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Abstract

The multifunction radar, aided by advances in electrohici€ered phased array technology, is capable
of supporting numerous, differing and potentially conitigttasks. However, the full potential of the
radar system is only realised through its ability to autdoadly manage and configure the finite resource
it has available. This thesis details the novel applicatibagent systems to this multifunction radar
resource management problem. Agent systems are compmatiasiacieties where the synergy of local
interactions between agents produces emergent, gloledblesbehaviour.

In this thesis the measures and models which can be usedtai@lradar resource is explored,; this
choice of objective function is crucial as it determines ethattribute is allocated resource and conse-
quently constitutes a description of the problem to be sblvevariety of task specific and information
theoretic measures are derived and compared. It is showhythadilising as wide a variety of measures
and models as possible the radar’s multifunction capglidienhanced.

An agent based radar resource manager is developed usidgBte Framework which is used
to apply the sequential first price auction and continuousbt®auctions to the multifunction radar
resource management problem. The application of the séigLigrst price auction leads to the devel-
opment of the Sequential First Price Auction Resource Mamant algorithm from which numerous
novel conclusions on radar resource management algoridsigm are drawn. The application of the
continuous double auction leads to the development of thei@@us Double Auction Parameter Se-
lection (CDAPS) algorithm. The CDAPS algorithm improves turrent state of the art by producing
an improved allocation with low computational burden. Thgogdthm is shown to give worthwhile
improvements in task performance over a conventional rase8 approach for the tracking and surveil-

lance functions as well as exhibiting graceful degradagiot adaptation to a dynamic environment.
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Chapter 1

Introduction

1.1 Motivation

Advances in modern electronic components have driven thereercialisation of electronically steered
phased array antenna technology. In contrast to the aditmechanically scanned antenna, the elec-
tronically steered phased array has significantly incieasam agility which allows dynamic allocation
of the time-energy resource. This has led to a new generafiomultifunction radar systems, where
multifunction can be defined as the ability to sequentiakgaaite numerous, differing and potential
conflicting tasks which support a variety of different raflarctions.

Requirements of multifunction radar according to the nmagt airborne and land domains vary
greatly. However, a typical system is required to searchiane for new targets and once detected fuse
the information from multiple scans into target tracks. Fhistem may also be required to perform addi-
tional functions depending on the application domain swctiaa link, weapons support, identification
or classification. A typical scenario is shown in Fig. 1.1danaritime air defence type application. This
figure shows the potential operational complexity for thdtifunction radar as the finite radar resource
is required to be distributed between the wide variety of esogthich may need to be deployed. The
ultimate performance of the system is dependent on how Welhumerous tasks which support the
differing modes are able to fulfil the requirements of theteys

Multifunction radars have increasing appeal, which canttsiated to several key benefits:

e Flexibility - Flexibility over allocation in space and time, includingriable update rates, dwell

times and surveillance coverage, tailored to each apjuitat role.

e Adaptability- Multifunction radar performance specification can be dgitally adjusted to match

the dynamic and uncertain scenario and environment.
o Efficiency Increased efficiency in terms of space, time, energy, pribdaluand maintenance effort.

The overall benefit is the potential to vary nearly instaatarsly an array of radar parameters to achieve



1.1. Motivation
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Figure 1.1: Typical maritime air defence multifunction aadcenario [Butler, 1998].

a desired goal. This thesis concentrates on the explaitafibeam agility and development of methods

to divide the finite time-energy resource.

The control and configuration of the multifunction radar &ybnd the response capability of the
human operator and so an automated Radar Resource Man&dJ,(Rost likely with operator super-
vision, is required. Consequently, the full potential of tmultifunction radar system is only realised
through the RRM'’s ability to automatically allocate and figare the finite resource it has available. In
addition, the RRM has access to all the information in theesgs which exceeds the information that
is able to be displayed to an operator in the loop. The RRM learefore theoretically achieve superior
decision making at a rate faster than the human operatoseTtaetors have created a strong desire to
maximise the potential of the hardware by intelligentlygiitag to dynamic scenarios, environments and

missions.

Agent systems are computational societies where the syéitgcal interactions between agents
produces emergent, globally desirable behaviour. Tylyicafjent systems are governed by distributed
and decentralised mechanisms which are inherently coripuoégly efficient and scalable. The automa-
tion of human interaction mechanisms in agents systemh,astieconomic paradigms, can replicate the
ability to achieve robust behaviour in dynamic and uncergivironments. This provides the motivation

for their application to multifunction radar resource mgaent.

Economic paradigms and market mechanisms have evolvedccemturies in human societies, as
efficient, trusted and highly developed methods of distiitgugoods and commodities. Free markets
tend to competitive equilibrium which maximises partigiparofit and optimises social welfare. This
desirable characteristic can be harnessed in resouraatidio problems, such as multifunction radar

resource management, to produce emergent intelligentesichtdle behaviour.
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1.2. Thesis Layout

The primary aim of this research has been to investigatenfofitst time the application of agent
systems and economic paradigms to multifunction RRM. Téggarch also had the following secondary

aims:

e Provide a thorough review of existing work, to identify whergent techniques can be most bene-

ficially applied.
¢ Investigate the role of information theory in multifunaticadar resource management.
e Explore suitable objective functions and measures whidtiegtine resource allocation.

e Develop agent based resource allocation mechanismsngibsiitable choices of objective func-

tions.
e Create aradar simulator testbed upon which differing aggstems can be applied.
e Demonstrate and quantify enhanced multifunction cagghufiresulting allocation mechanism.

This thesis is organised according to the layout describdok following section.

1.2 Thesis Layout

This thesis contains eight chapters which detail the asp#d¢he application of agent systems to multi-
function radar resource management.

An overview of the fundamental operation of a multifuncti@aar system is given in Chapter 2.
This includes aspects of radar signal processing, measmtetiata processing and the electronically
steered array antenna. Operational multifunction radstesys are discussed alongside the parameter
and mode view of multifunction operation. This collectiogsdribesvhatis automatically managed.

Chapter 3 gives an overview of current radar resource manageechniques. This includes the af-
fect of parameter selection on performance, a discussigesofirce management architectures, method-
ologies for resource management and approaches to samgdmid prioritisation. Gaps in completed
research are identified, to which the research in this thsdisrgeted. This chapter detalt®w the
resource is automatically managed.

An exploration of the critical choice of objective functiangiven in Chapter 4 for the surveillance
and tracking applications. The objective function is califor the development of a resource allocation
mechanism as it provides the interface to the task functioisa determines which attribute of the prob-
lem is allocated resource. This includes a discussion &fgpscific measures, derivation of information
theoretic measures and an investigation into the suitaloifithe derived measures for control.

Agent systems are introduced in Chapter 5 along with sonevaat theory for resource alloca-

tion problems. The Java Agent Development (JADE) framevimrkferenced, which is an agent based
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extension to the Java platform. Then, development of antdgesed multifunction radar resource man-

agement testbed using JADE is described. Details of theydesid structure of the testbed are also

detailed.

The sequential first price sealed bid auction mechanismpsiepto the multifunction radar re-

source management problem in Chapter 6, using the agerd testbed described in Chapter 5. Com-

parisons are drawn with existing resource management methging a complex multi-target tracking

scenario and with reference to the conclusions from Chapter

In Chapter 7 the continuous double auction mechanism iseapia the multifunction radar resource

management problem, which leads into the development ofdhénuous double auction parameter

selection algorithm (CDAPS). Desirable characteristitthe mechanism are demonstrated on multi-

target tracking and surveillance scenarios.

Finally the conclusions of the research are presented ip€h8 including a discussion of possible

future extensions to the work.

1.3 Novel Aspects

The aspects of this work believed to be novel are contain€hapter. 4-7. Specifically:

Information theoretic measures for multifunction radasogrce management have been derived
and developed for estimation and discrimination problefitsis has led to an improved under-
standing of the role of information theoretic measures faitifunction radar resource manage-

ment and sensor management in general. [Chapter 4, padis 84-97]

The Modified Riccati Equation has been successfully appiigchcking control under significant

measurement origin uncertainty. [Chapter 4, pages 93-94]

An agent based multifunction radar resource managemdntecture using the JADE framework
has been developed. This has provided the basis for a batterstanding of agent based resource
management architecture designs which allow rapid upgrailé maximum code re-use. [Chapter

5, pages 108-114]

The sequential first price sealed bid auction mechanism &eas bpplied to multifunction radar
resource management including development and analytisvekt quality first and greatest in-
formation first schedulers. This provides a detailed insiigio radar resource manager design and

selection of appropriate objective functions. [Chapteyages 115-129]

The continuous double auction mechanism has been appliaditdunction radar resource man-
agement leading to the development and assessment of thim@mnrs Double Auction Parame-

ter Selection (CDAPS) algorithm which generates high permce radar resource management.
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[Chapter 7, pages 130-158]

The culmination of these individual aspects constitutesfitst application of agent systems to multi-

function radar resource management.

1.4 Publications
The following publications are a result of the work in thig$fs:
e Charlish, A., Woodbridge, K. and Griffiths, H.: Economic @digms in cognitive sensor signal

processingDefence Applications of Signal Processi@polum, Australia, July 2011. (by invita-

tion)

e Charlish, A., Woodbridge, K. and Griffiths, H.: Agent basedltifunction radar surveillance

control,IEEE International Radar ConferencKansas City, USA, May 2011.

¢ Ritchie, M., Charlish, A., Woodbridge, K. and Stove, A.: Aigption of Kullback-Leibler diver-
gence to sea clutter estimatidEEE International Radar Conferenc&ansas City, USA, May

2011.

e Charlish, A., Woodbridge, K. and Griffiths, H.: Auction megtisms in multi-function radar re-

source managemerifoc. Cognitive Systems with Interactive SensGrawley, UK, Nov. 2010.

e Charlish, A., Woodbridge, K. and Griffiths, H.: Informatitireoretic measures for MFR tracking
control,Proc. IEEE International Radar Conferengep. 987-992, Washington, USA, May 2010.
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Chapter 2

Multifunction Radar

A multifunction radar system is capable of supporting numnsrtasks which in turn support differing
radar functions. The multi-functionality is primarily dslad by some degree of beam agility, which is
predominantly attributable to the use of an electronicstered, phased array antenna. In contrast to a
non-agile system where fixed behaviour and hence perforeiarspecified at design time, beam agility
allows the performance of the radar system to be adaptedglogerational deployment. Additionally,
as the execution of differing tasks is separable, the signdldata processing applied can be controlled
and optimised given the objectives of each specific task.

This chapter describes the theoretical principles of theadiand data processing that can be applied
in a multifunction radar. The automatic radar resource rgani required to optimise this processing,
which in this thesis is taken as the selection of parameteralf supported tasks, which controls the
processing applied. Included in this chapter is fundameatir theory, the production and processing
of radar measurements, and the Electronically Steered/AESA) antenna. Finally, an overview of the
system’s multifunction capability in terms of the varietijtask parameters and modes under control is

given, alongside examples of operational systems.

2.1 Radar Systems

The Radio Detection And Ranging (RaDAR) system has maturedaperiod exceeding half a century
in a range of civilian and military applications for the gralj airborne and maritime domains. As the
name suggests, radar systems provide detection and azcamge measurement of distant or otherwise
unobservable objects. The following radar system theosypnavided the basis upon which multifunc-

tion radar systems are built.

2.1.1 Radar Fundamentals
A radar operates by emitting electromagnetic energy fronardenna, the energy is scattered by the
environment, with some of the scattered energy being exéepted by the receiving antenna. In the

monostatic case, which is assumed throughout this thdmstransmit and receive antennas are co-
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located and potentially a single antenna is used for bottsinéssion and reception. The received signal
can be processed to retrieve information on the environsggit as the presence and state of a target.
Target range can be found by measuring the time taken for segal make the round trip from the
antenna, to the target, and back to the antenna. The royntinte ;) is proportional to target range
(Re):

_ 20

ta == (2.1)

wherec is the speed of the electromagnetic wave propagation. Ssigegpulses are transmitted at time
intervals dictated by the pulse repetition frequency (PR¥nge ambiguities occur, which depend on
the PRF, when it is not clear from which of the recently traitt®d pulses the received pulse originated.

The maximum unambiguous rang, is proportional to the time interval between pulsgs
R, =— (2.2)

and the time interval between pulses is inversely propoalito the pulse repetition frequenay, (=
ﬁ). The radar range resolutioRf), which is the minimum separation between two targets whieh

individually resolvable, is inversely proportional to thignal bandwidth3:
R, = — (2.3)

For an uncompressed pulse= 1, wherer is the pulse width, in which case the range resolution can
be visualised as the two way distance travelled during ofsepduration. Longer pulses allow for an
increase in the average transmitted power given a fixed RRRFs@aresult in a greater detection range.
However, as longer pulses result in poorer range resolupiolse compression is used which increases
the bandwidth of the signal to improve range resolution &hilaintaining the larger energy of a longer

pulse.

Assuming a coherent pulse train, target radial velocityamge-rate, can be found by measuring
the Doppler shift on the returned pulses. The doppler shiftoportional to the relative radial velocity

v, between the radar and the target according to:

o 2vu, fe
o C

fa (2.4)

wheref, is the Doppler frequency anfl is the frequency of the carrier. The spectrum of the pulsgd si
nal contains spikes above and below the carrier frequentyliiples of the pulse repetition frequency.
Therefore, doppler ambiguities occur for low PRFs when itasclear how many multiples of the PRF

are contained in the measured doppler shift. The width df spike determines the doppler resolution,
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which is inversely proportional to the duration of the cahdrpulse train. High-PRF (HPRF) radar is
conventionally defined to give unambiguous doppler measent, Low-PRF (LPRF) radar is conven-
tionally defined to give unambiguous range measurementdadilm-PRF (MPRF) is conventionally

defined to give both ambiguous range and doppler measurement

Simple analysis of the monostatic radar-target geomegigygithe widely used radar range equation
which provides an indication of the received power from wattiee maximum detection range for a given
target can be deduced. The geometry is modelled as an anatiagng powetP; with directional gain
G,, which is intercepted and isotropically reradiated by theyeét before being re-intercepted by an
antenna with receiver gaifi,.. Assuming free space with no losses, the received singiempdwerP,

can be calculated as the product of three terms [Skolnik R0O0

. Pth g GT)\2
" AnR? 4AnR}? 4m

(2.5)

whereo is the target radar cross section anid the wavelength of the carrier. The first term is the power
density at rangd?; given a transmit poweP; and transmit antenna ga{#;. The second term is the
power per unit area at the receiver given a target of radascectiorr. The final term is the receiver
antenna effective ared. which intercepts the return. Given the minimum detectaigleda is S,,,;,, and

incorporating losses,, this can be rearranged to give the maximum detectable rEpgas:

PthGT)\QO'
_ 4 _ 2.
B \/ (4m)3SminLp (2.6)

Smin 1S Often limited by thermal noise in the receiver, which carrépresented as a termination resistor
at the receiver antenna output. This equivalent resisteahaeffective temperatuf® (Kelvins) which
passes noise with spectral densiy = kT, wherek = 1.38 x 10~23 J/K is Boltzmann’s constant. The
temperature of the noise source is expressed in terms oeahsdurce with temperatufi® = 290K,
multiplied by a noise factofF;, to account for the non-ideal nature of the receiver. Theenpswer

N = Ny B whereB is the bandwidth of the receiver can be combined with theiredwsignal to noise

ratio SN R for detection, to give the minimum detectable signal:
Smin = kToBF,SNR (2.7

where the quantity7, has a convenient round valueof 10~2!. Substitution of Eq. 2.7 into Eq. 2.6
with SN R = 1 yields the maximum instrumental rang®g, or the range at which th& N R is unity for

an expected radar cross section. Calculatio®@fllows the radar range equation to be conveniently
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expressed as [Blackman and Popoli, 1999]:

SNR = (%)4 (2.8)

giving the SN R as a function of range.

2.1.2 Radar Signal Processing

Given the pulsed operation described in the precedingmsedtis required to process the received signal
to extract measurementinformation. Itis possible to poedueasurement data of target range and radial

velocity as well as separable measurements of azimuth amdtan.

2.1.2.1 Range and Radial Velocity

Knowledge of the transmitted signal enables the receivgmbsito be processed to detect and measure
a potential time delay and doppler shift which is relatedaioge and radial velocity according to Eq.
2.1 and Eq. 2.4 respectively [Skolnik, 2008]. The transdisignals;(¢) is comprised of a sinusoidal

carrier, of frequency., which is modulated by a comparatively slowly varying waref:

st(t) = g(t) cos(2m fet + &(t)) (2.9)

whereg(t) is the amplitude modulation angl¢) is the phase modulation of the waveform. This signal is
known as a narrow bandpass signal as the signal bandwidthait csompared to the carrier frequency.

The complex envelope of this transmit sigmal(t) is expressed as:
ur(t) = g(t)e?™" (2.10)

which undergoes an additional modulation by the envirortmg&hich implants the information to be
extracted. Specifically, the transmit signal undergoesna tilelayt,, a shift in frequencyf; and an

attenuation in amplitudd,.. The received signal,(¢) can therefore be expressed as:
$r(t) = Apg(t — tq) cos2m(fe + fa)(t — ta) + &t — ta)] (2.11)

If a target is present a delayed and potentially frequenifiestreplica of the complex envelope of the
transmit signalir (t —t4) is received. Additionally, the time delay shifts the phakthe received signal
by —27 f .ty due to the oscillations of the carrier and the doppler sipifti@s a linear phase modulation

of e727fa(t=ta) Combining these elements gives the complex envelope ottteved signal(t) as:

up(t) = Ape™I2mfetay (t — t4)es?mfalt=ta) (2.12)
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To preserve the phase information the received signal isodetated by two channels in the receiver.
The in-phase (I) channel demodulatesdoy(27 f.t) and therr/2 out of phase quadrature channel (Q)

demodulates by- sin(27 f.t).

After demodulation the received signal is filtered by a mattfiter [North, 1963] which maximises
signal to noise ratio by exploiting the knowledge of the smait signal. Maximum signal to noise ratio

in the presence of white noise is achieved when the filter Hisjaency response:
Hy(f) = keUg(f)e 72t (2.13)

wherex denotes the conjugatg, is a complex constant ang is a time delay required to maintain a
casual impulse response. This matches the frequency respbithe filter to the expected spectrum of

the signal given the known transmit signal. The correspuganpulse response is expressed:
h(t) = keus(to — t) (2.14)

which is the conjugate of the transmit signal delayed in tiffieis matched filter produces a maximum
possible output SNR [North, 1963] depending on the recebamtpass signal enerdy,. and noise
power spectrum at the filter inpiMy:

2F

NR=21"2T" 2.1
SNR N (2.15)

however, when incorrectly matched the maximum SNR is noteseld. The autocorrelation function
describes the output of a specific matched filter for varyingetdelay and doppler shifts and can be

expressed as [Skolnik, 2008]:

x(ta, fa) = /Oo ur () wh(t + tg)el?™fat dt (2.16)

oo

Woodward’s [Woodward, 1980] ambiguity function follows & squared magnitude of the autocor-
relation function¥ (¢4, f4) = |x(ta, f2)|>. The autocorrelation and ambiguity function describe the
fundamental measurement capability of waveform and maditditter by demonstrating the resolution
and sidelobe properties as well as allowing measures su€lslasr information to be extracted. Mea-
surement data for range and range rate is produced fromspenses of a bank of matched filters within

the unambiguous range and doppler limits.

By matching the filter over the pulse train duration, coheretegration is achieved. The phase
coherence ensures that the amplitude and phase of tangetyere correlated whereas noise returns are
uncorrelated. As such, noise returns cancel and targehsetwmbine which gives an improvement in

signal to noise ratio (SNR). Maximum practical cohererggnaition time is limited by target movement,
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as the target returns must be integrated in one filter.

Incoherent integration sums the magnitude of the receiggdbkafter envelope detection when the
phase information is removed. Noise integrates in the saayeas target returns and an improvement
in SNR is not achieved. Although incoherent integratioreiss| efficient than coherent integration, it
is required to integrate the multiple PRF dwells from a seniglirst, which are used to mitigate range-
Doppler blind zones. Also, by averaging the returns oveirtegration period the signal is low passed
filtered and the fluctuation in the noise amplitude reducellis improves detection sensitivity as the

detection threshold multiplier can be lowered without eaging the false alarm probability.

2.1.2.2 Bearing

Estimates of the target's angular location can be produdgtdsub-beamwidth accuracy by comparing
the signals from two or more beams. This can be achieved ssiggential beams, where measurement
accuracy is hindered by scintillation errors, or prefeyalding simultaneous beams on a single (mono)

pulse.

Amplitude comparison monopulse interpolates using thiedihce in amplitude between beams
slightly separated in angle. Fig 2.1(a) shows the respohse/® beamsb; () and b2(6) with 1°
beamwidth separated hy7° and Fig. 2.1(b) shows the sum and difference response ofdamé
As the magnitude of the difference depends on the targeakagnplitude, the difference respon&éd)

is normalised by the sum of the bea®) to give the error signal response:

ks (0) = = 22(9) (2.17)

which is shown in Fig 2.1(c).The gradient of this discrimioa slopek’ (6) determines the sensitivity of
the measurement which is quantified at the point where thesunement slope crosses the measurement
axisk,, = k.(0).

Thermal noise creates an error in the monopulse measurgaeatfunction of signal to noise ratio

as derived by Barton [2004] which can be modelled by the tlaémise error standard deviatien:

B 0B . UB
EnV2SNR  2v/SNR

o) (2.18)

wherefp is the3d B beamwidth. It is common to assume the measurement erratesthdeviatiory,
is solely due to thermal noise. When ti&’ R becomes large the measurement error becomes hardware

limited and does not continue to reduce.

Targets which are offset from the beam centre experiencesadbgain relative to the maximum

antenna gain which, can be approximately modelled by redtbie target SNR according to a Gaussian

30



2.1. Radar Systems

Reponse of two Gaussian Beams Seperated in Angle Sum and Difference Beams
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Figure 2.1: Process of monopulse measurement

loss function [Blackman and Popoli, 1999]:

Crl(nr —np)? + (er — €p)?] (2.19)

SNR = SNRyexp | — :
GB

where SN Ry is the beam centre SNRy andnp are true and predicted azimuth angd andep are

the true and predicted elevations;, can be taken a%.77 which is found by substitutin@%{,\f—ﬁ =0.5

when the angle off boresight{(nr — nr)2? + (er — €p)?) is equal to half the half power beamwidth
[Blackman and Popoli, 1999]. This loss in SNR affects the sneament accuracy as defined by Eq.

2.18.

In addition to the loss in SNR, the accuracy of the monopulsasurement degrades as the targetis
off the centre of the measurement axis, as evident by thetieahin sensitivity visible in Fig. 2.1(c). The
off-boresight measurement accurafycan be modelled by including a second component of thermal
noise error, which causes a scaling of the on-boresightunea®nt accuracy :

. Or
o9 = 0gr/ 1+ (km—)2 (2.20)
0p
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whered; is the offset angle.

2.1.3 Electronically Steered Array

The Electronically Steered Array (ESA) [Stimson, 1998; Wji2001; Skolnik, 2008] is able to provide

the multifunction radar system’s requirement for beamiiggilThe ESA is an antenna with an array of
radiating elements which have controllable phase and &mlglias shown in Fig. 2.2. Modern electronic

components allow for the array control to be rapidly appligdch enables an agile and flexible beam.

-(n-1)/2 -1 0 1 T e

Figure 2.2: Linear electronically steered array, steeaingngled, [Wirth, 2001]

An array ofn elements with linear spacingeach isotropically radiating equal amplitude and phase
produces a radiation pattern which can be found by summangehtor contributions of all the elements.
The subsequent radiation pattdtp(6) is [Skolnik, 2008]:

sin[nm(s/A) sin 6]

Ea(6) = nsin[m(s/\) sin 6] (2.21)

and is plotted in Fig. 2.3(a) for0 and20 elements with a spacing of/2. The main lobe is clearly
identifiable at¢ = 0 with additional side lobes. Th&I/B beamwidth in radians is a function of the

wavelength) and the length of the apertutén the relevant dimension:

886
1y = 2550 22)

which is evident in Fig. 2.3(a) where increasing the numbelements t®0 creates a longer aperture
which reduces the beamwidth.

Fig. 2.3(b) shows the radiation pattern férelements with &.5\ spacing. Additional main beams
called grating lobes can be seentdi.23237. Grating lobes occur, due to spatial under-sampling, at

anglesd, determined by the element spacing in relation to the waggen

A
sinf, = +—— (2.23)
S
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wherem is an integem = 1,2, 3.......
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Figure 2.3: Linear array radiation patterns

For a rectangular array, the gain of the main beam is a fumatfadhe wavelength and effective

aperture area and assuming the same transmit and recedvmastare used:

Ae
Gy =Gr=drs (2.24)

where the effective aperture area is related to the truetaréle aperture efficiency, i.e A, = nAr

whereAr is the actual aperture area.

In reality each element has a non-isotropic radiation patignich necessitates the inclusion of the

element factoi, to produce the complete radiation pattéf(y):

sin[nm(s/\) sin 6]
nsin[m(s/\) sin 6]

(2.25)

The pointing angle of the main beam can be steered, as shadvig.i@.2, by applying linear phase
increments\ p between each element. It can be seen that the phase diffaesmdred to steer the beam
at angled is the difference in phase over the distadee. As there ar@r radians in one wavelength
andAr = ssin 6 the difference in phase between elements required to dtaarangle, is:

27s sin 6y

Dp="= (2.26)

The linear array radiation pattern in Eq. 2.21 can be addptettiude the effect of beam steering

at angled, to give:
sin[nz(s/\)(sin 8 — sin )]

E0) = E.(0) nsinfr(s/\)(sin 6 — sin 6y)]

(2.27)
this radiation pattern is shown in Fig. 2.4 for a beam steat@gl= — /4 in comparison to a linear array
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where no beam steering is applied. When scanning off the kamtasight the effective aperture length
is reduced byos 6, which increases the beamwidth according to Eq. 2.22. Homvewvatual coupling
and the non-isotropic nature of the array elements causemiaway gain to drop off by approximately

cos!'-50 [Sabatini and Tarantino, 1994].

Radiation Pattern

Radiation Pattern (dB)
W
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|
N
o

-25

_30 L 1
-0.5 . . . -0.1 0 0.1 0.2
Angle (rtradians)

Figure 2.4: Linear array radiation pattern steere@hat —m /2

When radiating elements are closely spaced, energy is ediygitween elements which affects the
each element’s radiation pattern. The magnitude of thelompepends on the distance between the
elements and the distribution pattern of the elements imtrey. For an ESA where there are numerous
closely spaced elements the effect of mutual coupling castio@g and can result in loss of the main
beam, the magnitude of the loss depending on the coherefiications of the coupling signals between
elements in the array.

The spacing between elements is dictated by the desire id gvating lobes, which must not
appear within the field of view (FOV) when the array is steeiethe maximum scan angle. Grating

lobes are avoided if:
1

_ 2.28
1+ |sin90| ( )

°<
A
which gives a maximum spacing gffor a=+90° FOV, 0.536 for a£60° FOV and0.586\ for a £45°

FOV. Loss of gain due to off boresight scanning typicallyitsrthe field of view to+60° or +45° and

so several arrays or rotating arrays must be used foB60lt coverage.

2.2 Measurement Data Processing

The fundamental radar system described in the precedinmsgroduces range, doppler and angle

measurement data. However, the multifunction radar systerst apply significant data processing

34



2.2. Measurement Data Processing

before it can be presented to the operator in a meaningful Waig processing involves the automatic
detection and tracking of targets within the measuremedat ddne multifunction radar system is required

to optimise the data processing given the objectives of gaihidual task.

2.2.1 Detection

Detection is a binary hypothesis testing problem to diffiéiege between the target present hypothesis
Hp and target not present hypotheé&is;. The Neyman-Pearson lemma defines the optimal decision
region for a fixed probability of false alarfr 4 as a threshold” on likelihood ratioL R for data vector

D = {dl, ,dn}
o p(d17 ey dn|HT) >Hr

LR(dy,....d,) =
(d, ., dn) p(dy, ..., dn|Hy) <H~

T (2.29)

whereT is chosen so that(dy, ...,d, > T|Hx) = Pra. The optimality condition ensures the proba-
bility of detectionPp, is maximised for the fixed false alarm probability.

When the receiver is dominated by thermal noise, the targepresent hypothesis relates to an
output of the | and Q channels according to a complex Gaugsialmability density function [Ward
et al., 2006]. The corresponding envelope of the signak \/E§+7E2 which is the output from a

linear envelope detector, is characterised by a Rayleighahility density function:

Pn(E) = 28 exp (‘_EQ) (2.30)

wherez,, is the mean noise intensity. The target present hypothasive assumed to be a coherent
signal embedded in the thermal noise, which produces alsigtheenvelope characterised by a Rician

probability density function:

Pr(E|A) = 2 exp <u> 0 (%) (2.31)

Z’ﬂ n gn

whereA is the amplitude of the signal arfd is the modified Bessel function in the first kind with zero
order. Fig. 2.5 shows the probability density functionstfar envelope of thermal noise and target plus
thermal noise. It can be shown through the Neyman-Pearsoméethat thresholding on the envelope
of the measurement data is optimal for large signals [Skp#008]. An example of such a threshold on

the signal envelope is marked in Fig. 2.5.

Alternatively, a square law envelope detector can be uséchvnoduces an output proportional to
the intensityz = E? of the signal. In this case the target not present hypothesish corresponds to

thermal noise, has an exponential probability density fionc

Py () = - exp <—Z) (2.32)
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Envelope Probability Density for Noise and Target Plus Noise
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Figure 2.5: Probability density functions for the envelg@oise and target plus noise

and the target present hypothesis, which can be assumeahsrait signal embedded in thermal noise,

is characterised by:

Pr(z]4) = - exp <Z + AQ) T <2Aﬁ> (2.33)

Zn Zn Zn

It can be shown through the Neyman-Pearson lemma that thiddish on the intensity of the measure-
ment data is optimal for small signals. However, the lingadt aquare law detectors exhibit similar

detection performance.

2.2.1.1 Calculation of Detection Probability

The probability of detection and false alarm for thresHbldan be seen with reference to Fig. 2.5 as
the integral of the respective probability density funoi@bove the threshold. Marcum [Marcum, 1947,
1948] investigated this statistical nature of radar mearsent data and produced functions for calculat-
ing the probability of detection and probability of falseuah for a number of incoherently integrated

pulses.

Marcum gave the probability of detection of a single norsedipulse as:

Pp(A,T) = /OO e GTANL (24/ZA) dz = Q(V24,V2T) (2.34)

T
Prp=e¢ T (2.35)

where is Marcum’s Q-function.
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2.2.1.2 Target Fluctuation

Swerling extended Marcum’s work to consider the non-flutitigeor Swerling 0 case and four different
cases of fluctuating target radar cross section and heneal s@mnoise ratio. In case one and two the
target is modelled as a number of independent scatters, @@fowhich is dominant, and is used to
describe large complex targets. The radar cross sectiotuditions follow a Rayleigh, or chi-squared

with two degrees of freedom, probability density function:
_ 1 —0
w(o,5) = — exp (T) (2.36)
g g

whereg is the mean radar cross section. For case one the fluctuattons between scans and for case
two the fluctuations occur between pulses. The probabifityebection for cases one and two can be

calculated as a function of the false alarm probability dredSNR:
Pp = P/{ITSNE) (2.37)

Cases three and four model the target as a single large donsicatterer surrounded by a number

of smaller scatters, which is assumed to be characterisadRigian probability density function:
4 -2
w(o,d) = _—U exp (TU) (2.38)
g

for case three the fluctuations occur between scans and $erfoar the fluctuations occur between

pulses. These four cases are summarised in Table 2.1.

