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TMDFFs are the same as for the more traditional processes semi-inclusive deep inelastic

scattering (SIDIS) and electron-positron annihilation. Different than in SIDIS, the observ-

able for the in-jet fragmentation does not depend on TMD parton distribution functions

which allows for a cleaner and more direct probe of TMDFFs. We present numerical results

and compare to available data from the LHC.
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1 Introduction

In recent years, studies of jets and their internal structure have played increasingly im-

portant roles in testing the fundamental properties of Quantum Chromodynamics (QCD),

and in searching for new physics beyond the Standard Model [1, 2]. This is the case in

particular in the era of the Large Hadron Collider (LHC), where collimated jets of hadrons

are abundantly produced.

In this paper we study the transverse momentum distribution of hadrons h within fully

reconstructed jets in pp collisions, pp→ (jeth)X, as illustrated in figure 1. Specifically we

study the ratio

F (zh, j⊥; η, pT , R) =
dσpp→(jeth)X

dpTdηdzhd2j⊥

/
dσpp→jetX

dpTdη
, (1.1)

where the numerator and denominator are the differential jet cross sections with and with-

out the reconstruction of the hadron h inside the jet. The variables η, pT and R are the

rapidity, the transverse momentum and the jet size parameter of the reconstructed jet mea-

sured in the center-of-mass (CM) frame in pp collisions. The large light-cone momentum
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Figure 1. The Distribution of hadrons inside a fully reconstructed jet. Here, j⊥ is the transverse

momentum of hadrons with respect to the standard jet axis, and R is the jet radius.

fraction of the jet carried by the hadron h is denoted by zh and j⊥ is the transverse mo-

mentum of the hadron with respect to the standard jet axis. Throughout this paper, bold

letters represent two-dimensional transverse momentum vectors, whereas the magnitude of

these vectors is referred to as, for example, j⊥ = |j⊥|. This observable has been measured

at the LHC in pp collisions for a wide range of jet transverse momenta pT [3]. In addition,

it has been measured in both unpolarized pp and transversely polarized p↑p collisions at

the Relativistic Heavy Ion Collider (RHIC) [4–6]. It was proposed in [7] that the latter

case can be used to probe azimuthal spin correlations in the fragmentation process, in

particular, the so-called Collins function [8].

In this work, we develop the theoretical framework to study the above observable

F (zh, j⊥; η, pT , R). We consider the case where the jet substructure measurement is per-

formed for an inclusive jet sample pp → jet + X, different than the study in [9] where

an exclusive jet sample was studied in the context of heavy quarkonium production. As

the experimental measurements [3] were performed for inclusive jet samples, our approach

facilitates a direct comparison with the experimental data. In particular, we concentrate

on the region of the hadron transverse momentum where j⊥ � pTR. Here, j⊥ is defined

with respect to the standard jet axis, rather than a recoil-free axis, specifically the winner-

take-all jet axis as discussed in [10]. While a recoil-free axis can be advantageous for

various applications for collider physics, it turns out that there is only a direct relation to

the standard transverse momentum dependent fragmentation functions (TMDFFs) when

the standard jet axis is used. The standard TMDFFs are also probed in the traditional

processes semi-inclusive deep inelastic scattering (SIDIS) and back-to-back hadron pair

production in electron-positron annihilation.

Following earlier work on the longitudinal momentum distribution of hadrons inside

jets [11–16], we can write down the factorized form of the cross section in pp collisions as

follows (for more details, see eq. (3.1) below)

dσpp→(jeth)X

dpTdηdzhd2j⊥
=
∑
a,b,c

fa(xa, µ)⊗ fb(xb, µ)

⊗Hc
ab(xa, xb, η, pT /z, µ)⊗ Ghc (z, zh, ωJR, j⊥, µ) . (1.2)
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Here, fa,b denote the parton distribution functions (PDFs) in the proton with the corre-

sponding momentum fraction xa and xb, respectively. The hard functions Hc
ab describe the

production of an energetic parton c in the hard-scattering event. In addition, the functions

Ghc (z, zh, ωJR, j⊥, µ) are the semi-inclusive TMD fragmenting jet functions (siTMDFJFs)

which we describes the production of a jet in the final state with the observed hadron

inside. We define this new function in section 2 below. We further demonstrate that the

siTMDFJFs can be refactorized in terms of hard matching functions, soft functions, and

the transverse momentum dependent fragmentation functions. It is evident that the in-jet

fragmentation of hadrons considered in this work provides a very sensitive probe especially

for the gluon TMDFF which is so far only poorly constrained by the traditional processes.

The remainder of this paper is organized as follows. In section 2, we provide operator

definitions for the siTMDFJFs Ghc , which is the essential component in describing the

hadron transverse momentum distribution inside jets. We derive a factorization formalism

for siTMDFJFs in terms of hard functions, soft functions and the TMDFFs. We calculate

all these relevant functions in the factorized expression to next-to-leading order (NLO)

and derive their renormalization group equations. We solve the resulting renormalization

group (RG) equations in order to resum all the relevant large logarithms. In section 3, we

provide a first numerical estimate for the hadron transverse momentum distribution inside

jets for LHC kinematics, and we compare with experimental results. We summarize our

paper and provide further discussions in section 4.

2 The semi-inclusive TMD fragmenting jet function

In this section, we introduce the definition of the semi-inclusive TMD fragmenting jet

functions Ghc (z, zh, ωJR, j⊥, µ), which are the relevant new ingredients in order to describe

the hadron transverse momentum distribution within jets produced in pp collisions. The

siTMDFJFs describe the fragmentation of a hadron h inside a jet that is initiated by a

parton c. We first provide their operator definitions, and we then derive the factorization

formalism in terms of hard functions, soft functions and TMDFFs. We derive the relevant

RG equations and their solutions. In addition, we work out the relation to standard

TMDFFs probed in SIDIS and electron-positron annihilation.

2.1 Definition

Following the convention for the definition of the semi-inclusive fragmenting jet function

in [16], the siTMDFJFs are defined for quark and gluon jets as follows

Ghq (z, zh, ωJR, j⊥, µ) =
z

2Nc
δ

(
zh −

ωh
ωJ

)
Tr

[
n̄/

2
〈0|δ (ω−n̄ · P) δ2 (P⊥−j⊥)χn(0)|(Jh)X〉

× 〈(Jh)X|χ̄n(0)|0〉
]
, (2.1a)

Ghg (z, zh, ωJR, j⊥, µ) =− z ω

(d−2)(N2
c −1)

δ

(
zh−

ωh
ωJ

)
〈0|δ (ω−n̄ · P) δ2 (P⊥−j⊥)

× Bn⊥µ(0)|(Jh)X〉〈(Jh)X|Bµn⊥(0)|0〉, (2.1b)

– 3 –
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where Nc is the number of the colors for quarks, and j⊥ is the transverse momentum

of the hadron h with respect to the standard jet axis. The large light-cone momentum

components of the initial parton c, the jet, and the hadron h are given by ω, ωJ , ωh,

respectively. We choose to express the results of our calculation in terms of the following

ratios of these variables

z =
ωJ
ω
, zh =

ωh
ωJ
, (2.2)

as well as ωJ which is related to the transverse momentum of the reconstructed jet. In

eq. (2.1), we have nµ = (1, n̂) and n̄µ = (1,−n̂) where the spatial component n̂ is chosen

along the standard jet axis. In addition, we have n2 = n̄2 = 0 and n · n̄ = 2. The

gauge invariant collinear quark and gluon fields within Soft Collinear Effective Theory

(SCET) [17–21] are denoted by χn and Bµn⊥ as usual, and P is the label momentum

operator. The sum over states |X〉 runs over all final state particles except for the observed

jet J with the identified hadron h inside.

