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Abstract 
 

Thymosin 4 (T 4) is a 43 amino acid peptide encoded by the Tmsb4x gene located 

on the X-chromosome.  It has previously been shown to act as a secreted factor from 

the myocardium to the overlying epicardium of the developing murine heart, to 

mediate transformation of epicardial derived progenitor cells (EPDCs) into the 

coronary vasculature.  This PhD project seeks to build on these studies and 

characterises the function of T 4 in the developing systemic vasculature, using the 

mouse as a model system..  Expression analyses demonstrated specific localisation of 

T 4/T 4 in the endothelial cells of the embryonic vasculature.  In order to ascertain 

the function of vascular T 4, global and endothelial cell specific in vivo T 4 loss of 

function models were examined.  Both global and endothelial-specific T 4 mutant 

embryos displayed a reduced recruitment of vascular mural cells to developing blood 

vessels.  Detailed phenotypic examination revealed that the mural cell deficit could be 

attributed to impaired differentiation of mature mural cells from undifferentiated 

mesoderm.  This process was modelled in vitro, and it was discovered that treatment 

of the mural progenitor cell lines 10T1/2 and A404 with exogenous T 4 could 

promote their differentiation into mural cells.  This process correlated with an 

increase in Smad phosphorylation and increased activity of the TGF-  pathway.  

Decreased levels of TGF-  target genes in vivo in T 4  null embryos indicated that 

TGF-  signalling was perturbed in the absence of T 4.  These findings suggest a 

model whereby T 4 is secreted by the developing endothelium to stimulate the 

differentiation of uncommitted mesoderm into mature peri-vascular mural cells, via 

activation of the TGF-  pathway in the target cell population.  As a consequence, Tb4 

plays an essential role in vascular stability through mural cell support which has 

implications for vascular dysfunction in disease. 
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R26R-eYFP  Rosa 26 reporter enhanced yellow fluorescent protein 

RA   Retinoic acid 

RBPj   Recombining binding protein suppressor of hairless 

Rdfng   Radical fringe 

RFC-1   Reduced folate carrier 1 

RISC   Ribonucleic acid induced silencing complex 

RNA   Ribonucleic acid 

RNAi   Ribonucleic acid interference 

RP124   Ribosomal protein 124 

Scar   Wiskott-Aldrich syndrome protein family member 1 

SDS   Sodium deodocyl sulphate 

shRNA  Short hairpin ribonucleic acid 

siRNA   Short interfering ribonucleic acid 

Skip   Ski-interacting protein 

Slit3   Multiple EGF-like domains protein 5 

SM22   Transgellin 

SMA   Smooth muscle actin 

Smad   Mothers against decapentaplegic homolog 

Smap2   Stromal membrane-associated protein 1-like 

Smurf   Smad-ubiquitin regulatory factor 

SRF   Serum response factor 

TACE   Tumour necrosis factor alpha converting enzyme 

T 4   Thymosin beta 4 
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T 4-HEK  Thymosin beta 4 Hprt targeted endothelial knockdown 

T 4-RIEK  Thymosin beta 4 random integrant endothelial cell knockdown 

T 4-SO  Thymosin beta 4 sulphoxide 

T 10   Thymosin beta 10 

T R   Transforming growth factor beta receptor 

TF5   Thymosin fraction 5 

TGF-    Transforming growth factor beta 

Tie-2   Tunica interna endothelial cell kinase 2 

TNF-    Tumour necrosis factor alpha 

tRNA   Transfer ribonucleic acid 

Usp9x   Ubiquitin specific kinase 9, X-linked 

VEGF   Vascular endothelial growth factor 

VSMC   Vascular smooth muscle cell 

Wasf2   Wiskott-Aldrich protein family member 2 

WASP   Wiskott-Aldrich syndrome protein 

WH2   Wiskott-Aldrich syndrome protein homology domain 2 

X-Gal   Bromo-chloro-indolyl-galactopyranoside 
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1  Introduction 
 

Thymosin 4 (T 4) is a 43 amino acid peptide, the gene for which lies on the X 

chromosome in human and mouse.  It was originally thought to be a thymic hormone, 

but is now known to be an important actin binding protein and modulator of the 

cellular cytoskeleton. 

 

1.1  Historical Context 

 

The studies, which eventually led to the discovery of T 4, were carried out in the lab 

of Abraham White.  The researchers in his lab had postulated that the thymus, as well 

as being the organ source of mature T cells, also had a hormonal role in immune 

system development
1
.  Evidence for this hypothesis came from the observation that 

neonatal thymectomized mice displayed a dramatic reduction in immune cell, 

particularly T cell, function.  Treatment of these thymectomized mice with a 

preparation known as “thymosin”, extracted from calf thymus, could restore immune 

cell function back to near normal levels
2,3

.   

 

The crude “thymosin” extract used in these studies, also known as thymosin fraction 5 

(TF5), was initially thought to consist of just one polypeptide of around 15kDa in 

mass.  However, subsequent analysis determined that this preparation actually 

consisted of around 40 polypeptides ranging, between 1-15kDa in mass. 
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1.2  Thymosin Nomenclature 

 

The various proteins in the TF5 extract were then classified on the basis of their 

isoelectric points.   thymosins have an isoelectric point corresponding to a pH below 

5.0,  thymosins a pH between 5.0 and 7.0 and  thymosins a pH above 7.0.  Thus, 

molecules may share the name “thymosin” despite being disparate in terms of their 

sequences, structures and biological properties.  Subsequently the thymosins within 

each sub-family were numbered in order of their identification.  T 4 shares sequence 

homology with thymosins 9, 10 and 15 (Fig. 1.1). 
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Fig. 1.1 

The sequence and structure of -thymosin family proteins  

Diagram to demonstrate the amino acid sequence of the mammalian beta thymosin 

family of proteins (a), and the structure of the T 4 molecule (b).  Blue sequence 

motifs denote the bioactive peptide Ac-SDKP which can be derived from T 4 via 

cleavage by prolyl-oligopeptidase, The red motifs represent the LKKTET actin 

binding domain of T 4.  Adapted from 
4
. 

 

1.3  The Beta Thymosin Family 

 

-thymosin molecules from the TF5 fraction are not all related to each other by 

sequence.  For example, the original thymosin 1 molecule has been identified as a 72 

amino acid fragment of the ubiquitin protein.  As other beta thymosin molecules have 

subsequently been identified as belonging to other families, the term “beta thymosin 

family” has come to mean those molecules, which share homology to T 4.  The beta 

thymosin family of proteins is highly conserved in eukaryotic species; present in 
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species ranging from mammalian human, mouse and rat through to echinoderms.  

Additionally, proteins have been identified in the model organisms Drosophila 

Melanogaster and Caenorhabditis Elegans bearing three beta thymosin like domain 

repeats.  Beta thymosins have not been identified in yeast or prokaryotes.   

 

In mammalian species, tissues tend to express two beta thymosin family members.  

This is usually T 4 plus one other family member.  The principally expressed 

thymosins in human and mouse are T 4 and T 10. 

 

1.4  The T 4 Gene 

 

The gene for T 4 in humans is located on the X chromosome, specifically the locus 

Xq21.3-q22 
5
.  In humans, a transcript for a T 4 variant encoded on the Y 

chromosome has been published, but a resultant protein product has never been 

isolated
6
.  In the murine setting, the gene for T 4; tmsb4x, is again located on the 

distal arm of the X chromosome at Xq21.33-q22 and consists of three exons and two 

introns
7
.  Alternative splicing is known to affect transcription of the tmsb4x gene, 

although this appears to be unique to the murine orthologue.  In most tissues, a 

transcript including all three of the standard exons is produced.  However, in 

lymphoid tissue, an alternative transcript, made by extending exon 1 with an 

alternative downstream splice site, is made
7
.  The upstream 5’ region to the tmsb4x 

gene possesses many of the properties of a promoter.  Namely, it has an initiator site 

and several consensus sequences for transcription factors such as Oct-1, AP1, c-jun 

and AP3.  Partial homologies to consensus sequences for retinoic acid and interferon 

response elements have also been identified
7
. 
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1.5  The Structure of T 4 

 

T 4 in its native form is 43 amino acids in length.  The N-terminal serine always 

appears to be acetylated.  In addition, the T 4 molecule can also exist in an oxidised 

form known as T 4 sulphoxide, wherein the methionine residue at position 6 of the 

protein is oxidised.  In aqueous solutions, T 4 is unstructured and exists in a free 

conformation.  However, in fluorinated alcohols, the N- and C- terminals of the 

molecule form  helices
8
 (Fig. 1.1).  It is thought that this reflects the structure of T 4 

in vivo when bound to monomeric G-actin
9
. 

 

1.6  T 4 as an Actin Binding Molecule 

 

Initial functional studies of T 4, identified it as being identical to the actin binding 

protein up until that point known as Fx
10

.  Subsequent work has demonstrated that 

T 4 has a critical effect on the formation of F-actin and as a consequence influences 

the cytoskeletal architecture of cells.  Actin is a 42kDa molecule ubiquitously present 

in eukaryotic cells.  This monomeric or G-actin can polymerise into long, straight or 

branched filaments which are the building blocks for cellular structures such as 

microfilaments and thin filaments.  The polymerised form is known as G-actin.   

 

1.7  The Dynamics of F-Actin Formation 

 

The formation of polymerised filamentous or F-actin is one of nucleation and 

elongation.  Actin nucleating molecules such as Arp2/3 bind ATP-G-actin in 

association with WAVE proteins to create a new nucleus for actin polymeristaion.  
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Following the creation of actin nuclei, ATP-bound G-actin can associate with the 

growing filament, concomitant with the hydrolysis of ATP to ADP
9
.  Thus, there exist 

two ends to a growing actin filament known as the + or “barbed” end and the - or 

“pointed” end.  These two ends of the filament have different association and 

dissociation constants for the further addition/removal of G-actin.  Net polymerisation 

of the filament occurs until the concentration of free G-actin drops to a level (known 

as the critical concentration) approaching that of the dissociation constant of the 

barbed end.  At this point, an equilibrium is reached, whereby the rate of G-actin 

addition at the barbed end is equal to the rate of G-actin dissociation at the pointed 

end.  In this state, a “treadmilling” occurs along the F-actin molecule as actin subunits 

migrate from the barbed to the pointed end of a filament of unchanged length
11

.  

However, rather than existing in this state in vivo, F-actin filaments are likely to be 

“capped” by capping proteins binding to the barbed end – decreasing the ability of G-

actin to associate/dissociate from the barbed end.  This reduces the critical 

concentration to a value close to the (much higher) dissociation constant of the 

pointed end
9
.  

 

1.8  The Function of T 4 as a G-Actin Buffer 

 

One model for how T 4 might influence this process relies on T 4 binding G-actin in 

a 1:1 complex.  Given that the dissociation constant for the T 4/G-actin interaction is 

lower than the dissociation constant for the F-actin/G-actin interaction at the pointed 

end, and that T 4 is usually present at high concentrations in cells, this means that 

most G-actin is bound in complex with T 4.  This lowers the concentration of free G-

actin to below that of the critical concentration, with the effect of stalling F-actin 
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polymerisation.  As a result, a resting cell can maintain a constant cytoskeletal 

arrangement in the presence of a high G-actin concentration – although this G-actin 

exists in a T 4-sequestered state.  Such a situation permits the cell, upon activation to 

rapidly reform a different cytoskeletal conformation without having to endure the 

lengthy process of de novo G-actin synthesis. 

 

Upon cell stimulation, actin polymerisation can re-start through a variety of 

mechanisms, which rely on the production of new free barbed ends
12

: 

 

• The removal of capping proteins. 

• The cleavage of F-actin filaments to form daughter filaments each with a 

barbed end. 

• Formation of new sites of actin nucleation. 

 

Thus, as the number of free barbed ends increases, the critical concentration for the 

association between F-actin and G-actin decreases until it is below that of the 

dissociation constant for the G-actin/T 4 interaction.  At this point, G-actin is free to 

dissociate from T 4 to become available for the formation of new actin filaments.  It 

is thought that T 4 acts purely in a passive manner, to buffer the intracellular pool of 

G-actin and that post-translational modification of the T 4/G-actin interaction does 

not serve as a regulatory mechanism for F-actin polymerisation
9
 (Fig. 1.2)  
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Fig. 1.2 

T 4 acts to maintain a buffered pool of G-actin 

Diagram to summarise the action of T 4 in control of actin polymerisation and 

depolymerisation.  Adapted from 
9
. 

 

1.9  Limitations of the T 4/G-Actin Model 

 

Although there is considerable evidence for this mechanism of action in T 4 

dependent cytoskeletal regulation
13

, a number of observations do not fit this pattern.  

When T 4 is overexpressed in cells, it has been observed to bind to F-actin and 

promote the formation of stress fibres – large structures made up of polymerised F-

actin.  Indeed, T 4 can even be chemically crosslinked to F-actin
14,15

.  
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An explanation for this activity perhaps lies in T 4’s structure.  Site directed 

mutagenesis studies have demonstrated that amino acids 17-22 of T 4 – the LKKTET 

domain, are responsible for T 4’s ability to bind actin.  This region, when 

supplemented with an N-terminal -helix (as in T 4), is known as the beta thymosin 

domain, or alternatively as the WASP-homology (WH2) domain, as it is also found in 

proteins of the Wiskott-Aldrich syndrome protein (WASP) family.  Many other 

proteins such as N-WASP, Scar/WAVE and the drosophila melanogaster protein 

Cibulot contain this WH2 domain and serve as actin nucleating factors
16,17

.  It appears 

that, under certain circumstances, T 4 may also be able to function in this role.  

 

1.10  Functional Consequences of the T 4/G-Actin Interaction 

 

The ability of intracellular T 4 to affect cytoskeletal dynamics has been shown to 

have important consequences for the functional capabilities and phenotypes of cells.  

It has been demonstrated that photoactivation of caged T 4 in the lamellipodia of 

migrating cells can arrest their forward movement via a decrease in lamellipodial 

activity, presumably by an abrupt cessation of actin treadmilling
18

.  Similar results 

have been obtained by transiently transfecting cells with T 4; leading to a rapid 

increase in intracellular T 4 concentration.  This has the effect of abolishing the cells’ 

directional movement
19

.  Similarly, when HeLa cells, lining the edge of an in vitro 

induced wound, are injected with Oregon green labelled T 4, it is only uninjected 

cells, which are able to migrate and close the wound
9
. 

 

However, there is also evidence, which contradicts this particular interpretation of 

T 4 function.  Knock down of T 4 through the use of siRNA in tumour cells, 
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inhibited the ability of these cells to migrate towards a scratch wound in vivo
20

 – a 

function opposite to that expected if T 4 was acting to reduce lamelliopial formation.  

In addition, overexpression of T 4 by stable (as opposed to transient) transfection of 

cells, seems to lead to increased migratory behaviour
21

.  The explanation for this 

paradoxical observation was that the increased levels of T 4 somehow stimulated 

increased expression of actin so that the free G-actin to F-actin ratio remained 

constant.  Increased T 4 also stimulated the synthesis of other actin binding proteins 

leading to increased nucleation of F-actin filaments and consequent increased motility 

of cells
21

. 

 

1.11  The Effects of the T 4/G-Actin Interaction on Tumour 

Metastasis 

 

Metastasis is the ability of tumour cells to form a cancerous lesion at a site distinct 

from its primary location.  Amongst many factors, this process relies on cell motility 

and migration to take place – it has been noted that metastatic tumour cells are more 

motile than non-metastatic tumour cells
22

.  Thus, one might expect that metastatic 

tumour cells might show decreased levels of expression and activity of T 4.  This is 

exactly what has been observed by Yamamoto et al. in colorectal carcinomas
23

.  

However, these results were contradicted by Clark et al., who demonstrated that T 4 

expression correlated with increased metastatic capability, in melanoma cells
24

.  Thus, 

it is fair to state, that the effect of intracellular T 4 on actin cytoskeleton dynamics 

and cell migration is an, as yet, incompletely understood topic. 
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1.12  The Function of Extracellular T 4 

 

In recent years much of the research focus on T 4 has shifted from understanding its 

role as an intracellular G-actin binding molecule to an extracellular pleiotropic factor.  

Not only does T 4 function as a G-actin buffer, but when it is applied 

pharmacologically to a variety of in vitro, ex vivo and in vivo models, it also displays 

a wide variety of effects on cell activity and phenotype (Fig. 1.3).  Possession of such 

a range of functions in both the intra- and extracellular niche has led to T 4 being 

dubbed a moonlighting protein
4
. 

 

 

Fig. 1.3 

The myriad functions of T 4 

Schematic diagram summarising the biological actions of T 4.  Based on 
1
. 
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1.13  The Effects of T 4 on Apoptosis 

 

One of the primary effects that T 4 appears to have on cells is to prevent apoptosis.  

Sosne et al. found that both ethanol induced apoptosis of human corneal epithelial 

cells and chlorhexidine induced apoptosis of human dermal fibroblasts was reduced 

when these cells were treated with T 4 in vitro
25,26

.  Furthermore, such an effect has 

been shown to have relevance in vivo.  When myocardial infarction (MI) is 

experimentally induced in mice; systemic administration of T 4 through the 

intraperitoneal or intracardiac routes dramatically reduces apoptosis of 

cardiomyocytes in the infarct zone
27

. 

 

1.14  The Anti-Inflammatory Effects of T 4 

 

It has also been demonstrated that T 4 exerts a number of anti-inflammatory effects 

on cells.  One system in which the anti-inflammatory properties of T 4 have been 

studied extensively, is in the setting of corneal epithelial injury.  When rat corneas are 

experimentally injured through exposure to alkali, twice daily topical treatment with 

T 4 leads to a reduction in levels of pro-inflammatory cytokines such as IL-1 , IL-

1 , MIP-1 , MIP-1 , MIP-2 and MCP-1.  Possibly as a consequence of this, The T 4 

treated corneas show a reduction in the number of infiltrating polymorphonuclear 

neutrophils
28,29

.  The oxidised form of T 4, T 4-SO, has also been shown to possess 

this same ability to inhibit neutrophil chemotaxis and as a result reduce carrageenin-

induced oedema of the mouse paw
30

. 
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The effects of T 4 treatment on inflammatory cytokine production may have several 

underlying causes.  One possibility is that T 4 directly affects the expression and 

activity of the transcription factor NF- B.  NF- B plays a central role in the 

inflammatory response and regulates immune functions as diverse as lymphoid 

organogenesis, development and maturation of innate and adaptive immune cells, and 

signalling through Toll-like receptors
31

.  Corneal epithelial cells treated with T 4 

demonstrate blunted responses in NF- B activation and upregulation, in response to 

treatment with the pro-inflammatory mediator TNF-
32

.  This implies that T 4, under 

certain circumstances and in certain cell types, can directly regulate NF- B. 

 

1.15  The Anti-Inflammatory Effects of T 4 as a Treatment for 

Sepsis 

 

As well as effects on rate of corneal wound healing, the anti-inflammatory properties 

of T 4 might have many other functional benefits in treating disease pathology.  

Septic shock is a syndrome of life threatening hypotension, caused by an inability to 

maintain an effective plasma volume due to leakage into the non-vascular 

extracellular space.  This is the result of increased permeability of blood vessels 

stimulated by the toxic products of cell death and bacterial infection.  Often, the 

clinical syndrome is complicated by the presence of high circulating levels of actin 

released into the bloodstream by dying cells
33

.  It is thought that when released into 

the blood plasma, G-actin has a propensity to polymerise and form circulating F-actin 

filaments.  These filaments can serve as nuclei for the formation of pulmonary clots 

and can lead to death
34

.  
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 It has been observed that in patients with septic shock, levels of naturally circulating 

T 4 are decreased, implying that T 4 has been used up in the circulation to buffer 

free G-actin and prevent deleterious F-actin formation
4
.  Furthermore, induction of 

septic shock in mice through challenge with LPS, can be treated by the administration 

of T 4; thereby significantly improving their survival
35

.  Given T 4’s ability to also 

down regulate levels of the inflammatory mediator IL-1  in this setting, it becomes 

an interesting candidate for treatment of septic shock. 

 

1.16  T 4 as a Treatment for CNS Inflammation 

 

T 4’s anti-inflammatory properties have also been tested to treat a mouse model of 

multiple sclerosis.  Multiple sclerosis can be induced in wild type mice via co-

injection of myelin basic protein and an adjuvant, to stimulate a host immune 

response against the myelin sheathing of oligodendrocytes.  When animals such as 

these are pre-treated with T 4, there is a significant reduction in inflammatory 

infiltrate
36

.  This indicates that T 4 may be a novel candidate for treatment of multiple 

sclerosis.  As such, a company by the name of “RegeneRx Biopharmaceuticals Inc.” 

are currently trialling recombinant T 4 in phase 2 clinical trials for multiple sclerosis 

(http://www.regenerx.com/wt/page/clinical_trials). 

 

1.17  The Action of Pharmacological T 4 on Wound Healing 

 

In addition to its properties as an anti-apoptotic and anti-inflammatory agent, much 

recent research has been conducted centring around the role of pharmacologically 

administered T 4 in regenerative medicine.  Initial interest first appeared after it had 
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been demonstrated that topical or intraperitoneal administration of T 4 to full 

thickness dermal wounds in rats was able to accelerate re-epithelialisation of the 

lesions
37

.  It is thought that T 4 acted as a migratory stimulus to keratinocytes in this 

model.  Following this, it has also been observed that T 4 accelerates wound healing 

in several other model systems involving corneal damage
38

, epidermolysis bullosa
39

 

and venous stasis ulcers
40

.   

 

1.18  T 4 in Neuroregeneration 

 

Surface epithelium is not the only location in which T 4’s regenerative properties 

have been observed – there is now much evidence, that suggests that T 4 may exert 

neuroregenerative effects.  In the previously described animal model of multiple 

sclerosis, T 4 was not only able to dampen the inflammatory response but also 

appeared to stimulate the expansion of endogenous oligodendrocyte progenitor 

cells
36

.  T 4 has also demonstrated regenerative activity in an animal model of stroke.  

After embolic occlusion of the middle cerebral artery in rats, T 4 treatment led to 

significantly improved functional recovery concordant with an increase in 

oligodendrocyte progenitor cells and remyelinating oligodendrocytes
41

. 

 

1.19  T 4 in the Cardiovascular System 

 

Taken as a whole, these observations that pharmacological and extracellular T 4 can 

have profound roles on apoptosis, inflammation and wound healing imply that T 4 

cannot simply be an intracellularly acting, G-actin buffering molecule but has potent 

and pleiotropic effects on cell signalling.  Yet, there is currently a profound lack of 



 36 

understanding about how these different functions of T 4 are regulated and 

segregated.  This has been termed the “  thymosin enigma” in the literature
42

.  The 

lack of a traditional secretory signal sequence in T 4’s amino acid sequence have led 

some to postulate that T 4’s apparent effects on extracellular signalling are artefactual 

and that T 4’s function is solely intracellular
43

.  Nowhere are these paradoxical views 

of T 4’s function more apparent than studies of T 4’s role in the developing 

cardiovascular system. 

 

The formation of a competent and functional vasculature in the developing embryo is 

necessary to deliver oxygen and nutrients to the growing tissues once simple diffusion 

is no longer adequate for this purpose. T 4 is thought to play several critical roles in 

this process. 

 

1.20  The First Embryonic Blood Vessels Are Formed By the 
Process of Vasculogenesis 

 

The first blood vessels in the embryo proper arise as the concluding result of a process 

known as vasculogenesis.  Vasculogenesis is the process by which de novo blood 

vessels arise out of previously undifferentiated tissue.  It involves a number of linked 

events.  First of all, progenitor angioblast cells must be specified and differentiated 

into endothelial cells from the surrounding tissue.  These endothelial cells must then 

migrate towards one another in order to coalesce into cord-like structures.  These 

cord-like entities must then transform themselves from solid cylinders to hollow, 

lumen bearing vessels (Fig. 1.4)
44,45

. 
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Fig. 1.4 

Mechanisms of blood vessel development 

 

Schematic diagram to demonstrate the principle mechanisms of vascular development 

in the embryo.  Formation of the first blood vessels such as the dorsal aorta arise 

through coalescence of angioblasts in the process of vasculogenesis.  Subsequent 

vessel formation occurs via angiogenesis in either its sprouting, intussuceptive or 

bridging forms.  Adapted from
46

. 

 

1.21  The Role of T 4 in Vasculogenesis 

 

Although definitive evidence that T 4 influences this process in the in vivo setting has 

not yet been obtained, there is a lot of evidence from in vitro and ex vivo experiments 

that T 4 might have a part to play in this process.  When human umbilical vein 

endothelial cells (HUVECS) are cultured on an artificial extracellular membrane 

known as Matrigel, the endothelial cells form tube like structures.  Thus, this system 

has been used as an in vitro model of vasculogenesis.  It has been shown that when 

HUVECs are cultured on Matrigel, they upregulate their expression of T 4 

concomitant with the attachment of the HUVECs to the artificial matrix and spreading 

of the endothelial cells
47

.  These experiments also highlight the nature of the T 4 

enigma.  It is unclear whether the upregulated T 4 seen in these HUVECs is acting 
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intracellularly or as a paracrine factor.  One might assume that given the migrating, 

attaching and spreading nature of the endothelial cells in this experiment, that T 4 

must be acting in its role as a regulator of the intracellular cytoskeleton, yet this is 

disputed by other observations.  Namely, when exogenous T 4 peptide is added to 

this system, the incorporation of HUVECs into tubes increases, implying that the 

upregulation of T 4 seen in these cells could be acting in its role as an extracellular 

signalling molecule
48

. 

 

It is also possible that T 4 may have a function in the initial endothelial 

differentiation stages of vasculogenesis.  The N-terminus of T 4 can be cleaved to the 

short peptide Ac-SDKP by the enzyme prolyl oligopeptidase
49

.  When this peptide is 

added exogenously to murine embryonic epicardial explants, it can stimulate the 

differentiation of epicardial derived progenitor cells (EPDCs) to an endothelial cell 

phenotype
50

.  Similarly, when differentiating embryoid bodies are cultured in the 

presence of T 4, they upregulate a number of endothelial markers
51

.  Such 

experimental data are consistent with a role for T 4 in the initial differentiation of 

endothelial cells in the embryo proper.  It is only large, essential vessels such as the 

aorta, which form in the embryo via the process of vasculogenesis
44,45

.  The aorta 

forms through the vasculogenic coalescence of endothelial cells arising from the 

aorta, gonad, mesonephros region of the splanchno-pleural mesoderm.  Immediately 

prior to formation of the dorsal aorta, T 4 is expressed in this region of the mesoderm 

providing further evidence for a possible role of T 4 in this process
52

. 
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1.22  Secondary Blood Vessel Formation Occurs Via 
Angiogenesis 

 

Once the initial, major vessels of the embryos are formed, the other vessels are 

formed through the process of angiogenesis.  Angiogenesis is the formation of two or 

more daughter vessels from an already formed vessel.  This may be through sprouting 

angiogenesis whereby a new vessel buds out and branches off from an existing vessel, 

or through intussusceptive angiogenesis where a blood vessel is split into two or more 

separate conduits along its longitudinal axis through growth of an endothelial pillar 

down the centre of the lumen (Fig. 1.4)
44

.  In practice, sprouting angiogenesis is 

thought to be the more common process and the best studied.  It is also the angiogenic 

process in which T 4 has been most extensively studied. 