Table 2.1: Swerling target fluctuation models

Scan to Scar} Pulse to Pulse
Many Small Casel Case 2
One Large Case 3 Case 4

2.2.1.3 False Alarm Control

In reality a global homogenous background is rarely facetl smthe use of a fixed global threshold
would produce local regions of excessive false alarms winghtload the data processor and tracker. To
avoid this it is necessary to estimate the statistics ofdballbackground to apply a dynamic threshold.
Typically a model of the probability density of the backgnaduis known, with potentially unknown
parameters. A constant false alarm rate detector uses Hlgealbackground reference cells to estimate
the unknown parameters of the model. The test and referatiseace separated by a number of guard
cells to ensure the target is not present in the reference.

For a Rayleigh background it is sufficient to estimate the nmieaorder to set the correct local
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2.2. Measurement Data Processing

threshold to maintain a specified probability of false alaifhis can be implemented through a Cell-
Averaging (CA)-CFAR which is shown in Figure 2.6. In the CAAR a number of reference cells,
seperated from the cell under test by guard cells, are usedtitmate the mean intensity of the local
background. This mean is multiplied by the threshold mlitipto produce the intensity threshold

which must be exceeded to declare the target presence.

2t

4> sz -

Reference Cells Reference Cells

Guard Test | Guard
........ Cell Cell Cell

a !

Figure 2.6: Cell averaging constant false alarm rate detect

2.2.2 Tracking

Tracking is the process of fusing sequences of detectedurezaents to estimate the kinematics of the
underlying targets. It is required to estimate the statdeftarget as a kinematic parameter vector
such as the position and velocity in cartesian coordina®sX = (z,2’,y,’)T. The kinematic state
of the targetr;, is assumed to evolve as a potentially non-linear discrete sitochastic system described

[Ristic et al., 2004] by the dynamic equation:

Tk = fo—1(Tp—1,vk-1) (2.39)

where f;,_1 describes the predictable disturbances to motign,; is the previous state ang,_; is
a noise sequence which allows for unpredicted disturbatocesotion. Measurements; are used to
estimate the target state which are received corrupted by measurement nejsand so are modelled
by the measurement equation:

21, = hg(xr, wi) (2.40)

wherehy, is the observation function and both the process nojsand measurement noise, are
assumed known. Fig. 2.7 shows a block diagram of the distiraéesequential state estimation process,
adapted from Bar-Shalom et al. [2001]. Bayes' theorem plesithe framework for sequential state

estimation, enabling new measurements to be fused wittnatgs from previous time steps:

p(zx|Tr)p(r] Zk-1)
p(2k|Zk-1)

p(x|Zk) = (2.41)
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wherep(zi|xy) is the likelihood functionp (x| Z,—1) is the state estimate at tinke- 1 andp(zx|Zx—-1)
is a normalising constant. This can be re-arranged to gieeofitimal recursive Bayesian estimator

[Ristic and Hernandez, 2008]:

Prediction:p(zis1|Zi) = [ plarilon)ploil2) (2.42)

T T zi|Z
UpdaIEZp(mk+1|Zk+1) o P( k+1| k)P( k| k)

— 2.43
J p(zrs1lzh)p(Trg 1] Zi) . dag (243)

The state of the underlying system can be estimated as themminmean square estimate, which is the

conditional mean of the state estimate:

Target Process Measurement
Noise Noise
V-1 Wk

Dynamic

Target State Measurement Measurements State
System System Estimator

X =i 1% 1 ViV 2 = Iyl wy) POyl

State Estimate

Figure 2.7: Target dynamic system, measurement systemegestial state estimation

This optimal estimator requires the propagation of theremtosterior probability density which is
a potentially infinite data vector. As a result it is necegsaifind closed form or sub-optimal solutions.
The Kalman filter is a closed form solution which can be usedefdynamic and measurement models
are linear and the process and measurement noises are &augsh covariances denotdt{v, v, | =
Qi and E[w,wy,] = Ry. As the state estimate is Gaussian it is completely destiiyeits first two

moments, the conditional vector mean Eq. 2.44 and the cvegimatrix:

Py = Ellvr — @gpl[ve — xp]’| 21 (2.45)

The Kalman filter breaks the sequential estimation of themaeal covariance into prediction and

update stages as follows:
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Stage 1 - Prediction

State estimate predictiofty, 1 = Fi—1%5_1)k—1 (2.46)

State covariance predictioly,_, = Fk_lPk,”k,lF,g_l + Qr_1 (2.47)
Prediction of next measuremeny;,_, = Hxyr—1 (2.48)
Innovation covariance calculatioS; = Ry, + H;CP,C‘,C,lH,’C (2.49)

Stage 2 -Updat€On receiving measuremesy)

Measurement residual calculatiofy; = zx — Zjx—1 (2.50)
Filter Gains Calculationy, = Py ;_1 H;,S; " (2.51)

State estimate updat@;,, = Zxx—1 + Wiz (2.52)

State covariance updat&, = Pyr—1 — Wi S W, (2.53)

The linear-Gaussian assumptions at the heart of the Kalntan ffarely hold in reality and so
it is often necessary to use sub-optimal methods. Nonilineadels can be incorporated using the
extended Kalman filter, which approximates the non-lineacfions, or the unscented Kalman filter,

which approximates the posterior distribution as a Ganssim.

2.2.3 Kinematic Models

The implementation of the Kalman filter requires the spedafifi;mm of models for the target dynamics
and the measurement system. The measurement system modehddy be derived from Sec 2.1.2,
however, the choice of target process noise covariance amghaic system transition matrix are not so
apparent. Various models exist which are suited to diffetarget dynamics and the subsequent choice

can have significant effect on tracking performance.

2.2.3.1 Continuous White Noise Models

Continuous white noise models assume that deviations wigiedle motion enter the system as zero
mean white nois@rocessi(t), i.e. E[p(t)] = 0 and E[p(t)o(r)] = ¢é(t — 7). The process noise
intensity ¢ represents the strength of the deviations from predictataigon. For an arbitrary position
coordinatet, the white noise can enter the system as a white noise aatiele (t) = (t) or white
noise jerk (derivative of acceleratiog)(t) = i7(t). As derived by Bar-Shalom et al. [2001] this gives

the following system transition and process noise covadanatrices:
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Continuous white noise acceleration

. . I Ty
Transition matrix:Fy, = (2.54)

0 1

TP I
Process Noise Covariana@;, = E[viv}] = ;’2 2 q (2.55)
T T
Continuous white noise jerk
1 T 3T
Transition matrix:F, = | 0 1 T (2.56)
0 0 1
S
20 8 6
Process Noise Covariana@;, = E[v,v}] = %ﬁ %5 TTf q (2.57)

T T}
5+ = T

whereT}, is the time between time steps. When the process noise ityténis small these represent a

nearly constant velocity (NCV) and nearly constant acedilen (NCA) model respectively.

An alternative family of models called discrete white naisedels allow for deviations to motion
to enter the system as a zero mean white neéspienceThis manifests itself as a constant acceleration
or constant jerk over the sampling period, which is uncatesl to the previous time step. In this work
the previous continuous white noise models are preferréficesame amount of process noise enters the

system regardless of the length of the sampling intervadBinan and Popoli, 1999], i.e.:

Frp.Qn(Tk).Fr, + Qr(Th) = Qr(2T%) (2.58)
which is a useful property for adaptive update rate tracking

2.2.3.2 Singer

Singer [Singer, 1970] provides a more realistic model ofragdated acceleration sequence between time

steps represented as a Markov process:

E(k+1) = pm (k) + /1 - p2,0m (2.59)
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wherep,, = e #nTk B = % and® is the target manoeuvre time constdnts the target manoevure
standard deviation ang; is a zero mean unit standard deviation Gaussian distribraredom variable.

In the limit where the sampling interval is much less thamttaoeuvre time constant, the Singer model
tends to the continuous white noise jerk model in Eq. 2.56Eqd2.57. In the opposite case where the
sampling interval is much greater than the manoeuvre tinnstent then estimates of the acceleration
are not possible and so the Singer model tends to the connubite noise acceleration model in Eq.

2.54 and Eq. 2.55.

2.2.3.3 Adaptive Filtering

As target dynamics are likely to change over the track domaiit is necessary to implement adaptive
filtering methods which change the model of the target dynambn manoeuvre to ensure the filter is
matched to the current target dynamic.

Reactive Adaptation The residual vector from the tracking filter can be monitbie detect ma-
noeuvres. If the residual becomes large, as defined by sdmefrilhumb, then the process noise can be
increased to reduce the smoothing applied by the filter aagpdy more weight to new measurements.

Variable Dimension Filtering When the manoeuvre detection logic indicates a manoetivee,
dimension of the filter state can be changed. For exampleringseof benign motion a NCV can be
adopted, which can be changed to a NCA upon manoeuvre.

Multiple Model Filtering- Kalman filters with differing models are run in parallelethesidual is
monitored to determine the probability of each of the modhelisig correct. The output is each of the
filter outputs is merged by the filter probability.

From the available adaptive filtering techniques Interechiultiple Model (IMM) has emerged as

the best performer but with the greatest complexity and agatpnal cost.

2.2.4 Data Association

It was previously assumed that the Kalman filter was updatddasmeasurement that was known to be
from the target in question. In reality the measurementataido have originated from some form of
interference or from a different, nearby target. As sucla@asociation techniques are used to improve

correct measurement to track assignment.

2.2.4.1 Gating

To reduce the complexity of data association a gate is apfaidiscard unlikely target to track pairings.

The gate is centered on the tracks predicted state, and etdgtébns falling within this gate are consid-

ered for assignment. Rectangular and ellipsoidal gate®earsed, the size of which is determined by
the residual vector in the track. An ellipsoid gate specHigalid association region within the statistical
distanced?:

d* = ik/Slzlik <g (2.60)
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wherez is the measurement residual from Eq. 2.50 aixthe gate size. The volumé of the validation
gate is given by:

Vi = wg?|Sk[/? (2.61)
wheresS;, is the innovation covariance from Eq. 2.49.

2.2.4.2 Data Association Methods

Measurements falling within the validation gate are eligior track update. Common methods for data
association are global nearest neighbour, probabiligtia dssociation and multi-hypothesis tracking,
which have increasing complexity and effectiveness.

Global Nearest Neighbour (GNNNearest neighbour assigns an observation to a track widreb
subsequent assignment minimises the statistical distafralepossible observations to that track. GNN
performs this process for all tracks in the system and heroenises the global statistical distance for
all observation to track assignments. GNN is the simplept@ach to data association but performs
poorly in high clutter or dense target scenarios.

Probabilistic Data Association and Joint Probabilistic BeAssociation Probabilistic Data Asso-
ciation (PDA) forms hypotheses on all possible observatidrack assignments falling in the gate. The
probability of each of these being the correct assignmecslisulated and the hypotheses are merged,
weighted by the respective probabilities. Joint ProbstidiData Association (JPDA) extends PDA by
calculating the global probabilities of all observationslall tracks. PDA performs better in clutter than
GNN and JPDA performs better than PDA in multi-target situat. Both have extra computational cost
over GNN.

Multi-Hypothesis Tracking Multi-Hypothesis Tracking (MHT) forms hypotheses for ebgtion
to track assignments which are not merged at each scan aBA 8ypotheses are propagated so that
future scans resolve the uncertainty in previous time sflpis produces a branching tree of hypotheses,
each with a probability of being correct. This tree is mambge that unlikely hypothesis branches are
pruned to manage computation. MHT performs better in alattel dense target regions but at an added

computational cost.

2.2.5 Track Management

Track life cycles must be monitored for tracks to be corgesthrted, terminated and maintained in the
tracking system. Stages in the life cycle of a track can ihelalert, confirmation, initiation, tentative
track, established track or deleted track. Additional ¢évenay also occur over the duration of the
track life such as track splitting and track merging. Peficfor handling track life cycles are given in
Blackman and Popoli [1999].

Two methods for determining the track status are:
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Logic - In logic based track management systems the status oflkaigraetermined by some pre-
defined logic. Based on this logic, rules are designed tarehite the status of tracks. For example, a
simple rule to trigger track initiation may be two detecBasut of three, or an example condition for
track deletion may be three missed detections. More coatplitMarkov chains can be constructed to
define rules for statuses such as tentative, preliminargufirtned track.

Track Scoring Track scoring methods calculate the likelihood ratio af typothesis that a true

target is present against the hypothesis the returns ar@duierference [Blackman and Popoli, 1999]:

p(D|Hr)Py(Hr) _ Pr

LR = =
p(D|HN)Py(HN) — Pra

(2.62)

Where Hr and Hy; are the presence of true target and false alarm respectgiegn dataD. This is

discussed further in Sec 4.1.2.4.

2.3 Multifunction Radar Systems

The multifunction radar described in the preceding sedarequired to control and optimise the nu-
merous tasks which support differing radar functions. Thistrol can be applied as task parameter and

mode selection which is described in this section. Exampégational systems are also described.

2.3.1 Control Parameters

Optimising the configuration of the multifunction radar fmch task involves the selection of a set of
radar control parameters. There is a large number of paesrdehensions under control in a typical

multifunction radar system, which are listed in Table 2.2

Table 2.2: Multifunction radar task parameters

Parameter Description Impact

RF Frequency Frequency of the carrier e Choice of frequency motivated by utilising fre-
quency diversity which allows mitigation of in-

terference and environmental losses.

Continued on next page
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Table 2.2 - Continued from previous page.

Parameter Description

Impact

PRF (Hz) Frequency of pulses in

burst

Increasing PRF increases energy on target up
to the maximum allowable duty cycle but also
increases eclipsing loss for a fixed pulse width.
Increasing PRF increases unambiguous doppler
range but decreases unambiguous range.
Multiple PRFs selected in a burst to mitigate

range-Doppler blind zones.

Pulse Widthr (secs) Width of modulating

pulse.

Increasing pulse width increases energy on tar-
get up to the maximum allowable duty cycle but

also increases eclipsing loss for a fixed PRF.

Pulse Compressiop  Ratio of compressed to

uncompressed pulse.

Increasing pulse compression increases the sig-

nal bandwidth.

Coherent Integration Duration of coherent in-

(secs) tegration period.

Increasing coherent integration time improves
frequency resolution and SNR.
Practical integration time limited by target

movement.

Non-coherent Inte- Number of non-coherent

gration integrations.

Increasing non-coherent integrations enables
multiple dwells per burst, improving detection
probability for diverse targets.

Increasing non-coherent intregrations reduces
noise amplitude fluctuations which improves

detection sensitivity.

Time on Target (secs) Coherent and non-
coherent dwell duration

(secs).

Increasing time on target improves detection

performance.

Continued on next page
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Table 2.2 - Continued from previous page.

Parameter Description

Impact

Detection Threshold Threshold value for tar-

get present declaration.

Increasing threshold reducé%-4 but also re-
ducesPp.
Decreasing threshold increases but also in-

creasesd’r4.

Average  Transmit Peak power multiplied

PowerP,, (W) by duty factor.

Increasing average power increases SNR.
Assumed maximum peak power used for wave-

form given the duty factor constraint of the

hardware.

Surveillance Pattern Geometry of beams e Increasing beam spacing increases nulls in
within surveillance search pattern but reduces search loading.
region.

Tracking Beam Active track update e Directable to predicted target position for active

Pointing pointing angle. tracking.

Beamwidtiog (rad) 3dB angular width of

Minimum beam width maximises power aper-

beam. ture product.
e Wider beam is less sensitive to track uncer-
tainty.
Task Revisit Interval Time interval between e Smaller revisit interval improves task quality
(tf - secs) task dwells. but increases task loading.

Signal Processing Choice of processing ap-

plied

Correct choice of signal processing (STAP,
GMTI, SAR etc.) applied improves perfor-

mance for specific situations or objectives.

Measurement Data Choice of filter, manoeu-

Processing vre model and data asso-

ciation parameters.

Correct choice impacts quality of information

presented to operator, e.g. tracking error.

This choice of parameters can be thought of as the finite refmurce to be optimised. The

choice within each parameter dimension as well as the laxgeer of dimensions renders the optimal

parameter choice, which relates to effective resource gemant, a very challenging problem.

The simplest parameter set for an arbitrary task can be ta&kenbeam pointing direction, dwell
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length7; and revisit intervak;. The revisit interval is the time between successive dwalid the

dwell length is the time over which a beam position is illuatied and some integration is performed.
In this thesis it is assumed that the integration efficierscideal, equivalent to coherent integration,
which improves the signal to noise ratio. Additionally instlvork a function is defined as a purpose or
capability of the system, e.qg. tracking, a task is defineti@asdalisation of a function, e.g. tracking of a

specific target, and a look is defined as a dwell which supjassk.

2.3.2 Operational Modes

To reduce the parameter search space, operational modbe cefined that contain a smaller range of
tuneable parameters. This enables the prior knowledgeaof yd research and experimental knowledge
to be builtinto the system and prevents the resource mafrageunnecessarily rediscovering parameter
selection online. The suite of modes depend on the apgitdthmain, a broad description of potential

modes is given in this subsection.

2.3.2.1 Surveillance
Surveillance tasks survey volumes in space with the aims@fadiering new targets or discovering there
are no new targets.

Long Range SearchSearch of a specified region out to a long range with the aimaimising
the cumulative detection range. Requires longer dwellgitoedetect at long ranges.

Medium Range SearchSearch of a specified region or area of interest with the didetecting
targets but also producing measurements of good qualignkatic accuracy and so requires waveforms
giving reasonable range and doppler measurements.

Self Protect SearchSearch of a region with the aim of detecting close in ‘poptagets such as a
missile breaking the horizon. Requires a rapid revisitrirdkand high single hit probability of detection.

Track-While-Scan (TWS) associates observations from @ngestarget over multiple surveillance
scans to present to the operator as a single track. By usiagurements from surveillance scans this
allows tracking and surveillance to be performed simultasséy. The TWS algorithm is required to
perform the filtering, data association and managementtmardiscussed in Sec. 2.2.2, to correctly
associate observations to targets and reject false retuwigisating from clutter. TWS is a resource
efficient method for tracking multiple targets and so actiaeking should only be performed when

necessary to augment the performance achieved through TWS.

2.3.2.2 Tracking
Tracking functions support the fusing of detections to reiman estimate of target kinematics in a
volume of interest.

Track Update- Standard tracking mode to produce a measurement for areacsick. Time on

target and revisit interval depend on target kinematicsragdired track quality.
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Track MaintenanceRapid revisit or search around the targets predictedipasillowing a missed
detection.

Track Initiation/Confirmation Track initialisation mode follows the alert confirm stagerbquest-
ing a sequence of rapid revisit measurements with suffigi@etmatic accuracy to initialise the tracking
filter. Confirmation occurs when returns can be certified agrmating from a target dynamic model and

not from clutter.

Track Splitting/Merging Poor resolution may cause multiple targets to be repreddnt a single
track. Hence tracks may merge when two targets become uvabsoor split as the targets become
resolved. In either of these events it is required to scheednladditional initialisation period to stabilise

the kinematic estimates in the tracks.

2.3.2.3 Situational Assessment
Situational assessment functions are motivated by gatipérformation to improve future resource al-
location, or determining the current state of mission dfpjes.

Target ldentification/RecognitiorRecognition and identification of non-cooperative tasget

Target Acquisition Variety of modes which can be used to acquire targets whizch@mplementary
to mission objectives, such as Synthetic Aperture RadaR(Skverse-SAR (ISAR) or Ground Moving
Target Indicator (GMT]).

Raid AssessmenHigh resolution mode to determine the number of closelgsgdargets.

Clutter/Propagation Map Determine the current clutter and electromagnetic prapag condi-

tions, to improve future allocation decisions.

Calibration - Low priority tasks which are performed to ensure the ras@oirectly calibrated.

2.3.2.4 Weapons Support

It may also be necessary for the radar to provide support ssiles in the form of data uplink and
midcourse or terminal guidance. These tasks tend to beyhgymchronous with high priorities, as

untimely scheduling severely reduces the capability oftkapons system.

The radar resource manager (RRM) must be able to juggle théreznents of these differing
functions to maximise the performance of the system giverfittite resource and with respect to the

mission objectives.

2.3.3 Operational Systems

Operational multifunction radar systems are emergingémgttound, airborne and maritime domains. In

this section MESAR is given as an example of a multifunctier system.
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2.3.3.1 MESAR Programme

[Stafford, 2007] provides an overview of the UK Ministry ofeEence Multi-Function Electronically

Scanned Adaptive Radar (MESAR) programme. The aim of thgrarome was to produce a naval
active array radar for surveillance, fire control and btdiisnissile defence. The programme ran in
excess of twenty years from 1982 and involved the MESAR1gtype and MESAR?2 pre-production

prototype.

The MESARL1 system was created to provide a testbed for deivgjdey areas of the radar func-
tionality. Specifically, it was required to develop digitedaptive beamforming, wide frequency agile
bandwidth, digital waveform generation and pulse comjwessit was desired to generate a single
surveillance beam, or multiple simultaneous beams whichlaveupport variable surveillance update
rates by sector and adaptive tracking control. It was algaired to develop the real time software to

control the system.

As a initial prototype the MESAR1 system used an octagonah#d array for 918 elements ran-
domly populated with 156 transmitter receiver modules. péak power of each module was 2W which
produced a mean output power of less than 100W and an insttahtange of 55km. It had an ag-
ile frequency range between 2.7GHz-3.3GHz and a duty cyfcBd%. The MESAR2, shown in Fig.
2.8(a) programme utilised a new antenna with 1264 elemewtaanodule peak power of 10W allow an

instrumental range of 400km.

(a) MESAR (b) SAMPSON

Figure 2.8: MESAR2 and SAMPSON multifunction radars [BAES®&ms Insyte].

The success of the programme in developing and demonsegrteghniques led to the production
of the SAMPSON radar, shown in Fig. 2.8(b) which is going iopeeration on the Royal Navy Type 45
Destroyers. In this role SAMPSON is part of the principali-ait missile system providing weapons

support as well as complete long range air picture.
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2.4 Summary

Multifunction radars are capable of supporting differingétions by utilising an agile beam and config-

uring the radar operation for each task. This chapter hasepted basic radar theory and background
relevant to multifunction operation. The multifunctiordea system described in this chapter is con-
trolled by the automated resource manager and hence operédirmance is dictated by the resource
managers’ ability to adapt performance to a dynamic andntaioeenvironment. This resource manage-
ment control problem is the subject of the research in thi@sithand existing methods to the problem are

discussed in the following chapter.
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Chapter 3

Multifunction Radar Resource Management

Multifunction radar systems can dynamically adapt periamoe given changing mission objectives and
an uncertain environment. As performance is criticallyitéd by the effectiveness of the automated
radar resource manager, the management of the sensor bagdewidespread attention in the litera-
ture. The pertinence of sensor management [Musick and Ntalht994; Ng and Ng, 2000; Holloway,
2001] is frequently stressed and the need for a closed losgesy[Finch, 1998] is often identified.
It is also widely recognised that adaptive radar controllfPd, 1990; Powis et al., 1992] is required
which enables processed received measurements to be @it a priori knowledge [Guerci and
Baranoski, 2006] to dictate the future system behaviour.

This chapter provides a critical review of a range of muitiftion radar resource management
techniques. This includes assessment of the effect of @slneter selection on performance. General
methodologies and architectures for resource managemesgisa described, as well as specific methods
for performing scheduling and priority assignment. Thigee concludes by highlighting the gaps in

the existing work to which the research in this thesis isated.

3.1 Parameter Optimisation

The multifunction radar has a variety of parameters undetrobas detailed in Sec. 2.3.1. The process
of optimising task parameter selection requires knowlezigeow task parameter selection affects per-

formance. This section details the conclusions of suchesifdr the surveillance and tracking functions.

3.1.1 Surveillance

In contrast to a mechanically scanned surveillance radarevbeam position energy and sampling rate
are fixed, an MFR utilising an ESA can adapt the energy manageand sampling rate across the
surveillance region. Specifically, operational parantetenich characterise surveillance performance
are the beam pattern, revisit interval, beam spacing, gnehich is proportional to dwell length, and

detection threshold. Relevant overviews of the interpletydeen these parameters are given in Billetter

[1989]; Sabatini and Tarantino [1994].
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Beam agility enables sequential detection techniquesrvedlance, such as alert-confirm [Dana
and Moraitis, 1981; Trunk et al., 1995]. Alert-confirm implents a two stage detection policy where
a lowered detection threshold acts as a first detection stageduces alerts, which is followed by a
secondary confirmation dwell. The time interval betweentaied confirm stages is kept short to ensure
a highly correlated radar cross section. When using aterfien the total time for the search dwell can
be estimated as:

Ts =74+ PraNpT. (3.1)

wherer, andr¢ are the alert and confirm times respectively anhg is the number of detection bins.
Analysis in Dana and Moraitis [1981] indicates that a catedl confirmation dwell has a 5-6dB im-
provement in SNR compared to the equivalent non-cued dweis worth noting the detection im-
provement associated with sequential detection is onlgtigal when an independent confirm dwell is
achievable, such as in thermal noise. Correlated falsengtuhich are encountered in numerous clutter

environments reduce the effectiveness of this method.

Figure 3.1: Interleaved search beam pattern

Beam shaping loss, which occurs due to the target beingtdffsa the centre of the beam, can
cause nulls in the detection probability across the suargk region. It is common to use a triangular
search pattern which is shown by the solid lines in Fig. 3His §earch pattern offsets the beam centres
on adjacent search bars so that the beam centres form dér@rdjthe potential nulls in the surveillance
region are reduced. To reduce the severity of the potentithl the beam pattern can be interlaced
[Billam, 1997], so that the beam centres on the next scaniezeted at the previous nulls. Using this
method the next beam positions are shown in Fig. 3.1 by theedde. The triangular search pattern is

parameterised by the beam spacingwhich separates each beam by arglewhich is taken in terms
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of the beamwidth:

0s = Dplp (3.2)

A wider beam spacing requires fewer beams to search a fixemk spdoich reduces the time for the
search. However, increased energy per beam would be rddoidfset the loss of gain through beam
shaping losses. Analysis by Blackman and Popoli [1999] aifidrB [1992] indicates a suitable beam
spacing around,, = 0.75 with general insensitivity to the selection 6%, in the region betweef.6

and1.0.

The dwell energy and search revisit interval, which arelisely related, are the fundamental pa-
rameters which are adapted for surveillance in MFR syst&iflaifn, 1997, 1992]. Increasing the energy
of the dwell, which is proportional to the dwell length, ireises target detection probability and the sin-
gle look detection range. However, given a finite search ér&ime this also increases the revisit interval
which increases the target closure between scans and steeetiie cumulative detection range. Given
this trade the choice of dwell energy and revisit interval@cided based on the objective of the search
function. For example, a self protect search requires alregiisit and shorter dwell to detect close
proximity pop up targets, whereas a long range search rejailtonger dwell and longer revisit interval

to detect at greater ranges.

The ESA allows for multiple simultaneous beams to be steieréite surveillance region of interest.
By using a broad fan beam on transmit and a cluster of narrowilgeams on receive, higher angular
resolution and hence accuracy can be achieved [Wirth, 208ddlitionally, multiple beamforming on
receive allows for a faster search by enabling a shortesitéaterval. This results from the SNR being
increased, in comparison to using a broad fan beam on redsive factor of the number of simulta-
neous beams used as each of the narrow pencil beams has adgagheHowever, the improvement in
performance achieved through multiple beamforming isedffs/ the requirement for multiple receive

channels.

At present surveillance is performed according to pre-@efiparameters for differing sectors, with
little scenario or environmental relevance. As such thera requirement for resource management

techniques which can demonstrate intelligent adaptati@ndynamic and uncertain scenario.

3.1.2 Tracking

In comparison to surveillance there has been considerabig mork addressing resource management
methods for tracking. Key strands of this work provide mehfor adaptively selecting the task revisit
interval to maximising the number of targets in track androjsing waveform selection to improve
tracking performance. Additionally, the benchmark testscessfully contributed a platform to assess

and compare differing tracking and resource managememigpaees.
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3.1.2.1 Adaptive Tracking

Several studies have analysed the trades associated veifftivedupdate rate selection, with similar
conclusions. A standard approach [van Keuk and Blackma8B]19 to select a revisit interval based on
the earliest time after the filter angular prediction eratmng the major axis of the uncertainty ellipSe
exceeds a fraction of the beamwidth as shown in Fig. 3.2. fdetién is called the track sharpness and

denotedy. So, the next revisit timex 1 is chosen according to:

G(tK+1|K) = UO.HB (33)

Missed detections resulting from a non-unity probabilitgetection are followed by a revisit scheduled
at the minimum revisit time. Choosing the maximum revisiemal that bounds the target uncertainty
balances the trade between minimising resource consumibtiough long revisit intervals whilst min-
imising looks per update which is a consequence of beamipodiss and target uncertainty spread.
Assuming a Singer target dynamic model [Singer, 1970], gmession relating the revisit interval and
the track prediction error variance is presented, whicls&lito provide an estimate of the track loading.
The analysis indicates that the minimum energy allocasdndependent of target range and manoeuvre
and can be found through choice wf, Pr4 and SN Ry. The minimum track loading is desirable as
it is complementary to the system wide objective of maximgsine number of targets in track. This
minimum energy only considers target dynamics, and doesardtider data association uncertainty or
situation assessment which may necessitate parameteesgeldrted contrary to the suggested track

sharpness suggested. The Van Keuk model is discussed #t Inr@pc. 4.1.2.1.

Adaptive Tracking Filter Behaviour

Angular Uncertainty

Time

Figure 3.2: Track sharpness adaptive revisit strategy
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Gilson [1990] also investigates the power requirementrirking by comparing differing tracking
models for a track-while-scan and fire control radars. lbigfd that the power requirement for tracking
decreases monotonically with revisit interval for a trachile-scan radar whereas a minimum power
requirement exists for fire control radar, arouhaf the beamwidth which is similar to the findings
of van Keuk and Blackman [1993]. The study also shows thaptiver requirement for tracking is

relatively insensitive to tracking model.

3.1.2.2 Waveform Agile Tracking

In addition to controlling the time-energy budget of theaad is possible to dynamically adapt the
transmitted waveform. Sequential state estimation, wisiatherently closed loop, can provide the basis
for assessing the current effectiveness of each potergiadinit waveform. As different waveforms have
different resolution properties, adapting the waveform duce the target tracking error and improve
target detection by dynamically providing high resolutinithe necessary dimension.

The first efforts on intra-pulse waveform agile tracking [ggaw and Evans, 1994] analysed the
effect of waveform agility on tracking performance with adimensional target motion, unity probability
of detection and no clutter. The linearity of the problemmi¢ted the application of a Kalman filter
which could be updated with a variety of potential linear FMrp waveforms. The work successfully
produced closed form solutions for the waveform selectibiictv minimised the tracking MSE or the
tracking validation gate volume. This work was extendedrfikaw and Evans, 1997] to include the

effect of non-unity probability of detection and clutter.

Mutual information, which was first applied to waveform dgsfBell, 1993], has also been applied
to waveform selection. The mutual informatibfX; Z;.) between the target stalg, and the waveform
dependent measurement at timek quantifies the reduction in uncertainty in the target stateugh
the measurement. As such, the maximisation of mutual irdtion has successfully been applied as the

criterion for waveform selection from fixed libraries [Sutgga et al., 2006; Cochran et al., 2009].