In [16, 22], it was found that the characteristic momentum scale for the jet dynamics

with a jet radius R is given by

µJ ∼ ωJ tan(R/2) . (2.3)

We would like to point out that for the standard jet algorithms in pp collisions, one can

simply make the replacement ωJ tan(R/2) → pTR, where the jet size R is defined in the

(η, φ) plane, see e.g. refs. [23, 24]. Depending on the relative scaling of j⊥, µJ and ΛQCD

one finds different factorization theorems for the hadron-in-jet cross section.

First, we consider the case when j⊥ is of the same order as the characteristic jet scale

µJ , i.e., ΛQCD � j⊥ ∼ pTR. In this case, the siTMDFJF Ghc as defined in eq. (2.1) can

be factorized into standard collinear fragmentation functions Dh/i(zh, µ) convolved with

Wilson coefficients in zh [9, 25]. The Wilson coefficients are functions of z, ωJ and j⊥, and

can be calculated perturbatively.

Second, in the region where j⊥ is much smaller than the characteristic jet scale µJ ,

i.e., ΛQCD . j⊥ � pTR, the perturbative expansion is plagued with large logarithmic

corrections of the form ln (pTR/j⊥), and the standard collinear factorization breaks down.

Therefore, in the small j⊥ regime, a new factorization formalism — TMD factorization [26],

is required to recover reliable predictions within QCD perturbation theory. This is the

kinematic region that we address in this work.

2.2 Factorization theorem

We focus on the kinematic region with the relative scalings ΛQCD . j⊥ � pTR, referred

to as a TMD region. In this region, since the transverse momentum j⊥ inside the jet is

parametrically small, only collinear radiation within the jet with the momentum scaling

pc = (p−c , p
+
c , pc⊥) ∼ pT (1, λ2, λ) where λ ∼ j⊥/pT , and the soft radiation of order j⊥ are

relevant to leading power of the cross section.1 Harder emissions are only allowed outside

1We note that the soft degrees of freedom considered here are the same as the coft or c-soft modes

introduced in [27] and [28], respectively.
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the jet and, therefore, do not affect the hadron transverse momentum j⊥. Since j⊥ is

defined with respect to the jet axis, any radiation outside the jet will only influence the

determination of the jet axis but have no impact on the j⊥ spectrum. Therefore, we have

the following factorized form for Ghc derived within SCET

Ghc (z, zh, ωJR, j⊥, µ) = Hc→i(z, ωJR,µ)

∫
d2k⊥d

2λ⊥δ
2 (zhλ⊥ + k⊥ − j⊥)

×Dh/i(zh,k⊥, µ, ν)Si(λ⊥, µ, νR) , (2.4)

where besides the usual renormalization scale µ, the scale ν arises due to the so-called

rapidity divergences in the relevant functions to be discussed in detail below. Here,

Hc→i(z, ωJR,µ) are hard matching functions related to out-of-jet radiation. The soft func-

tions Si(λ⊥, µ, νR) take into account soft radiation inside the jet and Dh/i(zh,k⊥, µ, ν) are

the usual TMDFFs, which characterize the collinear degrees of freedom inside the jet.

The delta function relates the observed transverse momentum of the hadron j⊥ to be

the total transverse momentum of soft and collinear radiations. Note that λ⊥ is multiplied

by zh inside the delta function to account for the difference between the fragmenting parton

and the observed hadron with respect to the jet axis. All the ingredients in the factorization

formula will be calculated up to NLO, which determines their RG evolutions. All large

logarithms of the form lnR and ln (pTR/j⊥) are resummed by solving the obtained RG

equations and by running each component from their natural scales to the hard scale µ ∼ pT
at which the cross section is evaluated.

2.3 Hard functions

The hard matching functions Hc→i(z, ωJR,µ) encode radiation with a virtuality of or-

der O(pTR) outside of the jet. They describe how an energetic parton c from the hard-

scattering event produces a jet initiated by parton i with energy ωJ and radius R, and can

be computed through the matching relation in eq. (2.4). Up to NLO, they are obtained

by the out-of-jet radiation diagrams for inclusive jet (substructure) observables [16]. The

same hard matching functions were found in the context of central subjets measured on an

inclusive jet sample in [24]. For anti-kT jets, the renormalized expressions are given by

Hq→q′(z, ωJR,µ) = δqq′δ(1− z) + δqq′
αs
2π

[
CF δ(1− z)

(
− L2

2
− 3

2
L+

π2

12

)
+ Pqq(z)L− 2CF (1 + z2)

(
ln(1− z)

1− z

)
+

− CF (1− z)

]
, (2.5a)

Hq→g(z, ωJR,µ) =
αs
2π

[(
L− 2 ln(1− z)

)
Pgq(z)− CF z

]
, (2.5b)

Hg→g(z, ωJR,µ) = δ(1− z) +
αs
2π

[
δ(1− z)

(
− CA

L2

2
− β0

2
L+

π2

12

)
+ Pgg(z)L− 4CA(1− z + z2)2

z

(
ln(1− z)

1− z

)
+

]
, (2.5c)

Hg→q(z, ωJR,µ) =
αs
2π

[(
L− 2 ln(1− z)

)
Pqg(z)− TF 2z(1− z)

]
, (2.5d)
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where the logarithm L is defined as

L = ln

(
µ2

ω2
J tan2(R/2)

)
, (2.6)

and the standard splitting functions are also provided here for reference

Pqq(z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
, (2.7)

Pgq(z) = CF
1 + (1− z)2

z
, (2.8)

Pgg(z) = 2CA

[
z

(1− z)+
+

1− z
z

+ z(1− z)

]
+
β0

2
δ(1− z) , (2.9)

Pqg(z) = TF
[
z2 + (1− z)2

]
. (2.10)

The analogous hard matching coefficients for cone jets can be found in [24]. The RG

equations of the functions Hi→j take the following form

µ
d

dµ
Hi→j(z, ωJR,µ) =

∑
k

∫ 1

z

dz′

z′
γik

( z
z′
, ωJR,µ

)
Hk→j(z′, ωJR,µ) . (2.11)

Note that this is a set of four coupled equations with a DGLAP type structure. The

anomalous dimensions γij(z, ωJR,µ) are given by

γij(z, ωJR,µ) = δijδ(1− z)Γi(ωJR,µ) +
αs
π
Pji(z) . (2.12)

The second terms of the γij(z, ωJR,µ) are the standard DGLAP evolution kernels. Instead,

the first term contains a logarithm L and the functions Γi(ωJR,µ) are given at this order by

Γq(ωJR,µ) =
αs
π
CF

(
−L− 3

2

)
, (2.13a)

Γg(ωJR,µ) =
αs
π
CA

(
−L− β0

2CA

)
. (2.13b)

To summarize, the RG equations encountered here resum double logarithms whereas the

DGLAP equations are always associated with the resummation of single logarithms. Evi-

dently, the natural scale for the hard matching coefficients Hi→j(z, ωJR,µ) is the same as

the jet scale µJ as defined in eq. (2.3), i.e.,

µJ ∼ ωJ tan(R/2)→ pTR . (2.14)

Thus, by solving the above RG equations and by evolving the hard matching functions

from the scale µJ ∼ pTR to the hard-scattering scale µ ∼ pT where the cross section is

evaluated, we are resumming large logarithms of jet radius lnR.