 

1.23  The Molecular Events Underlying Sprouting 
Angiogenesis 

 

Sprouting angiogenesis can be broken down into several molecular and cellular 

events.  The first step in sprouting angiogenesis is thought to be mediated by a 

hypoxic stimulus, which acting through the hypoxia inducible factor (HIF) pathway, 

causes an increase in the production of nitric oxide (NO).  This leads to an increase in 

vessel diameter.  Concurrently, higher concentrations of the vascular endothelial 

growth factor (VEGF) family of molecules, act on VEGF receptors on the 

endothelium to mediate an increase in vascular permeability.  This is combined with 

the release and activation of matrix metalloproteases and proteinases, which digest the 

extracellular matrix (ECM) surrounding the blood vessel.  Endothelial cells on the 

existing vessel, which have become specified as endothelial tip cells, then invaginate 
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into the surrounding tissue and migrate along gradients of pro-angiogenic factors such 

as VEGF.  In response to mitogenic molecules, endothelial stalk cells then proliferate 

along the path of the nascent vessel.  It is usual for a plexus of new blood vessels to 

form in this situation before the process of remodelling decreases the amount of 

branches in the newly vascularised area.  Finally, vessels mature through the 

recruitment of pericytes and smooth muscle cells
44

. 

 

1.24  A Role for T 4 in Sprouting Angiogenesis 

 

It appears that T 4 can act on several steps in this process.  The first point of 

intersection between the events of sprouting angiogenesis and T 4 function may be at 

the initial stage of HIF induction.  Although not yet demonstrated in any endothelial 

system, T 4 has been shown to stabilise the formation of HIF1  in the HeLa human 

cervical tumour cell line
53

.  If such a phenomenon occurs in vivo in endothelial cells, 

it is possible that paracrine T 4 could act as an initiating stimulus in sprouting 

angiogenesis.  Compelling lines of evidence that T 4 can act as this initiating factor 

comes from several ex vivo experimental systems.  First of all, when exogenous T 4 

is added to coronary ring explants derived from the coronary arteries of pigs, it is able 

to stimulate the sprouting of capillary branches from the coronary ring
48,54

.  Secondly, 

when T 4 peptide is added to chick chorioallantoic membranes, it can induce the 

appearance of vascular branches on the membrane surface
54

. 
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1.25  A link between T 4 and MMP Secretion 

 

Once sprouting angiogenesis has been initiated and endothelial tip cells specified, the 

new blood vessels form a sprouting front which migrates along a VEGF gradient into 

hypoxic tissue.  This is typified by the complex of migrating endothelial tip cells from 

the optic neurovascular bundle to the periphery of the retina, in the model of postnatal 

retinal angiogenesis
55

.  In order to accomplish this migration, endothelial cells must 

secrete matrix metalloproteases (MMPs) and proteinases to digest the tissue into 

which they are to migrate
44

.  Treatment of cells with T 4 has been shown to stimulate 

such production.  In particular it can induce the secretion of MMPs 1, 2 and 3 from 

endothelial cells
56

.  Interestingly, the link between T 4 and MMP production has been 

shown to depend on both extracellular exogenous T 4 and intracellular T 4 as 

determined following RNAi mediated knockdown of T 4 in HUVECs
43

. 

 

1.26  The Function of T 4 in Endothelial Cell Migration 

 

T 4 also seems to play a key role in the migratory mechanics of endothelial cells.  

Once more, this seems to be the case irrespective of whether T 4 is being 

exogenously added or endogenously deprived.  In Boyden chamber assays, used to 

measure the in vitro migratory capacity of cells, exogenous T 4 was able to stimulate 

the migration of HUVECs and human coronary artery endothelial cells but not 

foreskin fibroblasts, aortic smooth muscle cells, monocytes or neutrophils indicating a 

specific stimulatory effect of T 4 on endothelial cells
57

.  In other experiments, RNAi 

mediated knockdown of endogenous T 4 in endothelial cells, compromised the 

ability of these HUVECs to migrate efficiently.  However, the effect of RNAi 
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knockdown of T 4 was not solely to inhibit the migration of these HUVECs – the 

precise nature of the migration abnormality was dependent on the degree of T 4 

knockdown.  In the case of partial knockdown due to transient transfection of 

HUVECs with the T 4 RNAi construct, HUVEC migration increased.  This was 

thought to be due to a reduction in the ability of the cell to buffer monomeric G-actin, 

thus allowing the cell to form more F-actin and migrate faster.  However, when T 4 

was knocked down, almost completely, via stable transfection with the T 4 RNAi 

construct, the pro-migratory effects on G-actin were outweighed by the greatly 

reduced production of MMPs, leading to decreased migration of the cell
43

.  Thus, it 

can be concluded that regulation of T 4 plays an essential role in controlling the 

migratory capacity of endothelial cells. 

 

1.27  Mural Cell Recruitment is Essential for the Formation of 
Stable Blood Vessels 

 

Once endothelial tubes have formed either through the processes of vasculogenesis or 

angiogenesis, it is necessary for them to recruit an outer layer of mural cells.  Such 

mural cells exist on a phenotypic continuum between cells, with some cells 

possessing the character of vascular smooth muscle cells, whilst other cells display 

the characteristics of pericytes.  Vascular smooth muscle cells provide structural 

support for endothelial tubes and have the capacity to contract with the purpose of 

either maintaining blood pressure or regulating blood flow into vascular beds.  

Pericytes meanwhile are thought to provide molecular interactions with the 

endothelial cell layer, necessary for maintenance of endothelial cell health
58,59

. 
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1.28  Mechanisms of Mural Cell Recruitment 

 

In the developing embryo, mural cell recruitment tends to take place via one of two 

principal mechanisms.  Blood vessels in mesodermal tissues tend to derive their mural 

cell coats through the in situ differentiation of mesoderm into mature mural cell 

tissue
60

.  This process is thought to be largely dependent on endothelial secreted 

TGF- , which has been shown to stimulate the differentiation of mesodermal 

progenitor cell lines into vascular smooth muscle tissue.  In contrast, blood vessels of 

the central nervous system (CNS) recruit their mural cells via the migration of 

phenotypically mature mural cells from non-CNS vascular beds.  This process is 

thought to be dependent on endothelial secreted PDGF-BB acting as a 

chemoattractant for mature mural cells
58,59

.  Although there are other factors which 

affect and direct mural cell development, the best studied are components of the 

PDGF-B, Notch and TGF-  signalling axes. 

 

1.29  PDGF-B Signalling in Mural Cell Development 

 

The PDGF-B/PDGFR  ligand/receptor pair is one of the most important molecular 

determinants of mural cell development.  Most of the advances in the understanding 

of how PDGF-B/PDGFR  affect vascular development have come from the 

observation of transgenic mice.  Global knockout of either PDGF-B or PDGFR  leads 

to perinatal lethality in mice due to endothelial hyperplasia, abnormal immature 

endothelial cell-cell junctions and excessive luminal invaginations – all secondary to a 

lack of mural cell ensheathment of blood vessels
61-66

.  The model currently accepted 

to explain these data, is that sprouting endothelial tips secrete PDGF-B into the 
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extracellular space.  It is then bound to heparan sulphate proteoglycans in the 

extracellular matrix and on the endothelial cell surface to create a chemoattractant 

gradient for migrating mural cells
58

 (Fig. 1.5).   

 

It is thought that PDGF-B facilitates the migration and proliferation of mural cells 

rather than their differentiation as, in the PDGF-B/PDGFR  knockouts, initial 

induction of the mural cell population from the undifferentiated mesenchyme 

surrounding nascent blood vessels is not impaired
62

.  These findings also seem to 

explain why the blood vessels of the CNS are most affected by the loss of PDGF-

B/PDGFR  signalling.  The CNS lacks vasculogenesis competent mesenchyme and 

so must recruit all of the mural cells required for blood vessel investiture from outside 

sources.  Thus the effect of loss of PDGF-B/PDGFR  is most keenly felt in tissues 

such as the retina where no mural cell can be induced by PDGF-B independent 

means
58

. 

 

1.30  The Mechanism of PDGF-B Signalling 

 

PDGF-B/PDGFR  signalling is an example of receptor tyrosine kinase signalling.  

PDGF-B is generally secreted as a homodimer; PDGF-BB, which binds to a 

PDGFR  homodimer
67

.  Upon ligand binding, the receptor autophosphorylates at 

tyrosine residue 857 (in human)
68,69

.  This allows the receptor to activate a number of 

downstream pathways including Src kinase, PI3K, PLC  and Ras
67

.  Such pathway 

activation will eventually lead to transcription of target genes, allowing the cell to 

proliferate and migrate in the direction of the growth factor gradient. 
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Fig. 1.5 

The role of PDGF-B in mural cell development 

PDGF-B is secreted by endothelial cells and acts as a proliferative and migratory 

stimulus for mural cells.  PDGF-B may be retained in the peri-vascular extracellular 

space through associating with heparan sulphate proteoglycans.  Adapted from 
58

. 

 

1.31  The Biology of Notch Signalling 

 

Members of the notch family of receptors play a crucial part in several aspects of 

vascular development.  There are four Notch receptors; Notch1, 2, 3 and 4, each of 

which is synthesised as a single polypeptide chain before being cleaved into non-

covalently linked intracellular (NICD) and extracellular (NECD) domains by the 

protease enzyme furin
70

.  The NECD of each Notch receptor contains 29-36 EGF-like 

repeats which bind to one of five canonical Notch ligands; Delta-like ligand (DLL) 1, 

3 or 4 and Jagged (Jag) 1 and 2.  Each of these ligands also contain a variable number 

of EGF domain repeats (8 in Jag proteins, 15-16 in Dll) which bind to the NECD.  

Upon ligand binding, the NECD is cleaved by extracellular proteases of the 

ADAM/TACE family.  This induces a conformational change in the remaining part of 

the protein, which allows the enzyme -secretase to perform a second proteolytic 

cleavage and release the NICD into the cytoplasm.  The NICD then translocates to the 
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nucleus where it binds the DNA-binding protein RBP-J/CSL.  The complex which 

forms is then able to bind DNA and stimulate transcription of stereotypical Notch 

target genes such as members of the Hairy/Enhancer of Split (Hes), Hes related 

protein (Hey) and Fringe proteins (Fig. 1.6)
70

. 

 

 

Fig. 1.6 

Key molecular events in the Notch signalling cascade 

Binding of a Notch ligand to a Notch receptor leads to sequential cleavage of the 

receptor by members of the ADAM/TACE and -secretase complexes.  The free 

NICD is then able to translocate to the nucleus and stimulate Notch target gene 

transcription.  Adapted from
71

. 

 

1.32  Arterio-Venous Specification by Notch Receptor 
Signalling 

 

Different flavours of Notch signalling have different effects on the development of 

the vasculature.  As previously mentioned, the first vessels of the embryo proper, the 
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dorsal aortae and the cardinal veins, are formed in a process known as vasculogenesis, 

where haemangioblast progenitors coalesce to form endothelial tubes
45

.  Notch 

signalling is thought to play an essential role in whether early endothelial cells will 

assume a venous identity and become part of the cardinal veins or an arterial identity 

and help form the dorsal aortae.  Various Notch ligands and receptors are expressed in 

arterial-fated endothelial cells and knockout of different Notch components, in several 

models, leads to vascular malformation and a deficiency in the expression of arterial 

identity genes in arterial endothelial cells, which take on a more venous molecular 

signature
70

. 

 

1.33  Notch is a Key Mediator of Arteriogenesis 

 

The Notch ligand Dll1 is also a key regulator of arteriogenesis.  This is the process by 

which small arteriolar vascular branches can transform into large calibre collateral 

arteries; usually in the setting of arterial blockade due to atheromatous vascular 

disease.  Dll1 is thought to be essential to this process as Dll1 heterozygote mice fail 

to develop sufficient collaterals after experimentally induced hindlimb ischaemia
72

.  

This process is also compromised in Notch1 heterozygous mice
72

. 

 

1.34  An Essential Function for Notch Signalling in Sprouting 
Angiogenesis 

 

Most recently, Notch signalling has been identified as one of the most important 

events in the initiation of sprouting angiogenesis.  As mentioned earlier, when new 

blood vessels grow into an inadequately vascularised area of tissue by the process of 
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angiogenesis, it is endothelial cells, which have been selected as tip cells that lead the 

sprouting branches.  Tip cells characteristically extend a number of dynamic 

filopodial processes into the surrounding tissue and migrate along VEGF gradients.  

Whilst doing this, they express the Notch ligand Dll4 at the cell surface boundary 

with endothelial stalk cells.  The outcome of this Dll4 signalling event is to repress 

the tip cell phenotype in the endothelial stalk cells
63,73,74

.  The effects of Dll4 in this 

setting, are thought to be mediated through interaction with Notch1, as in the 

endothelial specific inducible Notch1 knockout, which has mosaic expression of 

Notch1, Notch1 deficient cells are preferentially found at the tips rather than the 

stalks of endothelial sprouts.  The Notch ligand Jag1 is thought to antagonise this 

process and thus appears to be a potent stimulator of angiogenesis and the tip cell 

phenotype. 

 

1.35  Notch3 Signalling Stimulates Mural Cell Maturation 

 

Signalling via the Notch3 receptor is thought to influence the process of mural cell 

development.  The first evidence for this came from study of the human disease 

CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and 

Leukencephalopathy).  This disorder is characterised by progressive VSMC loss 

around arteries leading to micro-strokes and progressive dementia
75

.  The causative 

mutations in CADASIL are always found in the human NOTCH3 gene
76

.  Due to the 

effects of NOTCH3 receptor mutation on the vascular smooth muscle cell population 

in CADASIL patients, it was postulated that Notch3 might play a functional role in 

mural cell development in the embryo.  This was confirmed by analysis of the Notch3 

knockout mouse.  Mural cells in the Notch3 knockout mouse appear to differentiate, 
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migrate and invest blood vessels as normal but appear to be defective in their 

maturation.  They do not adhere to endothelial cells properly, display abnormal 

morphology and do not adopt a typical arterial mural cell gene signature
77

.  It is 

thought that since Notch3 activation can regulate PDGFR  gene transcription directly 

in vitro, that one reason for the defective mural cell maturation in Notch3 knockout 

mice may be a lack of PDGFR  expression on mural cells.  It has been confirmed that 

VSMCs in Notch3 knockout mice have reduced PDGFR  expression and that primary 

VSMCs from a patient with CADASIL lacked PDGFR
78

.  One as yet unsolved 

problem is that there is no known Notch ligand, whose expression correlates spatially 

and temporally with the onset of the VSMC maturation defects observed in the 

Notch3 knockout mouse
58

.  Thus, one hypothesis which has been put forward is that 

Notch3 activation in this setting is dependent on the intraluminal blood pressure 

inside developing blood vessels
77

. 

 

1.36  TGF-  is a Molecular Effector of Vascular Development 

 

Although it is thought that PDGF-B and Notch3 are the main molecules governing 

migration/proliferation and maturation of mural cells respectively, our understanding 

of the initial stages of mural cell differentiation from unspecified embryonic 

mesenchyme remains incomplete.  However, it appears that TGF-  is a key molecular 

player in this process.   
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1.37  The Molecular Biology of TGF-  Signalling 

 

The mammalian TGF-  signalling family consists of 42 different ligands divided into 

two families; the TGF- /Nodal/Activin family and the BMP/GDF/MIS family.  Mural 

cell differentiation has most closely been linked to function of the TGF-

/Nodal/Activin pathway
79

.  These ligands have varying affinity for over 12 different 

TGF-  family receptors.  These are divided into Type I receptors (7 members) and 

Type II receptors (5 members).  Type III receptors such as cripto, endoglin and 

betaglycan also exist and whilst not participating directly in the process of ligand 

induced signal transduction, act to modulate the TGF-  signalling pathway
80

.   

 

Typically, TGF-  family ligands are active when present in their homodimeric form.  

In this situation, they are able to bind heterotetrameric complexes composed of two 

Type I and two Type II receptors with intrinsic serine/threonine kinase activity
79

.  

This binding stimulates the Type II receptor to phosphorylate the Type I receptor at 

multiple serine/threonine residues in the cytoplasmic domain of the receptor
79

.  The 

phosphorylated Type I receptor is then able to phosphorylate a number of receptor-

regulated (R-) Smad proteins.  These Smad proteins include Smad 1, 2, 3, 5 and 8.  

Following phosphorylation, the R-Smad proteins go on to form homotrimers.  These 

homotrimers then translocate to the nucleaus where they form heteromeric complexes 

with the co-Smad; Smad 4.  The R-Smad/Smad 4 complex is able to bind DNA at 

locations where there is a minimal Smad binding element (SBE) consisting of the 

nucleotide sequence 5’-AGAC-3’
79

.  Depending on the specific transcriptional co-

activators or co-repressors present in the nucleoplasmic milieu, this binding of Smad 
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complexes to SBEs can either stimulate or suppress the transcription of target genes in 

a cell type specific manner.       

 

1.38  The Termination of TGF-  Signalling 

 

TGF-  signalling can be terminated in a number of ways.  One of these is through the 

action of the I-Smads; Smad 6 and 7.  Smad 6 achieves this by competing with Smad 

1 for Smad 4 binding.  The Smad 6/Smad 4 complex cannot modulate promotor 

activity and thus serves to downregulate TGF-  signalling.  Smad 7 typically resides 

in the nucleus in the basal state, but moves to the plasma membrane upon TGF-  

pathway activation.  Here, it binds one of two ubiquitinating proteins Smurf 1 or 2.  

The Smad 7/Smurf  complex can bind directly to the Type I TGF-  receptor and 

inhibit its ability to phosphorylate R-Smads.  The Smurf proteins then tag the receptor 

for degradation in the proteasome.  Often Smad 7 is transcribed as a result of TGF-  

pathway activation to serve as a negative feedback loop to dampen pathway activity
79

. 

 

One other example of TGF-  pathway regulation of note, is that mediated by the 

deubiquitinating enzyme Usp9x.  If Smad 4 is mono-ubiquitinated at lysine residue 

519 by the nuclear factor ectodermin, it can no longer bind phospho-Smad 2 due to 

steric hinderance.  The enzyme Usp9x reverses this ubiquitination; thus acting as a 

positive regulator of TGF-  pathway activity
81

. 
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1.39  The TGF-  Pathway in Mural Cell Differentiation 

 

Several members of the TGF-  pathway family have been implicated as having a 

functional role in the process of mural cell differentiation.  TGF- 1 is thought to be 

the dominant ligand in TGF-  mediated vascular development as its mouse knockout 

has a lethality of 50% at the E10.5 stage of gestation.  This is due to defective 

haematopoiesis and endothelial cell differentiation
82

.  From these experiments it is 

clear that TGF-  has roles in endothelial cell as well as mural cell development.  As 

normal endothelial cell development is a requirement for mural cell differentiation to 

take place, it is not clear from these studies alone whether TGF- 1 is the ligand 

responsible for TGF-  mediated mural cell induction, although when viewed in the 

context of other in vivo and in vitro studies, it is likely to be the responsible molecule. 

 

Knockouts of the different TGF-  receptors expressed in the developing vasculature 

have different phenotypes.  TGF-  RII is thought to be the Type II TGF-  receptor 

with the most important function in the events of vascular morphogenesis, as the 

vascular phenotype of the TGF-  RII null mouse is identical to that of the TGF- 1 

mouse
83

.   

 

1.40  Two Type I TGF-  Receptors Function in TGF-  Mediated 

Vascular Development 

 

At least two Type I TGF-  receptors appear to have importance in vascular 

developmental biology: Alk-1 and Alk-5.  The Type I TGF-  receptor Alk1 is 

specifically expressed in the endothelium
84

.  Knockout of Alk1 results in embryos, 
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which die during midgestation due to the formation of large arterio-venous shunts, as 

a consequence of impaired arterio-venous specification of endothelial cells
85

.  

Accompanying this phenotype are deficits in mural cell development.  This is 

interesting as there is a defect in mural cell development as a consequence of absence 

of a gene expressed solely in the endothelium.  Thus, it is thought that weakened cell 

autonomous TGF-  signalling in cis can lead to secondary defects for the mural cell 

population in trans. 

 

1.41  The Function of Alk-5 During Vascular Development 

 

There is controversy as to the role of the Type I TGF-  receptor Alk5.  Early 

examination of the Alk5 knockout revealed an embryo that died between E10-E11 of 

gestation.  Blood vessels in the yolk sacs of these embryos were large and dilated 

without any evidence mural cell investiture
86

.  The authors of this study claimed to 

observe expression of Alk5 in the developing endothelium of wild types, and as such 

labelled the mural cell defects as being secondary to dysfunctional TGF-  signalling 

in the endothelial cells.   

 

This interpretation has been disputed in a second study, in which the authors made use 

of transgenic Alk1-LacZ and Alk5-LacZ knock in mice
87

.  These authors reported that 

the expression patterns of Alk1 and Alk5 did not overlap and that Alk1 expression 

was restricted to the endothelium, whilst vascular expression of Alk5 was confined 

exclusively to mural cells.  The authors of this study also examined the vasculature of 

the embryo proper of the Alk5 knockout, rather than just the yolk sac vasculature.  

They observed that the endothelial morphology of blood vessels in the embryo itself 
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was proper and indistinguishable from wild type littermate controls with normal 

vessel lumen diameter and formation of a capillary plexus.  However, mural cell 

investiture of blood vessels was dramatically reduced. 

 

1.42  Two Models for the Function of TGF-  in Vascular 

Development 

 

Thus, there are two competing models for the action of TGF-  on mural cell 

development.  The first states that cell autonomous TGF-  signalling can take place in 

developing endothelial cells.  This occurs through the interaction of endothelial 

derived TGF- 1 with endothelial cell membrane bound TGF-  RII complexed with 

either Alk1 or Alk5.  Depending on the precise level of TGF-  stimulation, TGF-  

would predominately activate one pathway preferentially over the other.  If Alk1 

becomes more strongly activated then it may be able to suppress Alk5 pathway 

activation and stimulate pro-migratory and pro-proliferative activity in the endothelial 

cells.  Conversely, when Alk5 is more strongly activated at higher levels of TGF- , 

the phenotype of the endothelial cell may switch to become matrix synthesising and 

allow the release of secondary factors, which stimulate mural cell development
88

. 

 

The second model for how TGF-  functions in vascular development, is that TGF-  

has its primary effects on Alk1 signalling in endothelial cells.  This mediates 

angiogenic effects such as increases in migratory and proliferative capacity.  

Endothelial cells will then secrete TGF- 1 which will act on undifferentiated 

mesodermal progenitor cells via an interaction with the Alk5 receptor expressed on 

these cells to stimulate their differentiation into mature mural cells
88

. 
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Evidence for this second hypothesis comes from in vitro studies, which have used cell 

lines as surrogates for the process of mural cell differentiation from mesoderm.  It has 

been observed that exposure of the mouse mesodermal 10T1/2 progenitor cell line to 

TGF-  in vitro upregulates expression of VSMC marker genes
89

.  Moreover, if 

10T1/2 cells are cocultured with endothelial cells in the absence of endothelial cell – 

10T1/2 cell contact, then soluble factors produced by the endothelial cells can 

stimulate differentiation of the 10T1/2 cells into mural cells.  This effect is abrogated 

by treating the cultures with anti-TGF-  antibody, thus implying that TGF-  is the 

soluble signal
90

.  The effect is also apparent in other cell culture systems.  

Differentiation of embryoid body embryonic stem cells into VSMCs is impaired by 

interventions, which inhibit TGF-  signalling
91,92

. 

 

1.43  A Consensus Model for the Function of TGF-  in 

Vascular Development 

 

Although it has been established that TGF-  does play a direct role in stimulating 

differentiation of a target progenitor cell population into mature mural cells, the most 

recent evidence suggests a consensus model with regards to the function of Alk5 in 

the process of vascular development.  Carvalho et al. created mouse mutants in which 

Alk5 or TGF-  RII were conditionally deleted in either endothelial cells or VSMCs.  

In each of the four possible crosses, embryonic lethality due to abnormalities in mural 

cell development was observed
93

.  This implies that intact Alk5 signalling is not only 

required in the mural cell progenitors or mature mural cells, but also in the endothelial 

cells in order for normal mural cell development to take place.  Thus, the model, 

which is currently accepted, is one where cell autonomous TGF-  signalling in the 

endothelium, acting through either Alk1, Alk5 or both, stimulates secretion and 
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processing of TGF-  by the endothelial cell.  This endothelial secreted TGF-  then 

acts on mural cell progenitors and immature mural cells to stimulate their 

differentiation into mature mural cells
88

 (Fig. 1.7). 

 

 

Fig. 1.7 

A consensus model of TGF-  mediated vascular development 

 

TGF-  has autocrine effects on endothelial cells and paracrine effects on developing 

mural cells.  Endothelial autocrine signalling through Alk-5 promotes endothelial cell 

differentiation whilst signalling through Alk-1 is thought to stimulate proliferation.  

Endothelial secreted TGF-  can signal through Alk-5 on mural cell precursors to 

stimulate their differentiation into mature mural cells.  Adapted from 
58

. 
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1.44  Connexins Regulate the Bioavailability of TGF-  During 

Vascular Development 

 

Several other non-ligand, non-receptor molecules are also important for TGF-  

mediated mural cell differentiation.  Connexins 43 and 45 are components of cellular 

gap junctions with connexin 43 being expressed on endothelial cells and connexin 45 

being expressed on mural cells.  The phenotypes of both the connexin 43
94

 and the 

connexin 45
95

 knockout mice display lethality due to a lack of mural cell recruitment 

to developing blood vessels.  It is thought, that the connexins either directly, or as a 

result of their signalling activity mediate cleavage of active TGF-  from its inactive 

secreted latency associated peptide (LAP) form
94

. 

 

1.45  Evidence of a Role for T 4 in the Process of Mural Cell 

Development 

 

Evidence now exists that T 4 can, at least in certain stereotypical situations, influence 

this facet of vascular development.  When embryonic epicardial explants are cultured 

in the presence of T 4, epicardial derived progenitor cells migrate out from the 

explant and are stimulated to differentiate into vascular smooth muscle like cells
96

.  