This strand of work on waveform agile tracking has producgeresting conclusions summarised
in the review by Sira et al. [2009]. It is commented that ifpitdse waveform modulations which max-
imise time bandwidth are not necessarily best for trackimjthat dynamic waveform selection reduces
tracking error, most noticeably in cluttered environmetttis also commented that the use of non-linear
chirp waveforms offer significant improvements over linfaguency modulated chirp waveforms. De-
spite the poor ambiguity properties of non-linear chirp @favms, the ability to control the nature of the
ambiguity and hence choose where resolution is applieddwgsrthe tracking performance.

Waveform agile tracking is of significant relevance to theeyal area of sensor management as it
improves sensing efficiency. However, it is equally apfdieato non-multifunction systems as it is to

multifunction systems. This thesis does not concentrat@aweform agile tracking, instead the focus is
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on the allocation of the finite resource between numerougeting tasks.

3.1.2.3 Benchmarks

The benchmark simulations [Blair et al., 1994, 1995, 1998)juled a comparative testbed to assess
track and resource allocation performance against mamipgrtargets. The first benchmark [Blair et al.,
1994] studied the efficiency of tracking and allocation noelthgiven a fixed SNR, no false alarms and
a single target under six different manoeuvre scenariosul®efrom the benchmark tests indicated that
a Kalman filter, due to variable gain, enabled an increadeavitxed revisit interval over an — £ filter
[Rhatigan et al., 1994] from 0.85 to 1.0s. However, the keyltehighlighted the effectiveness of IMM
[Daeipour et al., 1994] which increased the revisit intétedl.3s and 1.5s with a fixed revisit and two
and three models respectively, and up to 2.3s with the ada@visit strategy described in Sec. 3.1.2.1.
The second benchmark [Blair et al., 1995, 1998; Kirubarajaal., 1998] extended the problem to
include different radar cross sections and the presendedfenic counter measures (ECM) in the form
of stand off jamming (SOJ) and range gate pull off (RGPO).ifiddal flexibility in resource allocation
was allowed through the selection of eight different wavef®with varied SNRs and detection thresh-
olds which produced differing false alarms probabiliti&ghilst confirming IMM as the best filtering
method, it was found that sophisticated data associat@mtques were required to combat the ECM.
Multiple Hypothesis Tracking (MHT) emerged as the bestqmanker, indicating a combined IMM/MHT
system to be favourable. It was also found that adaptiv&itngdn Electronic Counter Measures (ECM)
requires more conservative parameter selections tharestegin van Keuk and Blackman [1993] to

prevent unacceptably high track loss.

The benchmarks were very successful at comparing the peafure of filtering and data association
methods. They also demonstrated that when the resour@atdio is coupled to the task function, as
in adaptive tracking, the performance of the task functiam lsave profound effects on the subsequent
resource allocation. For example, if resources are alboidadsed on the track state covariance which is
poorly estimated by the tracker, extra resources are redjtorcompensate and ensure track maintenance.
The performance of the adaptive tracking strategy in 3l1w2as consolidated as it was used by all

successful methods in the benchmark tests.

3.2 Resource Management Architectures

This section describes the architectures of radar resonarggers which are typically made up from
combinations of modules providing specific functional®eneral sensor management architectures are
described by Musick and Malhotra [1994] and Blackman andR{©99] where the emphasis is placed
on combining heterogeneous and non-collocated sensoeseeneral sensor manager architectures are

relevant to a radar architecture and it is recognised tlgadtbhitecture can be centralised, decentralised
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or hierarchical. It is also recognised that the architexiuill typically require differing levels which
partition code cycle times.

Radar resource mangement architectures vary in the literatt generally contain priority assign-
ment, task managers and scheduler modules. It is accepattd thosed ‘macro’ loop is created which
encompasses the resource manager, transmission, theraneint and reception, with the potential for
additional micro loops within the resource manager. Men®hycated within the different modules, ca-
pable of storing fixed knowledge or a temporary memory of tireemt environment or scenario [Haykin,
2006].

A good radar resource management architecture is given bnafida et al., 2006] and presented in
Fig. 3.3. In this architecture an environmental model igltsegenerate requests for radar task functions
which utilise waveforms from a database. The requests argreesl a priority and formed into a timeline
for transmission by the scheduler. The received measursmaenused to update the task functions and

the environmental model which closes the loop.

Waveform [ Oberator ]
Database perato
Priority .
AssigrE—{ Scheduler ]—{ Transmitter }

Surveillance
A

Manager
Environment

Track
Manager

Task < Environment
Function Model
A
T T Receiver

Figure 3.3: Typical multifunction radar resource managetaechitecture [Miranda et al., 2006]

The architecture of the Multi-Function Electronically cad Adaptive Radar (MESAR) resource
manager [Stafford, 1990] provides insight into an operatid®RRM. The architecture contains a radar
job table, which is a list of jobs prioritised by radar furmetj a job controller to maintain the job table
and waveform selection and scheduler modules. This anthiteis able to dynamically schedule tasks
and select waveforms with respect to prioritisation in ausiland computationally efficient way.

In the architecture of M3R [Barbaresco et al., 2009], whigllso an operational system, the re-
source management is handled in sequence by the task maviziigepasses tasks to the dwell manger,

which passes dwells to the burst manager, which passegbtinstspace time manager for transmission.
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The main functionality is provided by the radar task manager dwell managers which access mission
data and a parameter server storing current environmergaamrio conditions. Although not explicit
it can be assumed that received measurements are procesgathte the parameter server and form a
closed loop. It can also be assumed that the burst and spaeeranagers become increasingly deter-
ministic due to proximity to the radar front end where thedioonstraints become increasingly critical.

This enables code cycle times to be partitioned which isiatfer efficient online computation.

3.3 Methodologies for Resource Management

This section describes multifunction radar resource mamegmt methodologies which broadly fit into
the two categories of heuristic or optimisation based. Thendary between resource management
methodologies and scheduling is somewhat blurred and ofteriap, however, techniques included in

this section involve some higher level decision making aouece utilisation.

3.3.1 Rules and Heuristics

Rules and heuristics which guide the resource allocationgss are widely implemented in operational
systems due to quantifiable task performance under specdigditions and low computational burden.
However, they generally suffer from poor and unpredictgleléormance. Typically, rules are generated
which aim to optimise the parameter selection of individiagks, according to the studies detailed in
Sec. 3.1. For example in tracking, it is common to select #wsit interval such that the angular
prediction error is maintained beneath a fraction of thenbe@th and a dwell length to maintain a
desired SNR [Kirubarajan et al., 1998].

Noyes [1998] provides a description of the rules used tordete track update times for MESAR.
Echoing the studies on adaptive tracking, the need to balahart revisit times to ensure the target is
close to the predicted position and long revisit times toimige radar usage is identified. The desired
executiontime is found as a track accuracy threshold ongidated state covariance and the latest execu-
tion time as a function of the predicted state covariancé; e passed to the scheduler. A requirement
on the track accuracy is used for the desired revisit intevisch reflects the application domain of the
MESAR system, whereby the track may need to meet accurastraimts to cue a weapons system.

Although rules used for tracking control are predominah#ged on track accuracy, there are cases
when resources should be allocated based on other crifaigxample, Davidson [2007] describes the
allocation of resource to aid rapid release in track intgiaeind Whitewood et al. [2007] details potential
improvement for crossing tracks. These alternatives a@naerjuence of track accuracy being of less
importance than track purity and maintenance for surveikasystems. Allocation based on differing
criteria has not been widely recognised, except in the tguailication [Song and Musicki, 2010]. A

single mechanism which can allocate resource based onpheudiiffering criteria such as accuracy and

58



3.3. Methodologies for Resource Management

track existence can improve radar functionality and is am@afithis thesis.

In the airborne domain, Bier et al. [1988] describes rulessénsor load management as well as
discussion on architecture. In Gillespie et al. [2005]krapdates are requested as determined by rules
in the tracker and have priority over the search dwells. i4&os are used to guide the search behaviour
given a variable tracking load which produces a dynamic,rgam search behaviour instead of a pre-
defined pattern. In overload the searching tasks on the tzatasight are preferred, where there is
maximum gain and maximum closing target velocity, whilersbzon the extremes of the radar are

severely degraded or dropped.

Vaughan [2001] defines empirical rules of thumb which pregid pragmatic system engineering
approach for MFR surveillance control. Five levels of rudee defined for gathering command and
environment information, prioritisation of sectors, alidion of time budget, generation of beam man-
agement strategy and generation of waveform and signaépsatg strategy. The crude nature of these
control rules is defended by arguing that performance ativaly insensitive to selections close to the
optimum. Although this is true to an extent, it is clear thamtrol that is this coarse can be significantly

improved upon.

These previous studies use rules and heuristics to optimésimdividual task parameters without
consideration of the system wide objectives and constait such the locally optimum parameters
represent a single desirable point in quality space wittfreitontext of the finite resource which places
additional responsibility on the scheduler to mediate tweas. The scheduler, which has a rapid code
cycle time, is only capable of making deterministic deaisi@ften producing poor and unpredictable
performance in overload which leads to non-graceful degffad. The system wide resource constraints
are tackled in the M3R system [Barbaresco et al., 2009] byigig local and global radar load han-
dling. A radar dwell set is tested for schedulability by ddiesing the summation of the individual dwell
loadingsly, or normalised dwell durationg = 74/ts, wherery is the coherent dwell duration arng
is the revisit interval. Resources are mainly balanced betwsearch and track, with TWS able to take
on some of the tracking load. Strategies based on time @instelaxation are used to enable graceful
degradation. Additionally, the system functionality i®pided by a set of rules which define dynamic
search allocation, strategies for robust dynamic trachilfecation and adaptation to the environment

through waveform selection.

Rules and heuristics are computationally efficient methafdguiding the resource allocation pro-
cess. However, individual parameter selection withoupees of the system wide resource constraint
can provide non-graceful degradation. As such currensrahel heuristics produce sub-optimal perfor-

mance. Despite this, rules and heuristics are widely aghpli@perational systems.
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3.3.2 Optimisation

Optimisation methods aim to minimise or maximise an obyectiinction over some time horizon. The
choice of objective function, which is a cost function to mirse or a utility function to maximise, has
significant impact. Optimisation methods can potentiaftyduce optimal solutions for a given objective
function but are severely hindered by the curse of dimemdiign Sensor management optimisation was
first presented by Nash [1977] who used linear programmirtetermine sensor to track assignments
using a cost function which combined both target priorities track accuracy. Optimisation methods

have only seen significant advances recently as computeegsimg power has increased.

3.3.2.1 Markov Decision Processes

Sensor management is frequently approached as a stootw@stiol problem where a multistage objec-
tive function is optimised using dynamic programming [Was et al., 2002]. In stochastic control
problems sequential decisions are made to perform variggnaovhich can generate varied observa-
tions. An optimal decision, whose outcome is uncertainpiggbit over the time horizon of future stages,
given information from previous observations. A Markov i3&n Process (MDP) is a type of stochas-
tic control problem where observations provide completermation on the true state of the underlying
dynamic system, which is modelled as a Markov process. Hew@artially Observable Markov Deci-
sion Processes (POMDP) are of more relevance to sensor eraraty where observations provide only
incomplete information on the true state of the underlyipgainic system. In this case the relationship
between the observed quantities and the underlying stat@dielled statistically as the measurements

are acquired.

In a POMDP [Hero et al., 2007] there exists a finite set of gesitatesX;, and possible actions
Ay, at each stagk. The pairing of an action with a state produces a single segard according to the
reward functionR(z, a). Decisions to take actions are based on information celttever previous de-
cision staged, = {zo, ao, ---.., Tk—1, ak—1, Tx }- A policy (I}) provides a mapping from information
to an actiony : X, — Ay depending on the most recent staje The policy dictates a trajectory of

actions which produce a total reward summed from each séglaction:

2

RERN(xN)+ Rk(xk,ak) (3.4)
0

>
Il

which is demonstrated in Fig. 3.4 where each circles reptesepossible state, each dashed line repre-
sents a possible action and each solid line representstiba taken. The reward for the whole trajectory
is the sum of the individual rewards marked in the figure.

The objective of the POMDP problem is to determine the polibjch maximises the total reward.

Given a finite state problem with finite stages it is possibledpresent a POMDP as an equivalent
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MDP which can be tackled using dynamic programming. Dynapn@gramming is a consequence
of Bellman’s Principle of Optimality which states that givany starting point on a complete optimal
trajectory, the remainder of the complete optimal trajacte also optimal for the problem starting from
that point. This principle enables the optimisation of teenplete problem to be decomposed into the

choice of optimal actions for each stage. The optimal adimstage: is determined by the Q-value:

Qka(Wk, a) =r(ng,a)+ E [V}*]_k_l(ﬂ_kJrl”ﬂ_k] (3.5)

which combines the reward of the current stager, a), and the expected reward from future stages
given the optimal objective function over future staggs , , up to time horizonH, wherer, is the
belief state at timé. Exact calculation of the Q-value, called the ‘lookahedslitypically intractable

and requires approximation.

Reward

= Ric1(y-1-8-1)

Timesteps

Figure 3.4: Markov decision problem.

The representation of a POMDP as a MDP to by solved be dynarogramming has been ap-
plied to classify multiple unknown objects using multi-ngosensor resource [Castanon, 1997]. The
combinatorial nature of potential belief states rapidiyders the problem intractable due to difficultly
in calculating the Q-value with increasing time horizon.sAgh efficient methods of approximating the
Q-value are required. This is addressed by Castanon [198&tenthe action paths are replaced with
average resource utilisations which enables the produdifimear optimal allocations. Various other
methods of approximating the Q-value have been proposed éteal. [2007], including policy rollout

[He and Chong, 2004, 2006] where a base policy is assessedhieMarlo simulation. In a different
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approach, Blatt and Hero [2006] attempt to solve the POMDORguinforcement learning. Despite
techniques for approximating the Q-value, POMDPs are hattlby the curse of dimensionality and so

have not been widely applied on operational systems whetedaction times are a crucial requirement.

3.3.2.2 Information Theoretic Optimisation

Information theoretic sensor management aims to optinfisériformation production of the sensor
by replacing the optimisation objective function with arfoirmation theoretic measure. Different in-
formation measures have been proposed for differing senaoagement problems. Hintz [1991] and
Hintz and McVey [1991] were first to examine the expected gedn Shannon entropy with a Kalman
filter tracking a target in one dimension. The discriminatgain or Kullback-Leibler divergence has
been suggested by Schmaedeke and Kastella [1998] for sentswget tasking and in Kastella [1997]
to optimise detection and classification. The Kullbackblei divergence has also been suggested for
tracking control [Kreucher et al., 2004, 2005c] combinethwhe joint multi-target probability density
(JMPD)[Kreucher et al., 2005b]. The way in which informatimeasures can be used to estimate the
Q-value lookahead in a POMDP is given in Kreucher and Her0620

Kreucher et al. [2005a] present a comparison of task drivehiaformation driven management
where it is found that task driven management performs tist floe a given task, however, informa-
tion driven management performs best when multiple compeierformance criteria are present. It is
therefore suggested that information can provide a ‘usadgoroxy’ to represent differing tasks. This
is an especially relevant assertion, as such, investig#tia role of information in multifunction radar

resource managementis an aim of this thesis.

3.3.2.3 Q-RAM

Q-RAM (Quality of Service (QoS) Resource Allocation Meth§@hosh et al., 2003, 2004; J.P. Hansen
and Lehoczky, 2004; Hansen et al., 2006] provides a ‘qualitgervice’ optimisation method which
aims to select parameters to produce a set of best qualty ¢igen the resource constraint. To this end,
Q-RAM models the nature of a dwell and parameter dimensidrismdefine the problem. Each radar
search or track dwell is modelled as a transmit power, tréisgan time, idle interval and reception
period. The QoS model is characterised as QoS dimensiongpemental dimensions, operational
dimensions and resource dimensions where the QoS dimenarenaspects of task quality, such as
position accuracy. Environmental dimensions are aspelstshvaffect performance but are outside of
control such as target range and manoeuvrability and dpeedtdimensions are aspects which affect
performance but are under control such as the task revisit fehe resource dimensions are the finite
resource to be distributed between tasks which is radar dimeading. A utility function is defined
which quantifies the satisfaction associated with eachtpoithe quality space. This utility model is

demonstrated in Fig. 3.5 where it can be seen that each apeparameter uses a different resource
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loading and produces a different task utility. Paramet&sgthe "concave majorant” [Hansen et al.,
2006], where utility per resource is maximised, are prefdrr

The goal of the optimisation is to choose operating pointg&zh task which maximise the global
utility production given constraints on radar energy antktutilisation. The high configurability of each
task combined with the large number of tasks creates a langéer of potential set points or operating
points for the problem. As such, fast traversal methods aeg which exploit the monotonic nature
of each parameter dimension to reduce the number of setpodmisidered to points on the concave
majorant.

The QoS model and differential utility function as an obieetfunction is a very useful contri-
bution of this work as has a strong theoretic justificatiomtigh the Karush-Kuhn-Tucker conditions.
However, despite the fast traversal techniques, the quimtecto compute the allocation for 300 targets
in 1 sec is too long for feasible application in an multifuontradar which requires rapid reaction to
pop-up targets. This is in part due to unoccupied regionb®ftbncave majorant being unnecessarily
and repetitively computed. A continuous mechanism whighsds the current allocation instead of fre-
quently recomputing the entire allocation could potehtiedduce the computation time to be feasible
for an operation system. The Q-RAM approach has been exdendeclude the allocation of multiple

resources [Irci et al., 20086].
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Figure 3.5: Resource utility space for an example task

3.3.2.4 Other Methods

Stromberg and Grahn [1996] describes a minimisation prolsielved by dynamic programming which
also encompasses scheduling. The problem is broken intadtition of a task to a set of already

scheduled tasks and aims to minimise the total schedulesl tynusing the highest PRF value that
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satisfies range and Doppler unambiguity requirement. Tgpsaach is described as optimal, however, it
is only optimal in the sense of the objective function whislthe shortest schedule time. In reality there

are more relevant constraints relating to task quality fhanthe shortest schedule time.

Tracking parameter control has also been considered asgamed optimisation problem [Zwaga
et al., 2003; Zwaga and Driessen, 2005; Boers et al., 2006]identified that the conventional method
of tracking parameter control is to select a revisit intéas a fraction of the half beamwidth and a
dwell length to maintain a required SNR. It is argued that tides not directly address the minimisation
of radar usage for accurate tracking as the separation nikaresis no dynamic trade off between
the dwell length and revisit interval and considering a hamiof one step ahead only provides a locally
optimised solution. This is addressed by formulating thebfem as a constrained minimisation problem
to minimise the tracking task loading subject to a constramthe updated state covariance, which
includes both the revisit interval and the dwell length.sTiminimisation of a non-linear function subject
to a non-linear inequality has no analytic solution, howeramerical solutions are provided which are
evaluated by the optimisation toolbox in MATLAB. It is fourtidat using the updated state covariance
means an SNR requirement is no longer needed and there ipaovement in radar loading. However,
it is recognised that computation is slow and only relevanotffline analysis to compare with alternative

online techniques.

3.3.3 Discussion

The translation of task constraints into the time domaioulih temporal reasoning methods presented
in Stromberg [1996]; Stromberg and Grahn [1996] is a somésihgle and obvious yet widely relevant
and applied technique. Translation into the time domaidbkEsacomputationally efficient control, as the
passing of time is the same for all tasks and so it is simplarectly compare differing task specific
constraints. This is especially relevant, but not ackndgsal in the work, for rotating systems where

the limited field of view creates a sequence of scheduabldaws.

Itis possible to identify characteristics of the two gethapproaches to radar resource management
through the literature. Rules and heuristics are simplepfilya computationally efficient and provide
quantifiable performance against specified conditions.aBse of these characteristics they have been
favoured for application to operational systems. Howewelividual rules are not able to address the
system wide objectives and despite quantifiable perforem@anspecified conditions they can produce
unpredictable and poor performance in unspecified comditioln contrast, optimisation approaches
produce optimal or near optimal allocations. However, ¢heethods have a high computational cost
and so have not been applied on operational systems. Thigge @@ echoed in the comparison between

dynamic programming and temporal reasoning by Strombetdzahn [1996].

These works indicate that there is a need for resource mar@agenechanisms which are computa-
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tionally light for application to operational systems vehiiproviding near optimal allocations especially

when overloaded.

3.4 Scheduling

The scheduler [French, 1981] is responsible for formingntiutiple requests from differing multifunc-
tion radar tasks into a transmittable timeline. This rolguiees it to resolve potential conflicts arising
from the finite nature of the resource. Scheduling approatdusely fit into two categories, local opti-
mum or best first, a good overview of these differing typestmafound in Blackman and Popoli [1999].
There is overlap between schedulers and the resource nmaaageethodologies of Sec. 3.3, the sched-
uler is differentiated in this thesis as a module which tuetgiests into a timeline without higher level

decision making capability.

3.4.1 Local Optimum

Local optimum or brick packing methods attempt to form tiheetiine by creating a series of allocation
frames of fixed duration. Whilst the previous allocationnfiais being executed, the next frame is
being calculated. This is represented in Fig. 3.6 for theofstheduable tasks,4. Given a measure

of optimality, an exhaustive search can provide the optinsointion over the time horizon, however,
heuristics [Winter and Lupinski, 2006; Winter and Baptj2@07] are used to guide the 'packing’ of the
tasks into the frame. A result of this method is that pop-wgdavhich require immediate execution

are required to wait up to the duration of the frame which eaiosisly degrade the reaction time of the

radar.
Previous Frame Current Frame Next Frame
,,,,,, L[ [t ] | |
T Radar Timeline

I R N I e

Set of schedulable tasks Tp = {3, t,...., o}

Figure 3.6: Local optimum/brick packing scheduler

A local optimum method is presented by Orman et al. [1996]reliige heuristics which guide the
task placement in the frame are compared. A job is definedhwdda perform any function and contain
a transmission period, idle interval and a reception perfodonflict of optimality between scheduling
delay and utilisation is identified, whereby tracking tasdguire scheduling as close to the desired time
as possible, however, this can reduce the radar utilisafiersuch, both must be considered in assessing
the performance of the scheduler. The five heuristics difféihe degree to which tracking tasks can be

executed off their desired execution time and whether thlestaan be interleaved by scheduling other
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tasks within the idle interval for a task. It is found that @stjng the execution time of the tracking
tasks significantly increases the radar utilisation witreodrastic effect on tracking performance. The
resulting scheduler is therefore suitable for forming aelime comprised of surveillance and tracking
tasks, however, the main drawback is the potentially slogctien time resulting from the allocation

frame.

Izquierdo-Fuente and Casar-Corredera [1994a] detaildtsasn a local optimum scheduler which
allows tasks to be interleaved. Interleaving of tasks esmtile 'dead’ time between transmission and
reception to be utilised for other tasks on differing carfiequencies. Although increasing radar utilisa-
tion this creates an significant additional schedulingleingle which is tackled in 1zquierdo-Fuente and
Casar-Corredera [1994b] using a neural network. In retidigyextent to which tasks can be interleaved
may be limited by the allowable duty factor of the radar anterbut also by the availability of multiple

oscillators which allows phase coherence to be maintaioebdth tasks simultaneously.

3.4.2 BestFirst

Best first schedulers sequentially execute the next bdstrtas a set of requests, which are ordered into
queues according to some criterion. Example criteria alestdeadline first (EDF) or highest priority
first (HPF), or a combination of both as demonstrated in FigZ. s the queue can be maintained
with low computational burden, best first schedulers aremdationally efficient. Also, as tasks are
scheduled from the queues sequentially, the full radar iindilised. However, there is still some delay
in scheduling and it may be required to send the schedulestaritenna in an allocation frame to allow
the array control to be applied. The characteristic of bestt §chedulers is that this frame is very short

in comparison to local optimum methods.

ENER
I Radar Timeline
t t
t2 t4 Queues of
5 0 schedulable tasks

Figure 3.7: Queue/best first scheduler

Huizing and Bloemen [1996] presents a best first scheduliethod where differing task requests
are ordered into ‘branches’ according to desired exectititmand priority. Additionally, two queues are
maintained for normal dwells and terminal guidance dwelsgquests are removed from the branches,

according to the highest priority and the earliest deadding placed in the queues if the current time
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is within the dwells transmission window, and if the lengthtee queue will not exceed the maximum

queue length. Finally, tasks are removed from the top of theaigs to form the radar timeline. Through
simulation of the queuing mechanism the desirable chaiatits of modest computation and reaction to
pop up tasks is demonstrated. Despite respect paid totgrigguests which expire due to overloading
are dropped which leads to ungraceful degradation. It wbelgreferable to delay tasks or adjust the
requests according to the current loading.

Butler [1998] describes a time-balance for radar scheduwlinich extends that described in Stafford
[1990]. In the original algorithm the time-balance reprasehe amount of time which is owed to each
task. However, after finding that this can be implementedguai conceptually simpler approach, the
time-balance is changed to represent the earliness oekgerf each task. The desired execution time of
the task is determined by a task specific rule. The next taskhedule is chosen as the highest priority
task with the largest lateness. From the description peaijidcheduling based on time balance appears
equivalent to a highest priority-earliest deadline firdtestuler. Butler et al. [1997] also investigates
scheduling using a rotating phased array, where is foundrdtating arrays can offer performance
benefits over non-rotating arrays.

Barbato and Giustiniani [1992] presents a simple queuedoag®rithm which accommodates the
variable tracking load by reducing volume search update.tim Stoffel [1994] a highest priority sched-
uler is compared to a heuristic search scheduler which sesmotential non-myopic sequences guided
by a heuristic function with costs assigned by fuzzy logimader normal loading conditions the two
approaches performed similarly, however, in overload #gristic search was found to perform better.
This is attributed to the heuristic search maintaining lavofity tasks that improve surveillance and

track maintenance which would otherwise be dropped in thbdst priority case.

3.4.3 Discussion

From the literature it is possible to identify key aspectsa@cheduler:
e Create the smallest possible deviation from requestedpeas.

e Deterministic as possible operation for manageable coatiout

Respect task priority.

Provide graceful degradation in overload.

Allow rapid reaction to pop-up tasks.

The comparison of the Orman and Butler schedulers given by et al. [2007a] provides
insight on the difference between local optimum and best $schedulers. Through simulation it is

demonstrated that the Orman scheduler allows the trackisigstto be scheduled close to execution
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times but at the cost of lower occupancy. The Butler schedukximises the radar occupancy, but
the tasks have a greater delay which can affect task quadibyvever, a general assertion [Wintenby
and Krishnamurthy, 2006] is that this delay has only a snfdlcaon task quality and so the desirable

characteristic of rapid reaction time makes best first ouguEased schedulers preferable.

3.5 Priority Assignment

Priority assignment is an essential aspect of resource geament which reflects the fact that different
tasks have differing importance. The priority is typicalyalue which represents the task’s entitlement
to resource relative to other tasks given the current misaia tactical scenario. When the system is
underloaded priority has little effect, however, in ovedahe priority assignment is crucial for graceful

degradation.

3.5.1 Function Ranking

Differing functions maintained by the system inherentlyéadiffering importance. As such a simple
method of priority assignment is to assign a priority valepehding on the importance ranking of the
respective function. Surveillance is lowly ranked as it Has lowest sensitivity to scheduling delay
in comparison to tracking which requires tasks to be scleetidlose to desired time. Track initiation
usually takes priority over track update as it will only besessful with several frequent updates. Critical
functions, such as plot confirmation which requires a ragidkit for a correlated radar cross section and
track maintenance to prevent track loss have high prisriti@enerally weapons control functions have
the highest priority as they are very sensitive to schedulglay, and their successful operationis usually
closely aligned with survival. A typical priority table wdti was used by MESAR is shown in Table 3.1.
Many similar ranking tables can be found in the literatureifgihg and Bloemen, 1996; Butler, 1998;

Gillespie et al., 2005; Orman et al., 1996; Nelander and&iberg, 1997; Stafford, 1990; Stoffel, 1994].

Table 3.1: Priority structure for MESAR radar resource nggama

Priority Task
Track Maintenance (Highest Priority)
Plot Confirmation
Track Initiation
Track Update
Surveillance
Slow Track Map/Surface Picture
Receiver Calibration (Lowest Priority)

P NWAOOTON

Although the assumption that differing functions haveatint priorities is valid, it is limited in the
assignment of different priorities to tasks within a funati Situational assessment or mission require-

ments may dictate that tasks within specific regions or tidieactions are of higher priority.
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3.5.2 Fuzzy Logic

Fuzzy logic methods improve upon the fixed priority assigniiy allowing assignment over a contin-
uous range depending on the specifics of the task. A detailaely of fuzzy logic as well as situational
assessment can be found in Blackman and Popoli [1999]. Hagiyhas been applied in Vine [2001]
that to schedule tasks based on the highest membershipaskaréady’ fuzzy set.

Miranda [2004]; Miranda et al. [2007b] provides an analysis fuzzy logic priority assignment
system. Fuzzy values are assigned to variables repregattiibutes of the surveillance sector or target
track. Fuzzy if-then rules are applied to determine therfiyiof the target track or surveillance sector.
The method is validated against test trajectories and treyfapproach is compared to a fixed priority
assignment and a hard logic approach. The hard logic apiprsas the same rules as the fuzzy approach
but allows for only one rule to be fired at a time. It was founattiie hard logic approach and the fixed
priority approach were less computationally demanding ttiee fuzzy approach. However, the fixed
approach allowed for no variations in different target awsillance sector types and the hard logic ap-
proach had priority transitions which tended to jump sudigbatween values. The fuzzy logic approach
showed smooth transitions allowing greater variationsriarjty. This was as a result of including all
possible information into the priority decision-makingpess. It is asserted that by improving the qual-
ity of the priority assignment the resulting allocationrigaroved. Although this successfully produces a
continuous priority value, the degree to which it can bet&d$o provide the correct value is uncertain,

which is a serious concern for operational systems.

3.5.3 Discussion

In addition to these methods, rules can be applied whichdgoaduce more predictable behaviour than
the fuzzy logic, however, specific rules for priority assitgnt applied in real systems is rarely published.
In other methods Popoli and Blackman [1987] details an ebgystem approach and Komorniczak et al.
[2000]; Komorniczak and Pietrasinski [2000] utilise nduretworks to enable a learning ability for the

priority assignment.

Fuzzy logic methods enable a continuous priority assigripteswever, the aspect of trust and
stability remains a concern for their operational appiarat As such accurate and trusted priority as-
signment which considers all aspects of tactical and $itnak awareness remains a challenge. 1t is
commonly overlooked that the resource management mechanisst effectively manifest the priority
into behaviour. The process of prioritisation is not theuf®of this work, however, it is highlighted here

because the scheduler or resource allocation must efficieansform prioritisation into behaviour.
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3.6 Summary

Radar resource managers implement the automatic and @olirieol of the multifunction radar system.
A typical architecture for a radar resource manager in®leumber of modules providing specific
functionality. Modules include the environmental modetl amaveform database which are used by
the task management modules to generate task requests avhigreighted by the priority assignment
module and formed into a timeline by the scheduler module.fibdules form a closed loop for adaptive
control and are separated to partition code cycle timesliengabfficient computation. The operator is
removed from this closed loop and takes on a supervisory role

From this review of radar resource management techniqigepdssible to identify areas to target

research:

e Intelligent surveillance is required which improves upamrent fixed surveillance behaviour to

react to a dynamic and uncertain environment.

e A single mechanism is required which can effectively altedsased on multiple requirements,

such as track accuracy and track existence.

e The resource allocation mechanism is required to be cortipaédly light like rule based methods

whilst producing near optimal solutions of the optimisatinethods.
e The global finite resource constraint must be consideredadble graceful degradation.

e The role of information theory in multifunction radar reso& management can be further inves-

tigated and ideally exploited.

e Priority assignment can be better used to dictate systefarpaance by transforming priority into

behaviour.