– 6 –
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2.4 TMD fragmentation functions

Now we focus on the TMDFFs Dh/i(zh,k⊥, µ, ν), which are defined as

Dh/q(zh,k⊥, µ, ν) =
zh

2Nc
Tr

[
n̄/

2
〈0|δ (ω − n̄ · P) δ2 (P⊥ − k⊥)χn(0)|(Jh)X〉

× 〈(Jh)X|χ̄n(0)|0〉
]
, (2.15a)

Dh/g(zh,k⊥, µ, ν) =− zh ω

(d− 2)(N2
c − 1)

〈0|δ (ω − n̄ · P) δ2 (P⊥ − k⊥)Bn⊥µ(0)

× |(Jh)X〉〈(Jh)X|Bµn⊥(0)|0〉, (2.15b)

where ω is the light-cone energy of the initiating quark or gluon. The TMDFFs contain

rapidity divergences. We choose to employ the analytic rapidity regulator of [29] which in-

troduces a dependence on the associated rapidity scale ν. Traditionally, TMDs are studied

conveniently in Fourier transform space or b-space. Following the standard convention of

refs. [26, 30], we define the TMDFFs in b-space as

Dh/i(zh, b, µ, ν) =
1

z2
h

∫
d2k⊥e

−ik⊥·b/zhDh/i(zh,k⊥, µ, ν) . (2.16)

At the same time, through the inverse Fourier transform, we obtain the TMDFFs in mo-

mentum space as

Dh/i(zh,k⊥, µ, ν) =

∫
d2b

(2π)2
eik⊥·b/zhDh/i(zh, b, µ, ν) . (2.17)

2.4.1 Perturbative results

In perturbation theory, the bare TMDFFs suffer from infrared (IR), ultra-violet (UV), and

rapidity divergences. To understand the features of these divergences, it is instructive to

study the perturbative results for the TMDFFs in the region where k⊥ � ΛQCD. In the

following, we consider perturbative splittings i → jk at the parton level, where j refers

to the identified parton whose transverse momentum k⊥ is measured. We denote the

corresponding TMDFFs at the parton level by Dj/i(zh,k⊥, µ, ν). Up to NLO, we find the

following results

Dq/q(zh,k⊥, µ, ν) = δ(1− zh)δ2(k⊥) +
αs
2π2

CFΓ(1 + ε)eεγE
1

µ2

(
µ2

k2
⊥

)1+ε

×
[

2zh
(1− zh)1+η

(
ν

ωJ

)η
+ (1− ε)(1− zh)

]
, (2.18a)

Dg/q(zh,k⊥, µ, ν) =
αs
2π2

CFΓ(1 + ε)eεγE
1

µ2

(
µ2

k2
⊥

)1+ε [
1 + (1− zh)2

zh
− ε zh

]
, (2.18b)

Dg/g(zh,k⊥, µ, ν) = δ(1− zh)δ2(k⊥) +
αs
2π2

CAΓ(1 + ε)eεγE
1

µ2

(
µ2

k2
⊥

)1+ε

× zh
[

1 + zh
(1− zh)1+η

(
ν

ωJ

)η
+ (3− 2zh) + 2(1− ε2)

1− zh
z2
h

]
, (2.18c)

Dq/g(zh,k⊥, µ, ν) =
αs
2π2

TFΓ(1 + ε)eεγE
1

µ2

(
µ2

k2
⊥

)1+ε [
1− 2zh(1− zh)

1− ε

]
. (2.18d)

– 7 –
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Note that the results for the TMDFFs here are independent of the jet radius parameter

R. The allowed collinear radiation inside the jet is so collimated along the jet axis in the

kinematical limit that we are considering, j⊥/pT � R, such that it is insensitive to the jet

boundary. We now calculate the Fourier transform of these results according to eq. (2.16).

After expanding around η → 0 and then ε→ 0, we obtain the following results in b-space

Dq/q(zh, b, µ, ν) =
1

z2
h

{
δ(1− zh)

+
αs
2π
CF

[
2

η

(
1

ε
+ ln

(
µ2

µ2
b

))
+

1

ε

(
2 ln

(
ν

ωJ

)
+

3

2

)]
δ(1− zh)

+
αs
2π

[
− 1

ε
− ln

(
µ2

z2
hµ

2
b

)]
Pqq(zh)

+
αs
2π
CF

[
ln

(
µ2

µ2
b

)(
2 ln

(
ν

ωJ

)
+

3

2

)
δ(1− zh) + (1− zh)

]}
, (2.19a)

Dg/q(zh, b, µ, ν) =
1

z2
h

{
αs
2π

[
− 1

ε
− ln

(
µ2

z2
hµ

2
b

)]
Pgq(zh) +

αs
2π
CF zh

}
, (2.19b)

Dg/g(zh, b, µ, ν) =
1

z2
h

{
δ(1− zh)

+
αs
2π
CA

[
2

η

(
1

ε
+ ln

(
µ2

µ2
b

))
+

1

ε

(
2 ln

(
ν

ωJ

)
+

β0

2CA

)]
δ(1− zh)

+
αs
2π

[
− 1

ε
− ln

(
µ2

z2
hµ

2
b

)]
Pgg(zh)

+
αs
2π
CA

[
ln

(
µ2

µ2
b

)(
2 ln

(
ν

ωJ

)
+

β0

2CA

)
δ(1− zh)

]}
, (2.19c)

Dq/g(zh, b, µ, ν) =
1

z2
h

{
αs
2π

[
− 1

ε
− ln

(
µ2

z2
hµ

2
b

)]
Pqg(zh) +

αs
2π
TF 2zh(1− zh)

}
. (2.19d)

Here we introduced the scale µb which is defined as µb = 2e−γE/b [31].

2.4.2 Renormalization

In this section we perform the renormalization of the TMDFFs and derive the resulting RG

equations. We observe that the poles of Dq/q and Dg/g in the second lines of eqs. (2.19a)

and (2.19c) are UV poles. Therefore, they are subtracted via the usual renormalization

procedure. The bare and renormalized TMDFFs are related as

Dh/i(zh, b, µ, ν) = ZDi (b, µ, ν)Dbare
h/i (zh, b, µ, ν) . (2.20)

For the relevant renormalization constants, we find

ZDq (b, µ, ν) = 1 +
αs
2π
CF

[
2

η

(
1

ε
+ ln

(
µ2

µ2
b

))
+

1

ε

(
2 ln

(
ν

ωJ

)
+

3

2

)]
, (2.21a)

ZDg (b, µ, ν) = 1 +
αs
2π
CA

[
2

η

(
1

ε
+ ln

(
µ2

µ2
b

))
+

1

ε

(
2 ln

(
ν

ωJ

)
+

β0

2CA

)]
. (2.21b)
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We thus obtain the associated RG equation and the rapidity renormalization group (RRG)

equation

µ
d

dµ
lnDh/i(zh, b, µ, ν) = γDµ,i(ωJ , µ, ν), (2.22)

ν
d

dν
lnDh/i(zh, b, µ, ν) = γDν,i(b, µ), (2.23)

where the µ- and ν-anomalous dimensions are given by

γDµ,q(ωJ , µ, ν) =
αs
π
CF

(
2 ln

(
ν

ωJ

)
+

3

2

)
, (2.24)

γDµ,g(ωJ , µ, ν) =
αs
π
CA

(
2 ln

(
ν

ωJ

)
+

β0

2CA

)
, (2.25)

γDν,q(b, µ) =
αs
π
CF ln

(
µ2

µ2
b

)
, (2.26)

γDν,g(b, µ) =
αs
π
CA ln

(
µ2

µ2
b

)
. (2.27)