Moreover, when embryoid bodies deficient for the basic helix-loop-helix transcription 

factor hand1 are cultured, it can be observed that they are also deficient in T 4 and do 

not express vascular smooth muscle cell markers.  Culture of these embryoid bodies 

in the presence of exogenous T 4 restores the expression of vascular smooth muscle 

cell markers
51

.  Taken as a whole, these data imply that T 4 has the potential to 

stimulate the differentiation of mural cells from progenitors under certain 
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circumstances.  Whether this holds true in vivo as a wider function of T 4 in the 

vasculature is not yet known. 

 

1.46  Development of the Heart 

 

Development of the heart commences shortly after the process of gastrulation and 

formation of the three germ layers of the embryo.  The first cells of the heart 

differentiate from a set of specialised progenitors present in an area of the anterior 

mesoderm known as the cardiac crescent or primary heart field
97

.  Molecular cues 

involved in the initiation of this event are predominantly provided by members of the 

TGF-  and Wnt family of signalling cascades
98

.  Following specification, the 

cardiogenic cells of the cardiac crescent coalesce in the ventral midline of the embryo 

to form the linear heart tube – the first structure which has contractile activity and is 

capable of circulating blood.  Heart looping and remodelling then convert this simple 

cardiac tube into a four chamber entity resembling the fully mature adult heart.  It is 

also likely that a second area of mesoderm known as the secondary heart field also 

contributes cells to the developing arterial and venous poles of the heart
99

.  Once the 

cardiac mass has hypertrophied to the extent that simple diffusion of oxygen and 

nutrients is no longer able to sustain the metabolic requirements of the heart, EPDCs 

from the overlying epicardium invade into the myocardium to form the coronary 

vasculature
100

.   
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1.47  T 4 Has an Essential Function During Coronary Vessel 

Development 

  

The best evidence so far obtained that T 4 can affect the process of vascular 

development in vivo comes from studies carried out using a transgenic mouse in 

which T 4 can be knocked down in a tissue restricted fashion.  This mouse relies on 

the expression of T 4 shRNA, which is transcribed in a Cre-dependent manner.  

Crossing this T 4 shRNA mouse with the Nkx2.5-Cre line causes a variable level of 

T 4 knockdown in the developing mouse heart.  At the E14.5 stage of embryonic 

development T 4 shRNA Nkx2.5-Cre mouse hearts are hypoplastic and display 

aberrant blood filled nodules on their epicardial surfaces.  These nodules are 

composed of endothelial and vascular smooth muscle cells.  Normally, T 4 is 

secreted by the developing myocardium and signals to the overlying epicardial 

mesothelial layer.  Epicardial derived progenitor cells (EPDCs) in this layer than 

migrate into the myocardium and differentiate into the endothelial and vascular 

smooth muscle cells of the coronary vasculature.  In the absence of T 4, such a 

signalling event does not take place and the EPDCs differentiate in situ to form the 

non-patent nodules seen on the surface of the T 4 shRNA Nkx2.5-Cre hearts
50

 (Fig. 

1.8). 
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Fig. 1.8 

T 4 is secreted by the developing myocardium to stimulate EPDCs to form the 

coronary vasculature. 

 

In the normal situation, T 4 is secreted from the developing myocardium and signals 

to EPDCs in the epicardium.  T 4 induces these EPDCs to migrate into the 

myocardium and differentiate into the cells of the coronary vasculature.  In the 

absence of T 4, EPDCs differentiate in situ and form aberrant blood filled surface 

epicardial nodules.  This failure of coronary vasculogenesis is accompanied by 

ventricular non-compaction.  Adapted from 
50

. 

 

1.48  Synthetic T 4 as a Treatment for Acute Myocardial 

Infarction 

 

These findings, which demonstrate a role for T 4 in vascular development, have a 

great deal of relevance, not only for understanding the process of embryonic vascular 

development itself, but also for potential future therapeutics.  It has been observed 
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that mice in which myocardial infarction (MI) has been experimentally induced 

through coronary artery ligation, can recover a high degree of their cardiac function 

after systemic administration of recombinant T 4 peptide
27

 (Fig. 1.9).  Several 

mechanisms have been postulated to account for this cardioprotective effect of T 4 

including T 4 mediated activation of the Akt cell survival pathway
27

.  However, one 

which is striking, and for which there is experimental evidence is the observed ability 

of T 4 to stimulate neovascularisation of the ischaemic region of the heart following 

MI
101

.  Following systemic administration of T 4 after MI, endothelial cell and 

perfused capillary density was increased in the border zone of infarcted hearts 

compared to PBS treated controls.  In other experiments, it has been demonstrated 

that embryonic endothelial progenitor cells can be cardioprotective when 

administered following MI.  Their cardioprotective effects are abrogated when T 4 is 

knocked down via RNAi.  Together, these pieces of evidence suggest that 

pharmacologically administered T 4 can mediate cardioprotective effects through the 

stimulation of new blood vessel growth in the ischemic heart
102

. 
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Fig. 1.9 

Synthetic T 4 can improve cardiac function following MI 

Representative echocardiographic M-mode images of left ventricles after coronary 

ligation with (a) or without (b) T 4 treatment.  (c) Distribution of ejection fraction 

(EF) at 2 and 4 weeks after coronary ligation with (n = 23) or without (n = 22) T 4 

treatment. Bars indicate means. (d) Echocardiographic measurements for 

intraperitoneal, intracardiac or intraperitoneal and intracardiac administration of T 4 

or PBS (Control) at 4 weeks. Means and 95% confidence limits are shown. Asterisk, 

P < 0.0001.  Adapted from 
27

. 
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1.49  The Retinal Model of Vascular Angiogenesis 

 

When investigating the development of the vascular system it is important to make 

use of experimental models, which can provide a high yield of information with 

regards to the myriad of different processes involved.  One commonly used model is 

the mouse model of neonatal retinal angiogenesis.  This model provides a robust and 

commonly used tool to identify defects in the processes of angiogenesis, vascular cell 

migration and mural cell recruitment to name a few
55

. 

 

During mammalian retinal development, initial vascularisation of the inner eye is 

provided by the central hyaloid artery, which exits from the optic nerve and forms the 

arterial hyaloid vasculature.  The hyaloid vasculature spreads through the vitreous 

before draining into an annular formation at the front of the eye.  In mice and humans, 

at a point during development, the hyaloid vasculature regresses and is replaced by 

the retinal vasculature.  In humans this takes place around mid-gestation whilst in 

mice it occurs shortly after birth
55

. 

 

1.50  Formation of the Primary Retinal Vascular Plexus 

 

The retinal vasculature starts its course at the optic nerve, before spreading across the 

retina in a radial fashion with the optic nerve as its centre.  The endothelial cells, 

which form the retinal vasculature migrate from the centre outwards to form a 

vascular plexus which covers the entire inner surface of the retina.  During this initial 

phase of vascular sprouting, The morphology of the vascular tree can be distinguished 

into endothelial tip and endothelial stalk cells.  The tip cells appear at the most 
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outward edge of the migrating vascular front where they project filopodial and 

lamellipodial processes towards hypoxic VEGF-secreting astrocytes (Fig. 1.10).  The 

plexus is mostly composed of endothelial stalk cells, which actively proliferate to 

maintain a uniform tree behind the migrating tip cells
55

. 

 

This process tends to lay down a dense plexus of uniform endothelial tubes.  As the 

plexus matures it remodels.  Some vessels are strengthened and assume an arterial 

identity whilst others are selected to become veins.  Some vessels are also pruned and 

regress, particularly in the areas immediately adjacent to large calibre vessels (Fig. 

1.10).   

 

 

 

 



 65 

 

Fig. 1.10 

Formation of the primary retinal vascular plexus can be used as a model to 

investigate many of the cellular processes of vascular development 

 

As the primary plexus radiates out from the optic disc, many of the cellular processes 

underlying vascular development can be observed in a single vascular bed.  These 

include filopodial extension, endothelial tube formation, vessel pruning, secondary 

sprouting, circumferential growth, mural cell recruitment and arterio-venous 

differentiation.  Adapted from
70

.   

 

1.51  Formation of the Secondary Retinal Vascular Plexus 

 

Once the primary plexus has reached the outer margins of the retina, a process which 

takes approximately one week in mice, a second deeper plexus sprouts downwards 

into the plexiform layers of the retina.  This second deeper plexus is the result of 

selection of new endothelial tip cells on the veins and venules of the mature primary 

plexus and migration of the cells along the z-axis of primary plexus development.  
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Once these downward migrating cells encounter the inner nuclear layer of the retina 

they change direction again to form a migrating front in the usual centrifugal 

fashion
55

.  Ultimately, two deeper plexi are formed from initial primary plexus 

sprouting. 

 

1.52  Mural Cell Recruitment in the Retinal Vasculature 

 

Mural cell recruitment to blood vessels of the retina is highly stereotyped.  As the 

CNS does not contain a progenitor cell population capable of mural cell 

differentiation, all mural cell investiture in the developing retinal vasculature must 

take place via the central to peripheral migration and proliferation of mature mural 

cells
58,60

.  The main molecule thought to gevern this process is endothelial secreted 

PDGF-B.  Indeed, intraocular administration of a blocking PDGFR-  antibody, 

inhibits mural cell recruitment and leads to vascular malformation
103

. 

 

1.53  Aims and Objectives 

 

 

From the above literature review it can be seen that there is a strong likelihood that 

T 4 may play a functional role during physiological vascular development.  

Determining the function that T 4 might possess in this setting has implications 

beyond merely understanding how T 4 affects mammalian development.  A greater 

knowledge of how blood vessels form normally is required to comprehend and 

therapeutically target the growth of tumour vasculature, as well as to understand how 

to grow new blood vessels in disease settings such as the infarcted heart.  In order to 



 67 

explore the role that T 4 plays in development of the systemic vasculature, the aims 

of this project are:     

 

1. To map the developmental expression pattern of T 4.  To date, the 

developmental expression pattern of T 4 has only been mapped out in a 

haphazard and piecemeal fashion.  Comprehensively determining the pattern 

of T 4 developmental expression may provide clues as to what if any function 

T 4 has in vascular development and may highlight other potential functional 

roles in non-vascular systems.  

 

2. To use genetic loss of function mouse models to determine the role of T 4 

in embryonic vascular development.  Genetic loss of function models in the 

mouse provide a powerful tool to assess the role of candidate genes during 

developmental processes.  Examination of the phenotype of mutant embryos 

in which T 4 gene function has been disrupted may provide insight into the 

function of T 4 during normal vascular development.   

 

3. To determine molecular pathways on which T 4 may be acting to 

mediate its potential function in vascular development.  Presuming that a 

phenotype of aberrant vascular development is discovered in T 4 loss of 

function models, it will be necessary to assess how disrupted T 4 gene 

function impacts on the molecular pathways underlying blood vessel 

development.  Insight into this may be gained by assaying gene expression 

changes in the T 4 mutants through the use of qRT-PCR and gene 

microarrays. 
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4. To model the effects of T 4 on vascular development in vitro.  It is often 

the case that only limited information about gene function can be gleaned 

through passive observation of a mutant mouse phenotype.  In order further 

understand the role of T 4 during vascular development, clues gained from 

analysis of the mouse phenotype will be used to attempt to model the vascular 

function of T 4 in vitro.  Use of in vitro cell culture systems usually allows a 

more robust analysis of molecular and cellular behaviour due to the ability to 

manipulate the cells in ways, which are difficult to accomplish with murine in 

vivo models. 

  

5. To analyse the phenotype of the developing retinal vasculature in genetic 

T 4 loss of function models.  Developmental vascular processes such as 

sprouting angiogenesis are difficult to assess in the mouse embryo.  Thus, 

neonatal retinas from T 4 genetic loss of function models will be analysed to 

more widely interrogate a role for T 4 in the various processes of vascular 

development. 
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2.  Materials and Methods 
 

 

2.1  Immunofluorescence Staining 

 

 

E10.5 embryos were embedded in OCT and cryosectioned.  Cryosections were 

washed for 10 minutes in PBS to remove OCT and then permeabilised in 0.5% 

Triton-X 100 in PBS for 10 minutes.  After washing in PBS, sections were blocked at 

room temperature for 1 hour in blocking buffer (10% BSA, 10% sheep serum and 

0.1% Triton-X 100 in PBS).  Sections were then incubated in the primary antibody at 

dilution 1 in 100 overnight in blocking buffer at 4°C.  Sections were then washed 5 

times in 0.1% Triton-X 100 in PBS over the course of 1 hour.  Incubation in the 

secondary antibody took place in blocking buffer for 1 hour at room temperature.  

Sections were again washed 5 times in 0.1% Triton-X 100 in PBS over the course of 

an hour.  Sections were then mounted with coverslips with Vectashield plus DAPI 

(Vector labs). 

 

2.2  Whole Mount In Situ Hybridisation 

 

 

Embryos were dissected in calcium/magnesium free diethyl pyrocarbonate treated 

PBS (DepC PBS).  Embryos were then fixed overnight in 4% PFA in DepC PBS and 

transferred to absolute methanol for storage at -20°C.  Embryos were then rehydrated 

by incubating in a gradient of methanol diluted in PBT (DepC PBS + 0.1% Tween-

20).  Embryos were digested in proteinase K (10μg/ml in PBT) @ 18-22°C for 8-25 

minutes depending on stage.  Post-fixing was conducted for 20 minutes at room 

temperature in 4% PFA in PBT + 0.1% gluteraldehyde.  After washing with PBT, 
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embryos were pre-hybridized in hybridization solution (50% formamide, 1.3x SSC, 

5mM EDTA, 0.2% Tween-20, 0.5% CHAPS, 100μg/ml heparin in DepC water) 

overnight @ 68°C.  Hybridisation was then carried out at 68°C overnight in probe 

diluted 1 in 100 in hybridisation mix.  The following day, embryos were washed 

several times with hybridisation solution.  After washing with TBS-T (0.8% NaCl, 

0.02% KCl, 0.1M Tris-Cl pH7.5, 1.1% Tween-20 in DepC water) embryos were 

blocked overnight in 10% sheep serum + 1% BSA in TBS-T.  Embryos were then 

incubated with anti-digoxigenin-AP Fab fragments (Roche) diluted 1 in 2,000 in 

block overnight at 4°C before washing and developing in NBT/BCIP solution until 

the desired colour change was achieved.  Embryos were then dehydrated in a 

progressive methanol series before rehydrating and fixing in 4% PFA in PBS 

overnight.  Embryos were then photographed. 

 

2.3  In situ Hybridisation on Sections 

 

Wax sections were cleared twice for 10 minutes in histoclear before rehydrating 

through a series of ethanol gradients.  After washing with diethyl pyrocarbonate 

(DepC) treated PBS, sections were incubated for 8 minutes in proteinase K working 

solution (20μg/ml ProK, 50mM Tris pH8, 5mM EDTA) at 37°C before post-fixing in 

4% PFA in DepC PBS with 0.2% gluteraldehyde.  Pre-hybridisation took place in 

hybridisation solution (50% formamide, 5x SSC, 100% blocking reagent, 5mM 

EDTA, 0.1% Tween-20, 0.1% CHAPS, 0.1mg/ml heparin, 1mg/ml yeast tRNA in 

Depc water) for 2 hours at 70°C.  Sections were then hybridised in hybridisation 

solution with the probe added at 1 in 80 overnight at 68°C.  The next day, sections 

were washed once with 2x SSC pH7 before two washes at 65°C with 50% formamide 
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in 2x SSC pH7.  Sections were then washed three times in PBS-T (PBS + 0.1% 

Tween-20).  Sections were then blocked for 1 hour at room temperature in B-block 

(2% blocking reagent + 10% goat serum in PBS-T).  After this sections were 

incubated overnight at 4°C anti-digoxygenin Fab fragments (500mU/ml) in B-block.  

Slides were then washed 3 times in PBS-T and twice in NTM-T (100mM Tris pH9.5, 

100mM NaCl, 50mM Magnesium chloride, 0.05% Tween-20) before developing with 

NBT/BCIP.  Sections were then counterstained with eosin before imaging.   

 

2.4  Whole Mount PECAM Staining 

 

Embryos were fixed overnight at 4°C in 1:4 DMSO:methanol.  They were then 

incubated in 1:4:1 DMSO:methanol:hydrogen peroxide for 5 hours at room 

temperature.  Embryos were then rehydrated in a gradient of decreasing methanol 

concentrations in water.  Embryos were then permeabilised in PBS + 0.5% Tween-20 

before incubating in block (PBS + 0.3% Tween-20 + 2% blocking reagent 

(Boehringer)) at room temperature for 1 hour.  Embryos were then incubated in the 

primary biotinylated anti-mouse PECAM antibody (BD Pharminegn) diluted at 1 in 

75 overnight at 4°C.  After washing, embryos were incubated in streptavidin-HRP 

conjugate (Vector Labs) for 30 minutes before developing with DAB. 

 

2.5  Immunohistochemistry 

 

Frozen sections were heated at 37°C for 10 minutes on a slide dryer to allow the 

section to adhere to the slide before washing for 10 minutes in PBS.  Sections were 

then treated with 3% hydrogen peroxide (Sigma) in PBS for 20 minutes to block 
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endogenous peroxidase activity before washing twice in PBS.  Sections were then 

permeabilised in 0.5% Triton-X in PBS for 10 minutes before blocking with 10% 

sheep serum, 1% BSA in PBS for 1-2 hours.  The sections were then incubated 

overnight at 4°C with the smooth muscle actin primary antibody diluted 1 in 700 in 

block.  Slides were then washed three times for 5 minutes each in 0.1% Triton-X in 

PBS.  Slides were then incubated with a biotinylated anti-mouse antibody diluted 1 in 

100 in block for 30 minutes at room temperature, before incubation with a 

streptavdin-HRP conjugate for 30 minutes.  3 further washes in 0.1% Triton-X in PBS 

were performed before developing with DAB (Sigma).  Slides were then 

counterstained with haematoxylin, mounted and imaged. 

 

2.6  Preparation of Tissue for Cryo-Sectioning: 

 

Embryos or organs were dissected out of their host before fixing in 4% 

paraformaldehyde (PFA) in PBS for 1-2 hours.  Tissue samples were then left to 

equilibrate overnight in 30% sucrose in PBS at 4°C whereupon they were incubated 

in a 50:50 mixture of 30% sucrose in PBS and OCT embedding medium for 30 

minutes.  Samples were then transferred to OCT for a further 30 minutes before 

embedding and freezing at -80°C. 

 

2.7  Fluorescent Imaging 

 

Fluorescent images were captured on an upright Zeiss Z1 fluorescent microscope or 

an inverted Zeiss LSM 710 confocal microscope. 
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2.8  Quantification of NG2 Immunofluorescence 

 

In order to quantify the mural cell density around aortas of E10.5 embryos, ten axial 

sections from each embryo providing sections throughout the length of the dorsal 

aorta were examined.  Images were taken of the NG2 immunofluorescnce under 

constant exposure.  Images were then thresholded to eliminate background 

fluorescence.  Total channel fluorescence was then quantified with ImageJ software.  

Two perpendicular measurements of the diameter of each aortic section were 

averaged and used to calculate the vessel circumference.  NG2 total fluorescence was 

then normalised to vessel circumference to produce a measure of mural cell density. 

 

2.9  qRT-PCR 

 

qRT-PCR was performed according to a standard CT protocol using SYBR green 

(Applied biosystems). 

Primers sequences used were as follows: 

 

Smooth muscle actin:   F – GTCCCAGACATCAGGGAGTAA  

  R – TCGGATACTTCAGCGTCAGGA 

SM22 :     F – CAACAAGGGTCCATCCTACGG,   

    R – ATCTGGGCGGCCTACATCA 

NG2:      F – GGGCTGTGCTGTCTGTTGA 

    R – TGATTCCCTTCAGGTAAGGCA 

Endosialin:   F – CAACGGGCTGCTATGGATTG 

    R – GCAGAGGTAGCCATCGACAG 
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CD13:    F – ATGGAAGGAGGCGTCAAGAAA 

    R – CGGATAGGGCTTGGACTCTTT 

Ang1:    F – CACATAGGGTGCAGCAACCA 

    R – CGTCGTGTTCTGGAAGAATGA 

Desmin:   F – GTGGATGCAGCCACTCTAGC 

    R – TTAGCCGCGATGGTCTCATAC 

PAI-1:    F – TTCAGCCCTTGCTTGCCTC 

    R – ACACTTTTACTCCGAAGTCGGT 

Id-1:    F – CCTAGCTGTTCGCTGAAG 

    R – CTCCGACAGACCAAGTACCAC 

c-myc:    F – ATGCCCCTCAACGTGAACTTC 

    R – CGCAACATAGGATGGAGAGCA 

Notch 1:   F – CCCTTGCTCTGCCTAACGC  

    R – GGAGTCCTGGCATCGTTGG 

Notch 2:   F – ATGTGGACGAGTGTCTGTTGC 

    R – GGAAGCATAGGCACAGTCATC 

Notch 3:   F – TGCCAGAGTTCAGTGGTGG 

    R – CACAGGCAAATCGGCCATC 

Notch 4:   F – CTCTTGCCACTCAATTTCCCT 

    R – TTGCAGAGTTGGGTATCCCTG 

Dll1:    F – CAGGACCTTCTTTCGCGTATG 

    R – AAGGGGAATCGGATGGGGTT 

Dll3:    F – CTGGTGTCTTCGAGCTACAAAT 

    R – TGCTCCGTATAGACCGGGAC 

Dll4:    F – TTCCAGGCAACCTTCTCCGA 
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    R – ACTGCCGCTATTCTTGTCCC 

Jag1:    F – CCTCGGGTCAGTTTGAGCTG 

    R – CCTTGAGGCACACTTTGAAGTA 

Jag2:    F – CAATGACACCACTCCAGATGAG 

    R – GGCCAAAGAAGTCGTTGCG 

RBPj/CBF   F – ATGCCCTCCGGTTTTCCTC 

    R – GGACAAGCCCTCCGAGTAGT 

TACE    F – AGGACGTAATTGAGCGATTTTGG 

    R – TGTTATCTGCCAGAAACTTCCC 

Pres1    F – GGTGGCTGTTTTATGTCCCAA 

    R – CAACCACACCATTGTTGAGGA 

Pres2    F – GAAGACTCCTACGACAGTTTTGG 

    R – CACCAGGACGCTGTAGAAGAT 

Hes1    F – CCAGCCAGTGTCAACACGA 

    R – AATGCCGGGAGCTATCTTTCT 

Hey1    F – GCGCGGACGAGAATGGAAA 

    R – TCAGGTGATCCACAGTCATCTG 

Hey2    F – AAGCGCCCTTGTGAGGAAAC 

    R – GGTAGTTGTCGGTGAATTGGAC 

HeyL    F – CAGCCCTTCGCAGATGCAA 

    R – CCAATCGTCGCAATTCAGAAAG 

Lnfng    F – CGAGGTGCATAGCCTCTCC 

    R – GCGAGGGGACAGAACTTCG 

Mnfng    F – ATGCACTGCCGACTTTTTCG 

    R – CCTGGGTTCCGTTGGTTCAG 
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Rdfng    F – CCACGGCAGACGTTCATTTTC 

    R – GCAGAACCATTTTCGTCCAGA 

Nrarp    F – AAGCTGTTGGTCAAGTTCGGA 

    R – CGCACACCGAGGTAGTTGG 

PDGF-B   F – AAGTGTGAGACAATAGTGACCCC 

    R – CATGGGTGTGCTTAAACTTTCG 

PDGFR-    F – TTCCAGGAGTGATACCAGCTT 

    R – AGGGGGCGTGATGACTAGG 

Fibroglycan   F – TGTGTCCGCAGAGACGAGAA 

    R – GGAATCAGTTGGGATGTTGTCA 

FPP Synthetase  F – GGAGGTCCTAGAGTACAATGCC 

    R – AAGCCTGGAGCAGTTCTACAC 

Hmgb1   F – GGCGAGCATCCTGGCTTATC 

    R – GGCTGCTTGTCATCTGCTG 

Ste20    F – TCATTCGGCTACGGAACAAGA 

    R – GACCTGCGACTCCAAAGTCTG 

Tenascin C   F – ACGGCTACCACAGAAGCTG 

    R – ATGGCTGTTGTTGCTATGGCA 

TGF- 1   F – CTCCCGTGGCTTCTAGTGC  

    R – GCCTTAGTTTGGACAGGATCTG 

TGF-  RII   F – CCGCTGCATATCGTCCTGTG 

    R – AGTGGATGGATGGTCCTATTACA 

Alk-1    F – GGGCCTTTTGATGCTGTCG  

    R – TGGCAGAATGGTCTCTTGCAG 

Alk-5    F – TCCCAACTACAGGACCTTTTTCA 
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    R – GCAGTGGTAAACCTGATCCAGA 

Smad1    F – GCTTCGTGAAGGGTTGGGG 

    R – CGGATGAAATAGGATTGTGGGG 

Smad2    F – ATGTCGTCCATCTTGCCATTC 

    R – AACCGTCCTGTTTTCTTTAGCTT 

Smad3    F – CACGCAGAACGTGAACACC 

    R – GGCAGTAGATAACGTGAGGGA 

Smad4    F – AGCCGTCCTTACCCACTGAA 

    R – GGTGGTAGTGCTGTTATGATGGT 

Smad5    F – TTGTTCAGAGTAGGAACTGCAAC 

    R – GAAGCTGAGCAAACTCCTGAT 

Smad6    F – GAGCACCCCCATCTTCGTCAA 

    R – AACAGGGGCAGGAGGTGATG 

Smad7    F – GGCCGGATCTCAGGCATTC 

    R – TTGGGTATCTGGAGTAAGGAGG 

Id-2    F – ATGAAAGCCTTCAGTCCGGTG 

    R – AGCAGACTCATCGGGTCGT 

Cadherin 3   F – CTGGAGCCGAGCCAAGTTC  

    R – GGAGTGCATCGCATCCTTCC 

Cadherin 5   F – CACTGCTTTGGGAGCCTTC 

    R – GGGGCAGCGATTCATTTTTCT 

Ccbe1    F – AAACAAGATCACCACGACCAAA 

    R – CTCGCGGTCATATCGGTATCC 

Ddr2    F – ATCACAGCCTCAAGTCAGTGG 

    R – TTCAGGTCATCGGGTTGCAC 
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Dner    F – TGCCAGGACCAGTACATTGG 

    R – GCAAGTGAAATTGCTCCCATCC 

Epas1    F – CTGAGGAAGGAGAAATCCCGT 

    R – TGTGTCCGAAGGAAGCTGATG 

Fibullin5   F – GCTTGTCGTGGGGACATGAT 

    R – TGGGGTAGTTGGAAGCTGGTA 

Foxo1    F – CCCAGGCCGGAGTTTAACC 

    R – GTTGCTCATAAAGTCGGTGCT 

HIF1an   F – CAGTGTGATCGCGGCAAAC 

    R – CTGAAGGGTCAACCGAGCAG 

IGFbp4   F – AGAAGCCCCTGCGTACATTG 

    R – TGTCCCCACGATCTTCATCTT 

Integrin 1   F – CAAATGAGCCTGGAACCAAT 

    R – CCATCCACGTTGAGGTCTTT 

Integrin 1   F – CGTGGTTGCCGGAATTGTTC 

    R – ACCAGCTTTACGTCCATAGTTTG 

Ltbp4    F – CTGGGTGTCGCTATTGGTG 

    R – GTTGTGACAGATCAAGGGACAT 

Maml1    F – CGTAGCTCAGAGCAACCTCAT 

    R – TTCATGTCTTCGTCGGGCAC 

Paxillin   F – CAAACGGCCAGTGTTCTTGTC 

    R – TGTGTGGTTTCCAGTTGGGTA 

Pim1    F – CTGGAGTCGCAGTACCAGG 

    R – CAGTTCTCCCCAATCGGAAATC 

Plakoglobin   F – TGGCAACAGACATACACCTACG 
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    R – GGTGGTAGTCTTCTTGAGTGTG 

Slit3    F – GCGCGATTTGGAGATCCTCA 

    R – TGGAGTGTAGACGCAGAGTCC 

Smap2    F – GGCCCTAGAGTGAGGCAAG 

    R – GAAGGCTGACTGAAGCAGTGA 

Sonic    F – AAAGCTGACCCCTTTAGCCTA 

    R – TTCGGAGTTTCTTGTGATCTTCC 

Symplekin   F – CGGAGTGTGGCATCACAGTTT 

    R – CGCACTTCAATGGATTTGTCTG 

Wave2    F – AGTAACCAGGAACATCGAGCC 

    R – CTTGTATCGCTAGGCAACGTC 

  

2.10  Quantification of Haemorrhage at E14.5 

 

E14.5 embryos were harvested from pregnant female T 4 +/- mice after having been 

impregnated by T 4 -/Y males.  Immediately after dissection, the amount of surface 

haemorrhage visible under a dissection stereomicroscope was quantified according to 

the following scheme.  Score 0 – no visible haemorrhage, 1 – some small spots of 

dermal haemorrhage observed in a single location, 2 – some small spots of dermal 

haemorrhage observed in more than one location, 3 – a large area of haemorrhage 

observed in one location, 4 – a large area of dermal haemorrhage (usually flank or 

head) observed in one location with some small spots of dermal haemorrhage 

observed in at least one other location, 5 – more than one large area of dermal 

haemorrhage observed. 
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2.11  10T1/2 and A404 Cell culture 

 

10T1/2 cells were maintained in Dulbecco’s modified Eagles’ medium plus Glutamax 

(DMEM-Gibco) supplemented with penicillin/streptomycin and 10% heat inactivated 

fetal calf serum.  For stimulation experiments, cells were plated at 50,000 cells per 

well in a 6 well plate and serum starved in 0.5% fetal calf serum in DMEM 

supplemented with penicillin/streptomycin.  For differentiation experiments, cells 

were then stimulated with either a control volume of PBS, T 4, TGF-  or a 

combination thereof.  Cells were left to differentiate for 6 days.  On each of these 

days, the medium was changed and the cells re-stimulated with the appropriate 

molecules.  On the seventh day, medium was aspirated off, cells washed briefly with 

PBS and RNA extracted using Trizol reagent (Invitrogen). 