These areas are targeted in the development of the worksithiésis.
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Chapter 4

Resource Allocation Measures and Models

Non-multifunction radars are performance tested by relesseasures during the design stage. In con-
trast, multifunction radars are capable of dynamicallyatipg performance online and so require evalu-
ation during run time. The measures which provide the evimnand the associated models which relate
control parameters to performance become an integral pgttiding the allocation of the resource for
multifunction systems.

Resource allocation mechanisms and techniques requingle sheasure to optimise. For optimi-
sation this means the choice of objective function, or foagant system utilising an economic paradigm
this means the choice of utility, which represents the auayén the system. By describing the problem
to be solved, function measures and models act as an irgdvfsteveen the task functions and the re-
source allocation mechanism. Clearly the calibre of thesuess and models critically limits the quality
of the decision making process.

This chapter discusses existing and explores new meastiies van be used by the resource al-
location mechanisms which are developed in the followingptars. Sec. 4.1 describes task specific
measures and the methods which can be used to model thent.14.3énformation theoretic measures
are explored and applied to estimation and discriminati@iblems, which are at the heart of surveil-
lance and tracking functions. In Sec. 4.3 these measuresnatgsed in terms of their suitability for
radar resource management. Finally, in Sec. 4.4, the cooteyility as a single common measure is

introduced.

4.1 Task Specific Measures

There are a number of performance measures which are spgecliie objective each function is aiming
to achieve. These measures are numerous and incomparakéehdunctions, which creates difficulty
for the control of multiple functions. Given a number of taglecific measures, models are required to
estimate the relationship between task parameters anarpenfice. The aim of this section is to explore

task specific measures and models which can be incorpordatethe resource allocation mechanism.



4.1. Task Specific Measures

4.1.1 Surveillance

The surveillance function has the purpose of detectingetartp track or providing measurements for
existing tracks. Surveillance performance measures aedo@around detection performance, detection

range or track acquisition performance.

4.1.1.1 Loading
An essential measure of surveillance task performanceisstbource loading it is currently exerting on
the radar system. Intuitively, the resource loadintpr a dwell lengthr; and revisit intervat ¢ is:

Td

- (4.1)

lg

which can be expressed as a percentage or as a power. Resauling as a function of dwell and revisit
times, using Eq. 4.1, is shown in Fig. 4.1 where it can be desrgreater loading occurs at longer dwell

and shorter revisit times. The loading is the cost at whiclrgamn performance level is achieved.

Task Resource Loading

Resource (%)

Dwell Length (s) Revisit interval (s)

Figure 4.1: Radar loading for dwell length and revisit intdiparameters

4.1.1.2 Single Look Probability of Detection

The single look detection probability quantifies the praligtof a detection occurring on a look con-
taining coherent or incoherent integration. As demonstiat Sec. 2.2.1.2 the single look probability
of detection for a Swerling 1 target can be modelled as a fomaif signal to noise rati® N R, and
probability of false alarnPg 4:

Pp = P}QHSNR) (4_2)
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The SNR as a function of range can be calculated from the atdnmdnge equation [Skolnik, 2008],
including a two way loss of gain by a factor efs? § which results from off-boresight beam scanning
as discussed in Sec. 2.1.3. An example of the single lookatibty is shown as a function of range in

Fig. 4.3.

4.1.1.3 Detection Range

The single look probability of detection can be used to dateuthe range at which a specified detection
probability is achieved. For example, the rarigig can be defined as the range where a certain target is
detected with a probability d@f.5. This can be calculated using the standard radar rangeieq . 2.8
and assuming a Swerling 1 target to give a probability of ct&ia according to Eq. 4.2. In addition the
instrument rang&,, is defined as the range at which thé/ R is unity, or zero dB. Both the instrumental
range andRso are marked in Fig. 4.3 assuming an instrumental raRge= 200km, 10ms coherent
dwell with probability of false alarm(0~5.

Fig. 4.2 shows an example of the range at which the singledetdction probability exceeds 0.8 as
a function of the dwell length. This measure can be usefutdotrolling the self protect search function

where pop-up targets require a high probability of detectio

Single Look 0.8 Detection Probability Range
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Figure 4.2: Single look 0.8 detection probability range &srection of coherent dwell length

4.1.1.4 Closure Range

The closure range is the distance a target travels towaedsathar on an assumed trajectory between

successive scans. The closure rags a function of the radial velocity, and the revisit intervaly:

de = v,y (4.3)
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this measure is useful for assessing performance of thesmEct search function where it is desirable

to minimise the closure range for pop-up targets.

4.1.1.5 Cumulative Detection Range

The cumulative detection range is the range at which a tésgidtected over successive scans with a
specified cumulative probability. Typical values for themulative detection range aéed, denotedRy
or 0.85, denotedRgs.

The cumulative detection probability can be modelled byassg a radar cross sectienand
radial velocityv,. The cumulative detection probability,. can be calculated from a sequence; of
single look probabilities of detectioRp [Blackman and Popoli, 1999]:

PDczl_H(l_PDj) (4.4)

j=0

The range for each measurement in the sequence in Eq. 44nd iy decrementing the measurement
range by the closure range. The target can be modelled amgrat any range, for long range surveil-
lance this could be the instrumental ranggor for a self protect surveillance this could be the range at
which the target breaks the horizon which is approxima2ély- 30km. The single look and cumulative
detection probability is shown as a function of range in FBywhere theRg, is marked. The cumulative
detection range is produced using the previous assump#ans revisit interval 300ms~! target radial

velocity andlm? radar cross section.

Example of Surveillance Measures as a Function of Range
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Figure 4.3: Single look and cumulative detection probt#édias a function of range

The cumulative detection range as a function of the dwelitlerand revisit interval parameters is

shown in Fig 4.4. The cumulative detection range is usefuafsessing performance of the long range

74



4.1. Task Specific Measures

search function where it is desirable to detect targetsat fanges.

Cumulative Detection Range Performance
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Figure 4.4: Cumulative detection range as a function of teebth and revisit interval parameters

4.1.1.6 Track Acquisition

As detections are a precursor to acquiring tracks, it mayflmease interest to measure the acquisition
probability of the tracking system. In a similar way to thenauuative detection range, the range at
which a target track is confirmed without further deletiom dze defined. Specific target geometry
and radar cross section is assumed, and the model of aauisinge depends on the track initiation
method. Track acquisition range is a useful performancesoreafor surveillance where tracks are
maintained through track-while-scan. Similarly, addiadly measures based on the kinematic accuracy

of the observations produced by the surveillance scan camseeé for assessing the performance of
track-while-scan.

4.1.2 Tracking

Tracking measures are most commonly related to the prelditéée estimation error which is extracted
from the tracking filter. However, there are additional meas such as the likelihood a set of measure-
ments originated from a target or the probability that aaaexists, which can be utilised to provide
additional functionality for the multifunction system.

4.1.2.1 Track Loading

The amount of loading an active track exerts on the multifiencradar is a critical measure of task
performance. Minimising the individual track loading isax#&l objective which is complementary to
the global objective of maximising the number of targetgack. The loading of a tracking task can be

calculated as in Eqg. 4.1 and as with surveillance is the asst@ated with a certain performance level.
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4.1.2.2 Predicted State Estimation Error

The measure of the current accuracy of the track can be takire gpredicted estimation error extracted
from the tracking filter. General sensor management appesaavhich often model measurements in
cartesian coordinates, use the determinant or the tradeegfredicted estimation error. However for

radar applications where measurements are received s@artcoordinates, it is common to express
track accuracy in terms of the angular predicted estimagioar along the major axis defined by the

state uncertainty ellipse. It is usually assumed that thektaccuracy is correct, which means the filter
is perfectly matched to the target dynamic. In reality th@nd not be the case and the mismatch can
potentially undermine the resulting allocation.

The choice of coordinate system used to measure accuradyngatt the allocation when used
as an objective function. A measurement uncertainty @ligsulting from a specified range and angle
accuracy is constant in polar coordinates for all range. i@y the measurement uncertainty ellipse
increases in cartesian coordinates with range. Althougdsoméng uncertainty in cartesian coordinates
is equally valid, and highlights the measurement charstieiof the radar, it could potentially add
preference to closer targets where the cross range dissscwller.

The predicted angular estimation error and the trace aretrdétant of the estimation error in
cartesian coordinates are shown in Fig. 4.5 for a fixed updégeval of0.8s and a target on the radar
boresight ab0km, which has an instrumental ran@® = 200km. It can be seen that between updates
the target dynamic noise modelled by the filter, which is atiomous white noise jerk model with
process noise intensity 10 causes the uncertainty to gréw. uficertainty is reduced when an update
occurs, however, the magnitude of the reduction in unagstalepends upon the instantaneous SNR,
which in turns depends upon the target location within trenieThe estimation error is at its greatest at
the start of the simulation before the filter reaches stetatg sAll the accuracy measures have similar
characteristics, however, they have differing units andymtades. The black dotted lines represent
the measurement accuracy standard deviation. The raticebatthe measurement accuracy standard
deviation and the estimation error standard deviation @mknas the variance reduction ratio.

To allocate resource to a track it is necessary to model th&orship between the predicted es-
timation error and the parameters selected. Van Keuk peswvéth approximate method to achieve this,
alternatively covariance analysis can be used to modelighehfidelity. These models are derived, dis-
cussed and compared here at length as they form the badrefsiniulations and the allocation models
used in the following chapters.

Van Keuk Model

Van Keuk models the relationship between track loading aedipted estimation error under the
condition that track updates are scheduled at times wheprédicted estimation error is equal to a

fraction of the beamwidth, known as track sharpngssAssuming Singer target dynamics, Van Keuk
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Standard Deviation of Predicted Angular Estimation Error Against Time For An Example Track Determinant of Predicted Estimation Error Against Time For An Example Track
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Figure 4.5: Measures of predicted track estimation error

provides an empirical approximation which relates thegiginterval to the predicted angular estimation

error at the time of the track update:

0.4
Riom VO U24

T~04
Q 1+ 302

(4.5)

where() and© are the manoeuvre standard deviation and time respectivag/the variance reduction

ratio, which for a track sharpnesgis equal to:

Opvo

U (4.6)

Om

the measurement error standard deviatignis modelled as in Sec. 2.1.2.2. Van Keuk also estimates
that at each update the search strategy required to prodietection results in an expected number of

beam positions which is related to the predicted angular estimation ercopeding to:

Blin) = 5 (1+ (af)°? @)
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where:

ar~1+14 (4.8)

and Pp, is the probability of detection on the beam centre. The fracload as a function of SNR
and track sharpness parameters is shown in Fig. 4.6 assumingd@km instrumental range with a
nominal dwell of20m.s and target manoeuvre standard deviatiom? and60s time constant. It can be
seen that a minimum tracking load occurs around 0.15 of tenkedth with a broad minimum for a
wide range of SNR. The performance of the track as a functialvell and revisit parameters is shown
in Fig. 4.7 under the same assumptions. The tooth like streiaf the surfaces in this figure are an
artefact resulting from the finite number of sampling poumed to generate the surfaces in Matlab. It
can be seen that angular estimation error is reduced foll sewégit intervals and large SNR, with the
greatest dependence on the revisit interval. This modeskightful but highly empirical and so further

models are useful which more directly model the trackingpss.

Relative Load for Varying Track Sharpness for Van Keuk Model
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Figure 4.6: Tracking loading using various models for diffig signal to noise ratios

Adapted Van Keuk Model
The original Van Keuk model is adapted by Blackman [1986]dcoaint for non-unity probability
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Predicted Angular Estimation Error for Varying Parameters Predicted Angular Estimation Error for Varying Parameters
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Figure 4.7: Tracking performance using various models fifering signal to noise ratios

of detection: o
04 (RiomVO Ut
~ Pp Q 1+ 102

T (4.9)

The probability of detection is a function of the boresigiginal to noise ratio and the current target
state. Assuming the tracker is ideally matched to the tatgeamic, the target state will be distributed
according to the predicted state estimation error. TheesyEnt loss in signal to noise ratio due to the
target being offset from the centre of the beam can be matiafie Gaussian loss function as in Eq. 2.19
from Sec. 2.1.2.2. The expected signal to noise ratio losdeadound by integrating over the target's

predicted position [Blackman and Popoli, 1999] to give:

0B 0B
\/923 + QCLO’% \/923 + QCLO’Z

SNRgs = SN Ry (4.10)

whereC;, = 2.77 ando, ando, are the standard deviations of state estimation error im@ath and
elevation. This reduced SNR can be used to calculate thepildlp of detection according to Eq. 4.2.

The expected SNR given a detection has occurred can be apatex! as:

SNRm = SNR —log(Pra) (4.11)
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which can be used in Eq. 2.18 to estimate the measurementagclihe expected angular offset related

to target uncertainty can be approximated as:

Elfu0] = 2000 (4.12)

which can be used in Eq. 2.20 to approximate the off beameemdasurement accuracy.

The tracking load resulting from varying track sharpnegs laaresight SNR is shown in Fig. 4.6
for comparison with the original Van Keuk model using the saassumed parameters. It can be seen
that the original Van Keuk model has a higher increase irkingdoad for greater track sharpness. The
difference is a result of the empirical approximation ofétxpected number of beams required in Eq. 4.7,
it can be assumed that this approximation includes the taffemiss-association where as the adapted
model does not. However, the relevance of this differens®imewhat moot for a resource allocation
model as it is undesirable to operate in this region, due tgleeh accuracy being achievable with a lower
track sharpness and hence a reduction in loading. The peafare of the track as a function of dwell
and revisit parameters is shown in Fig. 4.7. Similarly to¥ae Keuk model it can be seen that angular
estimation error is reduced for small revisit intervals demde SNR, with the greatest dependence on
the revisit interval. However in this model long revisiténtals are often lost because revisits are not

assumed on a missed detection.
Covariance Analysis

Covariance analysis can be used through Monte Carlo siionltt analyse the prediction estima-
tion error in the track for comparison to the Van Keuk moddlkis has been applied using a Kalman
filter with a continuous white noise jerk dynamic model whiglequivalent to the limiting Singer model
where the manoeuvre time is much greater than the sampfirgg[Blackman and Popoli, 1999]. When
updates are executed a target position is generated asgaodhe target state which is assumed matched
to the track estimation error. The SNR resulting from thgeaposition being offset from the centre of
the beam can be calculated using Eq. 2.19. Assuming Sweklfhgrtuations, an instantaneous SNR

can be generated as a sample from the signal envelope [Backi86]:

SNRm = 0.5 (A + n1)?) +nd); (4.13)

wheren; andns are standard normal variables$,= /2SN R. An update is performed if the instan-
taneous SNR exceeds a threshold determined by the false pfabability, i.eT = —log(Pra4). Ifa
successful detection occurs then the instantaneous SN$edésta calculate the measurement accuracy

of the subsequent update. If a detection does not occur sitrisvécheduled after 0.1s.

The tracking load for track sharpness and boresight signabtse ratio is shown in Fig 4.6 for
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comparison to the Van Keuk models. It can be seen that thetediafan Keuk model underestimates
the rise in the tracking load as the track sharpness inseddewever, this Monte Carlo simulation
demonstrated that this region is highly unstable with largek loss which reiterates that operating in
the region is undesirable. Although including the prokibdf false alarm, this model does not include
the effect of false returns. The performance of the trackfasietion of dwell and revisit parameters is

shown in Fig. 4.7 and found to be similar to the Van Keuk model.
Approximate Covariance Analysis

Instead of using Monte Carlo simulation, the random elesinthe previous covariance analysis
simulation can be replaced with their expectations. Theesaiman filter can be used, however, the
expected signal to noise ratio can be used instead of gérgsaimples of the envelope and the expected

offsetin Eq. 4.12 can be used instead of the random offsets.

This approach can be extended to include the effect of measant origin uncertainty which neces-
sitates data association. The track estimation error dipam the measurement sequence and can only
be evaluated through numerical simulation, however, itlmarstimated through the modified Riccati
equation, as first derived in Fortmann et al. [1985], whigilaees the random elements in the covariance

update equation Eq. 2.53 with their expectations, to give:
Py = Prji—1 — Wi Sk W, (4.14)

where the scalaf,, which takes values between 0 and 1 to represent the measntrengin uncertainty,
is a function of P, and the clutter density. The calculation of, is non-trivial and requires numerical

integration, however Kershaw and Evans [1996] give an dicapproximation ofy.:

B 0.997Pp
14+ 0.37P; 3 Vip

which is of sufficient accuracy and allows online computatio

The tracking load resulting from this model is shown for camigon in Fig 4.6. It can be seen that
it is in close agreement with the adapted Van Keuk model. Hrifopmance of the track as a function of
dwell and revisit parameters is shown in Fig. 4.7 and fourtzetsimilar to the adapted Van Keuk model

whereby revisits on missed detections are not scheduled.

The Van Keuk models are useful for resource allocation asdghe a simple and computationally
light relation between parameters and performance. Howesth the increase in computational power,
more exact covariance analysis could be useful for onliseurce allocation, and the modified Riccatti

equation offers an enhanced performance assessmentteretlitegions.
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4.1.2.3 Root Mean Squared Error
The root mean squared error (RMSE) can be used in simulaiioaissess the absolute performance of

the state estimate when the true kinematics are known. Tdterean squared error for a position vector

X = [zy] is equal to:

~ 1 _ B
X = \/NEiJ\Ll(xQ +92) (4.16)

The root mean squared of zero mean random variable is théasthdeviation, hence the RMSE when
the filter is perfectly matched to the target dynamic is that af the trace of the state estimation error
covariance. As the true target kinematics are not knownatfitye RMSE is only useful for assessing

performance in a simulation.

4.1.2.4 Likelihood Ratio

The likelihood of a measurement belonging to a target orutied can be measured using the measure-
ment likelihood ratio or more commonly the log likelihoodica The measurement likelihood ratio is

expressed as [Blackman and Popoli, 1999]:

p(D|Hr)Po(Hr) _ Pr

LR =
p(D|HN)Py(HN) — Pra

(4.17)

where Hr and Hy are the probability of presence of true target and falsaralaspectively, given
data vectorD. This can be modelled by assuming the target returns haveuasiaa distribution and
clutter returns are distributed uniformly in the track daliion gate with a density ¢f. Changes in the

measurement log likelihood ratio can be computed as:

In[1 — Pp]; no detection
AL(k) = (4.18)
ALy (k); detection on scah
For detection only data the measurement log likelihoo@ratL; (k), is given by:
2
ALy =1n [L} _ 4 (4.19)
@mM2u /5] 2

where M is measurement dimensiop,is the false target density, is the residual covariance matrix

andd? is the normalised statistical distance for the measurement

The likelihood of a set of measurements being due to a tamyete found by combining the

individual measurement likelihood ratios. This can be egped as a recursive formula:

L(k) = L(k — 1) + AL(k) (4.20)
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Thresholding on the likelihood ratio associated with a $eneasurements can be used to determine

track confirmation or deletion status. Thresholds are usettdck deletion and confirmation given by:
Ty =1In [%} Ty =In {%} (4.21)

whereq is the false track confirmation probability apds the true track deletion probability. Fig. 4.8
shows an example of the value of the likelihood ratio as ssgize measurements are received during
track initiation. As this is a true target the likelihoodicatan be seen to increase by an amount depen-
dent on the measurement residual. This is produced assuartarget at0km on the radar boresight
with a 1° beamwidth, instrumental rande, = 240km with a nominal coherent dwell &f0ms and a
0.5210~%/m? false target density. The target dynamic is assumed to exadeording to a continuous

white noise jerk process model with process ngise 3.33.

Log Likelihood Ratio for True Target and Clutter Track Existence Probability for True Target and Clutter
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Figure 4.8: Likelihood ratio and track existence examptegrack initiation

The likelihood ratio is useful for the performance assesgnoé track initiation, which can be
controlled to reduce the number of updates required to sel&ack. The number of updates required
to release the track during initiation is shown in Fig. 4.8eTooth like structure of the surfaces in this
figure are an artefact resulting from the sampling pointsl tisgenerate the surfaces in Matlab. It can be
seen that for a given false target density, assuming an @rmt measurement, the number of updates
required is lowest for short revisit intervals as the vaimlavolume is smaller. In reality clutter returns
are not uniformly distributed within the track validatioatg and have spatial and temporal coherence

which can reduce the effectiveness of this method.

4.1.2.5 Track Existence

The probability of track existence as a measure of qualitytreduced by Musicki et al. [1994] where it
is built into the probabilistic data association framewadfke probability that the target exigiér) and

the probability that the target does not exig) = 1 — P(zy) is modelled as Markov process which
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transitions between stages according to a Markov chain:

P(Z‘k) = pllp(zkfl) +p21(1 — P($k,1)) (422)

1 — P(xg) = pr2P(zg—1) + pa2(1 — P(z1-1)) (4.23)

wherep;1, p21, p12 @andpqs are the Markov chain coefficients wherg + p12 = po1 + p22. The enables

the recursive calculation for the track existence proligbil

1-6 _
Play|2") = 1— 5kP($kTZk_1)P(xk|Zk ) (4.24)

wheredy, is related to the likelihood ratio as— §, = LR. This is a useful measure for tracks where
the purity of tracks are of a higher importance than the ammuwhich is often the case in surveillance
systems. Fig 4.8 shows an example of the track existencabilaip using the same assumptions as for
the likelihood ratio. It can be seen that it is also a valid suea which is similar to the likelihood ratio.

Number of Updates Required in Initiation using SPRT Number of Updates Required in Initiation using Track Existence

Number of Updates
Number of Updates
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0.0:
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Dwell Length (s)

0 0.03

0 0.03
Revisit Interval (s) Reuvisit Interval (s)

Dwell Length (s)

(a) SPRT (b) Track existence

Figure 4.9: Number of updates required to release track

Track existence is a useful performance measure for trac#tion and could be useful for allocat-
ing resource in clutter regions. This is shown in Fig. 4.9 ser@milar conclusions can be drawn as for

the likelihood ratio.

4.2 Information Theoretic Measures

Measures based on information theory differ from task gjegieasures as they are surrogate func-
tions being independent of the specifics of each task. It kas Buggested that information theoretic
measures can provide a ‘universal proxy’ [Kreucher et &lQ52a]. As information theoretic measures
were identified as potentially beneficial in Sec. 3.3.2.2iand this thesis is to investigate their role in
multifunction radar resource management. This sectiowekerelevant information theoretic measures

and describes their application to sequential estimatighdetection.
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4.2.1 General Derivations

This subsection derives and highlights the interplay betweslevant information theoretic measures.
Detailed discussion on these measures are found in thelhgx®over and Thomas [2006] and Hero

et al. [2007].

4.2.1.1 Fisher Information

Fisher information,J, is the mean curvature of measurement log likelihood famcti p(Z|x) and

quantifies the amount of information that can be extracteohfthe measurement:
J. = E[[V.Inp(Z|2)][V. Inp(Z|z)]] (4.25)

The inverse of the Fisher Information Matrix is related te tbramer-Rao lower bound which bounds

the variance of the subsequent maximum likelihood estisnatd =, and hence the track accuracy:
Bll&(Z) - al[#(Z) — a]'] = J! (4.26)

In Trees [2001] the likelihood function is related to theandmbiguity function, the curvature of which
is related to the SNR and the signal bandwidth. In angle thledfiinformation is a function of SNR and
beamwidth. Maximisation of the Fisher information as arecbye function means choosing between

measurement likelihood functions and so it is useful foestihg a sensor or sensor mode.

4.2.1.2 Differential Entropy

Differential Entropy is a measure of the uncertainty of atcarous random variable. Employing a mea-
sure of uncertainty is logical as it is the role of the sensaetiuce uncertainty about the environment.

Given a random variabl& and its probability density function(z), differential entropy is defined as:

H(X)=- /p(x) log p(x).dx (4.27)

It is also useful to measure the entropy of the random vaidbtonditioned on the variablg, given

the density functiop(z) and the conditional density functigrix|z):

H(X|Z)= —/p(z).dz/p(x|z)logp(x|z).dac (4.28)

Conditional entropy is the expectation of the entropy of tbhaditional probability density function

p(z|z) with respect taZ.

85



4.2. Information Theoretic Measures

4.2.1.3 Kullback-Leibler Divergence

Kullback-Leibler divergence (KLD) is a measure of discriiion between two distributions. Given the
random variableX and two probability density of functions of, p(x) andq(z), the Kullback-Leibler

divergence is defined as:

Dict(P|@) = [ pla) log %.dz (4.29)

Kullback-Leibler divergence is always non negative anda¢gjmero whemp = q.

4.2.1.4 Mutual Information

Mutual information (MI), denoted, is the Kullback-Leibler divergence between joint and preidis-

tributions and is the reduction in uncertainty in the rand@mable X due to knowledge of..

I(X;2)  =D(p(x,2)|lp(x)p(2)) (4.30)
= [ p(x, 2)log F52 d.dz (4.31)

It is straightforward to show that mutual information is ttiéerence between a random variables en-

tropy and conditional entropy:

I(X;Z) =H(X)- H(X|Z) (4.32)

= H(Z) - H(Z|X) (4.33)

Also, mutual information is the expectation of the Kullbaoibler divergence between a random vari-

able’s probability density function and its conditionabpability density function, with respect to:

[(X:2) = / p(2).d=D(p(z]2)|p() (4.34)

These information theoretic measures have roles in esimatoblems, which relate to target tracking,

and discrimination problems, which relate to surveillance

4.2.2 Information in Estimation

In sequential state estimation, which is at the heart ofetangcking, a sequence of received mea-
surements are combined with prior measurements within @8ag framework. The information gain
attributable to the measurement can be described in termautfal information or Kullback-Leibler
divergence. The information gain from the measurement lsan be used as a measure for resource
allocation.

Mutual information gain of the measurement can be found lbgutaing the mutual information

between the prior state distributipaX *| Z*~1) and the measurement. For notational convenience the
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conditioning onZ*~1 is assumed and omitted. A large reduction in uncertaintynaéize measurement
contained a large amount of information on the state, andhaedwo have large mutual information.

Mutual information between the state and measurement camitten, from Eq. 4.31, as:

(X*|2)

(XM, 2y) = / (0¥, ) I P (4.35)

Through some algebra this can be rearranged as a differdrtbe oneasurement entropy and state

conditioned measurement entropy, similar to Equation:4.33

I(X%; 2) = H(zy,) — H(z1,| XF) (4.36)

= H(X®) — H(X*|z,) (4.37)

assuming a Kalman filter, the mutual information can be shtmnme dependent on the predicted state

covariance at timé given the measurement up to tirhe- 1 and the measurement noiBg:
A 1 -1
I(mk;zk) = 5111 |I—|—Rk Pk|k71| (4.38)

This can be calculated before the measurement is made, dhe tntropy of multivariate Gaussians
being a function of just their covariance. Intuitively,stiells us that large information is produced from

accurate measurements of uncertain targets.

Information Measures For Example Track
4 T T T T

T T
Mutual Informaiton

Kullback-Leibler Div.
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Time (s)

Figure 4.10: Mutual information and Kullback-Leiber digence

Alternatively the Kullback-Leibler divergence can quénthe information gain of the measure-

ment by determining the divergence between the prior siatglilition p(X*|Z*~1) and the posterior
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state distributiop(X*|Z*). The greater the divergence between distributions, tigetahe information

gain from the measurement. The divergence between priopastérior states is:

Dir(z) = D(p(X*|ZF)||p(X*|Z+1)) (4.39)
= [p(X*|z) In ng;;':)w.dx (4.40)

Again, in Eq. 4.40 the conditioning oA*~! is assumed. Assuming a Kalman filter Eq. 4.40 can be

rewritten as:
DKL(Zk) = %(1D(|SkR;1|)) + %(tT(RkS]:l))
+5(Waz) Py (Wadi) = %

(4.41)

where 75, is the measurement residual, the difference between peedend observed statg, =
zr — HZy, andm is the dimension of the measurement. Calculation of thelttérm requires the

measurement, which is not known before the sensor action.

As stated in Eq. 4.34 the mutual information is the expeatatf the Kullback-Leibler diver-
gence. The Kullback-Leibler divergence contains thesttaéil distance term which assuming the filter
is matched to the target dynamic will be distributed acangdhe innovation covariancg,. Hence the

KLD fluctuates around the Ml value as shown in Fig. 4.10.

4.2.3 Information in Discrimination

As previously noted, detection is a key element of the sllareie function. There are two ways that
the Kullback-Leibler divergence can be recognised in dietecas the expectation of the log likelihood

ratio and the loss of statistical power through mis-spéuifglistributions.

Given the log likelihood ratio which is thresholded in thepbyhesis test:

L(z) =log

(4.42)

the Kullback-Leibler divergence can be instantly recogdias the expectation of the log likelihood ratio

under target presence, and hence describes the abilitgtordinate between hypotheses:

ET[L(Z)] = DKL(PTHPN) (443)

Similarly, the expectation given a target is not presenttin

En[L(2)] = =Dk (Pn||Pr) (4.44)

These measures of the expectation of the likelihood ratosapwn for Rayleigh noise and a Ricean
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targetin Fig. 4.11. This measure is somewhat trivial, s $olely a function of signal to noise ratio.

Kullback-Leibler Divergence as Expectation of the Log Likelihood Ratio
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Figure 4.11: Kullback-Leibler divergence as expectatiblikelihood ratio

The Kullback-Leibler divergence also has an additionariptetation through the Neyman-Pearson
lemma [Eguchi and Copas, 2006], to quantify the loss in meszifying the target or background hy-
potheses. If the null background hypothesis is mis-specifie’y (=) then an incorrect likelihood ratio

is used

L(z) = log = (4.45)

An example of a correct ratio formed using a target with 16d8RS3s shown in Fig. 4.12. An incor-
rect likelihood ratio is also shown, where the mean intgnsitthe noise is mis-specified. The mis-
specification means the log likelihood ratios take différerues.

The loss in the detection process from using the incorré&etiiood ratio can be taken as the

Kullback-Leibler divergence between correct and incdmeadels of the background:

A, = /OO Py(L>T) — Py(L>T).du (4.46)
= /(L — L)Pn(2).dz (4.47)
= Di1(Pn||Px) (4.48)

This loss can be visualised as the difference between theataand incorrect log likelihood ratios
measured through the correct background. However, it iesta® visual the loss as the difference in
probability of false alarm resulting from the true backgrdwand the correct and incorrect likelihood

ratios, for common likelihood ratio thresholds which iswsinan Fig. 4.12(b). Fig. 4.12(c) demonstrates
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Correct and Incorrect likelihood Ratio against Intensity Probability of false alarm against likelihood ratio
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Figure 4.12: Interpretation of discrimination informatithrough Neyman-Pearson lemma

this interpretation by plotting the probability of false @firm at equal thresholds of the log likelihood
ratio for the correct and incorrect likelihood ratio. Theeyious integral is the area between the two

curves.

Interestingly, although a model of a target is required tonfthe log likelihood ratio, the model of

the target has no effect on the final value of the loss in tredilikod ratio test.