2.4.3 Matching onto collinear FFs

After the UV poles are removed via renormalization, the TMDFFs Dj/i(zh, b, µ, ν) only

contain IR poles which have the expected structure ∼ −1/ε Pji(zh). In the perturbative

region 1/b � ΛQCD, the TMDFFs can be further matched onto the standard collinear

FFs Dh/i(zh, µ). With the help of this matching procedure, the remaining IR poles can be

subtracted. The matching relation is given by

Dh/i(zh, b, µ, ν) =
1

z2
h

∫ 1

zh

dẑh
ẑh

C̃j←i

(
zh
ẑh
, b, µ, ν

)
Dh/j(ẑh, µ) ≡ 1

z2
h

C̃j←i ⊗Dh/j(zh, µ) ,

(2.28)

where the matching coefficients are denoted by C̃j←i. The perturbative results at the

parton level for the collinear FFs Dj/i(zh, µ) in the MS scheme are given by

Dj/i(zh, µ) = δijδ(1− zh) +
αs
2π

(
−1

ε

)
Pji(zh) . (2.29)

Together with the expressions for the TMDFFs in eq. (2.19), we find that the matching

coefficients in b-space are given by

C̃q′←q(zh, b, µ, ν) =δqq′

{
δ(1− zh)− αs

2π
ln

(
µ2

z2
hµ

2
b

)
Pqq(zh) (2.30a)

+
αs
2π
CF

[
ln

(
µ2

µ2
b

)(
2 ln

(
ν

ωJ

)
+

3

2

)
δ(1− zh) + (1− zh)

]}
,

C̃g←q(zh, b, µ, ν) =
αs
2π

[
− ln

(
µ2

z2
hµ

2
b

)
Pgq(zh) + CF zh

]
, (2.30b)
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C̃g←g(zh, b, µ, ν) = δ(1− zh)− αs
2π

ln

(
µ2

z2
hµ

2
b

)
Pgg(zh)

+
αs
2π
CA

[
ln

(
µ2

µ2
b

)(
2 ln

(
ν

ωJ

)
+

β0

2CA

)
δ(1− zh)

]
, (2.30c)

C̃q←g(zh, b, µ, ν) =
αs
2π

[
− ln

(
µ2

z2
hµ

2
b

)
Pqg(zh) +

1

2
TF zh(1− zh)

]
. (2.30d)

2.5 Soft functions

The soft function Si(λ⊥, µ, νR) is defined as

S(λ⊥, µ, νR) = 〈0|Ȳn δ2
(
P∈J⊥ − λ⊥

)
Yn̄|X〉〈X|Ȳn̄Yn|0〉, (2.31)

where Yn(n̄) denotes the soft Wilson line, and P∈J⊥ indicates the fact that only the soft

radiation inside the jet contributes to the hadron transverse momentum with respect to

the jet axis. The soft functions Si(λ⊥, µ, νR) also contain rapidity divergences and, thus,

the rapidity scale ν arises. The calculation of the soft functions in the perturbative region

λ⊥ � ΛQCD is very similar to the standard global soft function that arises in the processes

SIDIS, Drell-Yan, and electron-positron annihilation, except that now we restrict the soft

radiation to be inside the jet. The final result up to NLO in momentum space is given by

Si(λ⊥, µ, νR) = δ2(λ⊥) + Ci
αs
π2

eγEε
Γ
(
1 + ε+ η

2

)
Γ
(
1 + η

2

) 1

µ2

(
µ2

λ2
⊥

)1+ε+ η
2

× 1

η

(
ν tan(R/2)

µ

)η [
1 +O(R2)

]
, (2.32)

where we keep the leading contribution in the limit R� 1. The color factors are given by

Ci = CF (CA) for i = q (g), respectively. After taking the Fourier transform to b-space,

we obtain

Si(b, µ, νR) =

∫
d2λ⊥e

−iλ⊥·bSi(λ⊥, µ, νR)

= 1 +
αs
2π
Ci

[
2

η

(
−1

ε
− ln

(
µ2

µ2
b

))
+

1

ε2
− 1

ε
ln

(
ν2 tan2(R/2)

µ2

)
− ln

(
µ2

µ2
b

)
ln

(
ν2 tan2(R/2)

µ2
b

)
+

1

2
ln2

(
µ2

µ2
b

)
− π2

12

]
. (2.33)

Note that the same result was obtained in [24] in the context of central subjets. Similar

to the renormalization of the TMDFFs discussed above, we subtract the UV poles of the

soft functions. The renormalized and bare soft functions Si(b, µ, νR) are related by

Si(b, µ, νR) = ZSi (b, µ, ν)Sbare
i (b, µ, νR) , (2.34)

where the multiplicative renormalization constants ZSi are given by

ZSi (b, µ, ν) = 1 +
αs
2π
Ci

[
2

η

(
−1

ε
− ln

(
µ2

µ2
b

))
+

1

ε2
− 1

ε
ln

(
ν2 tan2(R/2)

µ2

)]
. (2.35)
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The associated RG and RRG equations are given by

µ
d

dµ
lnSi(b, µ, νR) = γSµ,i(b, µ, νR) , (2.36)

ν
d

dν
lnSi(b, µ, νR) = γSν,i(b, µ) , (2.37)

with the µ- and ν-anomalous dimensions

γSµ,i(b, µ, νR) = − αs
π
Ci ln

(
ν2 tan2(R/2)

µ2
b

)
, (2.38)

γSν,i(b, µ) = − αs
π
Ci ln

(
µ2

µ2
b

)
. (2.39)

2.6 Solution of the evolution equations and resummation

In this section, we provide the details about how to solve the RG and RRG equations

derived above for three functions of the siTMDFJFs, i.e. the hard matching functions, the

TMDFFs and the soft functions. The resummation of all large logarithms is obtained by

the following two step process. First, we evaluate all fixed order results at their natural

scales which eliminates all large logarithms. Second, we evolve all three functions from

their natural scales to a common scale µ ∼ pT . Effectively, this procedure resums all large

logarithms in the fixed-order results derived above. We are going to find that it is nu-

merically more convenient to evolve the TMDFFs and the soft functions to the jet scale

µ ∼ pTR and to combine the result at this scale with the hard matching functions to obtain

the siTMDFJFs. Then, we evolve the thus obtained siTMDFJFs from pTR → pT using

the RG equations for the combined siTMDFJFs rather than using the RG equations for

the three separate functions. We are going to find that the siTMDFJFs satisfy the timelike

DGLAP evolution equations like their collinear analogous, the semi-inclusive fragmenting

jet functions (siFJFs) as studied in [16]. We show that both approaches for solving the RG

equations are equivalent. Besides numerical simplifications, using a combined evolution for

the siTMDFJFs also makes the relation to traditional TMDFFs more clear. Before dis-

cussing the details of the resummation, we start by introducing the traditional definition of

“proper” TMDs that allow for a parton model interpretation of TMD sensitive observables.

2.6.1 Proper TMD definitions

A crucial feature of the results for the TMDFFs Dh/i and the soft functions Si is that both

have rapidity divergences, but their product Dh/iSi is free of rapidity divergences as they

exactly cancel. This can be seen clearly from the NLO expressions for Dh/i in eq. (2.19)

and Si in eq. (2.33). The same 1/η poles appear in both expressions but with opposite

signs. Following the usual TMD phenomenology [26, 31, 32], we thus define the “proper”

in-jet TMDFFs DRh/i as the product

DRh/i(zh, b;µ) ≡ Dh/i(zh, b, µ, ν)Si(b, µ, νR) , (2.40)

where the superscript R reminds us that it represents the hadron distribution within a jet

of the radius R. The cancelation of rapidity divergences for DRh/i can be traced back to the
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fact that the soft radiation is restricted to be only inside the jet. Note that the TMDFFs

Dh/i for the in-jet calculation turned out to be the same as for other TMD sensitive

observables [26, 31, 32] and they do not depend on R, as discussed above. However, the

soft functions are different in the sense that the soft radiation is restricted to be only inside

the jet. Instead, for the “global” soft functions that are relevant for SIDIS and electron-

positron annihilation [33–35], there is no such phase space constraint. The additional phase

space restriction encountered here cuts off half of the rapidity divergences compared to the

global soft functions. This leads to the cancelation of the rapidity divergences in eq. (2.40)

for the product DRh/i = Dh/iSi.