 

A404 cells were maintained in -modified Eagles’ medium supplemented with 7.5% 

fetal bovine serum, 200mg/μl L-glutamine and penicillin/streptomycin.  For 

stimulation experiments, cells were plated at 50,000 per well in a 6 well plate and 

maintained in complete medium.  They were treated for 6 days with either a control 

volume of PBS or 1μg/mlT 4.  On each of these days, the medium was changed and 

the cells re-stimulated with the appropriate molecules.  On the seventh day, medium 

was aspirated off, cells washed briefly with PBS and RNA extracted using Trizol 

reagent (Invitrogen).  
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2.12  Western blotting 

 

10T1/2 cells were serum starved in 0.5% heat inactivated fetal calf serum in DMEM 

plus Glutamax (Gibco) overnight.  The following day, cells were stimulated with 

100ng/ml T 4, 2ng/ml TGF- , 100ng/ml T 4 plus 2ng/ml TGF-  or a control volume 

of PBS.  Cells were stimulated for 15 minutes.  Following stimulation, medium was 

aspirated and cells briefly washed in PBS.  Protein was extracted immediately by 

addition of hot (~90°C) laemmli buffer (250mM Tris-Cl pH 6.8, 4% SDS, 25% 

glycerol, 0.1% bromophenol blue, 5% -mercaptoethanol).  Samples were then run on 

a 10% acrylamide gel (Volume 10ml: 3.33ml 30% acrylamide, 50μl 20% SDS, 

3.75ml 1M Tris-Cl pH8.8, 2.82ml double distilled water, 3.3μl Temed, 50μl 20% 

Amps).  Proteins were then transferred to a nitrocellulose membrane.  The membrane 

was then blocked for 2 hours in blocking buffer (5% milk in TBS (TBS volume 1l: 8g 

NaCL, 2g KCL, 3g Tris-Cl, pH 8)).  Membranes were then incubated overnight at 

4°C in primary antibody at 1 in 500 concentration in blocking buffer.  The following 

day, membranes were washed 3 times over the course of 40 minutes in TBS plus 

0.05% Tween-20.  Membranes were then incubated in the secondary antibody at 

concentration 1 in 1,000 in blocking buffer at room temperature for 1 hour.  

Membranes were then washed 3 times over the course of 40 minutes in TBS plus 

0.05% Tween-20.  Protein bands were visualised by application of ECL western 

detection reagents (GE Healthcare).  Bands on developed photographic film were then 

quantified using densitometry with ImageJ software. 
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2.13  Cell Transfections 

 

 

10T1/2 cells were seeded in 24 well plates at 50,000 cells per well. The following day 

1μg of the relevant plasmid was transfected into 10T1/2 cells with effectene 

transfection reagent (Qiagen) used according to the manufacturer’s instructions.  

Smad activity luciferase reporter plasmids and appropriate positive and negative 

controls were purchased from SA Biosciences.  Smad responsive constructs contained 

the Smad2/3/4 binding element AGCCAGACA.  Following 16 hours of transfection, 

cells were serum starved by replacing the transfection medium with 0.5% FCS in 

DMEM + Glutamax.  Cells were left overnight and the following day cells were 

stimulated for 6 hours in the presence of 100ng/ml T 4, 2ng/ml TGF- , 100ng/ml 

T 4 plus 2ng/ml TGF-  or a control volume of PBS.  Smad activity dependent firefly 

luciferase activity was then measured by means of a dual luciferase reporter assay 

(Promega) used according to the manufacturer’s instructions.  Renilla luciferase 

activity was also measured as a transfection efficiency control, and firefly luciferase 

activity expressed as a proportion on renilla luciferase activity.    

 

2.14  Retinal Immunostaining 

 

P6 mouse pups were culled by cervical dislocation and the globes enucleated.  Retinas 

were dissected from globes in 2x PBS and subsequently stored in methanol at -20°C.  

For staining, methanol was aspirated off and the retinas were fixed for 2 minutes in 

4% formaldehyde.  Formaldehyde was then aspirated off and retinas left to block for 1 

hour in retinal blocking buffer ( 2x PBS, 0.1% azide, 1% BSA, 3% Triton X -100, 

0.5% Tween-20).  Retinas were then incubated in primary antibodies at a 



 83 

concentration of 1 in 200 in retinal blocking buffer overnight at 4°C.  The following 

day, retinas were washed five times in retinal blocking buffer over the course of an 

hour.  Retinas were then incubated in secondary antibody at a concentration of 1 in 

200 in retina blocking buffer for 1 hour at room temperature.  Retinas were then again 

washed 5 times in retinal blocking buffer over the course of an hour in the dark at 

room temperature.  Retinas were then post-fixed for 2 minutes in 4% formaldehyde 

before mounting on a slide and coverslip. 

 

2.15  Gene arrays 

 

Gene arrays were performed on Affymetrix Mouse Exon 1.0ST arrays.  Raw data was 

processed with Affymetrix expression console software before being analysed for 

gene expression changes in Partek.  Statistics were performed in R.  The top 200 up- 

and downregulated genes were fed into Metacore software from Genego and the 

reverse pathway analysis tool used to determine the most statistically perturbed 

signalling pathways in a combined data set from T 4 +/Y and T 4 -/Y E12.5 embryos 

and 10 week old hearts. 

 

2.16  Antibodies 

 

Antibodies were purchased as follows:  rabbit anti-T 4 (Immundiagnostik), rat anti-

endomucin (eBioscience), Cy3-conjugated mouse anti-smooth muscle actin (Sigma),  

rabbit anti-NG2 (Chemicon), rabbit anti phospho-Smad2 and rabbit anti phospho-

Smad1/5 (Cell Signalling Technology), rat anti PECAM (BD Pharmingen), rabbit anti 

cleaved caspase 3 (Cell Signalling Technology), rabbit anti phopho histone H3 

(Upstate), mouse anti Symplekin (BD Transduction) and mouse anti-GAPDH 
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(Chemicon).  Secondary, alexafluor conjugated antibodies were purchased from 

Invitrogen. 

 

2.17  Recombinant Protein 

 

Recombinant T 4 was a kind gift from RegeneRX pharmaceuticals.  Recombinant 

TGF-  1 was purchased from R&D systems. 

 

2.18  Statistics 

 

Statistical analysis was performed with Graphpad Prism software.  Contingency tables 

were analysed by the chi squared test.  Two tailed, unpaired, non-parametric T tests 

were used for all other statistical tests. 

 

2.19  X-Gal Staining of Whole Embryos 

 

Embryos were dissected out into cold PBS.  The embryos were fixed briefly for 5 

minutes in 4% PFA.  The embryos were washed twice for 5 minutes in PBS before 

staining with X-Gal solution at 30°C for 24 hours.  Embryos were then washed in 

PBS before being photographed.  They were subsequently embedded in wax and 

sectioned for analysis by bright field microscopy. 
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2.20  MEF Isolation and Culture 

 

Individual embryos from mixed litters were dissected from the maternal uterus at 

E14.5.  A small sample of each embryo was kept for genotypic analysis.  

Watchmaker’s forceps were used to dissect away the placenta and membranes.  

Visceral organs were removed as far as possible from each embryo.  Each embryo 

was then minced using curved iris scissors.  5ml of trypsin/EDTA was added and each 

embryo incubated at 37°C for 20 minutes.  The embryo cell suspensions were then 

vigorously pippetted  before incubating for a further 10 minutes. The EDTA was 

neutralised by adding DMEM supplemented with 10% FCS, non-essential amino 

acids and penicillin/streptomycin.  Cells were then cultured overnight at 37°C.  When 

the cells reached 80-90% confluent they were frozen in liquid nitrogen until results of 

the genotyping were available.  After T 4 +/Y and T 4 -/Y embryos had been 

identified, MEFs were maintained in DMEM plus Glutamax supplemented with 

penicillin/streptomycin and 10% heat inactivated FCS.  For stimulation experiments, 

cells were plated at 50,000 cells per well in a 6 well plate and serum starved in 0.5% 

fetal calf serum in DMEM supplemented with penicillin/streptomycin.  For 

differentiation experiments, cells were then stimulated with either a control volume of 

PBS, T 4, TGF-  or a combination thereof.  Cells were left to differentiate for 6 days.  

On each of these days, the medium was changed and the cells re-stimulated with the 

appropriate molecules.  On the seventh day, medium was aspirated off, cells washed 

briefly with PBS and RNA extracted using Trizol reagent (Invitrogen). 
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2.21  ES Cell Culture 

 

ES cells were maintained in the undifferentiated state by culture in medium consisting 

of Dulbecco’s Modified Eagle’s Medium supplemented with 20% ES qualified foetal 

bovine serum, 1% non-essential amino acids, 1% L-Glutamine, 1% 2-

mercaptoethanol, 1% penicillin-streptomycin and 1,000units/ml ESGRO (Millipore).  

For differentiation assays, ES cells were plated on gelatin coated plates and cultured 

in medium with ES qualified serum replaced by non-ES qualified serum and with 

ESGRO removed.  Cells were differentiated for 6 days. 
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3  Developmental Expression of T 4 
 

3.1  Introduction 

 

Mapping of the developmental expression pattern of T 4 has previously been 

performed, but has mostly been conducted in a piecemeal and haphazard manner 

across a wide variety of model organisms, particularly with reference to T 4 

expression in the developing vascular system.  For example, Dathe et al. performed 

T 4 expression studies on the chick and obtained data which may or may not be 

relevant to the mammalian system
52

.  Gomez-Marquez et al. reported cardiovascular 

expression of T 4, but did not describe the expression pattern in detail and confined 

their studies to the early stages of mid-gestation
104

.   

 

In order to get a more complete picture about the expression pattern of vascular T 4, 

with regards to specific location and stage, a staged expression analysis for T 4 in the 

mouse embryo was performed.  It was hoped that not only would such studies confirm 

previous reports of vascular T 4 expression, but also provide clues, gained from 

establishing the specific location of T 4 expression, as to the function of T 4 in the 

developing vasculature.  For example, expression in early stage as opposed to fully 

developed vessels might indicate a role in the formation of a vascular system, whereas 

the converse might indicate a role for T 4 in physiological maintenance of a healthy 

vasculature.  Similarly, if a predominantly arterial or venous expression pattern were 

to be observed, this might indicate a function in arteriovenous specification.  Such a 

strategy might also allow the identification of other, non-vascular tissue in which T 4 
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is expressed.  This might provide additional insight into the developmental function of 

T 4. 

 

A strategy was thus devised to map the expression pattern of T 4.  Initially, the 

techniques of whole mount and on section RNA in situ hybridisation (ISH) were used, 

due to the presence of functional, validated riboprobes and protocols in the lab.  

Immunohistochemistry was then used to confirm that the results observed at the 

mRNA level held true for protein expression.  Finally, immunofluorescence co-

staining would be used to identify individual cell lineages in which T 4 is expressed. 

 

3.2  Results 

 

3.2.1  Vascular Expression of T 4 

 

Vascular expression of T 4 in the embryo proper was first observed at the embryonic 

E9.5 stage of development (Figs. 3.1a and b) by whole mount RNA ISH.  

Specifically, expression at this stage was localised to the dorsal aorta.  Aortic 

expression was confirmed by sectioning the T 4 stained E9.5 embryos to reveal the 

internal pattern of T 4 expression (Fig. 3.1c).  Expression was not confined solely to 

the dorsal aortae and was observed, at some stage in all blood vessels.  Notably, 

expression was not restricted to arterial vessels but was also observed in veins, such 

as the umbilical vein (Fig. 3.1d) through the use of ISH performed on E11.5 wax 

embedded sections.  Gradually, as development proceeded, expression of T 4 in the 

developing vasculature decreased, and by the E14.5 and E16.5 stages the expression 

of T 4 was negligible in large vessels such as the aorta (Figs. 3.1e and 3.1f). 
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Fig. 3.1 

T 4 is expressed in the vasculature of midgestation mouse embryos 

 

Whole mount in situ hybridisation at E9.5 reveals T 4 staining in the dorsal aorta at at 

low (a) and high (b) magnification (red arrowheads).  Sagittal sections through this 

embryo confirm the aortic expression of T 4 (c).  Expression of T 4 is maintained in 

the developing aorta at E11.5 (black arrowhead) but can also be seen in venous tissue 

such as that of the umbilical vein (red arrowheads)(d).  At later E14.5 (e) and E16.5 

(f) stages of development the expression of T 4 becomes diminished in the dorsal 

aorta.  DA (dorsal aorta).  Scale bars: (a) 1mm, (b) 500μm, (c) 50μm, (d) 150 μm, (e) 

100μm, (f) 200μm. 
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In order to confirm that the presence of T 4 mRNA, as revealed by RNA ISH, 

correlated with the production of properly synthesised T 4 protein, vascular 

expression of T 4 was validated by immunohistochemistry (IHC) conducted on wax 

sections from E11.5 embryos (Figs. 3.2a and b).  T 4 protein was expressed in cells 

of the walls of both the dorsal aortae and the precursor vessels of the vena cava; the 

cardinal veins.  Although expression was observed in both vessels, levels of T 4 

appear to be higher in the arterial dorsal aortae than in the cardinal veins. 

 

 

Fig. 3.2 

T 4 protein is expressed in the walls of the dorsal aortae and cardinal veins 

 

Immunohistochemistry for T 4 on E11.5 sagittal embryo sections demonstrate the 

expression of T 4 protein in the wall of the dorsal aorta (red arrowheads) and cardinal 

veins (black arrows) at low (a) and high (b) magnification.  DA (Dorsal aorta), CV 

(Cardinal vein).  Scale bars: (a) 200μm, (b) 100μm. 

  

Although, the results above demonstrate unequivocal expression of T 4 in the 

developing vasculature, it is not clear from these data, in which specific cell lineage 

T 4 is expressed.  Blood vessels are composed of numerous cell types.  At this stage 

of development the two most prominent cell types are endothelial cells and mural 

cells (comprising cells which may have vascular smooth muscle cell or pericyte 

character).  In order to determine, in which of these two cell types T 4 is primarily 



 91 

expressed, immunofluorescence microscopy was performed on cryosections from 

E10.5 and E12.5 wild type mouse embryos for T 4 and endomucin to serve as a 

specific marker for endothelial cells
105

 or smooth muscle actin to serve as a marker 

for mural cells.  T 4 expression was observed only in the endothelial cell 

compartment of dorsal aorta as visualised by co-localisation of T 4 and endomucin, 

but was never observed in co-localising with smooth muscle actin in the mural cell 

component of the dorsal aorta vessel wall (Figs. 3.3a and b). 

 

 

Fig. 3.3 

T 4 is expressed in the endothelium but not the mural cell layer of developing 

blood vessels 

 

Immunofluorescence studies reveal that expression of T 4 in the developing aorta co-

localises with the endothelial marker endomucin (a) but not the mural cell marker 

smooth muscle actin (b) at E10.5 and E12.5 respectively.  DA (dorsal aorta).  Scale 

bars: (a) 20μm, (b) 100μm. 

 

3.2.2  Cardiac Expression of T 4 

 

T 4 expression was also observed by ISH, in non-vascular components of the 

cardiovascular system.  This expression was seen in the tissues of the heart.  Cardiac 
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expression of T 4 was first noted at E10.5 and was localised to the developing 

epicardial and endocardial surfaces of the heart (Fig. 3.4a and b).  T 4 was also 

expressed at this stage in the endocardial cushions which will later go on to form the 

atrio-ventricular valves of the mature heart (Fig. 3.4a)
106

.  At this early stage, T 4 

does not appear to be expressed at high levels in the developing myocardium.  

However, by E11.5, as shown by T 4 IHC, T 4 protein is expressed at high levels 

throughout the myocardium (Fig. 3.4c). 

 

 

Fig. 3.4 

T 4 is expressed in the tissues of the developing mouse heart 

 

At the E10.5 stage of embryonic development, in situ hybridisation shows expression 

of T 4 mRNA in the cardiac cushions, outflow tract (a), endocardium (black 

arrowheads) and epicardium (black arrows) (b) of the heart.  By E11.5, 

immunohistochemistry demonstrates expression of T 4 protein in the developing 

myocardium (red arrowheads) (c).  At (Atrium), CC (Cardiac cushion, OT (Outflow 

tract), Vt (Ventricle).  Scale bars: (a) 150 μm, (b) 50 μm, (c) 400μm.  
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3.2.3  Neural Expression of T 4 

 

As well as being expressed in the developing cardiovascular system, in agreement 

with other sources
52,107,108

, T 4 was expressed throughout the developing nervous 

system.  The earliest expression of T 4 mRNA was detected in the developing neural 

tube at E9.5 where T 4 was expressed diffusely (Fig. 3.5a).  Coincidently, expression 

of T 4 was also seen at this time point in the developing somites (Fig. 3.5a).  

Expression of T 4 mRNA was noted to be present in tissues of both the central 

nervous system (CNS) and the peripheral nervous system (PNS) at E10.5.  CNS 

expression of T 4 is illustrated by ISH staining for T 4 mRNA in the region of the 

neural tube surrounding the fourth ventricle, which will go on to develop into the 

hindbrain (Fig. 3.5b).  PNS expression of T 4 is visible as deep, intense staining of 

the presumptive trigeminal ganglia, which will house the cell bodies of sensory 

neurons innervating the face (Fig. 3.5b).  T 4 expression in the CNS is not confined 

merely to the developing structures of the brain, but is also present in the spinal cord 

(Figs. 3.5c and d).  It is notable, that at these stages of development T 4 is most 

strongly expressed in the inner sections of the spinal cord.  This is the location of the 

spinal cord grey matter, which at this stage of development contains developing 

interneurons
109

.  T 4 is expressed, qualitatively, to a lesser degree in the white matter 

tracts.  There is also a matching T 4 expression pattern in the PNS, as the developing 

dorsal route ganglia, which contain the cell bodies of projecting sensory neurons are 

rich in T 4 mRNA (Figs. 3.5c and d). 
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Fig. 3.5 

T 4 is expressed in both the central and peripheral nervous systems 

 

In situ hybridisation for T 4 mRNA, on E9.5 sagittal embryo sections shows 

expression in the developing neural tube (red arrowheads) and somites (black 

arrowheads) (a).  Neural tube expression continues throughout development as 

demonstrated by expression in axial sections through the hindbrain at E10.5 (black 

arrows) (b).  At this stage T 4 is also expressed in the developing cranial nerve motor 

ganglia such as the trigeminal ganglia (red arrowheads).  In the spinal cord, T 4 

expression becomes restricted to the developing grey matter at E14.5 (c) and E16.5 

(d).  T 4 is also expressed in the dorsal root ganglia at these stages (blue arrows).  NT 

(Neural tube).  Scale bars: (a) 50μm, (b) 200μm, (c) 200μm, (d) 200μm.  

 

3.2.4  Gastrointestinal Expression of T 4 

 

Another location, at which T 4 was markedly expressed, was the developing 

gastrointestinal tract.  Expression of T 4 at this location first became apparent at 

E14.5 when T 4 mRNA was detected in the internal epithelial layer of the stomach 
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(Fig. 3.6a).  This persisted until at least E16.5, where T 4 expression was again seen 

on this internal epithelial layer (Fig. 3.6b). 

 

 

Fig. 3.6 

T 4 is expressed in the epithelial surface of the developing gastrointestinal tract 

 

T 4 in situ hybridisation on performed on axial sections, shows T 4 expression in the 

internal epithelial layer of the gastrointestinal tract at E14.5 (a) and E16.5 (b) (red 

arrowheads).  Scale bars: (a) 100μm, (b) 100μm. 

 

3.2.5  Lung Expression of T 4 

 

At E16.5, tissues of the developing lung were also observed to express T 4 mRNA.  

T 4 expression was confined to the walls of small blood vessels in the lung and the 

epithelial surfaces of the developing airways (Fig. 3.7a and 3.7b).  
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Fig. 3.7 

T 4 is expressed on the in the alveolar surface epithelium of the developing lung 

 

Low (a) and high (b) powered images of T 4 in situ hybridisation on E16.5 embryo 

sections demonstrated expression of T 4 in the developing alveolar surface 

epithelium of the lung (black arrowheads).  T 4 is also expressed in the small vessels 

of the pulmonary vasculature.  Alv (Alveolus), Ve (Blood vessel).  Scale bars: (a) 

400μm, (b) 150μm.  

 

 

3.3  Discussion 

 

3.3.1  Expression of T 4 in the Vasculature 

 

The earliest expression of T 4 in the vasculature was detected at E9.5 in the 

developing dorsal aorta.  In qualitative terms, high levels of T 4 expression in this 

large vessel continued until E14.5, when regions of the aorta began to reduce their 

T 4 mRNA levels.  This pattern of expression agrees well with previous findings 

noted in chick and mouse
52,104

.  Notably, Dathe et al. observed that, in the chick, at 

later stages of development, T 4 expression in established vessels diminished, in 

similar fashion to that observed here, in the dorsal aorta
52

.  This is compelling 

evidence that suggests T 4 may play a role in blood vessel development.  As 
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previously described, this can be separated into many different sub-processes, 

including but not limited to vasculogenesis, angiogenesis and vessel maturation. 

 

In considering which of these processes T 4 may be involved with, further clues can 

be gathered from the expression pattern data.  T 4 is expressed in both arteries and 

veins, largely ruling out the possibility that T 4 is involved in the specification 

between arteries or veins.  This is because a difference in expression levels between 

arteries and veins appears to be a de facto prerequisite to have a specific role in this 

process.  Examples of this principle include the arterial restricted expression of 

Ephrin-B2 and venous restricted expression of EphB4
110

, as well as the preferential 

arterial expression of the arterial specifying transcription factor Gridlock
111

.  It has 

also now been established that T 4 is expressed primarily in endothelial cells and not 

other vascular cell lineages including smooth muscle cells/pericytes.   

 

It is thought that the very earliest blood vessels in the embryo form via vasculogenesis 

– the process of in situ differentiation of endothelial cells and their coalescence to 

form tubular structures
112

.  As T 4 is expressed in vessels throughout all stages of 

development it becomes highly unlikely that T 4 is acting specifically and solely as a 

key molecule in vasculogenesis. 

 

Because most blood vessels arise through one of the processes of angiogenesis, be it 

sprouting or intussucesptive
44

, the near ubiquitous expression of T 4 in blood vessels 

could indicate an angiogenic function for T 4.  Endothelial cell migration is an 

indispensable mechanism of this process.  When this is combined with T 4’s 

previously described roles in cell migration in general and endothelial cell migration 
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in particular, it is clear that the possibility that T 4 plays a part during in vivo 

angiogenesis is worthy of further investigation. 

 

In order to form a stable blood vessel, endothelial cells need to become invested by 

mural cells.  The pattern of aortic T 4 expression indicates a possible role in this 

process.  Once endothelial cell tubes are formed through either angiogenesis or 

vasculogenesis, the process of mural cell recruitment begins straight away via the 

secretion of endothelial derived paracrine mediators such as TGF-  and PDGF-BB.  

T 4 being expressed in the early vasculature but not in later post-formation stages of 

the same vessel’s lifespan is consistent with the molecule being required for the initial 

building of a mural cell wall but then becoming dispensable once this structure has 

formed.  This type of vessel maturation relies on endothelial - mural cell interactions 

and cell autonomous functions in both cell types
58,88

.  Given that T 4 is expressed in 

the endothelium and not significantly in mural cells, if T 4 plays a role at this level, it 

is likely due to a function of the endothelium rather than an autonomous role within 

mural cells. 