The Kullback-Leibler divergence is a useful measure of thes lin the likelihood ratio test by
quantifying the magnitude of the deviation in type 1 erraitgé alarm) from the optimal test described
by the Neyman Pearson lemma. As such it can provide a deéimitasure of the loss associated with

misestimating clutter backgrounds, which could be usefuttie allocation of resource.

4.3 Analysis of Measures for Control

Measures aid the run time control of the multifunction raaiad facilitate the interface between the task
functions and the resource manager. The purpose of detikengreceding measures was a precursor
to their implementation in the allocation mechanisms dmyedl in the following chapters. This section

gives a preliminary analysis of the suitability of the maasifor the control of radar functions.
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4.3.1 Parameter Selection Strategy

This section describes the suitability of each of the previmeasures for the control of specific radar

functions.

4.3.1.1 Surveillance Function

Presently, surveillance parameters are selected subjdisted pre-defined rules or modes which are
specified during design time. Adaptation in run-time is mmal, however, it is typical to slightly adapt
parameters to balance the variable tracking load. An exawpelicy would be to implement a fixed
search using0% loading, leaving20% for tracking tasks. When the track loading is beld@ the
excess resource can be allocated to the lowest elevatiochskear which is most severely affected by
clutter. Simple calculations can be used to balance theltimdget. The search volume in steraradians

Q) can be calculated as [Morris and Harkness, 1996]:

Qs = Aaz(Sin(GelIWaa:) - Sin(oellbh'n)) (449)

wherefd,nrq @andfeprin, are the maximum and minimum angle of the search volumeZandis the
extent of the search volume in azimuth and the beam sphce-= 1 The time to complete a search

function, is:
QsTd
973

(4.50)

Ts =

where), is the beamwidth in steradians angis the dwell time.
It is desired that novel resource allocation mechanismsenttos parameter selection from design
time and into run-time, to increase the adaptation to thér@nment. To facilitate this, the measures

described in Sec 4.1.1 have relevance for run-time evaloati the following surveillance functions:
e Long Range SurveillanceCumulative detection range or track acquisition range.
e Medium Range Surveillanedrack acquisition range or kinematic measurement acgurac
o Self Protect SearchSingle look probability of detection, target closing rang

In this case where there is more than one appropriate measume combination of the two measures is
desirable. Utilising these identified measures combindéd&n improved resource allocation mechanism
will unlock potential by allowing increased adaptation efformance in run-time subject to a dynamic

environment.

4.3.1.2 Tracking Function

If the task revisit interval is selected according to a trablrpness setting then the minimum track

loading is achieved, regardless of the targets manoeuwteaage. In Fig. 4.13(a) track loading is
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plotted for varying target ranges and manoeuvre standandtons assuming a40km instrumental
range for a nominalOms coherent dwell. It can be seen that the minimum track loadifgund at 0.21
regardless of the varying manoeuvres and ranges which niaasseful measure for target tracking

control.

Load Updating Based on Track Sharpness for Varying Ranges and Manoeuvre Load Updating Based on Cartesian RMSE for Varying Ranges and Manoeuvre
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Figure 4.13: Optimal setting of track sharpness

If track updates are requested at intervals which are déterhby a limit of the accuracy in carte-
sian coordinates then there is no common minimum loadirds sharpness setting. Fig. 4.13(b) shows
the loading for bounds on the trace and determinant for mgrganges and manoeuvres. Also, the de-
terminant or trace in spherical coordinates removes therm#gnce on range, but is still dependent on

range resolution.

In reality, where the filter dynamic model is not perfectlytofeed to the encountered target dynamic
then adaptive sampling based on the incorrect angular taicgrcan lead to track loss on manoeuvre
onset. Therefore it is common in operational systems to figgd updates rates to prevent track loss,

which indicates that track continuity can be of greater intgnace than minimum loading.

Maintaining the angular predicted estimation error bemeatraction of the beamwidth is typical
for tracking control. However, the choice of measure ultishadepends on the requirement of the track.
For surveillance applications the track existence may bgredter importance than accuracy and so a
novel resource allocation mechanism could use this medsuragment track-while-scan with active
updates for troublesome clutter regions or crossing tragkilitionally in track initiation, the release

time can be of more importance.

Strategies for track allocation based on alternative nreasare not widely applied. The develop-
ment of resource allocation mechanisms in the followingotéisg aims to include a variety of measures.
A variety of measures improves the interface between tHeaad the allocation mechanism, which

improves the functionality of the system.
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4.3.2 Tracking in Clutter

In clutter regions with a high false target density the nundféalse returns within the validation gate is
larger which increases the difficulty of the data assoaigpimcess. This reduces the mutual information
between the measurement and state estimate and increapestihbility that false returns are associated
to the track which reduces the purity of the track. As desttiin Sec. 4.1.2.2, the effect of false target
density on predicted estimation error can be assessedgthtbe modified Riccatti equation. Fig. 4.14
shows the tracking load for varying clutter density and algo noise ratio, where it can be seen that
greater false target density increases the tracking logqdined to maintain the track. This is most
notable for greater track sharpness setting where theatalitgate is larger which encompasses more

false returns.
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Figure 4.14: Tracking loading using track sharpness meithedrying clutter density

It can be seen in Fig. 4.14 that the minimum loading track @iess setting is not independent
of the false target density and so the minimum track loadimyEness is not universal. It is found
that the track sharpness setting must be lower than thaestegyby Van Keuk to compensate for the
measurement origin uncertainty, which echoes the reqenerfor lower sharpness settings in ECM
found during the benchmark tests. Fig. 4.15 shows the miminoading track sharpness as a function
of the false target density where it can be seen the minimaxlihng decreases. This shows measurement
origin uncertainty should be included in the resource allimn model to ensure stable performance in
dense false target regions.

In the original paper by Fortmann the data association taicgy resulting from increased false
target density reduces the gain of the Kalman filter. Thisdas the reduction in uncertainty of the

measurement, which reduces the mutual information gaihefteasurement. The mutual information
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Figure 4.15: Minimum loading track sharpness setting foyivey false target density

gain of the measurement givey can be expressed as:

(4.51)

1 |H Py H" + Ry|
2 I(

I=—-In
I —qol)H Py  HT + Ry|

maximising the mutual information gain of the measuremsrdasirable as the greatest reduction in
uncertainty enables the longest time between revisitstwt@duces the tracking load. Fig. 4.16 shows
an example of the mutual information gain of the measurermgainst the revisit interval time. It can
be seen that the mutual information has a maximum at a reiriggt which is dependent on the false
target density. Hence, mutual information can be used tthaidelection of track revisit intervals, with
additional relevance in cluttered environments.

It is desired to use track-while-scan for tracking as mamgets as possible, as this is the most
efficient use of resource. However, as demonstrated hegetsawvhich are in cluttered regions require
update rates which are likely to be faster than that providehb surveillance scan. Hence, it is desired
to augment track-while-scan using additional active tnaglates when necessary for targets in clutter

regions. Enabling this is a consideration for the develapgroéthe resource allocation mechanism.

4.3.3 Comparison of Information Theoretic and Task SpecifidcMeasures

This subsection investigates the suitability of inforraattheoretic measures in providing a single uni-
versal measure to interface into the resource allocatiochar@sm. To explore the use of information

theoretic measures, a simulation has been produced whichares tracking performance measures for
choosing updates based on the standard track sharpnessdnaeith selecting updates at times when a

specified mutual information is produced.
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Figure 4.16: Mutual information gain of measurement as tioncof revisit interval for varying false
target density

Loading- Fig 4.17 shows the track loading resulting from updatingadround of the track sharp-
ness and a bound on mutual information. Fig. 4.17 shows lieaétis a clear difference in the update
rate between track sharpness and mutual information. Btagkpness schedules an update based on the
angular estimation error alone, however, mutual infororatieing reduction in uncertainty schedules
updates based on the estimation error and the measuremamntdrich depends on the beamwidth and
SNR. This results in a shorter revisit interval for trackshagreater SNR that produce more informa-
tion. This is not necessarily desirable as it allocates mprdates to high SNR tracks than they need for
maintenance, and less updates to low SNR targets than theyedor maintenance. This is because
track sharpness aims to minimise radar load whilst maimgitrack, but mutual information aims to
maximise information production. So, these approaches Adundamental difference in what they aim
to optimise. This is clear from Fig 4.17 where significantdésallocated to high SNR tracks. It can
also be seen that low SNR tracks are dropped using mutuahiation, as they are unable to produce
the information required. This is an additional undesieatiiaracteristic.

As mutual information is the expectation of the Kullbackitler divergence, it was found that
allocating based on the Kullback-Leibler divergence penied very similarly to mutual information,
with fluctuations associated to the stochastic nature oftéuéstical distance term.

Information Rate The difference in the optimisation objective resultingrfrthe different measures
is further recognised through analysis of the average tmagtual information rate in nats, which is
information withlog base ofe, per second. This is shown in Fig. 4.18 for track sharpnedsautual
information. It can be seen that as the bound increases tberiation rate for the track reduces. It

can also be seen that the track sharpness has a similar atformnate regardless of SNR, because this
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Figure 4.17: Loading for mutual information and track shmeags

is not what this approach optimises. However, it can be desinthe mutual information measure has
a logarithmic relationship between the bound and the in&tion rate, highlighting that is what the
method optimises. Also, higher SNR produces a higher intion rate as higher SNR measurements

carry more information.

Root Mean Squared ErrorThe effect of the different optimisation objective betweke measures
can be seen in the root mean squared error (RMSE). The root sge@red error for track sharpness and
mutual information are shown in Fig. 4.19. The figure showmarease in the RMSE as the bounds are
increased, which is due to the revisit interval increasiiith tihe bound. The information rate and RMSE
are directly related and as mutual information optimisés dlnantity there is a subsequent reduction in

the RMSE.

It is common to assess track performance solely on RMSE,ngiien the reduction shown here
would allow the conclusion that mutual information is thestior approach. However, this improvement
in the RMSE is potentially unnecessary and comes at the ¢astieasing the radar loading, which
reduces the number of tracks the system can maintain. Tgididints a critical point that not only must

a variety of metrics be used to analyse the performance dltbeation, but also that the performance
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analysis must be in the context of the requirement of theegysin reality, optimisation of the RMSE
may be of little concern, while a greater importance is pdaoe the reduction of track loss, accurate
data association and maintenance of the maximum numberg#t$a It is therefore essential that any
mechanism that utilises information theoretic approagheserves the requirements of the system. For
example a target engaged by the weapon system requires ¢dghaay, whereas a surveillance track

may have different requirements, such as track continuitypaurity.
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Figure 4.19: RMSE for mutual information and track shargnes

This comparison suggests that there is a subtle differenitesiway in which information theoretic

measures can be applied. As a surrogate function optimisiagnation improves tracking accuracy and

can reduce tracking load and so is relevant to the contrchol éndividual task in isolation. However,

in terms of making comparisons and resource allocationsdwet tasks, information is not suitable

as optimising information production across all tasks isthe fundamental requirement of the radar.

This initial assertion will be explored in the developmehtte allocation mechanisms in the following

chapters.
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4.4 Task Utility Functions

The agent based resource allocation mechanism develoghd following chapters requires a single
measure to optimise. However, it is clear from the discussidhis chapter that information theory can
not fulfil this role and no such single measure exists. In,faads found that functionality is improved
when resource is allocated based on a variety of measurehwdiequately describe the potentially
complex requirements of each task. A solution to this is finéea mapping from each different quality
measure to a common measure called utility.

A utility function u;, can be defined for each task which provides a mapping fronitgsplaced
to utility:

ue : Qr — R (4.52)

This quantifies the satisfaction associated with each poittie tasks relevant performance measure.
As the primary quality measure of interest varies betwe#ariig radar task types, the utility function

provides a single comparable measure.

4.4.1 Linear

A simple utility function is a linear mapping from the relextgerformance measure into quality space.
For tracking a relevant quality space is the angular esiimagdrroro,, and so an example of a utility

function is:
0 ifop,>0.30p

ur(op) =pi{ 2E-%if 0.150p < 0, < 0.30 (4.53)
1 ifop <0.150p
this utility function is shown in Fig. 4.20. The mapping camddjusted given the requirements of each
task, for example, the accuracy for tracking a target to lygmged can be more accurate than one which
is not engaged.
For the long range surveillance function a relevant quatigtric is the cumulative detection range

and so a mapping similar to Eq. 4.53 can be defined. An exanfiiphe aitility associated with tracking

and surveillance functions is shown in Fig. 4.20.

4.4.2 Logarithmic

It may be more realistic that the satisfaction associatéd iwcreases in quality is logarithmic. A sim-
ilar logarithmic utility function can be defined for othemfctions such as long range surveillance. An
example of the utility associated with tracking and longg@surveillance is shown in Fig. 4.20.

The utility function can be a weighted summation of indiaditasks measures when more than one
is relevant. The choice of utility function can be varied @it represents the satisfaction associated

with each quality metric, complex task requirements canrbated.
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Figure 4.20: Example of linear and logarithmic utility furmns for tracking and surveillance functions

4.5 Resource Manager Performance Assessment

Performance assessment of multifunction radar resourcageenent algorithms is difficult for a num-
ber of reasons. Firstly, itis required to support multigféeding functions and so no single performance
metric exists as each function is assessed by differing &smhchte measures. Within each function
different measures can have different degrees of relevafRoe example, track accuracy is important
for tracks which require engagement whereas track puritlyexistence is of more relevance for tracks
requiring surveillance. Also, the performance assessmerst be in the context of what is currently
required from the system, which is likely to change over tirttés desired that the multifunction radar
be able to operate in uncertain and dynamic environmentshwhlates to a large variety of possible sce-
narios. Hence there is no single scenario in which the resomanager should be assessed and if there
were, it would not demonstrate how well the resource maniagdle to adapt to varying environments.
Finally, real data is of limited use as to capture radar damaesform of resource management must have
already been applied. For a mechanically scanned systsmetsburce management is the mechanical
scanning, for an ESA the array face must have been conttolledduce the data. Heavily oversampled

data can be of use, but this is rarely available without redyithe realism of the scenario.

As a result of these difficulties the resource managemeoritigns developed in this thesis are
assessed on a variety of appropriate task specific meastilsgsin several examples the allocation is
assessed in terms of utility as the utility function proddee satisfaction associated with each point
in quality space it describes what is required from the sgstilaximisation of utility across a system
echoes ideas outside of engineering and computer scieic&ingct comparison to Utilitarianism and

Jeremy Bentham™o achieve the greater good for the most amount of people”
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4.6 Summary

Measures and models used to guide the allocation of resauitazlly limit the quality of resulting
allocation. A wide variety of task specific measures areveelg but incomparable between functions
which poses a challenge for resource allocation mechanisms

Information theoretic measures can be applied to the caretifins of a multifunction radar to
optimise the performance of the tasks. Information théoraeasures as surrogate functions are useful
for the optimisation of tasks in isolation, but are not safuder making higher level allocation decisions
as information production is not the aim of the radar system.

As multifunction radar resource management inherentlysaionoptimise multiple functions, it
is desired to use as wide a variety of measures as possibls. cliéipter has discussed a number of
measures, however, these measures are not exhaustive agdmee can be considered depending
on the requirements of the task. A mechanism which is abl#idoade resource to a variety of quality
measures is desirable. To convert the differing task spauifiasures into a single metric for optimisation
by an agent system, utility functions can be defined which the satisfaction associated with each point
in task quality space.

Ultimately resource must be allocated against some meastnacted from a model, and how well
the measure represents the underlying task can reduce dfity qpfi the allocation. For example, if the
target dynamic noise model is poorly matched to the truestadgnamic then the resource allocation
will be poor. Also some tasks do not lend themselves to betifiehby measures so easily, such as a
long duration target recognition task.

When tracking with the presence of false returns, as wittteuthe minimum loading revisit
interval is dependent on the false target density. The mininbbading can be found using mutual
information, and the modified Riccati equation can be inooated into covariance analysis to improve

tracking resource allocation.
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Chapter 5

Agent Systems in Multifunction Radar

Resource Management

Agent systems are self-organising computational sosietieere the synergy of local interaction be-
tween agents generates global desirable behaviour. Byakiimgi human interaction mechanisms, agent
systems can provide rapid and intelligent adaptation iretta; and dynamic environments. Specifi-
cally, auctions and markets are suitable for applicatioRRM as they have evolved in human societies
as effective resource allocation mechanisms.

This chapter introduces agent systems and describes titéocref a test bed suitable for developing
agent auction mechanisms. The testbed provides agentdnality and generates radar measurement

simulation.

5.1 Agent Systems

Agent systems are comprised of multiple computational el@mwhich are able to socially interact by
passing messages between each other. This social intergetduces emergent desirable behaviour.
The design of an agent system is composed of two aspectsehta@ibur of the individuals agents and
the design of the mechanisms through which they interacts 3éction introduces the concept of an

agent and the concept of a multi-agent system in which thetagsist.

5.1.1 Intelligent Agents

The term agent is very general but can be characterised ajosteactly in the following way with the
support of various texts [Vidal, 2007; Weiss, 1999; Rusartl Norvig, 2009; Wooldridge, 2002]. An
agent acts on someones’ behalf or represents someonegsistewhich may or may not be its own.
An agent should be able to sense through sensors, and affemigh affecters, the localised region
of the environment in which it exists. It should have contstbsome internal state, which it uses to
store localised information on the environment. It showdd this information to perform actions, which

further change the environment. An agent should have defjoats, and choose actions which bring
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AGENT
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Figure 5.1: Architecture of an agent [Jennings and Wootpjd 998]

the agent closer to its goals, given the environmental ¢mmdi. This model of an agent is shown in Fig.
5.1.

As this notion of agency covers all types of agents, it is uiseflook to a human agent to clarify
some of these properties. For example, an estate agentrabishalf of a property owner wishing to
sell a property, however, it is self-motivated as it profitsnf the sale. The estate agent can sense the
state of the market through its interactions with selleid launyers and may also have access to statistics
of the market as a whole. As such, the estate agent has a mmopete knowledge of a limited and
localised portion of the market, and partial and processfatration on the whole market. The estate
agent has control over its internal state, as it is able teereber previous interactions which it uses to
make decisions. Decisions and subsequent actions compiéimgoal of selling houses and earning
money. Although self-motivated, the estate agent optistise allocation of property between numerous
potential owners which improves the ‘social welfare’ of gystem.

Agent-orientism is the next logical step from object-otism and so clear differences can be iden-
tified. Objects can only be invoked whereas an agent has aupover its choice of actions which are
invoked subject to the agents goal-directed behaviour.elkample a light switch, which is an object,
executes a function which is invoked by the operator to @bire lights. However, if the light switch
were an agent then it would only sense the operators’ desitaé lights to be on. Given this it would
determine how this sense aligns with its only personal gahtbe goal of the switch agent were to
please the user, then it would activate the light and furifsepersonal goal. However, if the goal of
the switch agent were to annoy the user then it would not @etithe light thereby also furthering its
personal goal. This demonstrates how an agent can choosetorp actions, whereas an object is only
capable of being invoked. This idea of autonomy allows fagrdg to interact in ways that an object
cannot, creating complex system behaviours.

In addition to the characteristic of autonomy, an agent khpassess some of the following key

characteristics:

e Reactive/Adaptive An agent must be aware of the environment in which it exisis @eact to
changes in the environment so that its goals continue to ke Titeés may cause it to adapt its

behaviour due to environmental changes, which it shouldhdotimely fashion.
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e Proactive/Goal directed behaviourAn agent should formulate goals and exhibit goal-directed
behaviour to meet these goals. This means it should notys@att to the environment but be

proactive and possibly take the initiative so that its geatsmet.

e Autonomy/Rationality An agent should be able to make independent decisions andragrate
independent behaviour which requires an independentdhoteontrol. An agent should be ra-
tional and as such would not perform an action which confliétk one of its goals or would be

likely to leave it in a worse position than before the action.

e Social Ability- Agents cohabit environments with many other agents, wbéghhave conflicting
or common goals. Therefore an agent must have the abilitpe@mbkse with other agents in
the environment so as to resolve conflicts or coordinate inrdext specific way. Agents can

participate in various social mechanisms such as negmigtauctions, institutions and coalitions.

An agent should be able to demonstrate these key charaictehist the level at which they demon-
strate the characteristics can vary widely. This is why #rentagent is so general and consequently
agents can vary widely. However, at the core of every agehtisoncept of autonomy and the resulting
independent thread of control.

For completeness, the notion of an agent described heregleasdery abstract. For the rest of this
work and also for agent research in general it is assumedhbatgent in question is a computational
construct. This construct has its own thread of control, potational ability and some memory. Also,
although most agents need to be justified against theseatbdstics, agents tend to be quite simple and
do not need to develop complex individual behaviours or desngemonstrations of these characteris-

tics. The emphasis is on the system behaviour in which thetag@volved.

5.1.2 Multi-Agent Systems

A Multi-Agent System (MAS) is a collection of agents that age in social interaction. The transition to
a MAS is inevitable as there is little that a single agent adneve. As each agent has a limited, localised
knowledge, the data in the system is decentralised and Asagent contributes to the behaviour of the
system, the control is distributed. As agents are reacatatenal and autonomous, they can generate
desirable system behaviour in environments that are dymamd uncertain. This visualisation of a
multi-agent system is demonstrated in Fig. 5.2.

In classical artificial intelligence the aim is to make onenpaitational construct highly intelligent.
Multi-agent systems, however, aim to create intelligeritawv@our through the synergy of the system
which is generated through relatively un-intelligent naietions between agents. This means that each
agent does not need the high levels of intelligence presaniassical Al and instead replace this intelli-

gence with the lesser notion of autonomy.
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Figure 5.2: A Multi-Agent System (MAS) [Wooldridge, 2002]

Humans frequently engage in multi-agent mechanisms on @aebasis. For example, a road
network is a multi-agent space and time multi-constraininoiger. With a little thought it can be seen
that in a road network each vehicle user aims to utilise tregeshresource in the best way to meet
its goals. If all vehicle users using the road network achiteir goals the problem is optimised and
a global ‘social welfare’ is achieved. This process is varpust against the varying constraints and
uncertainty concerning environmental conditions and alpiéity of the network elements. The design of
the road network, or mechanism, affects the quality of tledal solution, which demonstrates the need

for effective mechanism design which governs the agentant®n.

Suitable mechanisms to use in multi agent systems are misch&that require low levels of intel-
ligence for each agent. For example auction mechanismsayesfficient at solving resource allocation
problems but only require the formation of a valuation andrategy. Multi-agent systems research
covers a wide variety of interactions including trust anputation, coalitions, institutions, electronic
markets, communication and learning. Agents and multhtiggstems combine topics from artificial

intelligence, concurrent systems, economics, game traahsocial science.

5.2 Mechanism Design

Mechanism design addresses the design of the mechanisagthwdhich the individual agents are able
interact. The design of the mechanism ultimately detersiine behaviour which the agents are required
to generate. Specifically, the mechanism should be desigmé¢hat it produces the desired outcome
based on any preference profile supplied by the agents. tiretevant to resource allocation problems
are auction and market mechanisms, in this case the prets@mofiles take the form of valuations of

the resource.
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5.2.1 Auction Mechanisms

There are a wide variety of auctions which exhibit differatgracteristics and are governed by differing

protocols. Characteristics include the number of selledsthe number of buyers, whether the auction is
for a single good or a combination of goods, whether bids pem@r sealed, whether the prices ascend
or descend or whether single or multiple units are auctioned

Common examples of auction mechanisms implemented in hgoreties are:

e English Auction- In the English Auction the bidding price starts at some lalue which is
incremented after each bidder indicates consent to meeethered bid. The bids are open and
the dominant strategy is for an agent to bid without excegdiprivate valuation. However, it is
worth noting that as the bids are open, information abolgratyents valuations can be speculated

from their bidding habits.

e Dutch Auction- The Dutch Auction is similar to the English Auction but usksscending incre-
ments. The auction starts with a high price which is loweretil one of the agents indicates it
accepts the bid price, hence winning the auction. There thomainant strategy which can lead to

inefficiencies in the allocation.

e First-Price Sealed-Bid AuctionEach agent privately submits a bid without knowledge ofather
agents’ bids. After the bid duration has elapsed the auctiesrs declaring the highest bidder as
the winner. There is no dominant strategy and the agent fashéd on the basis of any available

prior knowledge of the item and the other bidders.

e Vickery Auction- The Vickery auction is also known as a second price sealédbétion. As
with the first price sealed bid auction the bids are privateydver, it differs as the winning agent
placing the highest bid is only required to pay the secontiésgbid price. This mechanism leads
to the desirable dominant strategy whereby each agenttsitizié valuation. Hence the auction

is ‘incentive compatibletue to the dominant strategy of truth revelation.

To demonstrate the incentive compatibility of the Vickengton consider the following:

Agent One ¢;) has valuatio} and bidsh; and Agent Two {z) bidsbs
1. If by < pj: 1 risks unnecessarily losing the auction.
2. If by > p7 andby < pi: t; wins and pays less than its valuation.
3. If by > pj andbs > pi: t; wins but pays more than its valuation.

4. If by = p3: t1 never pays more than valuation and maximizes its chancerufing.
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In case ong; is lowering its chance of winning the auction unnecessalrilgase twa; wins and
pays less than its valuation. However, it has not benefittad bidding higher than its valuation and has
risked case three occurring. In case three, by bptind¢, bidding higher thart;’s valuation,t; ends
up paying more than its valuation which is undesirable. bt kg bidding more than its valuation the
only extra auctiong; will win are those in which it ends up paying more than its wdion.

This concept of incentive compatibility is important besaut means that the agent does not need
to model any of the game theoretics about the other agenit®iauction. Also if each agent truthfully
bids then the good is allocated to the agent who truly valugeeihighest and global social welfare is

maintained.

5.2.2 Social Choice Theory

Social choice theory focuses on the part of the mechanisimtridwrasforms a set of preferences from
agents into an outcome or outcomes. A social choice funciimoses a single outcome and a social
choice correspondence chooses a set of outcomes givereleegurce profiles of participating agents.

Voting mechanisms are typical examples of the applicatf@ooial choice functions. For example,
in a mechanism where agents can vote for one of two candidatesocial choice function transforms
the preferences into an outcome which involves countingvtites and declaring the highest polling
candidate as the winner which maximises social welfare. ¢évew this simple problem is complicated
where there are more than two candidates and agents areteértnisubmit preferences over all candi-
dates.

In an auction the auctioneer receives some bids, which septehe agent’s preferences, and it
must apply a social choice function to transfer these peefes profiles into an outcome. In most simple
auctions the social choice function is trivial as it is asedrthat the auctioneer chooses the bid which
maximises the auctioneers potential income. If aggrelongs to set of agent§, and outcome

belongs to the set of possible outcondethen the social choice function is:

F(Ta) = argmax 3 i, (o) (5.1)

tr€TA

whereuy, (0) is the utility production associated with outcoméor agentt,.
However, just like in voting when more complicated mechansisre used the social choice function
is no longer trivial. Such as mechanisms which involve rpldtunits, combinations of units and multiple

preferences, are developed in this thesis.

5.3 Java Agent Development Framework

The Java Agent Development (JADE) Framework is a softweaméwork which was developed by

Telecomm ltalia to extend the Java platform enabling dearakent of multi-agent systems. The frame-

106



5.3. Java Agent Development Framework

work provides the key characteristics required for ageimcjyuding concurrency, social ability and be-
haviours. JADE was developed to be fully compliant with thieéA-agent standards. The Foundation for
Intelligent Physical Agents (FIPA) is an IEEE Computer $bgistandards organisation which promotes
the use and interoperation of agent based technology. FiBéifees software standards for all aspects
of agency, including ontologies, communication and platfgtructure.

The JADE platform consists of a number of containers, in Whigents can exist, that can be
distributed over several hosts each running one Java apiplic Agents exist within a container, with
each agent ran in an independent thread. In compliance WA, Ehe agent platform is modelled
as containing the agents, an agent management systemgctodiriacilitator and a message transport
system as shown in Fig. 5.3. Only a single agent managemstensyexists on a platform, which
handles tasks such as agent creation and individual narmimgdirectory facilitator provides a yellow
page service for agents to advertise services and the neegsagport system handles the passing of

messages between agents in the platform, which could besasrultiple hosts.

Agent Platform

Agent Director
Agent Management =ctory
Facilitator
System

Message Transport System

Figure 5.3: Agent platform defined by FIPA

Key functionality provided by JADE is the ability for agertts implement multiple, concurrent
behaviours and pass messages. Message objects can bd ereiatecontain a set of attributes. These
attributes are the sender and receiver ID, the conversiiahe content of the message and a message
performative such as ‘request’ or ‘inform’. The messagagpert system handles the delivery of mes-
sages to the correct agent, and each agent possess a quetieeofmessages which it can process in
order or messages can be extracted from the queue accoodipgdific attributes.

As each agent must be able to implement numerous concurebaviours, JADE allows for be-
haviour subclasses to be defined which can be added or renfimracthe agent at any time. The
scheduling of active behaviours is hidden from the programand executed in a round robin sequence.

Behaviours can be blocked and await triggering by an evanlh as a received message, which prevents
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unnecessary CPU utilisation. Various behaviours can bsarhfyom, such as oneShotBehaviour which
executes just once, cyclicBehaviour which executes repbatind is useful for processing received
messages, wakerBehaviour which executes after a timeiclutas elapsed or TickerBehaviour which
repeatedly executes at a specified interval.

Finally, JADE implements interaction protocols as defingd-B°A which describe the format that
different agent interactions or conversations should egitu®. The interaction protocols ensure that all
parties involved in the interaction are aware of the curstage of the interaction, which removes the
uncertainty associated with agents not responding to ariypan interaction chain. Typical interaction
protocols are FIPA-Request, FIPA-Query and FIPA-Recruit.

The JADE Framework extends the Java platform to provide tafgeictionality which allows de-
velopment of agent systems. The JADE Framework is usedsmtbik to develop auction mechanisms

which are applied to the radar resource management problem.

5.4 Agent Based Resource Management Testbed

An agent based radar resource management testbed has éaten én Java using the JADE Framework
to enable the development and simulation of the auction amd@sms developed in the following chap-
ters. This involved both creating a testbed environmertaiblg for developing auction mechanisms,
as well as the simulation of radar measurement data usinghtigels from Chapter 4. This section
describes the design of the system, including the architecnd the agents and objects used in the

software.

5.4.1 System Architecture

The architecture of the complete software system is showAgins.4. The architecture was designed to
allow integration into the radar resource manager arctiteshown in Fig. 3.3. The inheritance struc-
ture of the agents allowed for different auction mechanigmise implemented whilst maximising code
reuse. It was also important to design each task agent wiithelknowledge of the task it represents,
again to maximise code resuse.

The software contains a collection of agents and objecteyelly agents extend the notion of an
object by possessing autonomy, the ability to program doaketed behaviours, a social capability and
an independent thread of control. The main section of thieveoé, which is the agent based resource
manager, contains a number of agents representing radkartteet are able to participate in varying
auction mechanisms. This agent based resource manageatgsrtasks requests which are passed to a
scheduler to be formed into a radar timeline. Upon executierenvironment is modelled and simulated
measurement data is returned to the task agents to updateetsgective function. Typical functions

implemented in this resource manager are surveillanceraoking functions. The task agents and func-
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tions have access to a waveform database, priority assigirand environmental model. The waveform
database contains the allowed waveforms which can be sdléat transmission, the priority module
contains a list of predefined priorities for each task ancetihveronmental model contains environmental
information for each task such as estimated target radas@ection or predicted false target density.
The TaskAgents, AuctioneerAgents and SchedulerAgentdiscassed in Sec. 5.4.2.1, Sec. 5.4.2.2 and
Sec. 5.4.2.3 respectively and the Function objects areisisd in Sec. 5.4.3.1.