To be more specific, we present results for the global soft functions as well. We use

Ŝi(b, µ, ν) to denote the global soft function in Fourier transform space. Without any phase

space constraints on the soft radiation, we obtain the following expression for the global

soft function in momentum space [29, 36]

Ŝi(λ⊥, µ, ν) = δ2(λ⊥) + Ci
αs
π2

eγEε
Γ
(
1 + ε+ η

2

)
Γ
(
1 + η

2

) 1

µ2

(
µ2

λ2
⊥

)1+ε+ η
2

×
(
ν

µ

)η 2−ηΓ(1−η
2 )Γ(η2 )
√
π

. (2.41)

After taking the Fourier transform to b-space as in eq. (2.33) and expanding around

η, ε→ 0, we find

Ŝi(b, µ, ν) = 1 +
αs
2π
Ci

[
4

η

(
−1

ε
− ln

(
µ2

µ2
b

))
+

2

ε2
− 2

ε
ln

(
ν2

µ2

)
− 2 ln

(
µ2

µ2
b

)
ln

(
ν2

µ2
b

)
+ ln2

(
µ2

µ2
b

)
− π2

6

]
. (2.42)

Comparing this result with the Si(b, µ, νR) in eq. (2.33), we find that the O(αs) terms

differ by an overall factor of 2 and ν ↔ ν tan(R/2). The “proper” standard TMDFFs D̂h/i
as they appear in SIDIS and electron-positron annihilation are then defined as

D̂h/i(zh, b;µ) ≡ Dh/i(zh, b, µ, ν)

√
Ŝi(b, µ, ν) . (2.43)

This product is also free of rapidity divergences allowing for a parton model type interpreta-

tion of TMD sensitive observables [26, 31, 32]. It is important to work out the exact relation

between the in-jet TMDFFs DRh/i considered in this work and the standard TMDFFs D̂h/i.
We will discuss this relation in more detail after deriving the solution of the RG and RRG

equations in the next section.

2.6.2 Hard matching functions

We start with the RG equations for the hard matching functions Hi→j , see eq. (2.11).

Note that the anomalous dimensions γij(z, ωJR,µ) in eq. (2.12) contain a purely diagonal

piece δijδ(1− z)Γi(ωJR,µ) and the Altarelli-Parisi splitting functions Pji(z) similar to the

timelike DGLAP. We are going to separate these two parts of the anomalous dimensions

and the associated evolution. The purely diagonal or non-DGLAP pieces of γij(z, ωJR,µ)
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are going to cancel with the respective terms of the anomalous dimensions of the TMDFFs

and the soft functions yielding a standard DGLAP evolution equation for the siTMDFJFs.

To that extend, we start by writing the functions Hi→j as

Hi→j(z, ωJR,µ) = Ei(ωJR,µ) Ci→j(z, ωJR,µ), (2.44)

where the Ci→j(z, ωJR,µ) satisfy evolution equations where the anomalous dimensions are

given only by the Altarelli-Parisi splitting functions

µ
d

dµ
Ci→j(z, ωJR,µ) =

αs
2π

∑
k

∫ 1

z

dz′

z′
Pki

( z
z′

)
Ck→j(z′, ωJR,µ) . (2.45)

Note that these evolution equations are similar to DGLAP equations but here we still have

four coupled equations. Only the combined siTMDFJFs are going to satisfy the standard

timelike DGLAP evolution equations, see eq. (2.71) below.

The functions Ei(ωJR,µ) satisfy multiplicative RG equations

µ
d

dµ
ln Ei(ωJR,µ) = Γi(ωJR,µ) , (2.46)

where the Γi(ωJR,µ) are given in eq. (2.13). The solution for the multiplicative RG

equations can be written as

Ei(ωJR,µ) = Ei(ωJR,µJ) exp

(∫ µ

µJ

dµ′

µ′
Γi(ωJR,µ

′)
)
. (2.47)

The fixed-order results for Ei(ωJR,µ) can be obtained from eq. (2.5) and are given by

Eq(ωJR,µ) = 1 +
αs
2π
CF

(
−L

2

2
− 3

2
L

)
, (2.48a)

Eg(ωJR,µ) = 1 +
αs
2π

(
−CA

L2

2
− β0

2
L

)
. (2.48b)

By choosing µJ = pTR, we obtain Ei(ωJR,µJ) = 1 as the initial condition for the evolu-

tion in eq. (2.46). Using this result in eq. (2.44) above, we can write the hard matching

functions as

Hi→j(z, ωJR,µ) = exp

(∫ µ

µJ

dµ′

µ′
Γi(ωJR,µ

′)
)
Ci→j(z, ωJR,µ) . (2.49)

The functions Ci→j(z, ωJR,µ) still need to be evolved from µ ∼ µJ = pTR to µ ∼ pT using

the evolution equations in eq. (2.45) above. Their fixed order expressions are given by

Cq→q′(z, ωJR,µ) = δqq′δ(1− z) + δqq′
αs
2π

[
CF δ(1− z)

π2

12
+ Pqq(z)L

− 2CF (1 + z2)

(
ln(1− z)

1− z

)
+

− CF (1− z)

]
, (2.50a)

Cq→g(z, ωJR,µ) =
αs
2π

[(
L− 2 ln(1− z)

)
Pgq(z)− CF z

]
, (2.50b)
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Cg→g(z, ωJR,µ) = δ(1− z) +
αs
2π

[
δ(1− z)

π2

12
+ Pgg(z)L

− 4CA(1− z + z2)2

z

(
ln(1− z)

1− z

)
+

]
, (2.50c)

Cg→q(z, ωJR,µ) =
αs
2π

[(
L− 2 ln(1− z)

)
Pqg(z)− TF 2z(1− z)

]
. (2.50d)

2.6.3 Relation between in-jet and standard TMDFFs

We are now going to derive the solution of the evolution equations for the TMDFFs and

the soft functions in order to obtain the proper in-jet TMDFFs DRh/i(zh, b;µ) as defined in

eq. (2.40). For comparison, we also show the results for the standard TMDFFs D̂h/i(zh, b;µ)

as in eq. (2.43). We start by evolving Dh/i(zh, b, µ, ν), Si(b, µ, ν, R) and Ŝi(b, µ, ν) using

their RG and RRG equations. From the perturbative calculations above, we find that the

natural scales for the TMDFFs Dh/i, and the two soft functions Si, Ŝi are given by

µD ∼µb, νD ∼ωJ , (2.51a)

µS ∼µb, νS ∼
µb

tan(R/2)
, (2.51b)

µŜ ∼µb, νŜ ∼µb . (2.51c)

To be consistent with the standard Collins-Soper-Sterman (CSS) formalism [37], we evolve

from the natural scales of Dh/i and Si, Ŝi as given in eq. (2.51), to a common scale µ and

ν. In terms of the “proper” TMDFFs in (2.40), the initial conditions for the evolution is

given by

DRh/i(zh, b;µb) ≡ Dh/i(zh, b, µD, νD)Si(b, µS , νSR) , (2.52)

D̂h/i(zh, b;µb) ≡ Dh/i(zh, b, µD, νD)

√
Ŝi(b, µŜ , νŜ) . (2.53)

It might be instructive to point out that the “proper” TMDs chosen as such are equal

perturbatively when evaluated at their natural scales,

DRh/i(zh, b;µb) = D̂h/i(zh, b;µb) . (2.54)

