stage of the model is a template matching stage. Each template 

assumes isotropy in the orientation structure of a stimulus and is generated by 

summing the response of filters to each velocity upon a cosine (at 1° 

intervals). By changing the amplitude and phase of the cosine, 2D velocity 

templates are generated for a range of speeds and directions. An individual 

template for upward motion is shown in Figure 5-3. Estimates of 2D velocity 

are obtained by multiplying the output of the sensor bank with each 2D 

velocity template. A winner-takes-all algorithm is then used to select the 

estimate of 2D velocity in keeping with the modelling approach used 

throughout this thesis.  
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Figure 5-3 Templates for 2D velocity are generated by summing the activity 

generated by summed across the signals from1D velocities that lie upon a cosine. 

Templates for different speeds and directions are computed by changing the 

phase and amplitude of the cosine. 

 

To examine the influence of bandwidth, the standard deviation of the 

Gaussian was varied from [4, 8, 16, 32 & 64°] in direction and [0.04, 0.08, 0.16, 

0.32, 0. 64 & 0.128 unit distance, per unit time], in velocity. Because the 

templates were generated from the output of the 1D sensor bank, the 

+

direction

sp
ee

d
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templates also inherited the increasing bandwidth size. Example templates 

are shown in the ordinate of Figure 5-3. 

 

Initial testing of the model used just two orientations and a fixed 2D velocity. 

One of the orientations was fixed and was orthogonal to the 2D direction. The 

other was varied from -90 to +90° (i.e. parallel - orthogonal – parallel) to the 

2D direction. The results are shown in Figure 5-4. Errors are generated for all 

bandwidths levels, and the sign of error is always towards the direction of 1D 

velocity. When both orientations are orthogonal, the model produces no 

errors. Errors are generated when the second component moves away from 

the orthogonal orientation. For the smallest bandwidth level, the maximal 

errors occurs for orientations near orthogonal, but occurs are more removed 

angles as the bandwidths size is increased. This pattern of results is consistent 

with the idea that it is the superposition of signals that causes the model to 

produce errors. Interestingly, when the bandwidth is 32° 0.32 dt-1, the point of 

maximal error occurs when the second component has a relative orientation 

of ~45°, consistent with the results in the natural scenes chapter.  
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Figure 5-4 Performance of the cosine-fitting model given different 

bandwidths on the 1D velocity estimation. The stimulus is composed of 

two orientations, one is always fixed and is orthogonal to the 2D direction 

and the second is varied as denoted by the abscissa. The pattern of errors 

is color coordinated. The blue denotes errors in the smallest bandwidth 

condition; the errors are smallest in this condition and the maximal error 

occurs for orientations close to orthogonal. As the bandwidth is increased 

the magnitude of the errors increases and move to more oblique angles.  

 

To illustrate how superposition may lead to the model to make errors Figure 

5-5 plots the signals from two orientations, one oblique to the 2D direction and 

another orthogonal to the 2D direction. In (a) and the (b) the signals are 

plotted in isolation, note how both distributions of activity are lie upon the 

blue cosine. In (c) the signals are plotted together; the superposition of the 

!
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signals generates a uni-model distribution and the peak of energy lies inside 

of the cosine. This point is highlighted in (d) and (e) where the energy has 

been collapsed across speed and direction, respectively. In both cases the 

normalized sum of the two components (blue line) lies inside of the two 

components (pink and green). The best-fitting cosine (red) lies close to the 

peak of the uni-modal distribution.  

  

 

 

 

Figure 5-5 The signal for an orientation (a) oblique and (b) orthogonal to the 2D 

direction. (c) the combined signals from (a) and (b). The signals from both 

orientations (1D velocities) lie upon the blue cosine. In (d) and (e) the energy 

has been collapsed across the (d) speed and (e) direction dimensions. Note how 

the superposition of signals leads to a uni-modal distribution, with a peak that lies 
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inside of the blue cosine. The best fitting cosine (red) is close to the peak of 

energy in (c). 

 

The aim of the final section was to identify what led the model to generate 

errors. I identify the superposition of 1D velocity signals as the cause of the 

errors. Superposition can distort the means of the component distributions by 

pulling the means inwards of the cosine. Even in the absence of external or 

internals noise this leads the model to produce errors. In a noisy system such 

errors would lead to systematic biases in the estimates of the model. The 

model used is hypothetical; the 1D velocity sensors are not designed to work 

on real stimuli, instead the model is designed to examine the theoretical 

influence of bandwidths on a cosine-fitting model of 2D velocity processing. I 

identify the superposition of signals as a cause of errors in the model. The 

problem of superposition is unlikely to just be a problem for the present model, 

for without a stage designed to disambiguate overlapping signals (such as a 

Gaussian-mixture-model) any model that inherits the 1D signal must account 

for the distortions caused by superposition. Models that assume isotropy in the 

orientation structure of the moving object such as Perrone (2004) and 

Simoncelli & Heeger (1998), are likely to produce a comparable pattern of 

errors. 
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