5.4.2 Agents

Within the software testbed a number of agents have beegraabivhich adhere to the notion of agency.
Itis required to have agents which take on the role of theiaeer in a specific auction, as well as agents
acting as the auction participants who represent diffaasgs. In addition there are agents who facilitate

the running of the software.

5.4.2.1 Task Agents

Task agents can represent any of the radar functions fromZ82, such as surveillance or tracking.
These agents possess a function object, which could belartgaor surveillance task, without knowl-
edge of the function it performs. The function object is dethfurther in Sec. 5.4.3.1.

The inheritance structure for the task agents is shown in bi§. The generalaskAgentlass
inherits agent functionality from the basgentclass provided by the JADE Framework. Different agent
classes inherit from the geneiidskAgentlass, these agents posses differing behaviours whicmdepe
on the auction mechanism within which they are required &rafe.

In the inheritance tree shown in Fig. 5.5 three agents ard fmediffering auction protocols.
CDAAgent refers to an agent which engages in a continuould@uction, RBAgent to an agent which
selects parameters according to predefined rules and FPAésh engages in a first price sealed bid
auction mechanism. These specific behaviours for the CDAAged RBAgent are discussed in the

developmentin Chapters 6 and 7. The behaviours impleméntbd TaskAgentlass are:
o startNotification- Responds to a notification of the simulation starting btiatising the agent.

¢ receiveSchedNotifResponds to a notification of the agent’s task being exddut¢he scheduler
by updating the agent and the task given the received datrad clas®nScheds called which

enables inheriting agents to execute additional behaviour

e ticker - Monitors the passing of time which enables the recordindaif and termination after

simulation is complete.

Additionally the methodsipdateScheduleandtakeDownare defined which update the scheduler with

the current operating parameter selection and terminageggent respectively.
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Agent

TaskAgent

CDAAgent RBAgent FPAgent

Figure 5.5: Inheritance structure for task agents

This design of the task agents was chosen to maximise caggerehilst allowing agents represent-
ing new auction protocols to be rapidly included. Code rewas ensured by allowing the task agent to
represent any task, without any code specific to a certaiar fahction. Ability to rapidly extend was

ensured by including common functionality in thaskAgentlass.

5.4.2.2 Auctioneer Agents

A variety of auctioneer agents can be selected to implemiffieteht auction social choice functions.
The selected auctioneer agent organises the market platedh the numerous task agents, representing
radar tasks, engage. Typical activities for the auctioagent is to facilitate trades between agents, as
with a continuous double auction, or to declare the winramnfa set of bids, as with the first price sealed
bid auction. The inheritance structure for the auctiongenss is shown in Fig. 5.€DAAgentRBAgent
andFPAgentcorrespond to continuous double auction, rule based angfice agent respectively; each
of these agents inherit from the agent class and have diffédehaviours which depend on the auction
mechanism in which they engage, which are discussed furiti@napter 6 and Chapter 7. Auctioneer

agents make use of the orderbook object which is descrided/be
Agent

AuctioneerCDA AuctioneerRB AuctioneerFP

Figure 5.6: Inheritance structure for auctioneer agents

There is not much common functionality between auctiongents and so no common class is
defined in the inheritance structure. Different auctioreggents can be rapidly added to the software

using the functionality provided by the JADE Framework.
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5.4.2.3 Scheduler Agents

A variety of schedulers have been implemented to form ragieiines from sets of tasks requests which
are sent from the task agents. The schedulers have beemiemtied as agents, primarily to exploit
the ability to receive messages from the task agents. Edwddater agent is a variant of the earliest
deadline first scheduler which is selected for the desirabégacteristics outlined in Sec. 3.4 and by

Miranda et al. [2007a]. The inheritance structure for thections is shown in Fig. 5.7.

Agent

HpEdf EdfTws HpEdfTws

Figure 5.7: Inheritance structure for schedulers

Edf is the an implementation of a standard earliest deadlinesiteedulerHpEdf includes respect
to priority which ensures that no task is delayed by a low@rity task, which is similar to the Butler
scheduler Butler [1998]. FinallfdfTwsand HpEdfTwsincorporates an additional track-while-scan
scheduling mechanism which is used in the tracking conitraigtions. Again, this inheritance structure

is chosen to maximise code reuse.

5.4.2.4 Auxiliary Agents

Additional agents have been implemented which aid the diparaf the testbed either by creating and
organising all the agents depending on the required sifualabdr collecting the simulation data from
agents in the system. They are not shown in Fig. 5.4 as thayamirectly relevant to the operation of

the agent based radar resource manager. They are:

e DataMan- The data manager collects the data from the individual isgehen the simulation is

complete and writes the data into Matlab data files for aiiglys

e MarketMan- The market manager takes input from the simulation us#ialises and starts the
appropriate simulation, which involves the creation oftia#i appropriate agents and ensures that

they are synchronised.

These agents implement various behaviours but do not boidrio the novelty of this work and so are

not detailed further.
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5.4.3 Objects

There are a number of objects which can be possessed or usieel dyents, which adhere to traditional
object-orientated programming and so have some encapdidttte and invokable methods. Most im-
portantly, individual radar tasks are implemented as dbjechich inherit from the Function class, but

there are also auxiliary functions which are used througti®rresource manager design.

5.4.3.1 Functions

Each task agent possesses an individual task which is tiegeohfrom a function object. The agent has
no knowledge of the specifics of the task, which enables desagent design to represent all functions
requiring support by the MFR. The inheritance structuretli@r function objects is shown in Fig. 5.8.
Examples of functions are shown in the tre®Sury AccTrackandExTrackbeing long range surveil-
lance, accuracy track and existence track respectivelgingdadditional MFR functions is performed

by adding a subclass which inherits from the function clasiallows rapid development.

Object

Function

LRSurv AccTrack ExTrack

Figure 5.8: Inheritance structure for functions

The abstract function class requires subclasses to oeearidumber of methods which varying

depending on each function:

e evalOpPoint Evaluates the utility associated with the passed opeyatmameters.

e updateStatusUpdate the status of the task, used to check if a task istinglaonstraints.

e receiveData Process data which results from an executed radar look.

In addition thdogResultandgetResultsnethods handle the collection of simulation data.

The function object also contains two methods which arekaddy the task agents to form bids:

¢ hillClimb - Perform local hill climbing search up or down.

¢ findBestOffer Use hill climbing search to produce best offer.

which both rely on subclasses overriden version ofeve@OpPointmethod.
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5.4.3.2 Auxiliary Objects

There are also a number of auxiliary objects which are usdtidyarious agents to achieve their goals:

e Look - A Lookobject is a request which is passed to the scheduler. Thedbct contains

requested task parameters as well as earliest, latesttasktesn times and the task priority.

o Offer - An Offer object is a request to trade resource which is submittede@tittioneer. The

offer contains a unit price and quantity and identifier.
e OpDims- Agents are capable of generati@gDimsobjects which describe a parameter selection.

e OrderBook- TheOrderBookis an object which the auctioneer agents possess to orghaieéfers

which are submitted by task agents.

These objects do not contribute to the novelty of this wordk smare not discussed further.

5.5 Summary

Agent systems are collections of multiple agents who pesse®nomy, a social ability, an independent
thread of control and exhibit goal directed behaviour tiegtayates desirable emergent behaviour through
relatively simple interactions. Agent systems typicallymet human interaction mechanisms, of which
auction mechanisms are especially relevant for resourcegenent and allocation problems.

This chapter has detailed the architecture of an agent vagded resource manager which exploits
the use of a mixture of objects and agents with functionglityvided by the JADE Framework. Sim-
ulated measurement data is also generated using the thegdmadels from Chapter 2 and Chapter 4
respectively. The architecture was designed for the raghititian of extra functions and for maximum
code re-use. As an agent based radar resource manageretfissttof its kind and is used to produce

the novel results for the auction mechanisms studied inahewing chapters.
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Chapter 6

Sequential First Price Auction

A first price auction is a mechanism which allows a centratianeer to distribute a resource or com-
modity to the highest bidder drawn from a set of sealed bidseduential first price auction is a series of
auctions which allows the auctioneer to distribute mudtiphits in succession. As auctioneers are only
able to sell resource and participants are only able to msehesource, the trades have one direction
and so the auction is known as one-sided. The first-pricéaubas been implemented in various real
world situations as well as seeing recent interest for dptition problems [Rogers et al., 2007; Payne
et al., 2006].

This chapter introduces the sequential first price auctientranism and describes an application
of the mechanism to multifunction radar resource managémigich results in the sequential first price
auction resource management (SFPARM) algorithm. Thetiegudlgorithm is analysed through simu-
lated tracking control problems and similarities are drawith existing best first schedulers and POMDP

approaches.

6.1 Sequential First Price Auction Mechanism

In a first price auction each participant submits a singleddicth is private and so not publicly available
to other participants. This differs from the traditionaldtish Auction where participants compete by
revealing bids, however, it has been shown through the RevEquivalence principle [Vickrey, 1961]
that both auctions generate equal profit. The single shateaf the auction and the lack of price reve-
lation reduces the communication and computation assatiith the mechanism, which is a desirable
characteristic for a radar resource manager which hasetit real time requirement.

A first price auction is comprised of two periods, the tradargl clearing periods. The trading
period is the time over which bids can be submitted to theiaoeind the clearing period is the time re-
quired for the auctioneer to announce the winner or winneequential first price auction mechanism
is a series of first price auctions and so consists of a nuniltiexding and clearing periods. A first price

auction can distribute single or multiple units during ogiele of the auction. If a single unitis auctioned
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then it is awarded to the highest bidder, if multiple units auctioned then they are awarded to the set
of highest bidders. All winning bidders are required to hanand pay the value of their submitted bid.

Implementations of sequential first price auctions incoapmthe following concepts:

Bid - A request to purchase resource. In a single unit auctigightsimply a unit price, however,

for a multi-unit auction this could be a preference profileioa range of resource quantities.

Trading Period- The time over which bids are accepted to the auction.

Orderbook- A collection of the best bid prices which is maintained bg #uctioneer and wiped

when the auction clears.

Bid Price Limit- The minimum bid price allowed for admission to the auction.

The primary variations within a sequential first price aoitare the trading period and the quantity of
resource auctioned in each auction cycle. The choice dfiggukriod depends on the application, it must
be long enough for bids to be evaluated and collected, but shough so that the multiple resource units
are sold at an appropriate rate. The auctioned quantityrdispen the nature of the resource; sequential
auctions of single units places a greater computationabteon the participants, however, auctioning
multiple units per trading period can reduce mechanismieffady. The social choice function which
translates the bids received during the trading period amautcome is the same for all first price
auctions and declares the maximum of the received bids awitireer. However, the social choice

function can vary in the meaning of the application speciictimn currency.

6.2 Sequential First Price Resource Management Algorithm

This section describes the Sequential First Price Auctiesoldrce Management (SFPARM) algorithm
which is the result of the application of the sequential farkte auction mechanism from Sec. 6.1 to the
radar resource management problem. The SFPARM algorittowsab central auctioneer to distribute

radar time between numerous competing tasks and so cresthedulable radar time-line.

6.2.1 Mechanism

The SFPARM algorithm hosts a market where an auctioneeesgiglly distributes radar time between
agents representing competing radar tasks, such as tasksaggdl by the surveillance and tracking
functions. The resource auctioned in the algorithm reprsseadar time, which is the next access to
the radar. This access, or dwell, can be any desired lengtimefto accommodate the requirement
of differing task dwell lengths. After collecting the bidsetauctioneer declares the highest bidder the
winner who is granted the next access. Once the winning taghris finished, the next round of the
auction occurs, to allocate the next access. This mechar@arbe thought of as encompassing both the

task request generation and also the scheduler, shown iradheresource manager architecture in Fig.
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3.3, as task parameter selection emerges from the agentseadctioneer forms a radar timeline. The
algorithm has been implemented for analysis through sitiamlaising the radar resource management
testbed from Sec. 5.4.

The SFPARM algorithm consists of the following auction eycl

1. At the start of the auction cycle there exists a set #ask agent§’y = {t1,....,t;n } which

represent numerous tasks performing radar functions.

2. The auctioneer announces the start of the next tradirigdhexhich is equal in duration to the

previously allocated dwell.

3. Each agent submits a private bid which comprises of a gyantunit pricep and identifier. So a

bid from agent: has the fornb,, (¢, p», n).
4. By the end of the trading period the auctioneer has celtkatset of active bidB4 = {b1,...., b, }.
5. The auctioneer declares the highest bidder the winnertwhischeduled next.

6. The auctioneer announces the start of the next tradingcand the cycle repeats.

This auction cycle is shown in Fig. 6.1.

1. Task Agents

Exist
Tp=A{tsto}
2. Auctioneer 3. Task_Aggnts
Announces New —— | Submit Bids
Trading Period b, ={appPpn}

A\
4. Auctioneer
Collects Bids
Bp={by,.....b}

Figure 6.1: Sequential first price auction cycle

In the following analysis one auction is held per access ¢a#ldar, which is a radar dwell of any
length required by the task. Auctioning a single dwell in anetion cycle is more computationally de-

manding than several dwells, however, it is studied first adlliperform the best in terms of mechanism

117



6.2. Sequential First Price Resource Management Algorithm

efficiency in a dynamic scenario. The computational demandtdbe reduced by lengthening the radar
time allocated in one auction cycle; a sensible value beppyaimately0.1s which is a typical mini-
mum revisit interval. A longer auction cycle duration wosldnificantly reduce the radar performance
against pop-up targets.

A conventional RM method is to use predefined rules to selsit parameters and an earliest
deadline (or highest priority) first scheduler. In this centional approach the actual task parameters
or at least the revisit interval is emergent depending onrdiglar loading, most notably in uncertain
environments or under severe resource constraints. SFP&Rilar to this conventional approach,
however, it allows for different criteria as tfigest’ task to schedule first which depends on the meaning
of the auction currency. So this mechanism is not complegzhoved from existing best-first schedulers,

but provides a framework to explore the criteria for detering the'best’.

This mechanism is also similar in form to a Partially ObsblgaMarkov Decision Process
(POMDP), as sequential decisions are made under uncegrtaibfect to the reward function defined
by the meaning of the auction currency. When representiegrthltifunction radar resource manage-
ment problem as a POMDP, the possible actions which transitie discrete time decision process
between states can be scheduling any of the tasks currempihoged. The representation of SFPARM
as a discrete time decision process is shown in Fig. 6.2. 8ard associated with each action is equiv-
alent to each agents’ bid and is determined by the meaningeaditiction currency. This interpretation
of the SFPARM algorithm as a discrete time decision proadssithe non-myopic 'lookahead’ present
in a POMDP and so will undoubtedly perform worse, howevas, #dequate for considering the initial

feasibility of the application of POMDPSs to existing radantrol software.

Task 2

Task 1

ACTIONS ACTIONS

Figure 6.2: Multifunction radar discrete time decisiongess

Analysis of this mechanism can provide insight on agentesystbut also best first schedulers and

POMDP approaches.
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6.2.2 Task Agents
Each agent in the auction represents a radar task, suchwaslisumce or tracking, and aims to win as
much radar time as possible during the auction, withoutrgagtbove its valuation for the radar time. The
resulting allocation is highly dependent on the meanindefdurrency to evaluate and purchase radar
time, which must be accurately related to the representdd t&his critical meaning of the currency
necessitated the research conducted in Chapter 4.

Through the research conducted in Chapter 4, three measurég taken forward for consideration

as the currency used in SFPARM:
e Time difference between current time and desired exectitiomas specified by rules.
e Mutual information production of next measurement as ddfinesec. 4.2.2.
e Any relevant task quality translated into utility using dityt function as described in Sec. 4.4.

Mutual information and task quality assessed through &yufiinction are chosen to further analyse
the usefulness of these new measures. The time differes®y tules, produces behaviour which is
equivalent to an earliest deadline first scheduler and smitas to the Butler best-first scheduler [Butler,
1998]. Itis included as it provides a basis of comparisomwihich to assess the alternative methods.

Each agent submits a bid when requested by the auctione&t wgha valuation of the auction
currency production the radar task would produce given éx¢ aiccess, which is a variable length dwell.
It is assumed that the bidding strategy of each agent is tdasidue valuation for the dwell. This is not
realistic in a real sequential first price auction mecharasrthe agents would bid lower than their true
valuation, depending on their assessment of the competitimrder to maximise their profit. However,
truth revelation is used as a starting point and more comlicing strategies can be developed once
the merits of the mechanism have been assessed.

As implemented in the radar resource management testheetisk agent possesses the behaviours

described in Sec. 5.4.2.1. In addition the task agent alsegsses the following behaviours:

¢ ReceiveBidRequesfwait announcement of a new trading period from the aue@nupon which

evaluate and submit a new bid.

e ReceiveWinNotif Await notification from the auctioneer of winning an auctizpon which in-

form the scheduler to update represented task.
these behaviours allow the task agents to participate iaukton.

6.2.3 Auctioneer Agent
The auctioneer synchronises the auction, collects bidsftar time and applies the auction social choice

function. The auctioneer triggers a new auction cycle byiesting a bid from each task agent which
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is required in terms of the selected auction currency. Thti@eer agent collects the bids, declares a
winner which is scheduled while the auction process repeats
This auction mechanism can be thought of as a best-first afdraslith the three proposed curren-

cies in Sec. 6.2.2 giving different criterium for ‘best”:

¢ Rule Based Earliest Deadline First (RB-EDFIhe winning bid is the earliest deadline, which
is equivalent to the greatest time between the deadline amérd time. This is included as a
conventional approach to provide a basis for comparison-ERB implements the following

social choice function:

f(Ta) = argmax > dy, (o) (6.1)

tr€Ta
wheret, is an agent from set of agers, andd;, (o) is a function giving the delay from the

desired execution time encountered from the outcopwehich is scheduling task agemt next.

e Greatest Mutual Information First (GIF) The winning agent will produce the greatest mutual
information gain from the next radar access. This myopjaalhximises information production.

GIF implements the following social choice function:
f(Ta) = argmax > iy, (0) (6.2)
tr€TA

wheret, is an agent from set of agerify andi;, (o) is a function giving the mutual information

production of the next measurement from the outcomehich is scheduling task agefit next.

e Lowest Quality First (LQF) The winning agent has the lowest quality in terms of utilib@QF

implements the following social choice function:
F(Ta) = argmax > uy, (0) (6.3)
tr€TA
wheret,, is an agent from set of agerifs andu,, (o) is a utility function.

In the following analysis the three variants of SFPARM afemgd to as their best first scheduler equiv-
alents.
As implemented in the radar resource management testheetisk agent possesses the behaviours

described in Sec. 5.4.2.2. In addition the task agent alsegsses the following behaviours:

e CollectBids- Collect incoming bids from task agents and add bids to tdertrook. When trading

period expires or all expected bids are received, notifynimmer of the auction.

e RestartAuction Once a winner is notified, clear the orderbook and annoumestart of a new

trading period.
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these behaviours allow the auctioneer to interact withdsk igents and execute the auction cycle.

6.3 Simulation Analysis

This section analyses the SFPARM algorithm presented ipribeeding section in the context of single

and multi-target tracking control problems.

6.3.1 Single Target

The SFPRAM algorithm allocates a radar dwell to the highélddr, which has been taken in terms
of time delay (RB-EDF), mutual information production (Giér utility relating to task quality (LQF).
The allocation of resource based on these measures wasshscin Chapter 4. This section analyses
the effect of using these measures on a target track givésdhapetition for resource is resolved using
SFPRAM.

It is first useful to visualise how the valuations submittethte auction by a task agent representing
a track, which determines which task is executed and herceetlisit interval, differ over time for the
three variants considered. This is shown in Fig. 6.3(a), Bi@(b) and Fig. 6.3(c) for RB-EDF, GIF
and LQF respectively. In this simulation a single targetasked using a continuous white noise jerk
model as the limiting form of the Singer model with a processa intensityj = 3.3 unless otherwise
stated. The target is on the radar boresightGétmn, a unity probability of detection is assumed with
a received SNR 022d B unless otherwise stated amtl beamwidth. The track is initiated using five
dwells separated bis and the track is assumed to be in thermal noise with falsengtaobability10~*
and no clutter. The target dynamic is assumed matched toabker model, under this assumption the
estimation error covariance correctly describes the uaigy in the track and the RMSE is the trace
of the estimation error covariance matrix. Therefore, adyariance matrices are propagated without
generation and filtering of measurements, as under thesmptiens the covariance matrices adequately
describe performance. The rule used for RB-EDF is to mairdaiangular accuracy below 0.1 of the

beamwidth. The utility function used for LQF is a linear magpfrom angular estimation errot,:

1 ifo, > 0.1505
uk(op) =pi{ 1—2222% if 0.07505 < o), < 0.150p (6.4)

0 if o, <0.075605

note this is reversed from Eq. 4.53, as the measure used rQtRas lowest quality first

Trivially, the bid value submitted to the auction by a tragleat in RB-EDF is equal to the time
delay based on the execution time specified by the rules. Fgrv@ich is shown in Fig. 6.3(b), the
bid value, which is the mutual information production of fatential measurement, does not increase

linearly and is affected by the received SNR which suggdstswhen using this measure preference
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is given to ‘bright’ targets which produce greater inforioat Fig. 6.3(c) shows LQF where it can be
seen that the utility production of the next measurementise is also non-linear and is affected by
the target process noise intensityn the tracking filter model. This suggests that LQF givessouece
preference to targets performing extreme manoeuvresyadégeade in task quality, or angular accuracy
the quickest. Therefore, RB-EDF would be preferable formtaaning many targets as few miss their
deadlines, GIF would be preferable when all targets areired|to be of greatest possible accuracy and
LQF would be preferable when the tracks have differing quadiquirements.

The preference towards specific environmental parameténgse results are an undesirable char-
acteristic of each mechanism, the ideal preference undeuree constraints is towards achieving best
quality with minimum resource. So these results give a weaythat none of these methods, including
the conventional RB-EDF, are directly tackling the rada@oregce management problem, in the sense of

globally maximising task performance given a finite reseurc

Valuation for Rule Based Earliest Deadline First Valuation For Greatest Information First
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Figure 6.3: Valuations against time for three SFPRAM vadgan

These results indicate that the allocation produced uslfkga®d LQF will differ significantly from
the conventional RB-EDF, by scheduling based on infornmatémarding mutual information and task
quality through utility. However, it has been found that theéent to which this improves or degrades

performance can not be analysed from a single track pergpestit is not clear how the competition for
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resource in SFPARM will manifest itself into the valuatisi®wn in Fig. 6.3. Therefore to sufficiently
analyse and compare the allocation mechanism it is negetssfaitly model the competition for resource

by simulating numerous competing tracking tasks.

6.3.2 Multiple Targets

This section analyses SFPARM by simulating the competfiofiinite resource which arises from nu-
merous competing tracking tasks. In the simulation, targah be tracked using a share of resource
dedicated for active updates and it is desired to selectypeteas to optimise tracking performance sub-
ject to the finite resource available. The target environalgrarameters considered outside of control
are range, azimuth, radar cross-section and manoeuvidasthdeviation. Operational parameters un-
der control relate to the waveform selection, which is sifigd to the choice of revisit interval and
dwell length assuming that lengthening the dwell incredlsesSNR according to ideal coherent inte-
gration. The fixed radar parameters for the simulationsénstiction are listed in Table 6.1 and used in

conjunction with the theory and models from Chapter 2 andoféral respectively.

Table 6.1: Fixed radar parameters for SFPARM multiple tesgaulation

Parameter Value
Frequency 3GHz
Peak Power 2kW

Receiver Noise Figure| 6dB
Transmitter Duty Factor 0.06
Losses 6dB
Boresight Gain 36dB

In the simulations in this section the RB-EDF methods use$dtowing specific rules:
o Earliest track update time is when the angular uncertaifyi beamwidths.
¢ Latest track update time is when the angular uncertaintylis Beamwidths.
For all methods the following rules were applied:

e Coherent dwell length selected to maintain the received 8biive 19dB, given an estimate of the
target radar cross sectiom9d B is chosen as a compromise between2t&B used in MESAR

[Butler, 1998] and the minimum loading SNR suggested in Grah
e Minimum beamwidth selected such that the earliest traclatgptime is causal.

The utility function used for LQF is a linear mapping from gieted angular estimation erroy;:

1 ifo, > 01505
uk(op) =pi { 1— 22829 if 0.07505 < 0, < 0.150 (6.5)

0 if o, <0.0750p
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6.3. Simulation Analysis

note this is reversed from Eq. 4.53, as the measure used irtRas lowest quality first

To analyse the effect of the resource allocations resuftong RB-EDF, LQF and GIF a simulation
has been produced for the target scenario given by the tanggbnmental parameters listed in Table
6.2. Where a parameters range has been given values arenigrgmerated within that range, and the
same generated scenario is used for all three methods. $raitk were staggered and initiated using
five dwells separated bys and deleted if the angular estimation error excedilddeamwidths. The
tracks were in a background of thermal noise with a falsevajaiobability of10~* and no clutter. The
tracking filter uses a continuous white noise jerk noise rhadehe limiting form of the Singer noise
model and it is assumed that the target dynamic is matchdgkttvacking filter. Under this assumption
the estimation error covariance correctly describes trar @r the track and as such individual measure-
ments were not generated and filtered, and only the covariaatrices propagated. Hence, covariance
analysis was used to determine the estimation errors inith@ations. The finite resource constraints
were synthesised by extending the length of each radar dwptbportion to resource availability, for
example,10% resource availability results in each dwell occupying ieres its required dwell length.
The simulation is performed in the radar testbed describ&kt. 5.4, using the models of the measure-
ment process in Sec. 4.1.2. In this simulation it is desicegldbally optimise the predicted angular

estimation error of the target tracks and maximise the numbiargets able to be tracked.

Table 6.2: Target environmental parameters for SFPARM ksitimns

Parameter Value
Number of Targets 300
Azimuth Region f) +45
Range gm) 10— 80
Priority 1
Radar Cross Sectiom{?) | 0 — 20
Process Noise Intensity| 1 — 50

The parameter ranges for the environmental target parasnetere chosen with a requirement
to be representative of a realistic scenario and to be indhge where tracks could be successfully
initiated given the fixed radar parameters. For example #ivawth +45° azimuth range is a typical
field of view for an ESA, closer thahOkm targets escape the beam too rapidly to be initiated and
aboves80km targets suffer an SNR which is too low for initiation. By ramdly generating targets over
a wide range of environmental parameter values, the gebetalviour of the mechanism is revealed
as the result does not depend on the specifics of a small sagtione of the parameter dimensions.
Hence the results were relatively insensitive betweenaanglgenerated target scenarios and a general
assessment of performance is achieved without having tergensimulations for an exhaustive number
of environmental parameter changes. The work can be exdandmnsider different parameter regions

if the general behaviour is found to perform well.
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6.3. Simulation Analysis

Presenting the results from complex scenarios with vargargmeters in a meaningful way can be
problematic. Each target, of which there 868, has its own parameter selection, resource loading, qual-
ity and so utility which all vary over time. Hence in the folling presentations of results average values
are taken over the 300 tracks in the simulation. Also, eastltrécludes the result of 10 simulations

which run overl20s for each resource availability.

As it is required to optimise tracking accuracy, the meawioted angular estimation error against
the resource available for tracking all the targets, whscdhiown in Fig. 6.4 for the three SFPARM types,
allows comparison between the methods. It can be seen inG=gthat the allocation resulting from
the mutual information utility measure reduces the aveeaggilar estimation error in the active tracks.
However, this is done by allocating more resource to high &\éets than they require for maintenance,
and less resource to low SNR targets than they require farter@ance. The result is that the tracks have
an angular accuracy which is most likely better than whagdgiired, which is a waste of resource. This
highlights the important point first asserted in Chapterat gurely maximising information production

is not the requirement of a multifunction radar.

Mean Angular Estimation Error Standard Deviation Against Resource Available
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Figure 6.4: Mean track angular estimation error standavéhtien for SFPARM types.

Inevitably the resource availability determines how maagks the system is able to maintain. As
it is desired to maximise the number of targets tracked thialso a useful measure of the allocation
quality. The number of active tracks maintained againstéiseurce available for tracking all targets is
shown in Fig. 6.5 for the same simulation described preWoliscan be seen that the number of targets
tracked using GIF is low, which is undesirable. This is beeaallocating resource based on informa-
tion production causes the radar to focus on a smaller nuofberight’ targets at the expense of many

weaker targets, which are probably of more interest. Fomgta, the maintenance of a large number of
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6.3. Simulation Analysis

low RCS tracks may be of more interest than a small numbergsf RICS tracks. This again demon-
strates that optimising the information production, althl theoretically appealing, does not match the
requirement of the radar. Although it has been shown to baloivfor sensor managementin waveform

selection, it is less suitable as an objective function fattifunction radar resource management.
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Figure 6.5: Number of active targets for SFPARM variants

The mean track utility is a useful measure of performancebse it quantitatively describes the
extent to which the allocation meets the requirement of #ular. In these simulations the mean track
utility can describe both the predicted angular estimatimor and the number of targets maintained
in a single measure. The average utility production for timaes simulation as described previously is
shown in Fig. 6.6. It can be seen that the RB-EDF and LQF parfetatively similarly. This behaviour
is contrary to the author’s expectation which was that diyezontrolling task quality would produce
superior allocations. This suggests that although tasktgusan ideal measure, little performance is
lost by translating the track quality requirement, i.e. @lagestimation error, into the time domain for
the EDF scheduler. However, an EDF scheduler is less conime#ly demanding as it can be easily
implemented in a queue.

Differences between RB-EDF and LQF can be identified in tlaisking control example. In over-
load earliest deadline first inserts a time delay, whose iihadmis emergent, which has an uncontrolled
effect on the quality of each task. In contrast, LQF insedglay in quality, whose magnitude is emer-
gent. The delay inserted by EDF causes tasks with tight dessdio miss their deadlines, whereas LQF
delays tighter deadline tasks less than fluid deadline tds&k&ever, the non-myopic nature of the val-
uation in LQF means that tasks which have a low quality andgeleesource demand drain resource

from tasks, which only require a small amount of resourcerfamtenance. This demonstrates the need
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6.3. Simulation Analysis

to optimise over a time horizon, which is lacking thésest first' methods. The solution produced is the
summation of numerous local optimisations and does notshl global resource allocation problem.

A ‘lookahead’ can be added to improve the allocation butwusld further increase computation.
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Figure 6.6: Utility production for SFPARM variants

SFPARM requires each agent to evaluate a bid and the auetitmeompare all the bids for each
dwell. As the dwell, and hence the auction process, occurfagtdime scale a significant computation
requirement is produced. The similarity between the SFPARgbrithm and a best first scheduling
approach allows insight to be drawn from these simulationbest-first scheduling. The conventional
EDF can be implemented in a queue with a low computationalirement as the passing of time is the
same for all task types. This makes the EDF computationadiyageable which explains its application
on existing MFR systems. However, if the criterion for thestoiask is a measure which does not
pass equally for all tasks then recalculations of the meaate required on a fast time scale. This has
been found in this application of SFPARM as mutual informatand utility do not pass equally for
tracking tasks with different parameters. Although the patation can be reduced for LQF and GIF by
auctioning more than one dwell per cycle, it is still excessiA better approach would be to utilise an
auction mechanism for the resource management decisidrish wvolve over a scale of seconds, and
keep the scheduler, which operates on a fast time scale ersrdeistic as possible and separated from
the resource management. This would be more computatjomalhageable and so more suitable for
application to existing radar control software but woulduiee the development of a different auction
mechanism.