This can be directly verified from the perturbative expressions given above. At this point,

it might be instructive to point out that according to eq. (2.51), the natural rapidity scales

for two soft functions Si and Ŝi are quite different, νS/νŜ = 1/ tan(R/2)� 1 in the small

jet radius limit R � 1. Since the “proper” TMDs do not contain rapidity divergences

anymore, the ν-dependence will naturally disappear in the end when one evolves to the

common rapidity scales. After solving the corresponding RG and RRG equations, we can

write the final result in the following form

DRh/i(zh, b;µ) = DRh/i(zh, b;µb) exp

[
−
∫ µ

µb

dµ′

µ′

(
Γicusp ln

(
µ2
J

µ′2

)
+ γi

)]
, (2.55)

D̂h/i(zh, b;µ) = D̂h/i(zh, b;µb) exp

[
−
∫ µ

µb

dµ′

µ′

(
Γicusp ln

(
µ2

µ′2

)
+ γi

)]
. (2.56)
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Here the cusp anomalous dimension Γicusp and the non-cusp γi allow for a perturbative

evaluation as Γicusp =
∑

n Γin−1

(
αs
π

)n
and likewise for γi. The first coefficients can be

obtained from our calculation and are given by

Γq0 = CF , γq0 = −3

2
CF , (2.57)

Γg0 = CA , γg0 = −β0

2
. (2.58)

The higher-order expressions can be found for example in ref. [38]. The “proper” in-jet

TMDs DRh/i in eq. (2.55) may be further expressed in terms of the “proper” standard TMDs

D̂h/i in eq. (2.56) as

DRh/i(zh, b;µ) = DRh/i(zh, b;µb) exp

[
−
∫ µJ

µb

dµ′

µ′

(
Γicusp ln

(
µ2
J

µ′2

)
+ γi

)]
× exp

[
−
∫ µ

µJ

dµ′

µ′

(
Γicusp ln

(
µ2
J

µ′2

)
+ γi

)]
= D̂h/i(zh, b;µJ) exp

[
−
∫ µ

µJ

dµ′

µ′

(
Γicusp ln

(
µ2
J

µ′2

)
+ γi

)]
. (2.59)

To obtain the second line we made use of eq. (2.54). In other words, the evolved “proper”

TMDs obtained for the hadron distribution inside jets DRh/i(zh, b;µ) at scale µ is related to

the standard TMDs D̂h/i(zh, b;µJ) evaluated at scale µJ multiplied by an overall factor.

This overall factor is given by an exponential involving an integration over µ′ from scales

µJ to µ. Since both scales µJ and µ are both in the perturbative regime, µJ , µ � ΛQCD,

we find that the relation between the in-jet TMDs DRh/i and the standard TMDs D̂h/i is

purely perturbative.

2.6.4 Solution for the siTMDFJFs

We proceed by combining the above results in order to obtain the evolved siTMDFJFs

Ghc (z, zh, ωJR, j⊥, µ). Starting from eq. (2.4) and by using the relation

δ2 (zhλ⊥ + k⊥ − j⊥) =
1

z2
h

∫
d2b

(2π)2
exp

(
−i
(
λ⊥ +

k⊥
zh
− j⊥
zh

)
· b
)
, (2.60)

one finds

Ghc (z, zh, ωJR, j⊥, µ) = Hc→i(z, ωJR,µ)

∫
d2b

(2π)2
ei j⊥·b/zhDh/i(zh, b, µ, ν)Si(b, µ, νR)

= Hc→i(z, ωJR,µ)

∫
d2b

(2π)2
ei j⊥·b/zhDRh/i(zh, b;µ) . (2.61)

Now we can plug in the result of the hard matching coefficients Hc→i(z, ωJR,µ) in eq. (2.49)

where we separated and solved the RG equations for the functions Ei(ωJR,µ). In addition,

we use the results of the evolved in-jet TMDs DRh/i(zh, b;µ) in eq. (2.59). We find that the

siTMDFJFs may eventually be expressed as

Ghc (z, zh, ωJR, j⊥, µ) = Cc→i(z, ωJR,µ)

∫
d2b

(2π)2
ei j⊥·b/zhD̂h/i(zh, b;µJ) . (2.62)
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It is important to note that here we are able to write the result in terms of the standard

TMDs D̂h/i. This is possible since the evolution between the scales µJ and µ of Ei(ωJR,µ)

cancels with the overall multiplicative factor found in eq. (2.59) for the in-jet TMDs when

written in terms of the standard TMDs. Specifically, we have

exp

(∫ µ

µJ

dµ′

µ′
Γi(ωJR,µ

′)
)

exp

[
−
∫ µ

µJ

dµ′

µ′

(
Γicusp ln

(
µ2
J

µ′2

)
+ γi

)]
= 1 . (2.63)

The result in eq. (2.62) constitutes the most important part of our work. It explicitly

demonstrates that the hadron transverse momentum distribution within jets is related to

the standard TMDFFs (as measured in SIDIS and electron-positron annihilation) probed

at the jet scale µJ ∼ pTR. Eventually, we can write the result as

Ghc (z, zh, ωJR, j⊥, µ) = Cc→i(z, ωJR,µ) D̂h/i(zh, j⊥;µJ) , (2.64)

where we used the inverse Fourier transform as defined in eq. (2.17) to obtain the TMDFFs

in momentum space

D̂h/i(zh, j⊥;µJ) =

∫
d2b

(2π)2
ei j⊥·b/zhD̂h/i(zh, b;µJ) . (2.65)

2.7 Final expression for the siTMDFJFs

In the perturbative region where 1/b � ΛQCD, one can further match the TMDFFs

D̂h/i(zh, b;µb) onto the standard collinear FFs Dh/i(zh, µb) as

D̂h/i(zh, b;µb) =
1

z2
h

∫ 1

zh

dẑh
ẑh

Cj←i

(
zh
ẑh
, µb

)
Dh/j(ẑh, µb) . (2.66)

Using the coefficients C̃j←i given in eq. (2.30) and the perturbative expressions for the soft

functions, one obtains

Cq′←q(zh, µb) = δqq′

[
δ(1− zh) +

αs
π

(
−CF

π2

24
δ(1− zh) +

CF
2

(1− zh) + Pqq(zh) ln zh

)]
,

(2.67a)

Cg←q(zh, µb) =
αs
π

[
CF
2
zh + Pgq(zh) ln zh

]
, (2.67b)

Cg←g(zh, µb) = δ(1− zh) +
αs
π

[
−CA

π2

24
δ(1− zh) + Pgg(zh) ln zh

]
, (2.67c)

Cq←g(zh, µb) =
αs
π

[
TF zh(1− zh) + Pqg(zh) ln zh

]
. (2.67d)

It might be instructive to point out that the above matching coefficients are computed in

the standard MS scheme, which differs from the simplest minimal subtraction scheme by

inserting a factor Sε for each loop in the counter-terms with Sε = (4πe−γE )ε. However, in

the so-called Collins-11 definition of TMDs, this factor was changed to SJCC
ε = (4π)ε/Γ(1−

ε) [26]. We refer to the latter scheme as MS
JCC

, in which the π2 terms are absent in
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eqs. (2.67)(a) and (c). This is compensated for by the fact that there are no π2-constants

in the expressions for the functions Ci→j in eqs. (2.50)(a) and (c) in the MS
JCC

scheme.