 

3.3.2  Expression of T 4 in the Developing Heart 

 

Cardiac expression of T 4 was observed in four locations during development: 

• The myocardium  

• The endocardial cushions 

• The endocardium 

• The epicardium 
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3.3.2.1  Myocardial Expression of T 4 

 

The developing embryonic myocardium has been shown to recruit its coronary 

vasculature via the secretion of T 4.  The paracrine secretion of T 4 acts on 

epicardial derived progenitor cells to stimulate their migration and differentiation into 

the cells of the coronary vasculature
50

.  Consistent with this, T 4 expression was 

observed in the myocardium from E11.5. 

 

3.3.2.2  Endocardial Cushion Formation 

 

During cardiac development, the primitive atrio-ventricular chamber becomes 

separated by the endocardial cushions, which eventually go on to form the 

atrioventricular bicuspid and tricuspid valves
106

.  This process starts following 

secretion of inductive molecular signals from the myocardium to the underlying 

endocardium.  The endocardial cells then undergo an epithelial to mesenchymal 

(EMT) transformation and migrate inwards into the myocardium to form the cardiac 

cushion mesenchyme.  T 4 is now shown to be expressed in these developing 

endocardial cushions.  As the cardiac cushion cells consist of a population of 

migratory cells, clearly there is a possible role for T 4 in this system as a regulator of 

actin polymerisation and subsequent migratory capacity.  However, one intriguing 

possibility is that T 4 itself may be involved in the regulation of EMT.  Although 

there is, to date, no direct evidence to support this hypothesis, one evolving concept of 

cancer biology is that EMT facilitates neoplastic lesions to become metastatic
113

.  

Since an increased expression of T 4 has been shown amongst certain tumour types 
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to be correlated with an increase in metastatic potential
4
; T 4 mediated regulation of 

EMT provides an attractive common link between the two. 

 

3.3.2.3  Epicardial expression of T 4 

 

Interestingly, from the E10.5 stage onwards, qualitatively high levels of T 4 

expression were observed in the epicardium of the heart.  This layer consists of a 

population of mesothelial cells, which eventually undergo EMT and invade the 

myocardium to form the coronary vasculature
114

.  However, this process is not 

thought to take place until approximately E14.5 in the mouse.  One possible 

explanation for why the epicardium expresses T 4 at E10.5 may lie in the embryonic 

origins of the epicardium.  The epicardium originates from a tissue known as the 

proepicardial organ.  This is situated at the septum transversum in mammals
114

.  At 

E10 in mice, the looping heart tube comes into contact with the proepicardial organ 

and cells migrate from the proepicardium to cover the surface of the myocardium and 

become the epicardium.  It is possible that high levels of T 4 in the epicardium at 

E10.5 are present due to the migratory nature of the epicardial mesothelial cells and 

consequently the need for dynamic regulation of the actin cytoskeleton. 

 

3.3.3  Expression of T 4 in the Neural Network 

 

In situ hybridisation disclosed expression of T 4 in three locations throughout the 

developing nervous system.  The first location identified was the embryonic hindbrain 

at E10.5.  T 4 expression in the embryonic murine hindbrain has previously been 

described
108

.  These studies carried out a more thorough analysis of T 4 expression in 
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the forebrain and hindbrain, with the finding that T 4 is expressed in both throughout 

development.  However, the precise extent of T 4 expression was dependent on both 

developmental stage and spatial location.  It appeared to these authors that T 4 

expression was highest in regions experiencing ongoing neural corticogenesis.  

Although, in the limited expression analysis conducted in this manuscript T 4 was 

expressed in the hindbrain equally in mantle and ventricular zones of the neural tube, 

Carpenterio et al. showed a higher mantle than ventricular layer expression
108

. 

 

T 4 is also expressed in the spinal cord throughout development.  As the neural tube 

separates into white and grey matter from E12.5 to E16.5
109

, the area of expression 

becomes localised to the developing inner grey matter.  This zone of the spinal cord at 

this stage of development is a site of ongoing neurogenesis, as this is the site of motor 

and inter neuron development
109

.  These processes, particularly that of motor neuron 

development, are dependent on extensive cellular migration in order to form 

synapses/dendritic connections at the appropriate locations
115

. 

 

Another site of T 4 expression, and qualitatively, the site of highest T 4 expression 

throughout the embryo were the developing dorsal root ganglia.  Once again, this 

pattern of expression agrees well with the published literature.  In both chick and 

mouse embryo, dorsal root ganglia expression of T 4 has been observed
52,108

.  The 

dorsal root ganglia are primarily composed of cells derived from migrating neural 

crest.  These cells differentiate to form the afferent sensory neurons of the peripheral 

nervous system
109

.  The cell bodies of these neurons are located in the dorsal root 

ganglia, and during embryonic development emit axonal projections, which follow 
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chemotactic signals to their target sites before terminating at neural sensory 

apparatus
115

.   

 

Although, to date, no functional studies have been conducted to elucidate the purpose 

of T 4 in the developing CNS and PNS, it is possible to speculate that T 4’s 

canonical role in actin cytoskeleton formation may be at play in this system.  The 

processes of axonal projection and migration, in the peripheral nervous system, are 

dependent on the formation of an axonal growth cone at the leading terminal end of 

the neuron.  This growth cone comprises many actin dependent superstructures such 

as cellular filopodia, lammelipodia and actin bridges
115

.  It is speculated, that due to 

its actin regulatory role, T 4 may perform a function in formation of these structures, 

critical for axonal outgrowth.  The correlation between T 4 expression in the 

developing brain and the process of corticogenesis, identified by Carpintero et al. may 

also support a role for T 4 in neuronal migration
108

.  During neurogenesis, cortical 

neuron subtypes differentiate in the ventricular zone before migrating, largely by the 

process of translocation, to the cortical zone
116

.  The temporally overlapping events of 

T 4 expression and corticogenesis thus provide circumstantial evidence for T 4’s 

function in the developing nervous system being a cell autonomous role in cell 

migration. 

 

However, there is a case to be made against this.  Carpintero et al. demonstrated that 

T 4 expression is higher, in general, in the mantle/cortical zone than the ventricular 

zone
108

.  This layer consists largely of differentiated neurons, which have migrated 

into their positions.  If T 4 is truly involved as an intracellular regulator of cell 

migration in the developing cortex, it might be expected that T 4 would be expressed 
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most highly in the actively migrating cells, and thus, presumably in the ventricular 

layer as opposed to the mantle layer.  Some insight into possible alternative functions 

for T 4 comes from studies of T 4 in post-natal neural regeneration.  Several groups 

have experimented with T 4 in the context of CNS injury.  Pharmacologically 

administered T 4 protein has been shown to stimulate cellular mechanisms of 

regeneration in experimental autoimmune encephalitis
36

 and traumatic brain injury
117

.  

Notably, T 4 was also able to stimulate the proliferation of oligodendrocyte precursor 

cells in vitro
36

.  In contrast, during investigations into spinal cord regeneration, 

downregulation on T 4 via anti-sense viral transduction resulted in an increased 

ability of neural progenitor cells to differentiate into neurons and promote axonal 

regeneration
118

.  Such observations support a hypothesis that T 4 may be acting in a 

paracrine fashion to control the fate of stem cell populations in the developing CNS. 

 

3.3.4  Expression of T 4 in the Gastrointestinal System 

 

T 4 is also shown here to be expressed in the developing gastrointestinal system, 

predominantly on the epithelial surface of gut.  The gut epithelium is derived from the 

endodermal layer of the developing embryo.  From E14.5 onwards, villous structures 

form due to projection of the underlying mesodermal layer into the gut lumen with the 

endodermal derived epithelial cells overlying these structures.  The epithelial layer is 

then replenished in adult from a stem cell pool located in the villous crypts
119

.  The 

observations made here agree well with immunohistochemical analysis of T 4 

expression in the gut of foetal and adult humans
120

.  T 4 in these systems was present 

mainly on the epithelial surfaces of each of the specialised regions of the human gut.  

At this stage, it is only possible to speculate on the functions of T 4 in these epithelial 
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linings.  Although cell autonomous T 4 may be essential for cell migration, it is 

difficult to see how this is relevant to a collection of surface epithelial cells.  It may be 

possible, that T 4 allows the cell to maintain effective cell structure and cellular 

adhesions, as these characteristics are dependent on an actin filament network.  

Alternatively, these cells could represent a secretory factory for T 4 to act in a 

paracrine fashion on other nearby cell populations – an effect that has been detected 

in the developing heart
50

.  Consistent with this, T 4 has been identified as a 

component of the secreted gastric mucous
120

. 

 

3.3.5  Expression of T 4 in the Respiratory System 

 

T 4 mRNA expression can be seen in epithelial cells of the developing airways of 

E16.5 mouse embryos.  At this time point, the endodermally derived airway tissue is 

at the canalicular stage of development, at which the terminal lung buds narrow 

before entering the E18.5-P5 saccular stage characterised by the development of 

architecturally complete alveoli
121

.  Interestingly, the E16.5 stage coincides with the 

period of development where airway smooth muscle cell progenitors expand, 

differentiate and migrate to the epithelial airway walls
122

.  It is possible that T 4 may 

be playing a role in this process. 
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4 Genetic Models for T 4 Loss of Function 
 

4.1  Introduction: 

 

Results from the expression analysis of T 4 during embryonic development provide 

some intriguing clues as to the role that T 4 might play in the developing vasculature.  

Ubiquitous vascular expression suggests it may be involved in some universal process 

common to all blood vessels whether arteries or veins, big or small.   

 

In order to further develop this insight into T 4 vascular function, further experiments 

need to be undertaken.  One classical approach to dissecting the function of a gene 

and its protein product, is to generate in vivo loss of function models.  The phenotype 

of the resulting organism can then be studied, and information about the gene’s 

function can be gleaned.  Mouse transgenesis is one of the most commonly used 

methods to create such loss of function models.  The use of mouse as a model 

organism is often favoured due the wealth of knowledge, which has been accumulated 

regarding genetic modification of this organism.  Its suitability as a model organism is 

further enhanced by its ease of maintenance, rapid breeding and high genetic 

homology to human
123

. 

 

For these reasons, it was decided to use mouse genetic loss of function models to 

further understand the role of T 4 in vascular development. 
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4.2  Results 

 

4.2.1  Mouse Transgenesis Can Be Used to Achieve Germline 
Global Knockout of T 4 

 

The first genetic loss of function model, which was examined, was a global knockout 

of T 4, received as a kind gift from Martin Turner at the Laboratory for Lymphocyte 

Signalling and Development, Babraham Institute, Cambridge, UK.  Knockout of T 4 

was achieved in this mouse by replacing exon 2 of the T 4 gene with a neomycin 

resistance cassette in order to create a non-functional allele (Fig. 4.1).  This general 

strategy has been used on many occasions to great success with other genes
124

.  As 

T 4 is located on the X chromosome, but not the Y chromosome of mice; male mice 

in possession of the knockout allele will be hemizygous and are denoted T 4 -/Y (T 4 

+/Y being the wild type equivalent).  Female mice, on the other hand possess two 

copies of the X chromosome and may be either homozygous knockouts (T 4 -/-), 

heterozygous for the knockout allele (T 4 +/-) or wild type (T 4 +/+). 
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Fig. 4.1 

A scheme to knockout T 4 through insertion of a neomycin resistance cassette in 

exon 2 of the Tmsb4x gene 

 

Schematic diagram to demonstrate the strategy used to knockout T 4 in the mouse 

genome.  Exon 2 of the murine T 4 gene was replaced by a neomycin resistance 

cassette, resulting in the creation of a non-functional allele.  This figure was created 

by MartinTurner, Laboratory for Lymphocyte Signalling, Babraham Institute, 

Cambridge, UK.  

 

4.2.2  Knockout of the Tmsb4x Gene Abolishes Synthesis of the 
T 4 Protein In Vivo 

 

In order to ascertain that this strategy had been successful at producing the lack of a 

functional T 4 transcript, quantitative real time polymerase chain reaction (qRT-

PCR) was performed on RNA extracted from E10.5 T 4 -/Y and T 4 +/Y embryos, 

for the presence of mature T 4 mRNA.  Three T 4 +/Y embryos contained variable 

levels of the T 4 transcript, whilst in the T 4 -/Y embryos, this transcript could not be 

detected at all (Fig. 4.2).  
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Fig. 4.2 

Knockout of the Tmsb4x gene results in ablation of T 4 mRNA expression in 

vivo 

 

E10.5 T 4 -/Y embryos expressed no detectable levels of T 4 mRNA as quantified by 

qRT-PCR in comparison to E10.5 T 4 +/Y controls.  Error bars represent the standard 

error of four experimental replicates. 

 

 

4.2.3  Knockout of T 4 Results in Impaired Survival 

 

From the initial mouse colonies received, it became clear that T 4 knockout (in either 

the male or female) was compatible with viability and progression of the mice to 

adulthood.  However, it was observed that numbers of knockout mice in litters 

appeared to be consistently reduced in comparison to their expected Mendelian ratios.  

In order to test whether T 4 knockout resulted in partially decreased viability of 

offspring, T 4 -/Y males were crossed with T 4 +/- females and the number of 

offspring of each expected genotype monitored.  When this cross is set up, it is 

expected that equal ratios of T 4 +/Y, T 4 -/Y, T 4 +/- and T 4 -/- mice will be born, 

if there is no influence of the genotype on the viability of the offspring.  In practice, it 

was observed that by the time of the early postnatal period, around half of the 

expected T 4 -/Y and T 4 -/- mice had failed to survive (Table 4.1). 
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 Expected E10.5 Postnatal 

Genotype    

+/Y 25% 23 40 

-/Y 25% 19 19 

+/- 25% 19 34 

-/- 25% 28 24 

    

Total  89 117 

    
2  2.46 9.26 

p-value  0.482 0.026 

 

Table 4.1 

T 4 -/Y mice die in utero between E10.5 and birth 

 

Offspring of crosses between T 4 -/Y male and T 4 +/- female mice are present in 

the correct Mendelian ratios at E10.5.  However, by the early postnatal period, 

approximately half of the T 4 -/Y and T 4 -/- offspring have died. 

 

Given the previously established strong expression of T 4 in the developing 

vasculature, it was hypothesised that lack of T 4 in the developing vasculature might 

be the cause of the embryonic lethality observed in the T 4 knockout mouse.  

Knockout of several genes involved in vascular development can lead to embryonic 

lethality
82,83,125,126

.  Usually, when a failure of vascular development results in 

impaired survival, the defects manifest themselves at a mid-gestational stage.  Thus, a 

decision was take to examine the phenotype of T 4 knockout embryos at the E10.5 

stage of development. 

 

4.2.4  E10.5 T 4 -/Y Embryos Display A Haemorrhagic Defect 

 

In order to perform this analysis in a systematic way, it was necessary to generate 

litters with both null alleles and wild type littermate controls.  As the T 4/T 4 null 

mutant allele is present only on the X chromosome, the only cross which can produce 
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sex matched wild type and null littermates is between T 4 -/Y and T 4 +/- parents.  

Thus, when analysing the T 4 null phenotype, T 4 -/Y males were always compared 

to T 4 +/Y littermates.  Although, at the E10.5 stage of development no significant 

embryonic lethality is present (Table 4.1), it was observed that between 5-10% of 

T 4 -/Y embryos exhibited overt haemorrhage in their pericardial cavities (Figs. 4.3a 

and b). 

 

 

Fig. 4.3 

T 4 -/Y embryos display overt pericardial haemorrhage 

 

Wholemount pictures at E10.5 reveal that wild type T 4 +/Y embryos have developed 

normally (a), whilst a proportion of T 4 -/Y embryos display overt haemorrhage in 

the pericardial space (red arrowheads) (b).  Scale bars: (a and b) 500μm.  

 

In order to ascertain the extent of the vascular haemorrhage in these specimens, T 4 

-/Y embryos, which displayed pericardial haemorrhage, were embedded and sectioned 

along with T 4 +/Y littermates.  In haematoxylin and eosin (H&E) stained sections, 

the presence of blood can clearly be observed in the pericardial cavity of T 4 -/Y 

embryos, whilst the pericardial space in T 4 +/Y littermates is normal (Figs. 4.4a and 
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b).  Noticeable also, is the presence of vascular haemorrhage into the coelomic cavity 

– the precursor of the peritoneum, in the affected T 4 -/Y embryos (Fig. 4.4c).  This 

was never seen in T 4 +/Y wild type controls (Fig. 4.4d). 

 

 

Fig. 4.4 

E10.5 T 4 -/Y embryos display pericardial and coelomic cavity haemorrhage 

 

H&E staining of axial sections demonstrates a pericardium free from haemorrhage in 

E10.5 T 4 +/Y embryos (a).  However, the overt haemorrhage into the pericardial 

space observed on whole mount is confirmed by sectioning through haemorrhagic 

E10.5 T 4 -/Y embryos (red arrowheads) (b).  Whilst these T 4 +/Y embryos possess 

a normal coelomic cavity (c), the coelomic cavities of the T 4 -/Y haemorrhagic 

mutants are also filled with blood (red arrowheads) (d).  At (atrium), CC (Coelomic 

cavity), DA (Dorsal aorta), Vt (Ventricle).  Scale bars: (a, b, c and d) 200μm.  
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4.2.5  T 4 -/Y Embryos Possess a Reduced Peri-Aortic Mural Cell 

Coverage 

 

A haemorrhagic phenotype in embryos is very reminiscent of mouse mutants, 

published in the literature, which have inadequate investiture of their developing 

blood vessels with mural cell support
127,128

.  In order to determine whether this was 

the cause of the haemorrhagic defects in the T 4 -/Y mouse, axial sections through 

the dorsal aortae of E10.5 T 4 -/Y and T 4 +/Y mice were stained with NG2 – a 

marker for mural cells, and examined by immunofluorescence microscopy for the 

presence of mural cells around the developing aorta (Figs. 4.5a, b and c).  

Quantification of the peri-aortic mural cells staining using ImageJ software disclosed 

that the aortae of E10.5 T 4 -/Y embryos had significantly fewer mural cells than T 4 

+/Y littermate controls.  It is thus likely that the presence of vascular haemorrhage in 

the E10.5 T 4 -/Y embryos is due to rupture of the aorta into the pericardial and 

coelomic cavities due to inadequate mural cell coverage of the vessel wall. 
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Fig. 4.5 

E10.5 T 4 -/Y have a reduction in NG2+ mural cell staining around their dorsal 

aortas 

 

NG2 immunostaining of axial sections revealed that E10.5 T 4 +/Y embryos had 

substantial coverage of their developing dorsal aortas with NG2 positive mural cells 

(a).  However, T 4 -/Y dorsal aortas were incompletely invested by NG2 expressing 

mural cells (b).  Quantification using ImageJ software of these mural cell defects 

across ten sections per embryo, with six embryos per group, demonstrated a 

significant and quantifiable reduction in mural cell coverage in T 4 -/Y embryos.  DA 

(Dorsal aorta).  Scale bars: (a and b) 20μm.  ** p<0.01.  Error bars represent standard 

error of the mean.    

 

In order to provide further evidence for a global reduction in mature mural cells in the 

E10.5 T 4 -/Y embryo, RNA was extracted from whole somite matched T 4 -/Y and 

T 4 +/Y embryos.  qRT-PCR was conducted on these samples for a large panel of 

mural cell marker genes.  These marker genes included genes, which were 

representative of a VSMC type mural cell such as smooth muscle actin and SM22  as 

well as genes more indicative of pericytes such as NG2, endosialin, angiopoietin-1 

and CD13.  It was observed that T 4 -/Y embryos displayed significantly reduced 

expression of a number of these mural cell markers in comparison to their somite 

matched T 4 +/Y controls (Fig. 4.6).  This indicates that mural cell marker genes, 

typical of both pericytes and VSMCs, are decreased globally in T 4 -/Y embryos. 

 



 114

 

Fig. 4.6 

E10.5 T 4 -/Y display globally depressed levels of mural cell markers 

 

qRT-PCR analysis of somite matched pairs of E10.5 T 4 +/Y and T 4 -/Y embryos 

reveals reduced levels of mural cell marker genes in T 4 -/Y embryos.  * p<0.05, ** 

p<0.01, *** p<0.001.  Each pair of adjacent black and grey bars represent a pair of 

somite matched embryos.  Error bars represent standard error of the mean.  

 

4.2.6  T 4 -/Y Embryos Display Dermal Haemorrhage at E16.5 

 

Haemorrhage in the embryos of genetic mouse mutants may manifest itself at any 

stage of mid or late gestational development from E10.5
129

, through to E16.5
130

.  

Although it is likely that the 5-10% of T 4 -/Y mutants, which display overt 

haemorrhage at E10.5, will not survive to later stages of development, the incidence 

at this time point cannot account for all of the embryonic lethality observed in T 4 -

/Y mutants.  Thus, embryos from the E14.5 stage of development were assessed for 

the presence of a haemorrhagic phenotype.  It was observed that T 4 -/Y mouse 

mutants at this E14.5 stage often exhibited a variable degree of dermal haemorrhage 

(Fig. 4.7a and b).  However, as dermal haemorrhage was sometimes viewed in the 

T 4 +/Y littermate controls, a blinded scoring system was devised, whereby a 

numerical value would be assigned to an embryo based on the extent of dermal 

haemorrhage observed without the genotype being known.  Analysis by this method 
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revealed that T 4 -/Y embryos incurred a significantly greater incidence of surface 

dermal haemorrhage than their wild type littermates (Fig. 4.7c). 

 

 

Fig. 4.7 

E14.5 T 4 -/Y embryos display cutaneous haemorrhage 

At E14.5, a proportion of T 4 -/Y embryos show dermal vascular haemorrhage (black 

arrowheads) (a and b).  Whilst blinded to genotype, embryos were assigned a score 

out of 5 to quantify the extent of dermal haemorrhage observed.  A significant 

difference was seen between the haemorrhage scores of T 4 +/Y and T 4 -/Y 

embryos (c)(n=21).  Scale bars: (a and b) 2mm.  Error bars represent standard error of 

the mean. 

 

4.2.7  Defects in Mural Cell Recruitment Coverage Underlie Dermal 
Haemorrhage in E14.5 T 4 -/Y Embryos 

 

It then became necessary to assess whether the haemorrhagic phenomena observed in 

the skin of T 4 -/Y mutants at E14.5 had the same aetiology as the haemorrhage seen 

at E10.5, namely one based in reduced recruitment of mural cells to the developing 

vessel wall.  In order to investigate this, skin sections were dissected away from the 

E14.5 T 4 -/Y and T 4 +/Y embryos before being stained with the endothelial marker 

endomucin and the mural cell marker NG2.  Confocal microscopy of these samples 

showed that whilst the dermal vessels of T 4 +/Y embryos had a near continuous 

coverage of mural cells, there were several gaps and interruptions in the mural cell 
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coverage of vessels from T 4 -/Y embryos (Fig. 4.8a and b).  This implies that the 

origin of dermal haemorrhage in the E14.5 T 4 -/Y embryos is likely to be a lack of 

structural support in the blood vessels of the skin. 

 

 

Fig. 4.8 

Skin vessels of E14.5 T 4 -/Y embryos possess reduced mural cell coverage 

 

Confocal microscopy of wholemount E14.5 dermal specimens, stained for endomucin 

and smooth muscle actin expression displayed a vascular plexus well invested by 

mural cells in T 4 +/Y samples (a), but a vascular plexus with several regions lacking 

mural cell coverage (white arrowheads) in T 4 -/Y samples (b).  Scale bar applies to 

both a and b: 10μm. 

 

4.2.8  T 4 Can Be Knocked Down in a Tissue Restricted Fashion  

 

Given that vascular expression of T 4 appears to be confined exclusively to the 

endothelium and is not observed in the mural cells themselves, it is highly likely that 

the lack of endothelial T 4 is responsible for the vascular defects of T 4 -/Y embryos 

observed above.  However, in order to provide further evidence for this conclusion, 

genetic loss of function models, which impaired T 4 expression specifically in the 

endothelium were analysed.  The first strategy that was attempted, made use of a 

previously published mouse, which expressed a T 4 shRNA under the control of a 

tissue specific Cre recombinase
50

. 
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When Cre recombinase is expressed in a cell where the conditional T 4 shRNA 

construct is also present, the Cre enzyme can mediate recombination between two 

LoxP sites on the transgene.  This causes the excision of a transcription termination 

sequence, which brings transcription of the T 4 shRNA sequence under the control of 

the endogenously active H1 pol III promotor, leading to transcription of the short 

hairpin RNA (Fig. 4.9).  This shRNA is then processed by the enzyme Dicer, to 

produce siRNAs against T 4.  These siRNAs interact with the protein Argonaute to 

form an RNA induced silencing complex (RISC), which degrades T 4 mRNA
131

.  

 

 

Fig. 4.9 

Transcription of a T 4 shRNA initiated by Cre recombinase can induce 

knockdown of T 4 in vivo 

 

Schematic to demonstrate the strategy used to create a tissue specific knockdown 

model of T 4.  Cre recombinase mediated excision of the floxed region of the 

transgene will eliminate a transcriptional termination sequence.  This allows the 

transgene for a T 4 shRNA to come under the control of the constitutively active Pol 

III promotor, allowing transcription of a T 4 shRNA.  Taken from
50

.  
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In order to knockdown T 4 via these means in the endothelium, the T 4 shRNA 

mouse was crossed with a Tie2-Cre mouse, which expresses Cre recombinase under 

the control of the Tie2-Cre promotor
132

.  As Tie2 is predominantly expressed in the 

vascular endothelium, this should ensure that Cre recombinase will only be expressed 

in vascular endothelial cells.  In order to assess whether the in-house Tie2-Cre mouse 

appropriately expressed Cre recombinase in the developing endothelium, it was 

crossed with the Rosa 26R (R26R)
133

 and R26R-eYFP
134

 reporter mouse strains.  

These mouse strains express either LacZ or eYFP in cells, which also express Cre 

recombinase, by virtue of the removal of a LoxP flanked stop codon upstream of the 

respective reporter encoding sequence.  As LacZ can be visualised by X-Gal staining 

and eYFP can be visualised with fluorescent microscopy, this strategy allows cells, 

which express Cre recombinase to be identified and traced. 