It has been commented that SFPARM, as a discrete time degsizess, is similar to a POMDP

which lacks the ‘lookahead’ which is the effect of the actimer an extended time horizon. It was found
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in the simulations that LQF and GIF, which required re-cotapian of measures on a fast time scale,
exerted significantly more computation than EDF. This hgitk the key problem with stochastic control
methods as the computation is known to render these methtvdstable as the size of the problem is
expanded. Future work could add a ‘lookahead’ to the calicnaf the reward, which is each agents
bid in SFPARM, however, this would only increase the comparefurther. This is not pursued in this
thesis, as it is desired to develop methods which can bestieally developed for application to existing
radar control software. Also, the POMDP formulation in F&2 creates huge branches of actions as
many tasks are able to be scheduled. In reality, measursrdentot necessarily need to be processed
before a different task can be scheduled. For example, teévexl measurement from a target track has

no effect on a track which is well separated spatially.

6.4 Summary

A sequential first price auction is a mechanism which sedalgnallocates resource between numerous
participants. The auction mechanism has been applied toathar resource management problem to
develop the SFPARM algorithm. The three proposed varidrti®algorithm can be thought of as best
first schedulers, where the criterion for best relates te timlay, quality and information.

The research conducted in this section successfully pextiseme key conclusions and outcomes

on designing radar resource management mechanisms agdollo

e EDF gives preference to tasks with fluid constraints, LQFegipreference to tasks with least
degradation in quality and GIF gives preference to ‘brigatgets with high SNR. These prefer-
ences are undesirable, to be in keeping with the radar resenanagement problem preference

should be given to best quality using least resource.

e The computation for EDF is manageable, as the passing ofisitiie same for all tasks it can be
handled in a queue. However, when the criterion is switclea measure which does not pass

equally, the computation is significantly increased andesiheed to be calculated frequently.

¢ |t has been shown that maximising mutual information préddundeads to a smaller number of
high accuracy tracks. Although optimising informationhigadretically appealing, it is not what is
required from the radar and so is not an appropriate choioejettive function for multifunction
radar resource management optimisation. Instead, ojigné variety of task specific quality

measures, represented through a utility function is preder

e Itis necessary to optimise the radar resource allocatienatime horizon. However, mechanisms
like SFPARM which are purely myopic can be improved upon phiding a time-horizon over
which to optimise. This improves the quality of the decisafrwhere the finite resource is best

placed.
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e The inclusion of a time horizon would make the SFPARM mecéransimilar to POMDPs. The
computation of these methods is known to rapidly becomadtéble and so this is not pursued in
this thesis which aims to produce a mechanism for realigiidieation to existing multifunction

radar control software.

Despite producing these key research outcomes, the SFPA&lanism has drawbacks, primarily
in the computation required and the quality of the produdkxtation. Extensions and improvements
are not pursued in this thesis as it is believed alternatimtien mechanisms will perform better. The
next section will focus on producing a mechanism which is potationally efficient by separating the
resource management decisions, which evolve over a slaweistale, from the scheduler. The mecha-
nism should optimise task quality through utility functfoand consider where the finite resource is best

placed to achieve the global optimum solution.
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Chapter 7

Continuous Double Auction

The continuous double auction (CDA) is an auction mechamitich allows numerous participants to
trade quantities of a finite resource or commodity, and seetjoresembles a free market. The CDA
is continuous as trades can occur at any time and is doul#d sisl participants can assume the role of
both buyer and seller. The continuous double auction has &gglied in numerous stock exchanges and
financial institutions, for real-world applications suchthe New York Stock Exchange. As such, it has
evolved as a scalable, trusted mechanism for rapidly dilug#arge resource volumes.

This chapter introduces the CDA and describes the applitafithe CDA to multifunction radar re-
source management, which has delivered the Continuousl®duistion Parameter Selection (CDAPS)
algorithm. The algorithm is analysed in terms of theorétiomcepts such as mechanism efficiency and
optimality and the scale of improvement verified throughidation. To demonstrate the multifunction
capability, simulations are produced for the control otkiag and surveillance functions in example

MFR scenarios.

7.1 Continuous Double Auction Mechanism

Variants of the continuous double auction mechanism haee beplied in a variety of financial insti-
tutions and exchanges, however, the protocols definingaatien vary depending on the application
domain. This section details common characteristics oficoous double auctions highlighting poten-
tial variations before introducing the New York Stock Exoba as an example of a continuous double

auction mechanism.

7.1.1 Market Theory

When a commodity is traded in a free market the higher theeihie lower the demand and conversely
the lower the price the greater the demand. This can be mprEsin a supply and demand curve, which
is a plot of the quantity and price of the supply and demandhénrmharket. An example supply and
demand curve is shown in Fig. 7.1.

The point at which the supply and demand curves meet is knewhmeecompetitive market equilib-
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Figure 7.1: Example supply and demand curves

rium. If the market trades at this price and quantity, sosilfare is maximised through maximisation
of participant profit. The market efficiency is defined as t#orof the participant profit achieved with

a mechanism in relation to the profit associated with an cgtimarket trading at the competitive equi-
librium. A centralised market mechanism is able to find thgsikbrium by compiling the complete
preferences of all participants and hence achieve optiragtet efficiency. Due to the decentralised na-
ture of the continuous double auction, no central auctioisea possession of the complete preferences
of all the participants. However, transaction prices ing¢batinuous double auction do converge to the

competitive market equilibrium and so adequate marketieffaes can be generated.

7.1.2 Mechanism
A market mechanism is defined by the protocol for participatetraction. The protocol determines the
format of admissible resource offers, the information vahigpublicised to the auction participants and
the conditions under which transactions can occur. Althovagiants of the continuous double auction
exist, most research is based around the structure firstagmatin Smith [1962]. In this form of CDA,
offers are announced for single unit quantities with a gpiegprovement and no order queue both of
which are explained below.

Despite wide variations between implemented continuoubioauction, the following concepts

are always present:
e Bid - Arequestto purchase resource, which typically contaimsigprice, quantity and identifier.
e Ask- Arequest to sell resource, which typically contains a prite, quantity and identifier.

e Offer- A requestto purchase or sell resource.
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e Trading Round- The duration between cleared transactions over which &idsasks are an-

nounced.
e Trading Day- The allowed trading period, which contains numerous trgdounds.

e Orderbook- A collection of the best active bid and ask prices. For gngiit mechanisms it is

only required to hold the best single bid and ask meaningtisamno order queue.

e Bid/Ask Price Limit The minimum bid price or maximum ask price allowed for adsits to the

market.

Whilst the above concepts are open to variation, the primnvariations in a continuous double
auction are the pricing rule, clearing rule and offer qudte clearing rule determines when the auction
clears to generate a transaction. For single unit auctioissig trivially when the bid price exceeds
the ask price, however, for multiple unit auctions this cendme more complicated. The pricing rule
determines at what price the subsequent transaction octestransaction pricg is commonly found
using the k-pricing rule:

p=kpy+ (1 - k)pa (7.1)

wherep, is the bid price,p, is the ask price and is commonly taken a#.5. The queuing rules
determine the nature of the orderbook which records theeoffers. For single unit auctions a spread
improvement rule can be enforced which reduces the numtearmaiunced offers by requiring each new
offer to be an improvement upon the last announced offernfdtiple unit auctions a similar offer limit

can be applied to reduce the communication overhead of upetitiwe offers.

7.1.3 New York Stock Exchange

To cement the concepts described in the preceding subsedtics useful to examine the New York
Stock Exchange (NYSE) as an example of an operational agmig double auction. As the worlds
largest stock exchange with average daily trades of husdrebillions of U.S dollars this is a relevant
example of an efficient and trusted mechanism.

The NYSE is split between the upstairs and the downstairketsrwhere the upstairs market
specialises in large stock volumes. In the downstairs malnkee are seventeen trading posts which are
split across numerous rooms at which traders are able te stadks. Each stock listed in the exchange
has a specialist located at a trading post who is resporfsibfacilitating the trading between brokers.
Although the specialist helps to match the bids and askadéts, they are involved in a small number of
trades and the majority of trades occur by traders self-niagowvithout the specialist. The specialist is
also responsible for stabilising the market by limiting &egsive transaction price changes, buying when

the price drops and selling when the price rises. During ribitig day, which runs between 9.30 and
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16.00 EST, the NYSE functions as a continuous double auctitmwever, when the NYSE is closed,

offers are received and stored in Opening Automated Repoitic® (OARS). When the NYSE opens

the specialist decides on a transaction price to clear #tetrin the OARS.

A general architecture for the system involving the NYSEhevsn in Fig. 7.2. Within the NYSE

specialists are able to interact with the traders, who a@ able to interact with each other. The subse-

quent trades which emerge from this interaction deterntimesaluation of the companies’s stock. The

responsibility of the board of directors is to create valukich is directly related to the stock valuation

and so the NYSE directly affects the actions taken by the @mpThe action taken by the company

determines how it is perceived by potential investors and fmanagers which determines how the stock

is valued by the NYSE.

Fund Managers

Com

pany

Investors

Figure 7.2: New York Stock Exchange system architecture

Simple analysis shows that this system contains numereusegits identified as required in a cog-

nitive system. Namely:

e Memory- There are several memory elements throughout the systdm. specialists provide

short term memory, whereas investors and fund manager&dprtonger duration memory and

the inclusion of fixed knowledge.

e Hierarchical Memory Structure There are a small number of specialists and so a small memory

capacity, however, these specialists can act with a veryjdtency. Conversely there are a large

number of investors providing a vast memory capacity, h@rghis memory has a high latency.

e Micro Feedback There are numerous micro feedback loops between elememaah hierarchi-

cal memory level as well as between levels.

e Macro Feedback There is a global macro feedback loop which incorporatesctmpany, the
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investors and the NYSE.

Clearly this implementation of a continuous double auctimates a sophisticated data processing sys-
tem which is capable of processing a large amount of uncartarmation.

The CDA as an economic paradigm can be adapted as a methgdologadar resource man-
agement and signal processing optimisation. In a CDA, sucth@ NYSE, available information is
efficiently processed leading to reconfigurations of rese@llocations which match the market to the
dynamic financial environment. This precisely echoes tisireldor next generation sensor systems to
efficiently process received radar measurements to magchigimal processing applied by the radar to
the dynamic and uncertain sensing environment.

The desire for cognitive signal processing is a respondetéunctionality of next generation radar
systems being fundamentally limited, not by hardware, guhbk radars ability to utilise sensor informa-
tion to generate autonomous and adaptive behaviour. Bypocating desirable information processing
characteristics, this form of economic paradigm can be asealtangible step towards developing cog-

nitive sensor signal processing techniques.

7.2 Continuous Double Auction Parameter Selection Algortim

This section describes the Continuous Double Auction PatanSelection (CDAPS), which is the re-
sult of the application of the continuous double auctiomfrihe previous section to the radar resource
management problem. The CDAPS algorithm implements a rharkehanism which manages the al-
location of the resources of the radar system through tleeteh of parameters for the individual radar

tasks. This section describes the CDAPS mechanism and thepeting agents.

7.2.1 Mechanism

The CDAPS algorithm hosts a market mechanism where agemssenting the numerous radar tasks,
such as tracking or surveillance, can trade resource. ®teldited, decentralised nature of the mecha-
nism provides scalability and allows each task agent to Biggded independently. The CDAPS mecha-
nism is implemented in the radar resource management teatbshown in Fig. 5.4. This architecture
allows easy integration into a typical radar resource mamamt architecture, shown in Fig. 3.3, by re-
placing the task request modules. The CDAPS algorithm tseiask parameters from a usable waveform
database given the model of the current scenario whichdeslyriority assignment, the usable wave-
form database and the current state of the radar task funditee global feedback enables the update of
the model of the current scenario from the received measemenand local feedback within the CDAPS
mechanism ensures the parameters are selected subjezfitttinresource available. The selected task
parameters are used to issue tasks requests which are fortmedimeline by the scheduler.

The resource traded by radar task agents in the mechanisesegys radar loading as described in
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Sec. 4.1.1.1 and Eq. 4.1. The resource held by radar task agenhich is denoted, represents the
allowed sensor loading of its represented task. The tosalnee held by all radar task agents, denoted
rr, cannot exceed the radar resource loading available ftaskb, i.e. ", 7 < rr. Trading is driven

by each radar task agent having differing and potentiallyashyic valuations of the resource in terms
of the system currency, known as utility, as described in 8et. Each task agent can simultaneously
assume the role of both buyer and seller to facilitate theigoaus resource trades. A single auctioneer

agent is present to implement the protocol of the mechanisimhacan be formalised as follows:

e There exists a set of task agent§’y = {¢1, ..., t,, } which represent numerous tasks performing

radar functions.

e Each agent may publicly announce an offer to trade as a bidytpan ask to sell or both. The
offer comprises of a quantity, unit pricep and identifier. An ask from agemt has the form

am (¢m, Pm, m) and a bid from agent has the fornb,,(¢,,, pn,n).

e At a given time there is a set of active askg = {ay, ....,a,, } and a set of active bidB4 =

{br, e, b ).

e After each new offer is announced the auctioneer attemgfiadca valid transaction set of asks
I C AandbidsJ C B. The value and quantity of the transaction askisetV; = 3. p;¢; and

Qr = ), ¢; respectively. The value and quantity of the transactionskid/ is V; = Zj Diq;

and@, = >, g; respectively.
e The transaction clearing rule declares a bid and asks sdti/af; < V; and@Q; > Q.

e The transaction pricgis a weighted average of the lowest ask price in the ask tctinsaseti,, ;;,

and the lowest bid price in the bid transaction g, S0p = 0.54,5n + 0.5 min-

As it is required to trade in multi-unit quantities the traoon clearing rule is more complicated than
implemented by Smith [1962]. The transaction clearing alilews transactions with unequal quantities,
in which case the excess= Q; — Q7 is held by the auctioneer and included in the next transactio
Each offer remains active until it is cleared or updated feyabent, and only the best fifty bids and asks
are kept active. Trading rounds are generated as the awttiars continuously for the duration of the
radar’s operation, and so there is no set trading day.

This mechanism is suited for dynamic resource allocatidgh@sesource for arriving task agents is
met by taking resource away from the tasks who lose the leastiat of utility per unit resource. When
a task agent becomes inactive the resource is purchasesikggants who gain the most utility per unit

resource.
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7.2.2 Task Agents

Each agent represents a radar task and aims to maximisalitis prioduction by acquiring as much
resource, which is radar loading, as possible given the etitign from the other task agents. To ensure
the validity of the allocation, each agent’s valuation ofguttial increases or decreases in resource must
be accurately related to its radar task. This can be achigwyadsessing the quality and resource loading
of potential task parameters as described in Sec. 4.4.

Following a similar model to Hansen et al. [2006], each apesta current task parameter selection
~. from the potential parameter spaceEach task parameter selection has a different resourdepa
which is derived from the task’s resource functign, : 'y — R, which provides a mapping from
parameter to resource space. Each task parameter selalstioproduces a different task quality which
is derived from the task’s quality functiop, : T'; — Q, which provides a mapping from parameter
to quality space. Finally, a utility function is required, : Q, — R, which maps the task quality
into auction utility, giving the satisfaction associated¢haeach point in the tasks quality space. As
the primary quality metric of interest varies between radak types, the utility function provides a
comparable measure, used as currency, between taskseasBgshfferent quality metrics.

As each combination of task parameters has a different redaurce loading, produces a different
task quality and so also a different utility, they occupyetiént points in resource-utility space, as shown
in Fig. 7.3. Itis desired to select parameters to maximigigyuper resource. Potential changes from
the current parameter selection can be evaluated as tleatfiffe in utility, Au, given the change in
resource Ar which is the gradient between resource-utility points @ difference in utility per unit

resource. This gradient is the agents true price valugtigrgf the potential change in parameters:

Au

A hill climbing search is used to find the potential change amgmeters which gives the best ask and
bid offers. The criterion for the best bid is the largest bittg, or largest increase in utility per unit
resource. Conversely the criterion for the best ask is tivedb bid price or smallest decrease in utility
per unit resource. Large gradients and offer prices, olesdnsthe lower resource region of Fig. 7.3, can
produce larger utility increases per unit resource tharhigle resource region, where the task becomes
saturated. An example of the gradient used to calculateffaeprice is shown in Fig. 7.3.

Crucially, the best bid and ask prices are local due to theatomic nature of each parameter
dimension, which reduces the search space. Additionadly, Imds and asks are generated over a time
scale of seconds, as new data is received or the environim@mges, which spreads the search over time.
This synchronises changes in the allocation to the changbs ienvironment and so greatly reduces the

computational demand.
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Figure 7.3: Resource utility space with example gradietwben parameter selections marked

Given the agent's true valuation it must decide on what paiceé resource quantity to announce
to the market. Various bidding strategies [Gode and Surid®®3; Gjerstad and Dickhaut, 1998] have
been studied, all of which depend on the agent’s true valnatof the resource, but may additionally
use information on the current market state or market histdhe CDAPS algorithm assumes truth
telling agents, who offer their true valuations, with no whedge of the market state. The quantity of
the offer is the change in radar resource loading resultioig the potential change in task parameters.
Subsequent trades occur with an increase in total utiliticlvimproves overall system performance.
The resulting competitive market equilibrium price can sealised as selecting parameters on constant
gradients across all the tasks in resource-utility space.

As implemented in the radar resource management testleetisk agent possesses the behaviours

described in Sec. 5.4.2.1. In addition the task agent alsegases the following behaviours:
e Process TransactiondJpdate the task parameter selection according to a prewiansaction.

e Submit Offers Evaluate the utility of the current parameters and seasclihie best offer to an-

nounce to the market.

these behaviour allow the agent to participate in the cantis double auction mechanism.

7.2.3 Auctioneer Agent

The auctioneer agent organises the market mechanism, \iviclves the maintenance of a public list
of the best active bids and asks, called the orderbook. Afieh new offer is announced the auctioneer
attempts to generate a transaction by clearing the ordkrliiothe orderbook can successfully clear the

auctioneer facilitates the transaction by communicatietgvben the buyers and sellers. The auctioneer
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agent is implemented through the following behaviours:

e Collect Offers Listen to announced offers, update the orderbook if necgsand check if the

auction can clear.

e Process Clearing DetailsCommunicate a potential transaction to the agents indolve

The size of the workbook is limited to fifty bids and asks, mitithe computation burden placed on the
auctioneer. The auctioneer publicises the lowest bid aadithest ask price required for addition to
the orderbook. Task agents do not announce offers which dmeet this criterion which reduces the

number of offers announced.

The auction clears and a transaction is generated when & lsigt and asks has higher bid value
than ask value, with bid prices greater than the ask pried/i < V; and@Q; > @Q ;. The requirement
on the value in addition to the price is not common in contimidouble auctions but is implemented in
the CDAPS algorithm as a consequence of offers having nmiluantities and each offer representing
a parameter selection. This ensures that if the bid and ashtigjes are unequal, the subsequent switch

in parameters resulting from the trade has a positive effiethe total utility of the system.

The decision process used to clear the orderbook attemptetiuce a transaction set of asks and
bids and is shown in Fig. 7.4. The transaction set starts tivé¢tbest bid, and bids and asks are added
depending on the set quantity until no further offers candded. The best valid transaction set, if it
exists, generates a transaction. An example of this decisiacess is shown in Table 7.1 and Table 7.2.
In Table 7.1, which is based on the supply and demand curvigin/EL, a valid transaction set of asks
I = {as} and bidsJ = {b7, b2} can be found with valuek; = 25, VV; = 26 and quantitieg); = 5 and
@ = 4. However, in Table 7.2, the previous transaction set is abithasV; = 25 andV; = 24 and
no other valid transaction set exists. The orderbook cahdeght of as an incomplete estimate of the
current market supply demand, which differs from a cergealimarket, or optimisation RRM, which
compiles the complete supply and demand preferences. Tibieety of the continuous double auction
mechanism can in part be attributed to the compilation ofrthemplete preference estimate instead of

the full preferences.

Table 7.1: Example of an orderbook which is able to clear

Bids Asks
(Buyer, price, quantity) (Buyer, price, quantity
b7(7,7, 2) 03(3,5,5)
b2(2,6,2) a6(6,7,4)
b9(9,4,3) a1(1,9,2)
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7.3. Theoretical Analysis

Table 7.2: Example of an orderbook which is unable to clear

Bids Asks
(Buyer, price, quantity) (Buyer, price, quantity
b7(7,7, 2) 03(3,5,5)
b2(2,5,2) a6(6,7,4)
bo(9,4,3) a1(1,9,2)

7.3 Theoretical Analysis

Analysis of resource management algorithms is difficultdonumber of reasons. Firstly, no single
metric exists to assess performance and there are a widetyafi scenarios in which the resource
management algorithm is required to operate. Secondlyguléty of the behaviour generated by the
resource management algorithm can only be assessed inrttextof what is required from the system,
which may also be dynamic. Finally real data is of limited,usdess it is sufficiently oversampled, as
the data capture must have already applied some resourcagaraent, even if this is a fixed as for a
mechanically scanned system. Hence, theoretical comgides such as the mechanism efficiency and

optimality are key tools for initial assessment of perfonmg, which are described in this section.

7.3.1 Mechanism Efficiency

The efficiency of a market mechanism is a ratio describingathiéty of a specific non-ideal market
to maximise participant profit in comparison to the ideal kear Centralised mechanisms are capable
of obtaining optimum market efficiency by compiling the cdetp participant preferences, and hence
complete market information, to find the optimal transatiwice which is found at the point where
supply equals demand. This is conceptually equivalengonentering a local high street market, being
required to submit bids and asks for all combinations andtiiess of available commaodities. This is
not only an excessive computational burden for each ppatittibut also for the central auctioneer due
to the number of bids. Although the optimum solution wouldftsend, it is impractical to implement
such a mechanism due to the computation burden; it is stfaiglard to see why this is not applied for
market mechanisms in human societies. However, it has emmsby Smith [1962] that decentralised
mechanisms, specifically the continuous double auction,achieve close to the optimum efficiency
using just a fraction of the participant preferences, wisobnly part of the market supply and demand
and hence a fraction of the computation.

In the context of radar resource management, the mechafigmerecy represents how close to
the optimum solution the resource allocation mechanismaggble of achieving. Existing optimisation
approaches for radar resource management, such as dynagrampming and Q-RAM, are similar
to centralised mechanisms where a large quantity of pne¢éexeare collected leading to a heavy com-

putational demand. This is undesirable as the greater tiputational demand, the less scalable the
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7.3. Theoretical Analysis

allocation mechanism, the less tasks it will be able to na&indnd the poorer the system performance
against pop-up tasks which require rapid reaction. ThdtriesBmith [1962] indicates that the CDA con-
verges on similar quality allocations as centralised, dstarg optimisation based RRM methods, with
a fraction of the information processing. Hence this resufigest the CDAPS algorithm can achieve
a performance equivalent to existing optimisation methaitls a fraction of the computational burden.
This is highly desirable as it means a significant improverirethe performance of the numerous radar
tasks executed can be achieved with computation that istiealnd suitable for application to existing

multifunction radar control software.

7.3.2 Optimality

Optimality is a very important theoretical aspect as if ih ¢ge shown that the solution is optimal then
it is ensured that the optimisation, i.e. maximisation @& tijective function, cannot be improved. A
necessary condition for a non-linear programming solutidre optimal is that the Karush-Kuhn-Tucker
(KKT) conditions are satisfied whereby the marginal usikti or gradients in resource-utility space, are
equal. This concept was used to develop the Q-RAM [Hanseh, &(®6] algorithm which produces
solutions which maximise resource utilisation whilst siging KKT conditions. The CDAPS algorithm
also relies on the KKT conditions by producing an optimalutioh with equal marginal utilities as
the emergent competitive equilibrium from the market meédra. However, as the possible parameter
selections are discrete, the solution is optimal for thegidiscrete parameter set, but only near optimal

in contrast to a continuous parameter set [Irci et al., 2010]

This principal is demonstrated in Fig. 7.5-7.6. Fig. 7.5w&the possible parameter selections in
resource-utility space for three different example lomgeasurveillance tasks. The possible parameter
selections are the same for all three tasks, however, asittimemental parameters outside of control
differ, each task produces a different utility for identiparameter selections. It is desired to select pa-
rameters along the concave majorant where utility per regas maximised, and the concave majorant
can be followed using a hill climbing search. The concaveonzejts for the three surveillance tasks
are shown in Fig. 7.6. If parameters are selected such teagrtdients in resource-utility space are
equal then the KKT conditions are satisfied. One such seledishown in Fig. 7.7. These selected
parameters use a total 6f5% of the available resource. By satisfying the KKT condititiis is the

optimal parameter selection for5% resource loading, and so produces the maximum utility.

CDAPS naturally satisfies the KKT conditions whilst using thaximum possible resource avail-
able. This ensures that the parameters selected for thetivadar tasks collectively produce the global
maximum utility. As utility is a mapping from a variety of elant radar task quality measures, this se-
lected parameter set is the best combined quality for alirtakks that can be achieved given the finite

resource. So, optimal optimisation of the radar resourasag@ment problem is achieved.
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Figure 7.5: Possible parameter selections for three exasypl/eillance tasks

From a resource allocation mechanism perspective thigyssagisfying result as it guarantees the
optimal performance of the allocation mechanism. Subsatyghe ultimate performance is solely
dependent on how well the different radar tasks can be nextlatheasured and translated into utility,
which may be problematic in some situations. For exampléhéftarget dynamic noise is modelled
incorrectly for a target track then the quality of the task &ence utility will be incorrectly calculated
and resource incorrectly allocated, despite the optimatatpn of the allocation mechanism. This
highlights the importance of the measures and models desttiroughout Chapter 4.

Ensuring optimality through the KKT conditions is a very iarfant concept as it ensures that the
numerous localised agents are able to collectively soleegtbbal resource utilisation objective of the
radar resource management problem. This proves that CDAP&d in an agent system is highly

suitable for multifunction radar resource management.

7.4 Simulation Analysis

The theoretical concepts in Sec. 7.3 show that the CDAPSittigpshould be computationally efficient
in comparison to existing radar resource management cgattion methods whilst also producing a

globally optimal allocation which improves upon existinge based methods for multifunction radar
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Figure 7.6: Concave majorant for three example surveildasks

resource management. In this section, simulation is usexbsess the performance of CDAPS for
example radar resource management problems. The traakihgumveillance functions for a MFR are

used to demonstrate the potential improvement in resoliazation using CDAPS.

7.4.1 Tracking Control

A number of tracking control simulations have been gendraising the radar resource management
testbed from Sec. 5.4, to analyse the performance of CDARSiitrast to existing techniques. In

the simulations, targets can be tracked using measurerfrentsfixed surveillance, known as track-

while-scan, or by using a share of additional resource dgelicfor active updates. It is desired to select
parameters to optimise tracking performance, which is igeikar estimation error and number of targets
tracked, subject to the finite resource available. The tangaronmental parameters considered outside
of control are range, azimuth, radar cross-section and emame model standard deviation. Operational
parameters under control relate to the waveform selectitich is simplified to the choice of revisit

interval, dwell length and beamwidth, assuming that leegihg the dwell increases the SNR according
to ideal coherent integration. The target dynamic was asdumatched to the tracker which used a

continuous white noise jerk model. As under this assumptierestimation error is correctly described
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Figure 7.7: Equal gradient points for three example suevgik tasks

by the filter covariance, covariance analysis was used tsagserformance and only the covariance
matrices propagated without generating or filtering mesments. In all cases the tracks were in thermal
noise with false alarm probability ab—* and no clutter. Track were initiated using five dwells sefeata
by 1s and deleted when the angular estimation error exfeiedeamwidths.

A variable finite resource was synthesised by prohibiting @ther task to be scheduled for a du-
ration after each task was scheduled. This duration lengplertids on the desired resource availability.
For example, given ams dwell and a5% resource availability it would not be possible to schedule
another task for a furthei9ms. Likewise, for alms with a10% resource availability it would not be
possible to schedule another task for an additiOnat. Although this simulates resource being used for
surveillance, the surveillance does not generate newdrack

As a basis of comparison a rule based parameter selectioR§RBtrategy has been used with
rules chosen to be similar to those used in existing MFR syst®Noyes, 1998; Butler, 1998]. This
strategy specifies desirable regions in quality space, asichaintaining the angular uncertainty beneath
a fraction of the half beamwidth as described in Sec. 3.1 Phese rules do not specify how or which
parameters should change given a resource constrainhtg#ve scheduler to mediate access to the

resource. An earliest deadline first scheduler is used tm tbe radar timeline for both RBPS and
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CDAPS [Butler, 1998].

The rules used to select parameters for rule based paraseétetion are:

Earliest track update time is when the angular uncertag®1 beamwidths.

Latest track update time is when the angular uncertaintylis Beamwidths.

Coherent dwell length selected to maintain the received 8biivel9d B, given an estimate of the

target radar cross sectioh9d B is chosen as a compromise between2t&B used in MESAR

[Butler, 1998] and the minimum loading SNR suggested in Grah

Minimum beamwidth selected such that current track acguisaless than 0.1 beamwidths.

These rules are selected to be aligned with the studies ckirigacontrol parameter selection described
in Sec. 3.1.2.1.
The utility function used for CDAPS is a linear mapping fromgalar estimation error standard

deviationo,:
0 ifop,>0.150p
ur(op) = pi ¢ 22 f 0.0750p < 0, < 0.150p (7.3)
1 ifo, <0.0750p
The fixed radar parameters used to produce the followinglaiioas are detailed in Table 7.3.

these parameters are used in conjunction with the theorynaoakls from Chapter 2 and Chapter 4

Table 7.3: Fixed radar parameters for CDAPS simulations

Parameter Value
Frequency 3GH=z
Peak Power 2W

Receiver Noise Figure| 6dB
Transmitter Duty Factor 0.06
Losses 6dB
Boresight Gain 36dB

respectively.