So far, we have discussed the evolution of the siTMDFJFs in the perturbative re-

gion, i.e. for 1/b � ΛQCD. It is well-known that the evolution of TMDs contains a non-

perturbative component in the large-b region. We treat the large-b region by adopting the

usual b∗-prescription [37]. Alternative approaches can be found in [39–43]. One defines b∗ as

b∗ =
b√

1 + b2/b2max

, (2.68)

where the quantity bmax is introduced such that b∗ → b at small b � bmax, whereas it

approaches the limit b → bmax in the large b-region. Using this prescription and the

matching coefficients in eq. (2.67), we can write the evolved TMDFFs in eq. (2.65) as

D̂h/i(zh, j⊥;µJ) =
1

z2
h

∫
b db

2π
J0(j⊥b/z)Cj←i ⊗Dh/j(zh, µb∗)e

−Sipert(b∗,µJ )−SiNP(b,µJ ) . (2.69)

Here, Sipert(b∗, µJ) is the perturbative Sudakov factor

Sipert(b∗, µJ) =

∫ µJ

µb∗

dµ′

µ′

(
Γicusp ln

(
µ2
J

µ′2

)
+ γi

)
, (2.70)

and SiNP(b, µJ) is the non-perturbative Sudakov factor. We will discuss them in detail in

the phenomenological section 3 below.

With all these relevant ingredients available, we may then compute the siTMDFJFs

following eq. (2.64). By using the evolution equations for the functions Ci→j in eq. (2.45)

and the expressions for siTMDFJFs in eq. (2.64), we find that the siTMDFJFs satisfy the

standard timelike DGLAP evolution equations

µ
d

dµ
Ghi (z, zh, ωJR, j⊥, µ) =

αs
2π

∑
j

∫ 1

z

dz′

z′
Pji

( z
z′

)
Ghj (z′, zh, ωJR, j⊥, µ) . (2.71)

This result for the evolution equations of the siTMDFJFs was to be expected. Following our

factorization expression for the differential cross section in eq. (1.2), the product Hc
abGhc

should be µ-independent order by order analogously to single inclusive hadron produc-

tion [44, 45]. Thus, it is natural that the Ghc follow the same DGLAP evolution equations

as those for the usual collinear FFs Dh/c [16, 22].

We would like to summarize again the following aspects of the evolution structure of

the siTMDFJFs. The TMD part of the evolution between µb an µJ is governed by the same

TMD evolution equations that have been obtained for the standard TMDs as well. The

hard matching functions Cc→i follow RG equations where the anomalous dimensions are

given by the usual Altarelli-Parisi splitting functions. The evolution of Cc→i is carried out

between the jet scale µJ and the hard scale µ allowing for the resummation of logarithms

in the jet size parameter R. The structure and resummation of single logarithms αns lnnR

becomes more apparent when combining both contributions to obtain the siTMDFJFs.

They follow the standard DGLAP structure as it is usually associated with the resummation
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of single logarithms in the jet size parameter [16, 22, 46, 47]. The obtained structure for the

siTMDFJFs provides a convenient method to perform the resummation of all relevant large

logarithms. First, we are going to evolve the standard TMDFFs D̂h/i(zh, j⊥;µ) from the

scale µb to µJ . Second, at the jet scale µJ the TMDFFs D̂h/i(zh, j⊥;µJ) will be combined

with the remaining hard matching functions Cc→i(z, ωJR,µJ) in eq. (2.50) to compute the

siTMDFJFs Ghc (z, zh, ωJR, j⊥, µJ) as

Ghc (z, zh, ωJR, j⊥, µJ) = Cc→i(z, ωJR,µJ)D̂h/i(zh, j⊥;µJ) . (2.72)

Then, we use the DGLAP evolution equations for the siTMDFJFs in eq. (2.71) to evolve

Ghc from the scale µJ to µ and, thus, resum logarithms in the jet size parameter R.

3 Phenomenology for pp → (jeth)X

In this section, we present numerical results for the transverse momentum distribution of

hadrons inside jets for LHC kinematics. We consider an inclusive jet sample pp→ jet +X

where a hadron h is identified inside the reconstructed jet. Following [10, 14, 16, 22], the

factorization theorem for the process pp→ (jeth)X can be written as

dσpp→(jeth)X

dpTdηdzhd2j⊥
=
∑
a,b,c

∫ 1

xmin
a

dxa
xa

fa(xa, µ)

∫ 1

xmin
b

dxb
xb

fb(xb, µ)

×
∫ 1

zmin

dz

z2
Hc
ab(ŝ, p̂T , η̂, µ) Ghc (z, zh, ωJR, j⊥, µ) , (3.1)

where fa and fb denote the parton distribution functions (PDFs) in the proton with the

corresponding momentum fraction xa and xb, respectively. For all numerical calculations

in this work, we choose the CT14 NLO set of PDFs [48]. The hard functions Hc
ab describe

the production of an energetic parton c in the hard-scattering event. They have been

calculated analytically up to NLO in [45, 49]. The variables ŝ, p̂T and η̂ denote the

partonic CM energy, and the transverse momentum and rapidity of parton c, respectively.

They are related to their hadronic analogues as

ŝ = xaxbs, p̂T = pT /z, η̂ = η − ln(xa/xb)/2 , (3.2)

where z is the momentum fraction transferred from parton c to the observed jet. The lower

integration limits xmin
a , xmin

b and zmin can be found for example in [14, 16]. Finally, the

functions Ghc (zc, zh, ωJR, j⊥, µ) in eq. (3.1) are the siTMDFJFs as discussed in section 2.

We would like to stress that the cross section does not depend on TMDPDFs but only

on the standard collinear PDFs. Unlike the TMDPDFs, collinear PDFs are very well

constrained by data and have been determined in global fits in the literature. Therefore,

different than for SIDIS, the hadron in-jet fragmentation considered in this work provides

an opportunity to disentangle the effects of TMDPDFs and TMDFFs.

In order to perform numerical calculations, we have to parameterize the non-

perturbative Sudakov factors for both quark and gluon TMDFFs. Unfortunately, the
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quark TMDFFs are not very well constrained so far. The main information for the extrac-

tion of quark TMDFFs are obtained from multiplicity distributions of hadrons measured in

SIDIS from both the HERMES [50] and COMPASS [51] experiments. These measurements

were performed at relative low momentum scales, with photon virtualities Q2 of several

GeV2. Thus, there are potential problems when interpreting the data in terms of the usual

leading-twist TMD factorization formalism [52]. In addition, since the factorization for

SIDIS involves a convolution of TMDPDFs and TMDFFs, the unambiguous extraction of

both functions separately is not straightforward. Therefore, current extractions of quark

TMDFFs are subject to large uncertainties. Keeping in mind the remaining large uncer-

tainties in our calculation, we are nevertheless going to present numerical estimates for the

hadron transverse momentum distribution within jets and compare to LHC measurements.

We choose to use the following parametrization of the non-perturbative Sudakov factor

following [53, 54]

SqNP(b, µJ) =
g2

2
ln

(
b

b∗

)
ln

(
µJ
Q0

)
+
gh
z2
h

b2, (3.3)

with Q2
0 = 2.4 GeV2, bmax = 1.5 GeV−1, g2 = 0.84, and gh = 0.042. Other parametrizations

for the non-perturbative Sudakov factor for TMDFFs have been discussed in [30, 55].

Furthermore, we note that the non-perturbative Sudakov factor for the gluon TMDFF

is not constrained at all so far. For our numerical calculations, we are going to follow [56–

58] and adopt a parameterization of the gluon non-perturbative Sudakov factor similar to

that for quarks as

SgNP(b, µJ) =
CA
CF

g2

2
ln

(
b

b∗

)
ln

(
µJ
Q0

)
+
gh
z2
h

b2 . (3.4)

In comparison to the quark parametrization, the coefficient of the term ∼ lnµJ is enhanced

by a color factor CA/CF , whereas the intrinsic part ∼ gh is kept unchanged.