 

Tie2-Cre x R26R and Tie2-Cre x R26R-eYFP embryos were stained with X-Gal or 

examined by fluorescence microscopy respectively.  E10.5 offspring of the Tie2-Cre 

x R26R cross, demonstrated expression of LacZ in agreement with previously 

published data
132

.  Namely, LacZ was seen in the walls of small and large blood 

vessels systemically as well as the endocardium and endocardial cushions of the 

developing heart (Figs. 4.10a, b and c).  eYFP was observed to be co-expressed with 

the endothelial marker PECAM in sections through the E14.5 embryonic aorta of 

offspring resulting from the Tie2-Cre x R26R-eYFP cross, thus indicating that 

vascular expression of Cre recombinase is confined to the endothelium (Fig. 4.10d). 
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Fig. 4.10 

Tie2-Cre embryos express Cre recombinase in the developing endothelium 

 

Whole mount X-Gal staining of E10.5 Tie2-Cre R26R demonstrated Cre expression 

throughout the developing vasculature (a).  Sectioning of this embryo followed by 

eosin counter staining revealed expression of cre in blood vessels (b) and the 

endocardium and cardiac cushions of the heart (c).  Immunofluorescence staining of 

axial sections through thr terminal aorta of E14.5 Tie2-Cre R26R-eYFP mice revealed 

that Cre (eYFP) was confined to PECAM positive endothelial cells (d).  CC (Cardiac 

cushion), DA (Dorsal aorta), LA (Left atrium), RA (Right atrium), Vt (Ventricle).  

Scale bars: (a) 1mm, (b) 100μm, (c) 500μm, (d) 50μm.  

 

4.2.9  E10.5 T 4-RIEK Embryos Rarely Reproduce the Same 

Haemorrhagic and Mural Cell Defects Observed in T 4 -/Y Mice 

 

Crossing the T 4 shRNA mouse with the Tie2-Cre mouse, leads to generation of T 4 

shRNA random integrant endothelial knockdown mice (T 4-RIEK).  When E10.5 

T 4-RIEK embryos were bred, one of the mutant offspring displayed overt pericardial 

haemorrhage (Figs. 4.11a and b).  This haemorrhage in the pericardial space was also 

visualised upon sectioning and H&E staining of the embryo (Figs. 4.11c and d). 
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Fig. 4.11 

E10.5 T 4-RIEK mutant embryos display pericardial haemorrhage 

  

Whole mount images reveal one instance of an E10.5 T 4-RIEK embryo, which 

displays overt pericardial haemorrhage (a), in comparison to a wild type littermate 

control (b).  Saggital H&E stained sections through these embryos confirm the 

presence of aberrant blood in the pericardial space of the T 4-RIEK mutant (black 

arrowheads) (c), but not in the wild type littermate control (d).  At (Atrium), OT 

(Outflow tract), Pc (Pericardial cavity), Vt (Ventricle).  Scale bars: (a and b) 1mm, (c 

and d) 500μm.  
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In order to assess whether this embryo displayed a coexisting mural cell defect, which 

could account for the pericardial haemorrhage that was observed, sagittal sections 

through the dorsal aorta of the affected embryo and a wild type littermate control 

were stained for the mural cell marker smooth muscle actin.  The wild type embryo 

possessed a dorsal aorta which had a multi layered covering of smooth muscle actin 

positive mural cells whilst analysis of the mutant embryo showed a dorsal aorta where 

the investing smooth muscle cell layer was only ever one cell thick and had numerous 

gaps where no mural cell coverage was apparent (Figs. 4.12a and b). 

 

 

Fig. 4.12 

Haemorrhagic E10.5 T 4-RIEK embryos have reduced mural cell investiture of 

their dorsal aortas 

 

Sagittal sections through the dorsal aorta of the haemorrhagic T 4-RIEK mutant 

followed by Immunofluorescence staining for the mural cell marker smooth muscle 

actin show an aorta in possession of a mural cell layer only a single cell thick.  

Numerous gaps in the mural cell coverage are also observed (red arrowheads) (a).  

This is in comparison to the aorta of a wild type littermate control which has a 

uniform mural cell layer several cells thick (white arrowheads) (b).  DA (Dorsal 

aorta).  Scale bars: (a) 100μm, (b) 150μm. 

 

In spite of analysing several more litters including approximately forty mutant E10.5 

embryos, this overt haemorrhagic phenotype was never again observed in the T 4-

RIEK embryos.  As the T 4-shRNA construct can lead to variable levels of 

knockdown
50

, it was hypothesised that endothelial cells continued to express T 4 at a 
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low level which might allow the embryos to maintain a normal phenotype until later 

stages of development.  In order to test whether defects in the mural cell coverage of 

the developing dorsal aorta occurred at later stages in the T 4-RIEK mice, E14.5 

mutant and wild type embryos were harvested, cryo embedded and sectioned axially 

through the dorsal aorta.  These aortic sections were stained with smooth muscle actin 

by immunohistochemistry to visualise aortic mural cells.  However, T 4-RIEK 

mutant vessels were identical to wild type littermates and no qualitative difference 

was observed between the mutants and wild types (Figs. 4.13a, b, c and d). 
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Fig. 4.13 

T 4-RIEK embryos show no defect in mural cell coverage of their dorsal aortas 

at E14.5 

 

Immunohistochemical staining for the mural cell marker smooth muscle actin on axial 

sections through the dorsal aortas of E14.5 T 4-RIEK mice revealed no qualitative 

difference in the mural cell investiture between mutants (a, b, and c) and littermate 

controls (d).  DA (Dorsal aorta).  Scale bars:  bar in (a) applies to all figures, 150μm. 

 

One explanation, which might underlie the poorly penetrant phenotypes of the T 4-

RIEK mice is insufficient expression of the T 4 shRNA and inadequate T 4 

knockdown in endothelial cells.  This might be because the T 4 shRNA construct was 

not targeted to a specific locus in the mouse genome and integration took place at 

random locations when the mouse was generated
50

.  It has been previously 

demonstrated that the expression of randomly inserted transgenes can be affected by 

generational dependent epigenetic gene silencing
135

.  In order to attempt to overcome 
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this potential problem, use was made of commercially constructed transgenic mouse 

line, in which the T 4 shRNA transgene had been specifically targeted to locus for the 

gene Hprt, which codes for the protein hypoxanthine-guanine 

phosphoribosyltransferase.  This locus was chosen as it is thought to be open, stable 

and not subject to epigenetic gene repression, due to its nature as a housekeeping 

gene
136

. 

 

4.2.10  Targeting the T 4 shRNA Construct to an Open Genomic 
Locus Creates a More Reliable T 4 Tissue Specific Knockdown 

 

 

Crossing of the HPRT targeted T 4 shRNA mouse with the Tie2-Cre mouse led to the 

generation of the T 4 shRNA HPRT targeted endothelial cell specific knockdown 

mouse (T 4-HEK).  In order to attempt to quantify the degree of T 4 knockdown 

achieved in the endothelial cells of both the T 4-RIEK and the T 4-HEK mice, both 

mouse strains were crossed with the R26R-eYFP mouse.  E14.5 embryos from both 

T 4-RIEK R26R-eYFP and T 4-HEK R26R-eYFP were digested into single cell 

suspensions and flow sorted by FACS on the basis of their eYFP fluorescence.  An 

attempt was then made to extract RNA from these cell-sorted samples and conduct 

qRT-PCR for the presence of T 4 mRNA to quantify the extent of T 4 knockdown 

achieved in vivo in these embryos.  However, these attempts ultimately proved 

unsuccessful due to the inability to extract a large enough quantity of RNA from 

sorted cells to assess T 4 knockdown at the level of the individual embryo. 

 

Thus, another approach was taken to attempt to quantify the activity of the random 

integrant T 4 shRNA and the HPRT targeted T 4 shRNA in vivo.  Both the T 4 

shRNA mouse and the HPRT targeted T 4 shRNA mouse were crossed with the 
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Nkx2.5-Cre mouse, which expresses Cre specifically in the myocardium
137

.  This 

strategy has been previously used to knockdown T 4 in the developing embryonic 

myocardium
101

.  Whole hearts were then dissected from E14.5 Nkx2.5-Cre T 4 

shRNA and Nkx2.5-Cre HPRT T 4 shRNA embryos, protein extracted, and levels of 

T 4 in the myocardium detected by western blotting.  The random integrant T 4 

shRNA transgene under the control of the Nkx2.5-Cre exhibited a highly variable 

degree of T 4 knockdown.  In this situation, paradoxically, the wild type tested 

actually displayed a lower level of T 4 than the mutants.  However, although level of 

knockdown in the Nkx2.5-Cre HPRT T 4 shRNA embryos was variable, a high 

degree of T 4 knockdown was observed in one of the embryonic hearts examined 

(Fig. 4.14). 
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Fig. 4.14 

The Hprt targeted T 4 shRNA construct produces more effective T 4 

knockdown in vivo than the randomly integrant T 4 shRNA construct 

 

Western blotting and scanning densitometry for the presence of T 4 in protein 

extracted from the E14.5 hearts of the offspring of Nkx2.5 Cre x T 4 shRNA and 

Nkx2.5 Cre x HPRT-T 4shRNA mice demonstrated a highly variable level of T 4 

expression in hearts from the random integrant T 4 shRNA transgenic.  In fact, levels 

of T 4 expression in the mutants tested were higher than that of the wild type 

littermate control.  However, in one instance crossing the Nkx2.5 Cre with the HPRT 

targeted T 4 shRNA mouse resulted in a mutant with a dramatically reduced level of 

T 4 in its developing heart.  This data is representative of two experiments 

performed. 
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4.2.11  Mutant T 4-HEK Mice Recapitulate the Mural Cell Defects of 

the T 4 -/Y Mouse 

 

 

Thus, it was concluded that the T 4-HEK mouse might prove to be a better model for 

assessing the effects of endothelial cell specific T 4 knockdown, than the previously 

studied T 4-RIEK mouse.  As such, a series of E10.5 T 4-HEK embryos were 

examined.  Although none of these embryos displayed overt signs of haemorrhage 

above and beyond that observed in their wild type littermates, it was decided that a 

systematic analysis of the mural cell coverage of the aortas in E10.5 T 4-HEK mice 

should be made, in order to determine whether they possessed subtle vascular wall 

defects, which were insufficient to manifest themselves as explicit haemorrhage.  In 

order to achieve this, ten non-consecutive axial sections from six mutants and six wild 

type E10.5 T 4-HEK embryos were stained with an antibody for the mural cell 

marker NG2, prior to examination of the mural cell layer by immunofluorescence 

microscopy.  The mural cell coverage of the aortas of T 4-HEK embryos and 

littermate wild type controls was quantified using ImageJ software.  It was 

determined, that the T 4-HEK mutants displayed a significantly reduced mural cell 

coverage compared to controls (Figs. 4.15 a, b and c).    
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Fig. 4.15 

E10.5 T 4-HEK mutant mice display reduced mural cell investiture of their 

dorsal aortas 

 

Immunofluorescence examination of axial sections through the dorsal aorta revealed a 

robust coverage of NG2 positive mural cells in liitermate control wild type E10.5 

control embryos (a), but a substantially reduced mural cell investment of the dorsal 

aorta in T 4-HEK mutants (b).  Quantification of 10 sections per embryo, and 6 

embryos per group, using ImageJ software demonstrated a significant reduction in the 

mural ell coverage of aortas from mutant T 4-HEK mice as compared to wild type 

littermate controls.  DA (Dorsal aorta).  Scale bars: (a and b) 50μm.  ** p<0.01.  Error 

bars represent standard error of the mean. 

 

 

4.2.12  Mural Cell Defects in T 4 Loss of Function Models Are Due 

to Impaired Mural Cell Differentiation 

 

Having established that haemorrhagic defects in T 4 -/Y embryos are likely due to a 

defect in mural cell investiture of developing blood vessels caused by a deficiency in 

endothelial T 4, it became necessary to further investigate the cellular behaviours 

underlying this phenomenon.  Amongst other processes, the mural cell defects could 

arise because of aberrant apoptosis, impaired migration, under proliferation or 

compromised differentiation of mural cells.  In order to test whether inappropriate 

apoptosis of mural cells was present in T 4 -/Y embryos, axial sections through E10.5 

T 4 -/Y and littermate T 4 +/Y embryos were co-stained with anti-cleaved caspase 3 

(CC3), a marker of apoptosis, and anti-smooth muscle actin before being examined 

with fluorescence microscopy (Figs. 4.16a, b, c and d).  This staining revealed a 

complete absence of CC3 expression in peri-aortic mural cells in both T 4 +/Y and 
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T 4 -/Y embryos.  This confirms that excess apoptosis of mural cells in T 4 -/Y 

embryos cannot underlie the vascular phenotype observed, due to the absence of 

apoptosis in either the T 4 -/Y or the T 4 +/Y embryo. 

 

 

Fig. 4.16 

No apoptosis is observed in the mural cells of E10.5 T 4 -/Y embryos 

 

Co-immunofluorescence staining for the apoptotic marker cleaved caspase 3 and the 

mural cell marker smooth muscle actin revealed an absence of apoptosis in the mural 

cell layer of dorsal aortae in E10.5 T 4 -/Y embryos and T 4 +/Y controls (a and c).  

Punctate nuclear cleaved caspase 3 staining in the overlying surface epithelium of the 

embryo in T 4 +/Y and T 4 -/Y animals serve as a positive control for this staining (b 

and d).  DA (Dorsal aorta).  Scale bars: (a, b, c and d) 25μm. 

 

Next, trans-aortic axial sections through E10.5 T 4 -/Y and T 4 +/Y embryos were 

stained with anti-phospho histone H3 (PPH3), a marker of proliferation and anti-

smooth muscle actin before being examined by fluorescence microscopy (Figs. 4.17a 

and b).  These investigations disclosed a complete absence of proliferation in the 
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peri-aortic mural cells of both T 4 -/Y and T 4 +/Y embryos.  Similarly to the results 

from the assessment of apoptosis in the mural cells of T 4 -/Y embryos, a total lack 

of proliferation in this population of cells at this time point in both T 4 -/Y and T 4 

+/Y embryos, effectively rules out proliferative defects as being causative in the 

mural cell defects observed in T 4 -/Y embryos. 

 

 

Fig. 4.17 

No proliferation is observed in the mural cells of E10.5 T 4 -/Y embryos 

 

Co-immunofluorescence for smooth muscle actin and the proliferative marker 

phospho-histone H3 demonstrates a lack of proliferation in the dorsal aorta mural 

cells of both T 4 +/Y (a) and T 4 -/Y (b) E10.5 embryos.  Phospho-histone H3 

staining in cells in the embryonic mesoderm serve as positive controls for this staining 

(white arrowheads).  Scale bars: (a and b) 25μm. 

 

In order to assess the extent to which a migratory defect might contribute to absence 

of mural cells in T 4 -/Y embryos, the postnatal retinal vasculature of P6 T 4 -/Y and 

T 4 +/Y animals was examined.  The retina is part of the CNS, and like other CNS 

tissues, does not possess the vasculogenesis competent mesenchyme, from which 

mural cells can differentiate
58,60

.  This implies that all mural cell investment of 

developing blood vessels, must derive from the migration of pre-existing mature 

mural cells from other non-CNS tissues.  Thus, if knockout of T 4 causes a decreased 

mobility of mural cells, it might be expected that mural cell defects should manifest 



 131

themselves strongly in the developing retinal vasculature.  Therefore, P6 retinas from 

T 4 -/Y and T 4 +/Y animals were stained with an anti-NG2 antibody to visualise 

mural cells and Isolectin B4 (Ilb4) to stain endothelial cells (Figs. 4.18a, b and c).  

This analysis demonstrated no difference in the coverage of the retinal vascular 

plexus with mural cells between T 4 -/Y and T 4 +/Y.  This is evidence that absence 

of T 4 likely does not result in impaired mural cell migration. 

 

 

Fig. 4.18 

P6 T 4 -/Y mice display no mural cell deficit in their retinal vasculature 

 

NG2 immunofluorescence staining of P6 retinas revealed no difference in the mural 

cell coverage of the retinal vascular primary plexus between T 4 -/Y animals and T 4 

+/Y controls, either by gross appearance (a and b) or by ImageJ quantification (c).  

Scale bars: (a and b) 50μm.  Error bars represent standard error of the mean. 

 

The final potential cellular pathway, which might be causative for mural cell defects 

in T 4 -/Y embryos, that was examined, was the process of mural cell differentiation.  

This process is difficult, if not impossible to visualise in in vivo samples, but tell tale 

signs of its disruption might be present.  It has not yet been reported in the literature, 

at what stage initial development of the ensheathing mural cell layer of the aorta takes 

place.  If E10.5 represents the earliest/one of the earliest stages at which mural cells 

are present around the aorta, then reduced numbers of mural cells at E10.5 might be 

the natural consequence of impaired mural cell differentiation.  However, if mural 

cells are present at, for example, E9.5, and are present at their normal number in T 4 
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-/Y embryos, then their deficiency at E10.5 in T 4 -/Y mutants would likely not be 

due to impaired initial differentiation.  In order to ascertain whether this might be the 

case, axial sections through E9.5 T 4 +/Y embryos were stained with anti-NG2 (Fig. 

4.19).  This staining showed that mural cells were not present in the wild type at the 

E9.5 stage.  This result is consistent with a defect in mural cell differentiation first 

being able to manifest itself at the E10.5 stage in mutant T 4 -/Y embryos. 

 

 

Fig. 4.19 

Aortic mural cell differentiation does not take place until after E9.5 

 

Immunofluorescence staining for NG2 on wild type E9.5 axial sections reveals a lack 

of any mural cell coverage around the dorsal aorta at this time point (white 

arrowhead).  NG2 expression in the developing myocardium serves as a postive 

control for this staining (white arrows).  Ht (Heart).  Scale bar: 70μm. 
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4.3  Discussion 

 

4.3.1  Summary 

 

The above investigations focused on analysing the phenotypes of several mouse loss 

of function genetic models to gain insight into the function of T 4 during the process 

of vascular development.  The first model used, was one in which the T 4 gene had 

been deleted globally in all tissues of the mouse.  At E10.5, 5-10% of the T 4 -/Y 

embryos displayed overt pericardial and coelomic cavity haemorrhage.  Assessment 

of the dorsal aortas of several T 4 -/Y embryos, both with and without the explicit 

haemorrhagic phenotype, revealed that these mutants display reduced mural cell 

coverage when compared to littermate T 4 +/Y controls.  Embryos, which do not 

succumb to the likely lethal effects of haemorrhage at the E10.5 state, display dermal 

vascular haemorrhage at E14.5; a defect again related to a reduced mural cell 

investiture of dermal blood vessels.  Although overt haemorrhage was not observed in 

embryos where T 4 has been knocked down specifically in endothelial cells, these 

embryos did still demonstrate a reduction in the mural cell coverage of their dorsal 

aortas.  Aberrant proliferation and apoptosis of mural cells were ruled out as the 

causative cellular behaviour in production of the mural cell defect, on the basis of 

immunofluorescence analysis of E10.5 T 4 -/Y embryos.  A migratory defect of 

mural cells in T 4 -/Y embryos is thought unlikely due to the normal mural cell 

coverage of P6 T 4 -/Y retinas.  It is likely that the absence of T 4 in the endothelium 

of developing mouse embryos, leads to impaired differentiation of mural cells from 

the peri-aortic mesoderm. 
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4.3.2  Penetrance of the Haemorrhagic Phenotype in T 4 -/Y 
Embryos 

 

A number of intriguing observations were made during analysis of the various T 4 

genetic loss of function models studied.  It was noted that only 5-10% of T 4 -/Y 

embryos displayed a haemorrhagic phenotype, consisting of pericardial and coelomic 

cavity haemorrhage.  This implies that the phenotype observed is variably penetrant.  

Perhaps, an explanation for this variable penetrance can be ascertained by considering 

the abnormal cellular phenotype.  It is thought that, since mural cells do not appear 

around the dorsal aorta until some point after the E9.5 stage of development, the 

mural cell deficiency apparent at E10.5 in T 4 -/Y embryos may be due to impaired 

differentiation of the peri-aortic mesoderm into mature mural cells.  If this is the case, 

then the impenetrant haemorrhagic phenotype may have several aetiologies.   

 

Differentiation of mesoderm into mural cell tissue is thought to be under the control, 

primarily, of endothelial secreted TGF-
88

.  One possibility, is that a compensatory 

upregulation of the TGF-  pathway, stimulates a degree of physiological, in vivo 

rescue of the phenotype in T 4 -/Y embryos.  This compensatory increase might be 

enough to stimulate sufficient mural cell differentiation to prevent haemorrhage in a 

number of embryos.  When T 4 -/Y embryos were analysed as a group for peri-aortic 

mural cell deficiency, with both haemorrhagic and non-haemorrhagic embryos 

included, it is observed that they have approximately 20% fewer mural cells.  This 

implies that there may be a threshold of mural cell absence, below which 

haemorrhage will result, but above which will lead to a phenotypically normal 

appearing embryo. 
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Another possibility, is that lack of T 4 leads to a substantial decrease in the initial 

differentiation of mural cells.  However, this could be compensated for by an increase 

in the proliferation of the mural cells, which have differentiated.  However, the lack of 

any proliferation in the mural cell layer, as observed in wild type E10.5 embryos 

would argue against this.  Nevertheless, it is possible that this compensatory increase 

in mural cell proliferation could occur prior to the E10.5 time point assessed in this 

study. 

 

4.3.3  Down Regulation of Mural Cell Markers in E10.5 T 4 -/Y 
Embryos 

 

Evidence of mural cell deficiency in E10.5 T 4 -/Y embryos, was first acquired by 

immunofluorescent examination of histological sections through E10.5 T 4 -/Y 

embryos.  This was supported by data from qRT-PCR analysis of mural cell marker 

expression, performed on RNA extracted from whole E10.5 T 4 -/Y and T 4 +/Y 

embryos.  This data showed a reduction in a number of mural cell markers in T 4 -/Y 

embryos compared to somite matched T 4 +/Y littermates.  It is important to 

recognise the limitations of this type of analysis.  As the experiment is conducted on 

RNA from whole embryo preparations, the experiment is not necessarily specific for 

vascular tissue alone.  For example, smooth muscle actin is expressed in the 

developing heart at the E10.5 stage.  Likewise, NG2 is also a marker of 

oligodendrocytes in the CNS
138

.  It is possible that reduced expression of these mural 

cell markers in other tissues may confound a reduction in vascular tissue.  This 

problem could be resolved by performing qRT-PCR on RNA derived from laser 

captured microdissection specimens which would allow isolation of the peri-aortic 

tissue from the rest of the embryo. 
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However, it can be argued that since the results of the qRT-PCR studies performed 

here are consistent with the histological evidence from immunofluorescence studies, 

that the presence of confounding factors is not likely.  When the two pieces of data 

are taken together, they seem to support a strong conclusion that mural cell investiture 

of the dorsal aorta is compromised in E10.5 T 4 -/Y embryos. 

 

 

4.3.4  Impaired Mural Cell Development in Endothelial Cell Specific 
T 4 Knockdown Embryos 

 

In developing blood vessels, the previous chapter demonstrated that vascular T 4 

expression is restricted to the endothelial cell lineage.  Thus, it appears likely that 

mural cell defects present in T 4 -/Y embryos are due to an absence of T 4 in the 

endothelium.  However, to provide additional evidence for this conclusion, two 

models of endothelial specific T 4 knockdown were examined for mural cell and 

haemorrhagic defects.  In these models, the phenotypes observed were milder than 

that observed in the global T 4 knockout.  T 4-RIEK mice were constructed through 

random genomic insertion of a transgene, which allowed expression of T 4 shRNA in 

cells in a Cre recombinase dependent manner.  However, only one mutant T 4-RIEK 

mouse embryo studied displayed a haemorrhagic and mural cell phenotype that was 

similar to the phenotype observed in E10.5 T 4 -/Y embryos.  The T 4-HEK mouse 

has a transgene inserted at the X-chromosomal locus of the Hprt gene, which 

stimulates production of a Cre dependent T 4 shRNA.  Although this mouse never 

displayed any overt haemorrhage at E10.5, analysis of a group of mutants revealed 

that they did have a reduction in mural cell coverage of their developing aortas. 
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One reason that the endothelial specific T 4 knockdown models did not fully 

recapitulate the phenotype of the T 4 knockout mouse, might be due to insufficient 

reduction of T 4 levels in the endothelium.  It proved difficult to assess the level of 

knockdown achieved in endothelial cells directly.  Fluorescence sorting of T 4-RIEK 

and T 4-HEK endothelial cells did not yield enough mRNA to perform a qRT-PCR 

analysis of T 4 expression.  In spite of this, it has previously been reported that the 

randomly inserted transgene does provide a variable level of knockdown in the 

developing heart
50

.  In order to compare the ability of the randomly inserted and the 

Hprt targeted T 4 shRNA to mediate T 4 knockdown in vivo, each of these mouse 

strains was crossed with the cardiac specific Nkx2.5 Cre mouse.  Hearts were isolated 

from E14.5 embryos and assayed for T 4 expression.  The random integrant strain 

actually displayed higher levels of cardiac T 4 than wild type littermates, whilst the 

Hprt targeted strain displayed clear knockdown in only one out of three embryos.  

Thus, it is clear that the ability of the T 4 shRNA to knockdown T 4 in vivo is 

variable at best, and ineffective at worst. 

 

One strategy that could be used is to directly assay levels of T 4 knockdown in 

endothelial cells would be to establish primary cultures of endothelial cells from T 4-

RIEK and T 4-HEK embryos.  The cells could then be grown in culture until enough 

cellular material was present to be able to conduct qRT-PCR or western blotting for 

T 4 levels.  The cultures could be established by digesting T 4-RIEK and T 4-HEK 

embryos into single cell suspensions, and labelling endothelial cells with an anti-

PECAM antibody conjugated to magnetic beads.  The beads could then be sorted 
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magnetically, before eluting endothelial cells and culturing them in endothelial cell 

growth medium
139

. 

 

There are likely to be several factors, contributing to the inefficiency of T 4 

knockdown in T 4-RIEK and T 4-HEK models.  The first may be mosaicism of Cre 

expression in the Tie2-Cre mouse.  It is common amongst Cre driver strains, that Cre 

is not expressed in all target cells.  The reason for this is likely to be incomplete 

promotor activity of Cre transgenics.  It has previously been reported that the Tie2-

Cre mouse exhibits a degree of mosiacism
140

, and as such it is plausible to assume 

that some endothelial cells in the T 4-RIEK and T 4-HEK strains will not express 

Cre and will therefore never be able to express the T 4 shRNA. 