7.4.1.1 Static Scenario

The first scenario consisted of targets having uncontri@labvironmental parameters as listed in Table
7.4, which all require tracking subject to the finite reseuavailable. The target environmental pa-
rameters remained static over the duration of the simulatiWhere a parameter range is given values
are random generated uniformly across the range. Givendtygst scenario it was desired to optimise
tracking performance for all targets, in terms of the prestiangular estimation error. The agents were

generated in the radar resource management testbed @ekicribec. 5.4.
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Table 7.4: Target environmental parameters for staticarien

Parameter Value
Number of Targets 300
Azimuth Region f) +45
Range (km) 10— 80
Priority 1
Radar Cross Sectiom{?) | 0 — 20
Process Noise Intensity| 0 — 50

Examining the delay inserted by the earliest deadline fakeduler can provide insight into the
resource allocation mechanism'’s ability to degrade gralgefFig. 7.8 shows the delay from the de-
sired task execution time inserted by the scheduler for RBRSCDAPS over the duration of an over-
loaded and underloaded simulation. It shows that RBPStmaetelay depending on the system loading,
whereas CDAPS balances the time budget regardless of oesauailability. In CDAPS, the total re-
source held by all agents is matched to the sensor resouadatde, and so the selected parameters
maximise utility whilst balancing the time budget. In cast, the collective operating points specified
by RBPS may or may not exceed the time budget, requiring td@rg by the scheduler. The inserted
delay for RBPS has a differing, uncontrolled effect on thaliy of each task, which leads to non-
graceful degradation. The selection of parameters by CDAd3Sa controlled effect on task quality and

produces graceful degradation.
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Figure 7.8: Time delay inserted by the scheduler for CDARSRBPS

As the requirement of the tasks is to globally optimise thekrangular estimation error standard de-
viation, the average of the track estimation errors is alssedul indication of the quality of the resource

allocation. Fig. 7.9 shows the average track angular estbmarror standard deviation across all tracks
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for RBPS and CDAPS with varying active track resource. Satiohs of duratiori20s were produced
for each resource availability with identical target eonimental parameters according to Table 7.4, with
the resource availability synthesised by lengthening eadar dwell. It shows that CDAPS significantly
improves the angular estimation error in the tracks. Thasrissult of CDAPS trading in differential util-
ity and so resource is allocated where the greatest impremtsin quality can be achieved. Although the
scale of this improvement depends on the scenario and thg, glbbally optimised CDAPS continually
outperforms the locally optimised RBPS due to satisfying kKT conditions. Equal performance is

achieved when there 8% resource available for active tracking, as all tracks appetted using TWS.

Mean Angular Estimation Error Standard Deviation Against Resource Available
6 T T T T T T T T T

Mean Angular Estimation Error Standard Deviation (mrad)

2 . . . . . .
0 2 4 6 8 10 12 14 16 18 20

Resource Available (%)

Figure 7.9: Mean track angular estimation error standavéhtlen for CDAPS and RBPS

These simulated static scenario tracking control probleave demonstrated how CDAPS can de-
grade gracefully and provide an improvement in global taskity, which in this case is tracking accu-

racy, in contrast to a conventional rule based approach.

7.4.1.2 Dynamic Scenario

In a multi-target tracking application, a dynamic enviramhis typically manifested by dynamic tar-
get number, target kinematics and measurement origin taicgr. An effective resource management
mechanism is required to adapt in a timely fashion to thevévgldynamic environment.

To analyse adaptation to an evolving target number, a stinalavas produced where the number
of targets increased for the first minute frarB0 to 300 and decreased for the second minute back
to 150. Although this scenario is highly contrived, it is adequetelemonstrate the behaviour of the
mechanism. The uncontrollable target environmental patars used for the simulation are listed in
Table 7.5, the fixed radar parameters are listed in TableGi&n this target scenario it was desired to

optimise tracking performance across all targets, in tesfrthe angular estimation error. Covariance
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analysis was used to determine the estimation error an@tpettdynamic was assumed matched to the
tracker which uses a continuous white noise jerk model. Tie@ts were generated in the radar resource

management testbed described in Sec. 5.4.

Table 7.5: Target environmental parameters for dynamicaste

Parameter Value
Number of Targets 150 — 300
Azimuth Regior? +45

Range gm) 10 — 80
Priority 1

Radar Cross Sectiom{?) | 0 — 20

Process Noise Intensity| 0 — 50

As with the static scenario, the delay inserted by the esirieadline first scheduler can provide
insight into the ability of the mechanism to allocate reseurig. 7.10 shows the delay inserted by the
scheduler for CDAPS and RBPS. This has been produced byajergesimulations with identical target
parameters with resource availabilityldf%. It can be seen that for RBPS the delay changes as the target
scenario evolves, however, for CDAPS the delay is alwayartz@d. This caused the quality of each
task for RBPS to change unpredictably as the scenario eyoleereas CDAPS produces predictable
behaviour by selecting parameters given the dynamic cdtigrefor resource. In this example the
delay for RBPS has an uncontrolled effect on the angulamesiton error, whereas CDAPS adjusts the
parameter selection to ensure best tracking accuracy isvechgiven the dynamic target number. This

further demonstrates the ability of CDAPS to degrade grdiyef

Delay Added by Scheduler Against Time
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Delay (s)

-1 I I I I I \

0 20 40 60 80 100 120
Time (s)

Figure 7.10: Time delay inserted by the scheduler for CDARERBPS with a dynamic target scenario.

As the number of targets change, the competition for resoalsn changes. This causes the CDAPS
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market equilibrium price, which represents the global atitin of the resource, to vary accordingly. Fig.
7.11 shows the transaction prices in the simulation oveg fion the same simulations used to generate
the previous scheduler time delays. It can be seen that thieetrequilibrium price increases as targets
arrive, and reaches its maximum when the competition fanne is greatest. This relationship between
transaction price and competition for resource is in kegpiith the market paradigm described in Sec.

7.1.1 and demonstrates that the mechanism is functionimgaity.

The market equilibrium price also has an interpretationulgh the Karush-Kuhn-Tucker condi-
tions. The market equilibrium price represents the congjeadient in resource-utility space which is
maintained for all tasks and so determines the individuedip&ter selection for each varying task. As
the market equilibrium price increases, each task is fotoesklect parameters at a higher gradient,
which is towards the lower resource region in resourcéiuspace. So, the requirement for resource
for arriving targets is met by taking resource away from #sk$ who lose the least amount of utility per
unit resource. As targets become inactive the resourcerchpsed by targets who gain the most utility
per unit resource. This shows how CDAPS dynamically adjhst@arameter selection to globally max-
imise utility production which for this example produces thptimal parameter selection for accurate

tracking.

Ayggsged Market Euilibrium Price against Time for Varying Resource Availibilities
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Figure 7.11: Market equilibrium prices for CDAPS with a dyma target scenario.

These simulations of dynamic tracking control scenaria® iarther demonstrated graceful degra-
dation of CDAPS, as well its ability to adapt to a dynamic eomiment in a timely fashion to globally
optimise utility production and hence improve resourcecation performance in contrast to a conven-

tional rule based approach.
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7.4.1.3 Task Priority

Task priority is an essential aspect of resource managewtdoh reflects the fact that different tasks
have differing importance. The priority is typically a valwhich represents the tasks entitlement to
resource relative to other tasks. Recent priority assignimmeethods [Miranda et al., 2007b] provide a
continuous priority value in contrast to previous methodisclv simply rank based on task type. How-

ever, this is only useful if the allocation mechanism effgady translates the priority into behaviour.

The selection of parameters should fundamentally depertdeorequired quality of the task, how-
ever, when the radar becomes overloaded priority detesmitgch tasks are degraded in quality. A
typical implementation of task priority in a earliest deaadlfirst scheduler only allows tasks to be de-
layed by tasks with a higher priority, which means high ptyaiasks fully meet the requirements of their
rules. CDAPS incorporates priority by weighting the wilfinction, shown in Eq. 7.3, which scales
the quality of the task depending on the priority. Hence s& twith twice the priority of another task, is
able to produce half the increase in utility per unit resewnd so a higher quality for an equal resource

consumption.

Simulations have been produced to analyse the affect afifgrassignment. The uncontrollable tar-
get environmental parameters used for the simulationssegl lin Table 7.6, the fixed radar parameters
are listed in Table 7.3. Given this target scenario it wagrdéso optimise tracking performance across
all targets, in terms of predicted angular estimation el@awvariance analysis was used to determine the
estimation error and the target dynamic was assumed matoltee tracker which uses a continuous
white noise jerk model. The agents were generated in the radaurce management testbed described

in Sec. 5.4.

Table 7.6: Target environmental parameters for priorityudation

Parameter Value
Number of Targets 300
Azimuth Region f) +45

Range gm) 10— 80

Priority lor2

Radar Cross Sectiom{?) | 0 — 20

Process Noise Intensity| 0 — 50

Fig. 7.12 shows the angular estimation error for CDAPS an®®&Bgainst resource availability
for priorities values of 1 or 2 where the higher the value theater the priority ranking. This has been
produced by generating simulations with identical targetameters for a resource availability range
betweer0% — 20% which is synthesised by extending each radar dwell lengjttari be seen that RBPS
gives all resource to the higher priority tracks until thguiged quality defined by their rules are met

which is marked by the dashed line, after this point resoigagven to the lower priority tasks. In
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contrast CDAPS controls the quality of each task accordinthé priority. This shows that CDAPS

utilises the information in the priority assignment for anbed control.

Mean Angular Estimation Error Standard Deviation Against Resource Available Mean Angular Estimation Error Standard Deviation Against Resource Available
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Figure 7.12: Mean track angular estimation error standavéhtion for CDAPS and RBPS with differing
task priorities

Mission critical tasks may require fixed parameters whiabusth not be degraded under any cir-
cumstance. In this instance these mission critical tasksbeaexcluded from the CDAPS algorithm.
The rest of the architecture can remain unchanged and pngvilde total resource held by all agents
in CDAPS represent the load available, accounting for thesamption of the excluded tasks, the time
balance will remain balanced.

These simulations have shown how CDAPS is able to incorptinatvalue of the priority to directly

control the quality of the radar tasks, whereas conventimethods do not.

7.4.1.4 Comparison to Sequential First Price Mechanism

A final tracking control simulation has been produced to caraphe difference in performance between
the three SFPARM types from Chapter 6 to CDAPS. This comparis made to determine whether
CDAPS adequately answers the issues related to the SFPARKamism, which were the computation
and quality of the allocation.

The scenario consisted of 300 targets requiring trackirly wicontrollable environmental param-
eters as listed in Table 7.4. The target environmental patermremained static over the duration of the
simulation. Given this target scenario it was desired ténoige tracking performance across all targets,
in terms of predicted angular estimation error. Covariaragysis was used to determine the estimation
error and the target dynamic was assumed matched to theetrasikg a continuous white noise jerk
model. The agents were generated in the radar resource srapagtestbed described in Sec. 5.4.

Fig. 7.13 shows the mean utility for the target tracks for GI3and the three SFPARM types from
Chapter 6. This was produced by running simulation$28fs duration for each resource availability,

with resource availability synthesised by lengtheninghesadar dwell. It can be seen that CDAPS
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significantly outperforms the SFPARM variants. This is aufesf CDAPS globally optimising utility
production over a continuous time horizon, in contrast ®&3FPARMs which produce local and myopic

optimisation.
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Figure 7.13: Comparison of mean utility for CDAPS and SFPARpES

By considering task quality over a continuous time horizod aptimising global utility production
through satisfying the KKT conditions CDAPS resolves thgies associated with the quality of the
SFPARM mechanism. Also, the computational is managealdem®nstrated by CDAPS executing in

real time on a personal laptop.

7.4.2 Surveillance Control
A multifunction radar is also required to produce intelligsurveillance behaviour which can adapt to
a variety of requirements in dynamic and uncertain envirems The suitability of CDAPS to achieve
this has been assessed through simulation using the resmartagement testbed described in Sec. 5.4.
In the simulation it was required for the resource managesetect parameters to perform the long
range surveillance function, as described in Sec. 4.1rid5®c. 4.1.1 for a multifunction system. The
requirement was to surveydad5° azimuth and) — 5° elevation region centred on the antenna boresight.
Using ab,, = 1.5° beamwidth and a triangular lattice wifh9b,, spacing producesl01 beam positions
with each beam position represented by an agent. A furtigeinement was that the revisit interval must
not exceed 16 seconds.

As a basis of comparison, a simple rule based parametetisal@@BPS) algorithm was generated.
The rules produced a fixed surveillance pattern which req@es second revisit interval and a constant
energy dwell in each beam position. These parameters &dtrfiom Butler [1998] are considered

typical of a multifunction system such as MESAR, ARTIST orMRSON. An earliest deadline first
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7.4. Simulation Analysis
scheduler Blackman and Popoli [1999] was used to form tharrémieline for both CDAPS and RBPS.

7.4.2.1 Static Scenario

The CDAPS algorithm was first assessed for a static scendr@enit was desired to perform long
range surveillance against expected targets with a radas @ection of 0?2 and a radial velocity of
300ms~!. Figure 7.16(a) shows the resulting cumulative detectaomge performance across azimuth
angle in the lowest elevation plane. As the RBPS method cosgtes for the loss of gain from scanning
off-boresight by lengthening the coherent dwell times &atgr angle, constant energy dwells across
azimuth are produced. It can be seen in the figure that bytsedea fixed revisit interval and constant
energy dwell, RBPS maintains a constant cumulative detectinge performance across azimuth. In
contrast, CDAPS extends the cumulative detection rangkehdresight where maximum gain is avail-
able whilst degrading performance to an adequate levelaroffiboresight angles which maximises
the utilisation of the finite resource. The cumulative diétecrange averaged over azimuth angle is

improved when using the CDAPS algorithm, which relates tovgsrovement in task quality.

Utility Production for Varying Resource Availability
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Figure 7.14: Average utility per task for CDAPS and RBPSalmn in a static environment

Allocation performance can be assessed in terms of utillickvis a mapping from quality, i.e.
cumulative detection range, as it describes what is reddiicen the task. Fig. 7.14 shows the average
utility per task against resource availability. It can bers¢hat, as expected by the KKT conditions,
CDAPS outperforms the locally optimised RBPS. &% resource availability RBPS performs closest
to CDAPS as the rules are matched to the available resoudcalbipeam positions are maintained and
requested dwells are not delayed by the scheduler. For RBR®/E% tasks are delayed or dropped
which has an adverse effect on the average utility, and squlaéty of the tasks. For RBPS above

7% the excess resource causes tasks to be scheduled earli, netlicces the revisit interval. In all
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cases CDAPS chooses the parameters which optimises thy guia so average utility, given the finite
resource. Although the RBPS rules used here are simple antdecanproved, complex rules can be
difficult to develop and are not guaranteed to achieve gloptiinisation. CDAPS naturally balances the

time budget whilst solving the global resource utilisatidajective.

7.4.2.2 Dynamic Scenario

CDAPS was assessed using a dynamic scenario where the expadar cross section, radial velocity
and priority in different regions changes over time. Thigresents a more realistic hon-uniform and
dynamic requirement against which it is desired to optirtieecumulative detection range. The situation
assessment changes occud@sec.,60 sec. and0 sec. for the different regions depicted in Fig. 7.15

with parameters detailed in Tab. 7.7.

P. 1

Time:  1-30 (sec.) 31-60 (sec.) 61-90 (sec.)
91-120 (sec.)

Figure 7.15: Dynamic scenario over dynamic simulation

Table 7.7: Task parameters in simulation for dynamic emvirent

Region | Radial Velocity (ns—!) | RCS ?) | Priority
P1 300 20 1
P2 800 1 3
P3 500 10 2

Fig. 7.16 shows the cumulative detection range performagoess azimuth angle in the lowest
elevation plane at varying stages in time. It can be seengn Fil6(b) that the increase in expected
target velocity and reduction in expected radar cross@ectiduces the performance of the fixed RBPS
allocation where the threatening targets are expected. grbduces a degradation in task quality in the
high priority region which is undesirable. CDAPS howevejuats the selection of task parameters to
respond to the changing environment by improving perforrean the threatening region. This can be
further seen with the addition of another two medium thregitans at 60s shown in Fig. 7.16(c). Again,
RBPS does not optimise task quality and so performance iladed, whereas CDAPS reacts to the

changing priority and expected target parameters to agarsimeters for improved performance in the
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7.4. Simulation Analysis

threatening regions. These figures show that the CDAPSitigois capable of effectively reallocating
the finite resource in a dynamic environment to globally e task utility production. Previously
[Mallett and Brennan, 1963; Mathews, 2005] cumulative ciéd@ range has been optimised for static
uniform environments, but to the author’s knowledge thipli@ation is the first optimisation for non-

uniform dynamic environments.

R90 for CDAPS and Fixed Surveillance Pattern R90 for CDAPS and Fixed Surveillance Pattern

—— CDAPS
—— Fixed

(a) Cumulative detection rangey (km) at 30 sec. (b) Cumulative detection rang@go (km) at 60 sec.

R90 for CDAPS and Fixed Surveillance Pattern R90 for CDAPS and Fixed Surveillance Pattern

—*— CDAPS
—oe— Fixed

(c) Cumulative detection rang@yp (km) at 90 sec. (d) Cumulative detection rang@go (km) at 120 sec.

Figure 7.16: Cumulative detection range for CDAPS and RBRSaion.

Fig. 7.17 shows the average utility per task against resoavailability for the dynamic envi-
ronment. A similar improvement is seen as with the statidrenment, across resource availability.
However, the improvement of CDAPS over RBPS is slightly tge&n the dynamic case than in the
static case.

The market transaction price in CDAPS represents the cugradient in resource-utility space re-
sulting from the current competitive equilibrium in the ket This gradient determines which param-
eters are selected from the concave majorant for each chdiViask and ensures the KKT conditions
are satisfied. Fig. 7.18 shows the transaction prices inubgce over the simulation time, for varying
resource availabilities. It can be seen that the trangaptices are higher when the resource availability
is lower. A higher transaction price means parameters deetse from the lower resource region of

each task’s concave majorant in resource-utility spaceaintalso be seen that the transaction prices
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Utility Production for Varying Resource Availability
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Figure 7.17: Average utility per task for CDAPS and fixed (FBRllocation in a dynamic environment

change and settle on different equilibriums to respondéactianges in the scenario. These equilibrium

changes represent the parameter selections being adjostspond to the changing environment.

7.4.3 Discussion
It should be noted that the performance improvement shoumeise simulations is not representative of
an absolute improvementin performance. These simulatiombeavily affected by the choice of utility
function, the selected rules for RBPS, the models used aradrgders which define the models. These
results have been fairly arbitrarily chosen to be indieati¥ a reasonable performance gain, and are by
no means selected as the best performance improvementauleieHowever, although the performance
improvement may vary it is important to note that througliséging the KKT conditions CDAPS wiill
continually outperform the locally optimised RBPS, whislevident in all the simulations in this chapter.

The CDAPS algorithm is implemented in real time and all sitiohs have been produced on a
personal laptop. CDAPS is computationally efficient as thatiouous nature of the mechanism allows
adjustments to be made to the allocation as and when requiitebut having to recompute the entire
allocation. Additionally, only points local to the curreparameter selection are evaluated, instead of
the entire concave majorant as in Q-RAM. This combined éffeduces the search load and spreads it
over time. Whilst reducing the computation burden, CDAP&bie to maintain rapid reaction to pop-up
tasks due to the continuous nature of the mechanism. Bosk #epects suggest CDAPS is realistic and
suitable for application to existing multifunction radamgrol software.

The performance analysis given in this section has been letefpproduced through simulation.
This is valid in this case because the mechanism operateligh devel after significant data process-

ing and so the mechanism is purely responsible for maximisigady utility production. The CDAPS
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Figure 7.18: Transaction prices in CDAPS market for varyggpurce availability over simulation

algorithm has been shown to be superior in this respect thaveational rule based approaches. The
performance improvement when applied to real data wouldffieetad by how well the measures and
models relate to the true situation, however, this is anasggerformance for the measures and models

and not for CDAPS. Hence it is not essential for CDAPS to belastd on real data.

7.4.3.1 Performance Issues and Drawbacks

To produce the simulations in this analysis, the CDAPS d#lgor was implemented in real time for
execution on a personal laptop. This demonstrates theesféigiof the algorithm but also provided
insight into bottlenecks and performance issues whictcaffe algorithm. A key performance metric
for the system is the reaction time, which is the time takegedperate, send and process an offer. It
is desirable to keep the processing time involved in eaclhesd steps to a minimum. To reduce the
time to generate an offer it is desirable to minimise the cotajion required to evaluate each potential
parameter selection. To minimise the time taken to send amteps the offer messages it is desirable
to minimise the number of message being passed in the sy3teisis achieved in the mechanism by
restricting the price of the offer above a threshold for admd below a threshold for an ask. Given a
finite computational resource, the response time will iaseeas the number of task agents increases.
However, CDAPS was found to give a reaction time in the order e 10ms where as the Q-RAM
[Hansen et al., 2006] approach is in the order of seconds.

When a large change occurs simultaneously for a numberks tdasnay be required for numerous
tasks to sell or purchase a substantial amount of resouftds.otcurred in the long range surveillance
function simulations when the scenario changed abruptiythis case the time taken to the market to

settle on the new competitive equilibrium, which is the oyl allocation, was longer than expected. Fu-
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ture work can address how task agents can buy or sell largeuree volumes, which could be provided
in a similar way to the upstairs market in the NYSE which spksis in larger resource volumes.

CDAPS is highly suitable for allocating resource to taskshsas surveillance and tracking as they
can readily be described by numerous quality measures. Vowthere are tasks which need to be
performed which do not lend themselves to be described bysunes so easily. However, as these
types of tasks are quite fixed, there is little flexibility fmptimisation. It is suggested that a multi-layer
resource manager would be required to accommodate such task

A final limitation for exploration in further work is that thgarameter selections are considered to
be discrete. Extending the mechanism to allow continuouarpeter selections could further improve

the quality of the allocation, and find the optimal solutiarthe true sense [Irci et al., 2010].

7.5 Summary

The continuous double auction mechanism has been sucktgsgfplied in many real world resource
allocation problems, such as the NYSE. The continuous doaibttion parameter selection (CDAPS)
algorithm has been developed to select parameters foridhdil/radar tasks in a multifunction radar,
hence allocating the finite resource. The algorithm hostsuket mechanism which enables numerous
localised agents representing radar tasks to solve thalglesource utilisation optimisation problem.

Theoretical concepts indicate that CDAPS is able to prodimse to the optimality of existing
optimisation approaches to RRM with a fraction of the comafiahal burden. By satisfying the KKT
conditions the mechanism can be shown to tackle the glolahation problem of maximising task
quality subject to the resource constraint.

Realistic and complex simulations of surveillance andkirag scenarios have verified that the al-
gorithm enables a worthwhile improvement in task perforogaand hence resource utilisation which
continually outperforms a locally optimised rule basedhodt Results from the simulations have shown
graceful degradation with adaptation to dynamic environisieTo ensure feasibility for application to
real systems, the prototype mechanism used for the sironfatan in real time.

As utility maps from any quality metric a wider variety of nsemes than considered here can
be implemented. For example in tracking, resources canlbeadéd based on track existence. The
algorithm has the potential for worthwhile extensions tasse suites and networks, as well as relevance

for many resource allocation applications.
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Chapter 8

Conclusions

Multifunction radar resource management addresses hoffdctieely automate the allocation of the
finite radar time-energy resource between numerous, paligntonflicting tasks that support multi-
ple radar functions. This thesis has advanced the senscagearent field through the application of

autonomous agent systems to the multifunction radar resouanagement problem.

8.1 Summary

Multifunction radars are capable of supporting differingnétions by utilising an agile beam and con-
figuring the radar operation for each task, allowing the raddailor performance to various roles or
applications. The multifunction radar system is contiblig the automated resource manager and hence
overall performance is dictated by the resource managditydab effectively adapt performance to a
dynamic and uncertain environment. This thesis providéebeough overview of the principles of mul-
tifunction radar operation. These principles determires garameters which the automated resource
manager must control. This is an important basis for theldpmeent of the algorithms in this thesis.

Through analysis of existing literature on radar resouremagement it was seen that existing
methods of radar resource management do not adequateltheaequirements of emerging systems.
Specifically it was identified that a resource allocation haetsm is required which is computationally
light like rule based methods whilst producing near optis@utions of the optimisation methods. To
adhere to the notion of multi-functionality the mechanisméaquired to optimise a variety of require-
ments, with adequate consideration of the finite resouoqadduce behaviour which adapts to dynamic
and uncertain environments. This analysis also showedrif@mation theoretic measures could be
beneficially applied.

As a step towards the ultimate goal of the application of aggstems to multifunction radar re-
source management, this research derived and comparedseaseres and models which are suitable
for allocating multifunction radar resource. The qualifytioe measures and models used are critical

as they ultimately limit the quality of the resource allocat This research concluded that information



8.1. Summary

theoretic measures as surrogate functions are usefuldaptimisation of tasks in isolation, but are less
useful for making higher level resource allocation decisias information production is not the primary
requirement of the radar system. It was subsequently cdedlthat as multifunction radar resource
management inherently aims to optimise multiple functiohis desirable to use as wide a variety of

measures as possible, which must be accommodated by thenigoh It was found that this can be

achieved by defining utility functions which give the saiistion associated with each point in quality
space and allow a variety of quality metrics to be represehtea single utility measure. It was also

found that when tracking with significant measurement arigicertainty the resource allocation can be
improved by using the modified Riccati equation.

As a result of this research a novel agent based radar resmacager was developed which ex-
ploits the use of a mixture of objects and agents with fumetiity provided by the Java Agent Develop-
ment Framework. This developmentincluded the generafismailated measurement data to stimulate
the subsequent agent systems. This agent based radarceestamager is believed to be the first of its
kind and knowledge was gained on how to design an agent basedrce manager which allows rapid
expansion and maximum code re-use. This resource managehemused to produce results on two
mechanisms, the sequential first price and continuous dauldtions.

The sequential first price auction was applied to the radamnmee management problem to develop
the novel Sequential First Price Auction Resource Manage$-PARM) algorithm and gave signif-
icant insight into multifunction radar resource managesigie It was found that a best-first scheduler
based on delay gives preference to fluid constraints, indtion gives preference to ‘bright’ targets with
high SNR and quality gives preference to tasks which degrageality the least. These preferences are
undesirable as they do not adequately address the gloloairoesmanagement objective. An EDF has
manageable computation as the passing of time is the sanadl fasks. However, when the criteria is
switched to a measure which does not pass equally, the catiguis significantly increased and values
need to be calculated frequently. It was confirmed that mfdion theoretic measures do not adequately
describe the requirements of the radar and so are not a lgudhbice of objective function. This re-
search found that myopic allocation performs poorly and giindgsing over an extended time horizon
is preferred. Despite these numerous conclusions it wasdfthat SFPARM had a high computational
burden and inadequate performance.

The continuous double auction mechanism was applied tather resource management problem
to produce the novel Continuous Double Auction Parametiec8en (CDAPS) algorithm. The CDAPS
algorithm hosts a market mechanism where agents repregeatiar tasks can trade radar loading en-
abling parameters to be selected for individual radar tas&ace allocating the finite resource. Cru-
cially, satisfying the Karush-Kuhn-Tucker conditions eres that the CDAPS algorithm converges on

the global optimal solution, in that maximum utility is prozkd from the finite resource which equates to
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the best quality for a set of tasks. This ensures that the rausdocalised agents are solving the global

resource utilisation optimisation problem. Realistic aothplex simulations of surveillance and track-

ing scenarios have verified that the algorithm enables awudnite improvementin task performance and

hence resource utilisation which continually outperfoenacally optimised rule based method. Results

from the simulations have shown graceful degradation withpsation to dynamic environments. To

ensure feasibility for application to real systems, theiq@yge mechanism used for the simulations ran

in real time. The successful development of this algoritfa® dpened up numerous potential extensions

for future work.

8.2 Key Research Achievements and Contributions

The research conducted for this thesis has explored maeg@apf the emerging field of radar resource

management. The key research achievements which havecaditnis field are believed to be:

¢ Information theoretic measures for multifunction radasogrce management have been derived
and developed for estimation and discrimination problefithough previously applied to sensor
management this is believed to be the first assessment abaiijt for multifunction radar re-
source management. This study found that information #t&omeasures, contrary to assertions
in the literature, do not adequately describe the requintsnaf the radar and so are less suitable

as objective functions for multifunction radar resourcenagement.

e Tracking control in clutter has also been examined, it hanhkshown that measurement origin
uncertainty strongly affects the parameter selectionaghtui achieve minimum track loading and
also that the maximum measurement mutual information prisaiu peak is dependent on revisit
interval and false target density. The Modified Riccati Baais shown to improve tracking

allocation performance under significant measuremenirouigcertainty.

e An agent based multifunction radar resource manager ubmgADE framework has been de-
veloped. This is the first application of agents to multifiime radar resource management. The
research has delivered a suitable architecture which allapid extension and maximises code

reuse which can be used as a basis for future research.

e The sequential first price sealed bid auction mechanism bas bBpplied to the multifunction
radar resource management problem for the first time. Thigésulted in the development of
two novel best first schedulers, the lowest quality first arehtest information first. Through
comparison to existing radar resource management teamifje research suggested a number of

novel conclusions and guidelines for radar resource martsgggn.

¢ The novel application of the continuous double auction ma@m to the multifunction radar re-
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source management problem has led to the development aessasnt of the Continuous Double
Auction Parameter Selection (CDAPS) algorithm. This atfon improves the current state of the
art by producing a quality allocation with low computatibbarden. As an economic paradigm,

CDAPS is a tangible step to developing cognitive sensorasigrocessing techniques.

In summary this work represents the first application of aggatems to multifunction radar resource

management and has significantly advanced the knowledgesifield.

8.3 Future Work and Extensions

This thesis has delivered the key achievements listed ipriagous section. However, it has also opened
up many avenues for future work. Much of the future work cdaislve the development of the suc-
cessful CDAPS algorithm.

The measures and models considered in Chapter 4 are by ne mdaaustive. Different models
could be used, of particular relevance would be a model aintdl the Van Keuk model which incor-
porates measurement origin uncertainty. Additional tiragkneasures can be considered such as track
continuity, however it may be difficult to accurately rel#éitese quality measures to a definite resource
loading.

The CDAPS algorithm has demonstrated improved performaneeconventional techniques for
the accurate tracking and long range surveillance funstidhese functions, however pertinent, are only
two examples of the functions that need to be performed. Wwbik could be extended by modelling the
resource loading, quality and utility of additional furaris such as self protect or medium range search.
The CDAPS algorithm also allows for new measures, such ak &xsistence, to be allocated resource
within the same mechanism. This capability, which can béseathrough future work allows for new
functionality to be added to the system. Also differentédigeometries and scenarios can be considered,
such as a requirement to defend a point spatially sepanatedthe platform.

The CDAPS algorithm has yet to be applied to an applicatieoliring real data. Simulated data has
been used in this thesis due to the difficulties in perforreassessment outlined in Sec. 4.5. Real data
could be used from a mechanically scanning system and padinge resource constraint, such as only
allowing a few beam positions to be used from each scan. Andtiposed resource constraint could be
using a reduced number of PRFs from a fixed set of bursts. Bliéily, these resource constraints are not
ideal and the application of the algorithm on a real MFR waqarolvide definitive insight into how well
the task measures and models work in reality. This is reteasif the task measures and models are the
greater bottleneck then improving the performance of tleeation mechanism will have less effect.

The implementation of the CDAPS algorithm in this thesis barimproved. As it is crucial that
the mechanism operates quickly, ways in which the mechapistocol can be changed to reduce com-

munication overhead are of benefit. This could include dgial methods which allow agents to trade
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directly with each other without having to advertise in therkbook. Alternatively this could mean
reducing the size of the workbook and minimising the condgiunder which agents announce offers.
Also as the market equilibrium convergence time is desioeblet as short as possible, the mechanism
could be adapted to include a separate facility for tradmiguige resource volumes, similar to the pro-
vision in the New York Stock Exchange.

As the CDAPS algorithm is distributed and decentralisesliihherently scalable. This makes both
the algorithm and economic paradigms in general partiukaritable to be adapted for application
to a variety of applications within the sensor managemeld iach as the control of multiple UAVs.
The abstraction for the next development of the work is ¢ledrere resource allocation for single
multifunction radar can be represented as an auction, lihession for a sensor suite can be represented
as a market and the allocation for sensor network can begepted as an economy.

Finally, as CDAPS is general it has the potential for appiicaoutside of the sensor management
field, for any application requiring a finite resource to Heedted between conflicting tasks, such as in

grid computing, factory automation or communication netgo
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