In addition, we use the coefficients Cj←i in eq. (2.67) up to the order of αs for the

TMDFFs, and keep Γi0,1 and γi0 in the perturbative Sudakov factor in eq. (2.70), which is

often referred to as the next-to-leading-logarithm prime (NLL′) accuracy. For both Cj←i in

eq. (2.67) and Ci→j in eq. (2.50), we use the expressions in the MS
JCC

scheme as explained

in section 2.7, since the TMDFFs that we use for our numerical studies were extracted

within this scheme [53, 54]. We use the DSS07 parametrization of collinear fragmentation

functions for light charged hadrons [59]. Together with the choices for the relevant non-

perturbative inputs above for both quark and gluon TMDFFs, we are now going to present

first numerical estimates for the transverse momentum distribution of hadrons inside jets

and compare to the data provided by the ATLAS collaboration [3]. We choose the following

jet kinematics consistent with the available data at a CM energy of
√
s = 7 TeV. The jets

are reconstructed using the anti-kT algorithm with jet size parameter R = 0.6, and the

jet rapidity is integrated over |η| < 1.2. The detailed numerical implementation is very

similar to the longitudinal momentum distribution of hadrons inside jets [16], using several

numerical techniques developed in the literature [60–62]. The RG evolution of the various

parts of the cross section is performed as outlined at the end of the last section.
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Figure 2. Hadron j⊥-distributions within jets in pp collisions at
√
s = 7 TeV. Jets are taken into

account in the rapidity interval |η| < 1.2 and they are reconstructed using the anti-kT jet algorithm

with R = 0.6. We choose jet transverse momentum bins 25 < pT < 40 GeV (left) and 400 < pT <

500 GeV (right). The average values 〈zh〉 are provided by the experiment, 〈zh〉 = 0.08 (left) and

0.03 (right). The uncertainty band is calculated by varying the scales µ and µJ independently by

a factor of two around their default values µ = pT and µJ = pTR, and taking the envelope of these

variations.

In figure 2, we present the comparison of our numerical results and the LHC data for

the hadron j⊥-distribution inside jets. We make the default scale choices of µ = pT and

µJ = pTR. We explore the scale uncertainty by varying µ and µJ independently by a

factor of two around their default values and by taking the envelope of these variations.

As an example, we choose the jet transverse momentum bins 25 < pT < 40 GeV (left) and

400 < pT < 500 GeV (right). The experimental data are presented for the zh-integrated

hadron distribution, i.e. with zh integrated from 0 to 1. This fact hinders a more direct

and transparent comparison of our results with the data, since the collinear FFs are only

constrained in a finite region zmin
h < zh < 1 with zmin

h & 0.05 [59, 63]. Any zh < zmin
h

is not constrained and can only be obtained by extrapolation. We choose the value for

zh in our calculations as the average value 〈zh〉 that are provided in the experimental

publication [3], with 〈zh〉 = 0.08 and 0.03 for 25 < pT < 40 GeV and 400 < pT < 500 GeV,

respectively. With this caveat in mind, we find that our calculations based on TMDFFs

extracted in the literature at low energy scales of several GeV give a reasonable description

of the experimental data. The height of the peak is roughly consistent with the data but

our results have a broader j⊥-distribution than the experimental data. We note that at

low jet pT our current numerical estimates agrees somewhat better with the data than in

the high pT region.

In figure 3, we separate the hadron j⊥-distribution into quark and the gluon TMDFF

components. This separation is valid in the TMD region. We find that at lower jet pT ,

as shown in the left panel of figure 3, the gluon channel dominates over the quark channel

due to the overwhelmingly abundant gg initiated events in the pp collisions. The quark

TMD fragmenting contribution is suppressed in this region. Therefore, the low jet pT
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Figure 3. Breakdown of the hadron j⊥-distributions inside jets (blue) into quark initiated (red)

and gluon initiated (green) TMDFF channels.

region provides a “golden channel” to extract the gluon TMDFF. At large jet pT (right

panel of figure 3), where qg initiated events start to dominate, the quark and the gluon

TMDFF contributions therefore become comparable to each other. However, due to the

difference in the color charges carried by quarks and gluons, the quark TMD fragmenting

process peaks at smaller j⊥. Away from the peak region, the quark contribution drops

more dramatically and exhibits a relatively narrow spectrum compared with the gluon

contribution. Therefore, the region away from the peak of the j⊥-spectrum will generally

be more sensitive to the gluon TMDFF.

To conclude this section, we provide further discussions of our numerical estimates.

First, we would like to emphasize that at the moment we only concentrate on the TMD

region and we present numerical results without matching onto NLO fixed-order calcula-

tions. In other words, we have not considered the effect of the so-called Y -term which can

also affect the low j⊥-region, as advocated recently in [64, 65]. Second, in the TMD region,

the non-perturbative parts of the quark TMDFFs have large uncertainties as they have

only been constrained from SIDIS data so far, while the gluon TMDFF has not been ex-

tracted at all. Third, so far we did not take into account the effect of non-global logarithms

(NGLs) [66, 67]. They first arise at next-to-next-to leading order due to the hierarchies

caused by different constraints in different phase space regions, and affect our results at

the current logarithmic accuracy we are considering. The factorization and resummation of

NGLs have been studied recently in great detail, see for example refs. [68–74]. We expect

to obtain significant improvements of our results in the comparison with the experimental

data once all these additional factors are taken into account. A dedicated study including

all additional effects will be presented in a forthcoming publication.

4 Conclusions

In this work, we have studied the hadron transverse momentum j⊥-distribution within jets,

where j⊥ is defined with respect to the standard jet axis. We set up a factorization for-
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malism that allows for systematic studies of this distribution. As a first step we calculated

all the components of the factorization theorem to NLO, and we further resummed all the

associated large logarithms lnR and ln(pTR/j⊥). We demonstrated the universality of

the TMDFFs that arise for this jet substructure observable and the traditional TMDFFs

probed in SIDIS and electron-positron annihilation. We further showed that the hadron

distribution within jets produced in pp collisions provides a unique opportunity to study

the TMDFFs, especially the gluon TMDFF. For SIDIS and electron-positron annihilation,

the gluon TMDFF is usually difficult to access. More specifically, we showed that different

than for SIDIS, the j⊥ spectrum within jets only depends on TMDFFs. There is no depen-

dence on TMDPDFs which allows for a more direct extraction of TMDFFs. Furthermore,

we found that at LHC energies we are able to control the sensitivity to different TMDFFs

by selecting different values of the jet pT . We observed that the low jet pT region is the

ideal region to extract the gluon TMDFF. For large jet pT , the region away from the peak

of the j⊥-spectrum can also be sensitive to the gluon TMDFF.

In the future, several extensions of this work are possible. For instance, in order to

extend our calculations to the region where j⊥ ∼ pTR, we need to match the resummed

result onto fixed order calculations. Such a matching calculation includes the full NLO

corrections to this spectrum which may also affect the TMD region. In addition, it will

be important to study the numerical impact of NGLs. Besides improvements of the per-

turbative calculation, a more careful study of the non-perturbative Sudakov evolution will

be necessary to determine whether the agreement with the data in the region j⊥ < 1 GeV

can be improved. Also given the relative simple structure of the TMDFFs and the soft

functions considered here, a next-to-next-to leading order calculation is possible which will

further push forward the accuracy of the theoretical predictions. In this work, we only

considered the phenomenology of pp collisions but the formalism developed here is also

directly applicable to ep scattering relevant for a future Electron-Ion Collider (EIC). Other

phenomenological studies may include for example a global fit of TMDFFs using also data

from SIDIS and electron-positron annihilation. Finally, we are also planning to extend our

formalism to the polarized case which is crucial to probe the Collins function, Hyperon

polarization inside jets and other types of jet substructure observables.
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