 

Another possible explanation is that levels of Cre recombinase in endothelial cells are 

insufficient to mediate recombination of the transgenic floxed transcriptional 

termination sequence upstream of the T 4 shRNA.  Although, the levels of Cre 

expressed by the Tie2-Cre driver are high enough to excise the LoxP sites of the 

R26R and R26R-eYFP reporter transgenes, it is a well reported phenomenon that 

different floxed loci display variable sensitivity to Cre recombinase.  For example, it 

appears that transgenic alleles of the transcription factors Mcl-1 and c-Myb are much 

more sensitive to Cre than the transgene at the R26R-eYFP reporter locus
141

.    It is 

possible that the floxed T 4 shRNA transgene requires a higher level of cellular Cre 

to be expressed, than the Tie2-Cre mouse can produce, to excise the termination 

sequence. 
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As has been previously mentioned, epigenetic inactivation of randomly inserted 

transgenes is not an uncommon event
135

.  This could underlie a lack of transgene 

expression in the T 4-RIEK mouse.  However, in the Hprt T 4 shRNA model, stable 

targeting of the T 4 shRNA construct to the “open
136

” Hprt locus precludes 

epigenetic inactivation as an explanation for the incomplete knockdown of T 4.  One 

factor, which could confound experiments with the T 4-HEK mice, is the X-

chromosomal nature of the Hprt locus.  Although the Hprt locus is not thought to be 

subject to epigenetic repression, it does not escape the process of X-inactivation
142

.  

X-inactivation is the process, by which the gene expression on one X-chromosome is 

largely silenced in cells with an XX karyotype.  This means that in female mutants, 

even in cells, which express Cre, there is a 50% chance that the transgene will not be 

expressed, and consequently no T 4 knockdown will be induced. 

  

These theories might explain why the T 4-HEK mouse does not possess an overtly 

haemorrhagic phenotype, but does show a defect in mural cell investiture of the dorsal 

aorta in grouped immunofluorescent analysis.  Again, it could be postulated that 

deficiency of peri-aortic mural cells, below a certain threshold, is required for 

haemorrhage to be observed at the E10.5 stage.  Due to the confounding effects of Cre 

mosaicism, T 4 shRNA inefficiency and X-inactivation, the mural cell count around 

the dorsal aorta in T 4-HEK mice never decreases to a low enough level to cause 

haemorrhage, but is sufficient to be detected by immunofluorescent analysis. 

 

The experimental hypothesis underlying the use of the Tie2-Cre mouse to stimulate 

expression of a T 4 shRNA, was to knockdown T 4 in endothelial cells and prove 

that a deficiency in endothelial T 4 was responsible for the mural cell defects 
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observed in T 4 -/Y mice.  However, one possible criticism of this approach, is that 

the Tie2-Cre mouse may not express Cre solely in endothelial tissues.  Although, 

robust expression of Cre in the endothelium was demonstrated by crossing the Tie2-

Cre with Rosa reporter strains, the Tie2-Cre mouse has also been used as a driver 

strain in haematopoietic cells
143,144

.  Thus, it is possible that paracrine secretion of 

T 4 by haematopoietic cells in the developing embryo may drive mural cell 

development in the embryo.  In order to test whether this could be the case, a robust 

expression analysis for T 4 in haematopoietic cells should be undertaken.  An 

alternative approach would be to use a more tightly endothelial restricted Cre mouse 

strain to drive expression of the T 4 shRNA.  This could be achieved using the 

tamoxifen inducible PDGF-B Cre mouse, which expresses Cre in a highly endothelial 

specific fashion
145

. 

 

However, in spite of these potential criticisms, it remains highly likely that depletion 

of T 4 in the endothelium, does underlie the vascular defects of T 4 -/Y embryos.  

This statement is justifiable as T 4 is highly expressed in the endothelium, whilst it 

has never been noted in the literature that T 4 is expressed in early embryonic 

haematopoietic cells.  There is also little precedent for paracrine haematopoietic 

trophic factors playing a role in development of the systemic vasculature.  There is 

tentative evidence that Neuropilin-1, secreted by liver haematopoietic progenitors at 

E12.5 may have an effect on vasculogenesis and angiogenesis
146

.  Also, a lack of 

VEGF-164 in haematopoietic cells can lead to mild yolk sac vasculature defects at 

E10.5, but no defects in the systemic vasculature
147

.  There are no examples found in 

the literature of a haematopoietic factor regulating systemic vascular development at 
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the E10.5 stage, and no examples found to date of haematopoietic cells being able to 

influence the process of mural cell development.   

 

The Tie2-Cre mouse has been used by many groups, over many years, to demonstrate 

the effects of deleting genes in the endothelium
148-150

.  Thus, the simplest explanation 

for the results observed, is that loss of T 4 expression in the developing endothelium 

leads to insufficient mural cell development around blood vessels. 

 

4.3.5  Aberrant Cellular Behaviour in T 4 -/Y Embryos 

 

Several analyses were conducted in order to determine the abnormal cellular 

behaviour that caused the deficiency of mural cells observed in T 4 -/Y embryos.  By 

immunostaining the mural cell layer for CC3 and PPH3, abnormal apoptosis or 

proliferation of mural cells were ruled out as the causative processes in mural cell 

insufficiency of the T 4 -/Y mouse.   

 

Several mouse genetic mutants display blood vessels, which lack mural cells due to 

impaired migration of mural cells around blood vessels
62,127,128

.  In these genetic 

models however, the mural cell defects appear to manifest themselves at slightly later 

time points in development than E10.5.  For example, vascular defects first appear at 

E16.5 in PDBF-B or PDGFR-  knockout mice
62

, at E17.5 in the mural cell specific 

Integrin 1 knockout mouse
127

, and at E18.5 in the mural cell specific Ephrin-B2 

knockout
128

.  This itself, makes it unlikely that impaired mural cell migration is 

responsible for the haemorrhagic and mural cell defects in the T 4 -/Y mouse at 

E10.5.   
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However, in order to further investigate this possibility, postnatal retinas from T 4 

-/Y mice were studied.  The adult retinal vasculature commences its development at 

the time of birth and consists of a radially sprouting plexus of endothelial tubes.  

These tubes, become concomitantly covered by mural cells, migrating from the centre 

of the arteriolar plexus
151

.  Similarly to all other CNS tissues, the retina does not 

contain vasculogenesis competent mesenchyme, which can act as the cellular 

substrate for mural cell differentiation
58,60

.  As such, the mural cells, surrounding 

retinal blood vessels, derive from cells, which have developed outside the organ bed 

and migrated into the retinal vasculature.   

 

When retinas from P6 T 4 -/Y mice had the mural cell coverage of their retinal 

vasculature assessed, no difference was observed when compared to T 4 +/Y retinas.  

The absence of a mural cell defect in this vascular bed is further evidence against T 4 

acting as a migratory stimulus for mural cells.  In comparison, mice, in which the 

extracellular retention motif for PDGF-B has been deleted, display severely delayed 

and disrupted mural cell investiture of the retinal vasculature – a phenotype consistent 

with impaired mural cell migration
152

.   

 

Even though, it is unlikely that T 4 -/Y embryos have a defect in mural cell 

migration, there are two possible ways in which absence of T 4 might, theoretically, 

cause an impairment in this cellular function.  The first, may be due to a lack of cell 

autonomous T 4 in the mural cells themselves.  Given T 4’s role as a G-actin 

sequestering molecule, this could lead to the disrupted formation of the cytoskeletal 

machinery necessary for migration.  However, this is very unlikely to be a problem 



 143

for T 4 -/Y mice in vivo, as the experimental data presented here demonstrates T 4 to 

be expressed in the endothelium and not the mural cells themselves.  Moreover, the 

phenotype of the T 4 -/Y mouse can be partially replicated by endothelial specific 

T 4 knockdown models.  The more likely possibility is that T 4 is secreted by the 

endothelium and serves as an extracellular migratory stimulus for mural cells.   

 

To provide further evidence that abrogation of mural cell migration, does not 

contribute to the phenotype of T 4 -/Y embryos, the T 4 knockout mouse could be 

crossed onto the “immorto” transgenic background.  Primary mural cells could then 

be isolated from the aortas of adult mice, and an immortalised primary mural cell line 

established.  Such a strategy has been used to great effect by other researchers
128

.  

These cells could then be used in Boyden chamber or scratch assays of cell migration, 

when stimulated in the presence or absence of recombinant T 4.  Such an 

experimental approach is not likely to provide significant insight into the T 4 -/Y 

phenotype however, as the migration of human aortic smooth muscle cells is not 

affected by treatment with T 4
57

. 

 

In contrast to genetic mouse mutants, which have defects in the migration of mural 

cells; those mutants, which display defects in the differentiation of mural cells, 

present with a vascular phenotype at a much earlier stage of development.  Examples 

include the Alk-5 null mouse, which displays a phenotype at E11.5
87

 and the TGF-  

RII null mouse, which shows vascular malformation at E10.5
93

.  Thus, the defects in 

mural cell recruitment observed in the T 4 -/Y mouse are consistent with impaired 

differentiation of mural cells from the surrounding peri-aortic mesoderm.  This 

argument is strengthened by the observation that mural cells are absent from the peri-
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aortic region in the wild type setting at E9.5.  This implies that the defect observed in 

T 4 -/Y embryos at E10.5 is likely to be due to a defect, which affects the initial 

process of mural cell development.   

 

Thus, a model can be derived for how T 4 might be functioning in vascular 

development.  It can be postulated that T 4 is secreted from the developing 

endothelium and acts on mural cell precursors in the peri-aortic mesenchyme to 

stimulate their differentiation into mature mural cells.  There is supporting evidence 

for such a model in the literature.  It has been noted that T 4 is secreted by the 

developing murine myocardium at E14.5, before acting on EPDCs to stimulate their 

differentiation into the cells of the coronary vasculature
50

.  In addition, treatment with 

exogenous T 4 can rescue the decreased expression of VSMC markers present in 

differentiating Hand1 null embryoid bodies
51

. 

 

In order to test whether the mural cell defects present in T 4 -/Y mice are due to 

impaired mural cell differentiation, and thus validate the proposed model of impaired 

T 4 function, a robust ex vivo or in vitro culture system should be established.  The 

ability of T 4 to differentiate progenitor cells into mural cells, in relevant model 

systems should be tested.  This will be experimentally addressed in subsequent 

chapters. 
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5  Use of Gene Expression Studies to Understand the 
Molecular Phenotype of T 4 -/Y Embryos 
 

5.1  Introduction: 

 

It has been established that a global deletion of T 4 in the mouse genome, results in 

embryos which display haemorrhage due to a lack of mural cell investiture of their 

developing blood vessels.  Endothelial specific knockdown of T 4 confirms a non-

autonomous role for T 4 in mural cell development.  The timing of phenotype 

manifestation in these T 4 loss of function models, suggests a specific role for T 4 in 

the regulation of mural cell differentiation.  In order to gain greater insight into this 

process, and the underlying molecular biology of T 4 function, it is important to 

understand the molecular phenomena involved.  

 

If the hypothesis that paracrine secretion of Tb4 by endothelial cells acts to promote 

mural cell differentiation is accurate, it is inevitable that T 4 will mediate gene 

expression in the target mural cell progenitor population, via an effect on one or more 

signalling pathways.  Cell-cell signalling can occur through a multitude of 

mechanisms at a number of different pathway points.  In order to attempt to gain a 

better understanding of the signalling pathways T 4 might be affecting in this 

situation, a two-pronged approach was employed.    

 

The first strategy used was a biased approach to identify candidate pathways.  The 

literature base was analysed to find molecular pathways, whose peturbation might be 

able to cause a phenotype similar to that observed in embryonic T 4 -/Y mice.  Three 
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potential candidate pathways were identified.  These were the Notch, PDGF-B and 

TGF-  signalling pathways. 

 

As previously described, the Notch pathway has a plethora of functional roles in 

development of the vascular system including the regulation of arterial/venous 

vascular character and the specification of endothelial tip cell identity
70

.  Most 

intriguingly however, knockout of the Notch 3 receptor in the developing mouse 

embryo leads to a phenotype involving incomplete differentiation and failed 

maturation of mural cells
77

.  This makes Notch receptor signalling a potential 

candidate pathway upon which T 4 might be acting. 

 

The phenotypes of genetic mouse mutants, for components of the PDGF-B signalling 

pathway, are more in keeping with an abnormality in migration/proliferation of mural 

cells, rather than an abnormality of mural cell differentiation 
60,62,65,152

.  However, 

there are some reports in the literature of PDBF-B being able to mediate mural cell 

differentiation of progenitor cell populations in vitro
89,153

.  Thus, given that it is 

difficult to unequivocally rule out a migratory or proliferative defect in mural cells in 

the T 4 -/Y mouse based solely on the described in vivo phenotype, and that there is 

putative, albeit in vitro, evidence for PDGF-B as a mediator of mural cell 

differentiation, PDGF-B signalling is also a candidate for potential mediation of 

defects in the T 4 -/Y mouse. 

 

As has been previously discussed, TGF-  signalling is the pathway most thoroughly 

linked with the process of mural cell differentiation
58,59,88

.  Knockouts of several 

TGF-  receptors and ligands are thought to result in a failure of mural cell 
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differentiation
83,86,87,93

.  Moreover, TGF-  has shown a direct ability to stimulate the 

in vitro differentiation of mural cells, from progenitor cell lines
90,92

.  For these 

reasons, the TGF-  signalling pathway can be considered as potentially disrupted in 

T 4 -/Y embryos. 

 

In order to test whether these candidate pathways might play a role in the formation of 

the T 4 -/Y phenotype, a qRT-PCR mini-screen of dysregulated receptors, ligands, 

and where appropriate, pathway intermediates and transcriptional targets was 

conducted.  Such an approach has been used in several settings to determine the over 

or under activity of molecular pathways.  Examples include the identification of p53 

pathway disruption in E10.5 hearts of the ribosomal protein l24 (Rpl24) 

hympomorphic mouse
154

, and quantification of Wnt pathway over activity in the 

intraflagellar transport 20 (IFT20) knockout mouse
155

.  Thus, by quantifying gene 

expression of molecular members of the Notch, PDGF-B and TGF-  signalling 

pathways in embryonic material, it may be possible to determine their contribution to 

the T 4 -/Y phenotype. 

 

The success of the candidate pathway approach in this instance, partly relies on T 4 

affecting a molecular signalling pathway which has previously been identified as 

affecting mural cell development.  However, it is plausible that T 4 exerts its effects 

on mural cells through a pathway, which has not previously been linked to this 

process.  In order to determine whether this might be the case, a second approach was 

taken.  This was to subject the T 4 -/Y mouse to gene array analysis.  Gene arrays 

allow high throughput expression analysis of every known gene in the mouse 

genome
156,157

.  This allows differential levels of specific mRNAs to be quantified 



 148

between samples.  Comparing the global gene expression patterns of the T 4 +/Y and 

T 4 -/Y mice could facilitate identification of novel molecular pathways affected by 

T 4.  This strategy has been used in several different contexts to identify original 

signalling pathways perturbed in knockout mice.  As an example, global gene 

expression analysis of by microarray revealed alterations in sterol metabolism in high 

density lipoprotein (HDL-1) deficient mice
158

.  In another case, microarray analysis 

identified altered expression of the cibulin-megalin multiligand endocytic receptor 

complex in the E9.5 embryos of the reduced folate carrier 1 (RFC-1) knockout 

mouse
159

. 

 

In order to test the gene expression levels of candidate molecular pathways in T 4 -/Y 

mice by qRT-PCR, a decision was made to analyse two sources of mRNA in parallel.  

Limb buds from E12.5 T 4 -/Y embryos and somite matched whole E10.5 T 4 -/Y 

embryos were used for this purpose.  Each of these specimens has its potential 

advantages and disadvantages.  E12.5 limb buds represent, in terms of cell variety, a 

much more homogeneous tissue than E10.5 embryos.  In a heterogenous tissue such 

as the E10.5 whole embryo, gene expression changes in other tissues could potentially 

mask expression changes in the vasculature.  The strategy of using E12.5 limb buds in 

such a manner was employed with success to understand the molecular pathways 

underlying the vascular phenotype of the endothelial specific SRF knockout mouse
160

.  

At E12.5, the limb bud also possesses the advantage of being a site of active vascular 

development
160

.  This time point can also be thought of as representing an 

intermediate stage of development between the two time points, E10.5 and E14.5, at 

which mural cell defects were observed in the T 4 -/Y mouse.  Thus any positive 
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findings observed are likely to be applicable to the times at which both these sets of 

defects were detected. 

 

Whole E10.5 embryos were also assessed due to the variable penetrance of 

haemorrhagic and mural cell defects in the T 4 -/Y mouse.  It is possible that those 

embryos, which present with the most severe phenotype also possess the greatest 

derangement in the molecular pathways responsible for such a deficit.  Thus, as a 

phenotype has not been directly observed in E12.5 limb buds, it is possible that 

analysed samples will not disclose significant changes in gene expression due to 

being samples, in which the phenotype is left penetrant.  This problem can be 

circumvented by using somite matched E10.5 embryos, which display overt 

pericardial haemorrhage.  As the embryos with the most severe phenotype, they are 

likely to present with the greatest range of gene expression changes.   

 

Although it is possible that the proposed approaches to quantify gene expression 

changes in the T 4 -/Y mouse may lead to identification of the molecular pathways 

upon which T 4 exerts an influence, there are limitations to this strategy.  T 4 may 

stimulate pathway activation without directly affecting the transcriptional levels of 

pathways.  For example, this approach will not necessarily detect a hypothetical 

ability of T 4 to stimulate PDGFR-  phosphorylation.  Such an occurrence might 

only be detectable with a gene expression profiling approach, as a reduction in the 

mRNA levels of stereotypical PDGF-B responsive genes in the T 4 -/Y mouse.  In 

spite of these limitations, the outlined strategies have the potential to assess the 

interaction between T 4 and molecular pathways in a high-throughput manner.   
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5.2  Results 

 

5.2.1  Expression Analysis in E12.5 Limb Buds 

 

The initial analysis of candidate pathway gene expression in E12.5 limb buds 

quantified mRNA expression in samples derived from the limb buds of two E12.5 

T 4 -/Y embryos and samples from the limb buds of two E12.5 T 4 +/Y embryos.  

The limb buds of these embryos did not display an haemorrhagic phenotype.  In order 

to be designated a “hit”, and as such subject to further analysis, any interrogated gene 

had to display either significant up regulation of at least 20% in both T 4 -/Y samples 

compared to both T 4 +/Y samples, or significant down regulation of at least 20% in 

both T 4 -/Y samples compared to T 4 +/Y samples. 

 

The first pathway to be examined was the Notch pathway.  All four known canonical 

Notch receptors were tested but did not display gene expression changes significant 

enough to be labelled a “hit” (Fig. 5.1).  The same result occurred for four out of the 

five canonical Notch ligands tested (Dll1, Dll4, Jag1 and Jag2) (Fig. 5.2).  However, 

the gene for Dll3 appeared to be significantly upregulated by 25% in the both of the 

T 4 -/Y samples compared to the T 4 +/Y controls. 
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Fig. 5.1 

Quantification of mRNA expression for Notch receptors in E12.5 T 4 -/Y limb 

buds 

 

qRT-PCR quantification of mRNA expression levels for the Notch receptors Notch1 

(a), Notch 2 (b), Notch 3 (c) and Notch 4 (d) in E12.5 T 4 -/Y and T 4 +/Y limb 

buds.  Each bar represents mRNA expression from the limb buds of a single embryo.  

Error bars represent the standard error of four technical replicates.  No samples met 

the pre-specified “hit” criteria of a consistent change of >20% up or down regulation 

in both T 4 -/Y samples compared to T 4 +/Y samples, at a significance level of 

p<0.05. 
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Fig. 5.2 

Quantification of mRNA expression for Notch ligands in E12.5 T 4 -/Y limb 

buds 

 

qRT-PCR quantification of mRNA expression levels for the Notch ligands Dll1 (a),  

Dll3 (b), Dll4 (c), Jag1 (d) and Jag2 (e) in E12.5 T 4 -/Y and T 4 +/Y limb buds.  

Each bar represents mRNA expression from the limb buds of a single embryo.  Error 

bars represent the standard error of four technical replicates.  * Only Dll3, but no 

other samples met the pre-specified “hit” criteria of a consistent change of >20% up 

or down regulation in both T 4 -/Y samples compared to T 4 +/Y samples, at a 

significance level of p<0.05. 

 

 

Next, expression levels of Notch signalling intermediary and adaptor proteins were 

examined.  The genes interrogated were TACE – the ADAM family protease which 

mediates the extracellular cleavage of Notch following ligand binding, Presenillin 1 
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and 2 – components of the  secretase complex which mediates the cleavage of the 

Notch intracellular domain, and RBPj/CBF – an essential Notch ICD binding co-

factor
70

.  On testing, differences in expression levels of these genes between T 4 -/Y 

and T 4 +/Y samples did not meet the established “hit” criteria (Fig. 5.3).   

 

 

Fig. 5.3 

Quantification of mRNA expression for Notch signalling intermediates in E12.5 

T 4 -/Y limb buds 

 

qRT-PCR quantification of mRNA expression levels for the Notch pathway 

intermediates RBPj/CBF (a),  TACE (b), Presenillin 1 (c) and Presenillin 2 (d) in 

E12.5 T 4 -/Y and T 4 +/Y limb buds.  Each bar represents mRNA expression from 

the limb buds of a single embryo.  Error bars represent the standard error of four 

technical replicates.  No samples met the pre-specified “hit” criteria of a consistent 

change of >20% up or down regulation in both T 4 -/Y samples compared to T 4 

+/Y samples, at a significance level of p<0.05. 

 

Finally, in order to provide a measure of global Notch signalling output, the 

expression levels of a number of Notch stereotypical transcriptional targets were 

quantified.  The expression levels of these genes have been identified in the past as 
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being regulated predominantly by Notch signalling.  They included members of the 

Hes/Hey family
70

, members of the Fringe group of enzymes, and the ankyrin repeat 

domain protein Nrarp
161

.  Once again, there was no consistent significant difference in 

the expression levels of these genes between T 4 -/Y and T 4 +/Y samples (Fig. 5.4).  

This suggests there was no difference in Notch pathway activity between the T 4 -/Y 

and T 4 +/Y samples tested, in spite of the apparent differences in Dll3 expression 

levels. 
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Fig. 5.4 

Quantification of mRNA expression for Notch transcriptional targets in E12.5 

T 4 -/Y limb buds 

 

qRT-PCR quantification of mRNA expression levels for the Notch transcriptional 

target genes Hes1 (a),  Hey1 (b), Hey2 (c), HeyL (d), Lunatic fringe (e), Manic fringe 

(f), Radical fringe (g) and Nrarp (h) in E12.5 T 4 -/Y and T 4 +/Y limb buds.  Each 

bar represents mRNA expression from the limb buds of a single embryo.  Error bars 

represent the standard error of four technical replicates.  No samples met the pre-

specified “hit” criteria of a consistent change of >20% up or down regulation in both 

T 4 -/Y samples compared to T 4 +/Y samples, at a significance level of p<0.05.   
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The next task undertaken was to quantify the expression levels of molecules involved 

in the PDGF-B pathway.  As well as measuring expression levels of the PDGF-B 

ligand and the PDGFR-  receptor, expression levels of known PDGF-B 

transcriptional targets were also identified.  These transcriptional target genes were 

Ste20, Hmgb1, Farnesyl PP synthetase, Fibroglycan and Tenascin C – all of which 

have been identified as being down regulated in the brains of PDGF-B deficient mice 

as compared to littermate wildtypes
162

.  Once again, quantification disclosed no 

significant, consistent differences in expression levels between T 4 -/Y and T 4 +/Y 

samples which met the criteria for a positive “hit” (Fig. 5.5). 
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Fig. 5.5 

Quantification of mRNA expression for PDGF-B, its receptor, and PDGF-B 

target genes in E12.5 T 4 -/Y limb buds 

 

qRT-PCR quantification of mRNA expression levels for the PDGF-B ligand (a), the 

PDGFR-  receptor1 (b), and the PDGF-B transcriptional targets Fibroglycan (c), FPP 

Synthetase (d), Hmgb1 (e), Ste20 (f) and Tenascin C (g) in E12.5 T 4 -/Y and T 4 

+/Y limb buds.  Each bar represents mRNA expression from the limb buds of a single 

embryo.  Error bars represent the standard error of four technical replicates.  No 

samples met the pre-specified “hit” criteria of a consistent change of >20% up or 
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down regulation in both T 4 -/Y samples compared to T 4 +/Y samples, at a 

significance level of p<0.05. 

 

 

The TGF-  pathway was now probed for differences in expression levels of signal 

pathway members.  For this pathway, the molecules tested were the TGF- 1 ligand 

and its receptors Alk-1, Alk-5 and TGF-  RII, all seven known Smad adaptor 

molecules and four TGF-  responsive transcriptional targets.  The four transcriptional 

targets chosen were PAI-1 – known to be upregulated by Alk-5 activation
163

, Id1 and 

Id2 – upregulated by Alk1 stimulation
163

, and c-myc – often repressed
164

, but 

sometimes induced by the action of TGF-
165

.  Upon quantification, no consistent 

difference was observed between T 4 -/Y samples and T 4 +/Y samples for 

expression of these genes (Figs. 5.6, 5.7 and 5.8). 
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Fig. 5.6 

Quantification of mRNA expression for TGF-  and its receptors in E12.5 T 4 

-/Y limb buds 

 

qRT-PCR quantification of mRNA expression levels for the TGF-  ligand TGF- 1 

(a) and the TGF-  receptors Alk-1 (b), Alk-5 (c) and TGF-  RII (d) in E12.5 T 4 -/Y 

and T 4 +/Y limb buds.  No samples met the pre-specified “hit” criteria of a 

consistent change of >20% up or down regulation in both T 4 -/Y samples compared 

to T 4 +/Y samples, at a significance level of p<0.05. 
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Fig. 5.7 

Quantification of mRNA expression for Smad genes in E12.5 T 4 -/Y limb buds 

 

qRT-PCR quantification of mRNA expression levels for the TGF-  pathway 

signalling adaptors Smad1 (a),  Smad2 (b), Smad3 (c), Smad4 (d),Smad5 (e), Smad6 

(f) and Smad7 (g) in E12.5 T 4 -/Y and T 4 +/Y limb buds.  Each bar represents 

mRNA expression from the limb buds of a single embryo.  Error bars represent the 

standard error of four technical replicates.  No samples met the pre-specified “hit” 
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criteria of a consistent change of >20% up or down regulation in both T 4 -/Y 

samples compared to T 4 +/Y samples, at a significance level of p<0.05. 

 

 

Fig. 5.8 

Quantification of mRNA expression for TGF-  target genes in E12.5 T 4 -/Y 

limb buds 

 

qRT-PCR quantification of mRNA expression levels for the TGF-  transcriptional 

target genes c-myc (a),  PAI-1 (b), Id-1 (c) and Id-2 (d) in E12.5 T 4 -/Y and T 4 

+/Y limb buds.  Each bar represents mRNA expression from the limb buds of a single 

embryo.  Error bars represent the standard error of four technical replicates.  No 

samples met the pre-specified “hit” criteria of a consistent change of >20% up or 

down regulation in both T 4 -/Y samples compared to T 4 +/Y samples, at a 

significance level of p<0.05. 

 

The only “hit” obtained in these expression assays was the Notch ligand Dll3.  

However, Dll3 is reported not to be expressed in the vasculature
70

, and so differences 

in its expression seem unlikely to account for the mural cell phenotype in T 4 -/Y 

embryos.     
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5.2.2  Expression Analysis in Somite Matched E10.5 Embryos 

 

As indicated previously, a similar candidate gene analysis would be performed on 

RNA derived from three sets of somite matched pairs of E10.5 T 4 -/Y and T 4 +/Y 

embryos, which displayed the overtly haemorrhagic phenotype, in parallel to the 

studies performed on E1.5 limb buds.  As the T 4 -/Y embryo in each pair exhibited 

overt pericardial haemorrhage, they would represent embryos at the extreme end of 

the penetrance spectrum and likely display the most significant causative gene 

expression changes.  Once again, for a gene expression change to be regarded as a 

“hit”, the change would have to either be an upregulation of at least 20% in all three 

T 4 -/Y samples in comparison to their somite matched T 4 +/Y controls, or a similar 

20% downregulation in all three T 4 -/Y embryos. 

 

The previous qRT-PCR panel was repeated almost identically; with four Notch 

receptors, five Notch ligands, five Notch target genes, PDGF-B, PDGFR- , TGF- , 

three TGF-  receptors and five Smad adaptors all being quantitatively analysed.  

However, once again, there was no analysed molecule which manifested itself as an 

unequivocal “hit” as judged by the pre-specified criteria (Figs. 5.9, 5.10, 5.11, 5.12, 

5.13 and 5.14).  
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Fig. 5.9 

Quantification of mRNA expression for Notch receptors in E10.5 T 4 -/Y 

haemorrhagic embryos 

 

qRT-PCR quantification of mRNA expression levels for the Notch receptors Notch1 

(a),  Notch2 (b), Notch3 (c) and Notch4 (d) in three pairs of somite matched E10.5 

T 4 -/Y and T 4 +/Y embryos.  No samples met the pre-specified “hit” criteria of a 

consistent change of >20% up or down regulation in all three T 4 -/Y samples 

compared to T 4 +/Y samples, at a significance level of p<0.05. 
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Fig. 5.10 

Quantification of mRNA expression for Notch ligands in E10.5 T 4 -/Y 

haemorrhagic embryos 

 

qRT-PCR quantification of mRNA expression levels for the Notch ligands Dll1 (a),  

Dll3 (b), Dll4 (c), Jag1 (d) and Jag2 (e) in three pairs of somite matched E10.5 T 4 

-/Y and T 4 +/Y embryos.  No samples met the pre-specified “hit” criteria of a 

consistent change of >20% up or down regulation in all three T 4 -/Y samples 

compared to T 4 +/Y samples, at a significance level of p<0.05. 
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Fig. 5.11 

Quantification of mRNA expression for Notch target genes in E10.5 T 4 -/Y 

haemorrhagic embryos 

 

qRT-PCR quantification of mRNA expression levels for the Notch transcriptional 

targets Hes1 (a),  HeyL (b), Hey1 (c), Hey2 (d) and Nrarp (e) in three pairs of somite 

matched E10.5 T 4 -/Y and T 4 +/Y embryos.  No samples met the pre-specified 

“hit” criteria of a consistent change of >20% up or down regulation in all three T 4 -

/Y samples compared to T 4 +/Y samples, at a significance level of p<0.05. 
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Fig. 5.12 

Quantification of mRNA expression for PDGF-B, its receptor and target genes in 

E10.5 T 4 -/Y haemorrhagic embryos 

 

qRT-PCR quantification of mRNA expression levels for the PDGF-B ligand (a),  the 

PDGF receptor PDGFR-  (b) and the PDGF-B transcriptional targets Fibroglycan (c), 

FPP Synthetase (d), Hmgb1 (e), Ste20 (f) and Tenascin C (g)  in three pairs of somite 

matched E10.5 T 4 -/Y and T 4 +/Y embryos.  No samples met the pre-specified 

“hit” criteria of a consistent change of >20% up or down regulation in all three T 4 -

/Y samples compared to T 4 +/Y samples, at a significance level of p<0.05. 
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Fig. 5.13 

Quantification of mRNA expression for TGF-  and its receptors in E10.5 T 4 

-/Y haemorrhagic embryos 

 

qRT-PCR quantification of mRNA expression levels for the TGF-  ligand TGF- 1 

(a) and the TGF-  receptors Alk-1 (b), Alk-5 (c) and TGF-  RII (d) in three pairs of 

somite matched E10.5 T 4 -/Y and T 4 +/Y embryos.  No samples met the pre-

specified “hit” criteria of a consistent change of >20% up or down regulation in all 

three T 4 -/Y samples compared to T 4 +/Y samples, at a significance level of 

p<0.05. 
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Fig. 5.14 

Quantification of mRNA expression for Smad genes in E10.5 T 4 -/Y 

haemorrhagic embryos 

 

qRT-PCR quantification of mRNA expression levels for the TGF-  pathway 

signalling adaptors Smad1 (a),  Smad2 (b), Smad3 (c), Smad4 (d) and Smad5 (e) in 

three pairs of somite matched E10.5 T 4 -/Y and T 4 +/Y embryos.  No samples met 

the pre-specified “hit” criteria of a consistent change of >20% up or down regulation 

in all three T 4 -/Y samples compared to T 4 +/Y samples, at a significance level of 

p<0.05. 

 

Given the lack of success with the candidate pathway approach, attention was turned 

towards the unbiased gene array strategy.  This line of enquiry had the advantage of 
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potentially being able to identify T 4 involvement in molecular pathways, which had 

not previously been linked to mural cell development.  A two pronged analysis was 

performed with regards to these experiments.  The first line of attack involved 

analysing the differential gene expression of E12.5 T 4 +/Y and T 4 -/Y embryos.  

This stage represented an intermediate between the E10.5 and E14.5 embryos where 

haemorragic and mural cell defects had been observed.  It was hoped that using the 

E12.5 stage would provide insight into dysregulated genes, which might be applicable 

to both these previous observations.  As however, performing array analysis on whole 

E12.5 embryos, involves assessing the gene expression of several distinct tissues, 

gene changes relevant to the vascular defect might be masked.  Thus, the analysis was 

also performed on whole T 4 +/Y and T 4 -/Y eight week old postnatal hearts.  T 4 

has already been demonstrated to play a substantial role in cardiac development
50

.  

Moreover, T 4 -/Y mice maintain cardiac abnormalities into adulthood (Nicola Smart 

– personal communication).  Therefore, if it is assumed that T 4 maintains similar 

cell signalling mechanisms across different tissues, then analysis of gene expression 

in an organ, which has a more uniform tissue distribution, might provide insight into 

the mechanism of embryonic vascular defects. 

 

5.2.3  Gene Array Analysis of T 4 -/Y Embryos and Adult Hearts 

 

RNA was extracted from three of each of the following; E12.5 T 4 -/Y embryos, 

E12.5 T 4 +/Y embryos, eight week old adult T 4 -/Y hearts and eight week old adult 

T 4 +/Y hearts.  After RNA was tested for quality, it was hybridised by Priya Panchal 

at UCL Genomics, London, UK, onto Affymetrix mouse exon 1.0ST arrays.  These 

arrays were used, as they possess high density coverage of the mouse genome and can 
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provide information about alternatively spliced transcripts, as well as global gene 

expression.  Standardisation, extraction, normalisation and statistical analysis of the 

resulting data was performed by Nick Henriquez at the UCL Institute of Neurology, 

Queens Sq., London, UK. 

 

A number of genes were identified as being differentially expressed between E12.5 

T 4 -/Y and T 4 +/Y embryos, and T 4 -/Y and T 4 +/Y eight week old hearts 

respectively.  As Bonferroni statistical testing was used to correct for multiple 

comparisons, and each experiment only used triplicate biological replicates, none of 

the adjusted p-values reached statistical significance.  Therefore, an alternative 

approach was taken whereby genes were ranked in order of the magnitude of their 

differential expression, provided they displayed significance at the usual p=0.05 on 

standard t-testing.  This represents a valid approach to identifying differentially 

regulated genes from microarrays, but does increase the false postitive discovery 

rate
156

.  The top 100 up and down regulated genes in E12.5 T 4 -/Y embryos 

identified by these means, are listed in Appendices 1 and 2, and the top 100 up and 

down regulated genes in T 4 -/Y eight week old hearts are listed in Appendices 3 and 

4. 

 

From the lists of the top two hundred dysregulated genes in each category, twenty two 

genes of interest were identified for further validation and analysis.  These genes were 

flagged up, on the basis of literature searching for a previous record of vascular 

expression, a role in vascular development or interaction with one of the three 

previously studied candidate pathways.  The selected genes are listed in Table 5.1. 
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Name Heart/Embryo Up/Down Function Reference 

Cadherin 3 

(P-Cadherin) 

Embryo Up Role in cell-cell adhesion.  Reportedly 

expressed in bovine endothelial cells. 

166
 

Cadherin 5 

(VE-Cadherin) 

Embryo Up Functions in endothelial cell adhesion 

and control of vascular permeability. 

167
 

Ccbe1 Embryo Down Regulates lymphatic development and 

venous angiogenesis. 

168
 

Ddr2 Embryo Up Controls VSMC migratory activity. 169
 

Dner Embryo Up Delta/Notch like EGF related receptor. 170
 

Epas1 (HIF2 ) Embryo Up Essential role in vasculogenesis. 171
 

Fibulin 5 Embryo Up Forms part of the internal elastic 

lamina after being secreted by VSMCs. 

172
 

Foxo1 Embryo Up Transcription factor which inhibits 

endothelial angiogenesis and VSMC 

proliferation 

173,174
 

Hif1an Embryo Down Hypoxia inducible factor alpha subunit 

inhibitor.  Inhibits the activity of 

HIF1 . 

175
 

IGFbp4 Embryo Up Inhibits VSMC proliferation and 

migration. 

176
 

Integrin 1 Embryo Down Mediates adhesion to laminin and 

collagen I and IV on VSMCs. 

177
 

Integrin 1 Embryo Down Role in mural cell adhesion to 

endothelial cells. 

127
 

Ltbp4 Embryo Up Regulates bioavailability of TGF- . 178
 

Maml1 Heart Down Transcriptional co-activator of the 

activated Notch receptor. 

179
 

Paxillin Embryo Up Signal adaptor protein in VSMCs 

required for focal adhesion formation. 

180
 

Pim-1 Heart Down Transcription factor required for mural 

cell differentiation. 

181
 

Plakoglobin Embryo Up Structural component of endothelial 

cell junctions. 

182
 

Slit 3 Embryo Up Axon guidance molecule with 

angiogenic activity. 

183
 

Smap2 Heart Down Smooth muscle associated protein 

upregulated in neointima formation. 

184
 

Sonic Embryo Down Signalling molecule essential for 

vasculogenesis.  Can also induce 

VSMC proliferation. 

185,186
 

Symplekin Heart Down Tight junction component. 187
 

Wasf2 

(WAVE) 

Embryo Up Wiskott-Aldrich syndrome protein 

necessary for endothelial cell 

migration. 

188
 

 

Table 5.1 

Dysregulated genes in Tb4 -/Y mice selected for further investigation 

 

Twenty two genes were identified as being of interest in gene expression array studies 

on E12.5 T 4 -/Y embryos and 8 week old adult T 4 -/Y hearts.  This table lists these 

target genes along with their purported relevant function. 
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Due to the possible existence of false positive results, an attempt was made to validate 

altered expression of these twenty two genes.  In order to achieve this, gene 

expression was quantified in RNA from three E12.5 T 4 -/Y embryos and three E12.5 

T 4 +/Y embryos, which were different to the embryos used for the arrays 

themselves, by qRT-PCR.  In order to be regarded as “valid” each gene would have to 

be up regulated by at least 20% in all three T 4 -/Y embryos compared to controls, or 

down regulated by at least 20% in all three.  The validation of potential genes of 

interest obtained from the analysis 8 week old hearts, was conducted on embryonic 

samples, as the use of the adult hearts in array studies were merely a tool to provide 

information about putative targets in the embryo.  In order to establish that the gene 

expression changes observed in the adult heart are relevant to embryonic mural cell 

defects, it was necessary to demonstrate aberrant gene expression changes in the 

embryo.  The results of this validation are displayed in Fig. 5.15. 
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Fig. 5.15(i) 

Validation of gene array targets of interest – part 1 

 

Expression of the array identified genes Cadherin 3 (a), Cadherin 5 (b), Ccbe 1 (c), 

Ddr2 (d), Dner (e), Epas1 (f), Fibulin 5 (g) and Foxo1 (h) as measured by qRT-PCR 

performed on RNA from three E12.5 T 4 -/Y and three E12.5 T 4 +/Y embryos.  No 

samples met the pre-specified “hit” criteria of a consistent change of >20% up or 

down regulation in all three T 4 -/Y samples compared to T 4 +/Y samples, at a 

significance level of p<0.05.   
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Fig. 5.15(ii) 

Validation of gene array targets of interest – part 2 

 

Expression of the array identified genes Hif1an (a), IGFbp 4 (b), Integrin 1 (c), 

Integrin 1 (d), Ltbp 4 (e), Maml 1 (f), Paxillin (g) and Pim1 (h) as measured by 

qRT-PCR performed on RNA from three E12.5 T 4 -/Y and three E12.5 T 4 +/Y 

embryos. No samples met the pre-specified “hit” criteria of a consistent change of 

>20% up or down regulation in all three T 4 -/Y samples compared to T 4 +/Y 

samples, at a significance level of p<0.05. 
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Fig. 5.15(iii) 

Validation of gene array targets of interest – part 3 

 

Expression of the array identified genes Plakoglobin (a), Slit 3 (b), Smap 2 (c), Sonic 

Hedgehog (d), Symplekin (e) and Wave 2 (f) as measured by qRT-PCR performed on 

RNA from three E12.5 T 4 -/Y and three E12.5 T 4 +/Y embryos.  * Out of the 

targets examined, only the gene Symplekin met the pre-specified “hit” criteria of a 

consistent change of >20% up or down regulation in all three T 4 -/Y samples 

compared to T 4 +/Y samples, at a significance level of p<0.05. 
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5.2.4  Symplekin is Expressed in Endothelial Cells 

 

The only gene assessed, which met the pre-specified validation criteria was that 

encoding the protein Symplekin.  Symplekin is a protein, about which not much is 

known.  It has been described as being involved in several biological processes 

including cytosolic polyadenylation of mRNA
189

, inhibition of cellular 

differentiation
190

, and promotion of tumourigenicity
191

.  It is thought to often localise 

to cellular tight junctions
192

, but analysis of its expression pattern initially appeared to 

suggest that it wasn’t expressed in vascular tissue
187

.  Therefore, wild type E10.5 

embryo sections were stained with antibodies against Symplekin and the endothelial 

cell marker Endomucin.  Immunofluorescence microscopy revealed expression of 

Symplekin in the endothelium of the E10.5 vasculature (Fig. 5.16). 
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Fig. 5.16 

Symplekin is expressed in the embryonic endothelium 

 

Immunofluorecence microscopy reveals co-localisation of Symplekin with the 

endothelial cell marker endomucin, in the developing vasculature of the E10.5 wild 

type embryo.  Scale bar: 20μm. 

 

5.2.5  Bioinformatic Analysis of Array Dataset Reveals 
Dysregulation of the TGF-  Pathway in T 4 -/Y Mice 

 

As the majority of genes identified from the gene array studies, as playing a potential 

role in the vascular phenotype of the T 4 -/Y mouse, could not be successfully 

validated in follow up qRT-PCR studies, an alternative bioinformatic approach was 

taken to analyse the array data.  The top 200 up regulated and down regulated genes 

from both E12.5 T 4 -/Y embryos and eight week old T 4 -/Y hearts were fed into 

Metacore analysis software produced by Genego, St. Joseph, MI, USA.  This software 

is able to conduct reverse pathway analysis by comparing the list of dysregulated 



 178

genes to a proprietary database.  The software can then calculate the probability that 

peturbation of a known signalling pathway could cause those gene changes.  Four out 

of the top five putative pathways identified by this software as being potential 

candidates for the gene changes observed in T 4 -/Y embryos and hearts involved 

TGF-  as a pathway node (Table 5.2). 

 

Rank Gene Accession Fold 

Change 

Heart/ 

Embryo 

Description 

1 Actb NM_007393 - 8.6 H Actin B 

 Pfn1 NM_011072 - 10.8 H Profilin1 

 Robo4 NM_028783 - 6.5 E Roundabout homologue 4 

 Tgfb1 NM_011577 - 8.8 H Transforming growth factor beta 1 

 Rac1 NM_009007 + 6.8 E Ras-related C3 botulinum toxin substrate 1 

2 Gas8 NM_018855 + 6.9 E Growth arrest specific 8 

 Tgfb1 NM_011577 - 8.8 H Transforming growth factor beta 1 

 Trp53 NM_011640 - 8.6 H Transformation related protein 53 

 Nme2 NM_008705 - 6.1 E Non-metastatic cells 2, protein 

3 Anxa1 NM_010730 + 9.3 H Annexin A1 

 Stx4a NM_009294 + 7.0 E Syntaxin 4a 

 Rac1 NM_009007 + 6.8 E Ras-related C3 botulinum toxin substrate 1 

4 Junb NM_008416 + 6.0 H Jun-B oncogene 

 Tgfb1 NM_011577 - 8.8 H Transforming growth factor beta 1 

 Adam12 NM_007400 - 7.0 E A disintegrin and metallopeptidase 12 

5 Nes NM_016701 + 8.6 E Nestin 

 Tgfb1 NM_011577 - 8.8 H Transforming growth factor beta 1 

 Rac1 NM_009007 + 6.8 E Ras-related C3 botulinum toxin substrate 1 

 

Table 5.2 

Bioinformatic analysis highlights dysregulated molecular pathways in Tb4 -/Y 

mice 

 

The top 200 hundred up- and downregulated genes identified by Affymetrix exon 

array between T 4 +/Y and T 4 -/Y E12.5 embryos and T 4 +/Y and T 4 -/Y adult 

hearts were inputed into Genego Metacore software.  Reverse pathway analysis based 

on altered transcription factor levels and comparison to a systems biology database 

identified potential disrupted signalling pathways in the T 4 -/Y embryos.  Four out 

of the top five potentially disrupted pathways involved TGF-  as a major node in the 

signalling pathway.  This table displays the nodes present in the top 5 ranked putative 

pathways and provides information about their transcript representation in the exon 

arrays. 
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5.3  Discussion 

 

5.3.1  Summary 

 

In order to understand the molecular basis for mural cell defects observed in the T 4 

-/Y mouse, a number of strategies were undertaken.  First, a candidate pathway 

approach was used to test whether ablation of T 4 expression had any effect on the 

expression levels of key genes known to be involved in the process of mural cell 

development.  qRT-PCR analysis of limb buds from E12.5 T 4 -/Y and T 4 +/Y 

embryos revealed no notable differences in gene expression levels of several of the 

Notch, PDGF-B and TGF-  pathway components examined.  The only exception to 

this was the identification of the Notch ligand Dll3 as being up regulated in the T 4 

-/Y limb buds.   Similar parallel analysis of somite matched pairs of E10.5 T 4 -/Y 

and T 4 +/Y embryos provided no clear, positive hits. 

 

The second approach was to use gene arrays to assess expression level changes across 

the whole mouse genome.  E12.5 embryos and eight week old hearts from T 4-/Y and 

T 4+/Y mice were compared by these means.  Twenty two candidate genes were 

identified from this screen.  However, only one gene could be validated in an 

independent set of E12.5 T 4 -/Y and T 4 +/Y embryos – symplekin.  Symplekin was 

identified as being expressed in the embryonic endothelium during development.  

Further bioinformatic analysis of the gene changes observed in the arrays highlighted 

TGF-  signalling as being potentially disrupted in T 4 -/Y mice. 
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5.3.2  Candidate Pathway Approaches 

 

The first strategy used to attempt to elucidate the molecular function of T 4 in 

vascular development was based on a qRT-PCR screen of candidate pathways, which 

had already had a pre-established function in mural cell development.  Neither of the 

two approaches taken, analysing gene expression changes in E12.5 limb buds or 

E10.5 whole embryos, proved unequivocally successful.  The only target that was 

identified as differentially regulated in the T 4 -/Y mouse embryo was Dll3.  Dll3 is a 

canonical Notch ligand, but it is unlikely that its overexpression, as observed in E12.5 

T 4 -/Y limb buds can account for the mural cell defects observed in T 4 -/Y mice.  

This is, in part, due to Dll3 expression never having been reported in the developing 

vasculature
70

.  The change in expression levels of Dll3 is also unaccompanied by any 

consistent change in the expression levels of known Notch transcriptional targets such 

as members of the Hey, Hes or Fringe families of genes.  Thus, it is unlikely that Dll3 

plays any significant role in the genesis of mural cell defects in the T 4 -/Y mice. 

 

In spite of none of the tested genes in these analyses meeting the pre-established 

criteria of up or down regulation of >20% in all tested T 4 -/Y samples, compared to 

T 4 +/Y samples, some trends were observed that are worth highlighting.  Notably, 

when gene expression was assessed in E10.5 T 4 -/Y and T 4 +/Y embryos, several 

components of the TGF-  signalling pathway were highly and significantly down 

regulated in two out of three of the embryo pairs studied.  These genes coded for the 

proteins TGF-  RII, Smad 1, Smad 4 and Smad 5 (Figs. 5.13 and 5.14).  Given that 

these targets would have been designated “hits” if the third pair had shown an 

equivalent dysregulation, and that the TGF-  pathway was highlighted by subsequent 
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bioinformatics analysis of the datasets obtained from gene array studies on T 4 -/Y 

material, these data indicate a that a further, more thorough investigation of the 

TGF-  pathway in T 4 -/Y mice is warranted.  

 

The approach used for testing candidate pathways was a valid one, and the generic 

strategy has been successful for other researchers
154,155

.  If significant changes had 

occurred consistently in expression levels of ligands, receptors and target genes, 

across both experimental systems, then this would have been strong evidence for 

T 4’s involvement in that particular pathway.  However, no strong changes were 

observed.  There may be two explanations for this; either the pathways tested are truly 

not involved in T 4 signalling, or that the experimental set up was not robust enough 

to detect alterations in the pathway. 

 

Using RNA derived from either E12.5 limb buds or whole E10.5 embryos has its 

disadvantages.  E12.5 limb buds were analysed for two reasons.  First of all, it was a 

strategy previously used with success to characterise the molecular basis for the 

vascular defect in endothelial specific SRF knockout mice
160

.  E12.5 was also a time 

point intermediate to the E10.5 and E14.5 stages at which mural cell defects had been 

observed in the T 4 -/Y mouse.  Thus, it was hoped that by analysing the E12.5 stage, 

any molecular insight gleaned would be applicable to both the E10.5 and the E14.5 

stage.  However, from the previous chapter, it had been observed that T 4 -/Y 

embryos have a variable penetrance of the mural cell phenotype.  Thus, it is plausible 

that the limb buds assayed, in this instance, may not have come from embryos, which 

were severely afflicted by the mural cell phenotype.  If it is presumed that the 

embryos, which have the most severely affected phenotype, are likely to be the 
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embryos with the greatest degree of molecular derangement, then it is possible that 

the limb buds analysed would not have represented the best material on which to 

perform the experiment. 

 

This problem was overcome by using somite matched E10.5 pairs of T 4 -/Y and T 4 

+/Y embryos.  The T 4 -/Y embryos chosen for this experiment all displayed overt 

pericardial haemorrhage and were as a consequence, likely to suffer from the mural 

cell defect.  However, this analysis suffered from a different problem.  The E10.5 

embryo represents a heterogeneous population of tissues and cells.  Therefore, it may 

have been difficult to isolate gene expression changes due to the vascular defect, from 

the noise produced by those genes being expressed in non-vascular tissues.  The 

Notch ligand Dll4 can be used as a case in point.  Dll4 is known to have a significant 

functional role in vascular development
70

.  However, it is also expressed, during 

development, in cells of the nervous system, gut, kidney, eye, lung and thymus.  

Therefore, any subtle changes in levels of Dll4 gene expression occurring in the 

vasculature of T 4 -/Y mice, could be being drowned out by normal expression at 

other locations. 

 

Another approach, which could be used to overcome this, would be to use laser 

capture microdissection techniques to isolate the aorta and peri-aortic region from 

T 4 -/Y embryonic sections before conducting candidate pathway gene expression 

analyses on amplified RNA from these samples. 

 

One other limitation to the candidate gene approach that was employed, could be that 

gross changes in gene expression might not be the best way to determine the activity 
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of a given molecular pathway.  For example, rather than assaying the levels of Notch 

target gene expression, an alternative approach could be to perform western blotting 

on appropriate biological samples for the cleaved Notch ICD.  Similarly, western 

blotting for phospho-PDGFR-  or phospo-Smads could be used to measure pathway 

activity.  In fact, an attempt was made to detect phospho-PDGFR-  and the Notch 3 

ICD by western blotting on embryonic protein, but the technical aspects of this 

approach proved too challenging. 

 

5.3.3  Gene Arrays 

 

The second strategy used to obtain insight into the molecular phenotype of the T 4 

-/Y embryo involved global expression mapping across the mouse genome with 

cDNA microarrays.  E12.5 whole embryos were chosen as the source material, again 

with the intention that any positive data obtained would be applicable to both the 

E10.5 and E14.5 stages at which mural cell defects had been observed.  However, as 

there were concerns about expression changes due to T 4 knockout being masked by 

the heterogeneous nature of the tissues in the E12.5 embryo, microarray analysis of 

eight week old postnatal T 4 -/Y and T 4 +/Y hearts was also performed.  As the 

adult heart is more homogenous in terms of cell type relative to the embryo as a 

whole, it was hoped that any peturbation in gene expression in the mutant hearts via 

T 4 knockout would be less likely to be masked by normal expression in other 

tissues. 

 

From these arrays, a number of differentially expressed genes were obtained.  

However, initial statistical testing of these expression changes did not highlight any 
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significant differences between the T 4 -/Y and T 4 +/Y samples.  This is likely to be 

because the initial statistical testing was inappropriately stringent.  Normally, when 

analysing cDNA microarray data, standard t-testing at the p<0.05 level has limited 

value.  If p<0.05 is used as the statistical cut off point, then even when comparing two 

identical samples, 1 in 20 genes will display this level of significance purely through 

statistical error and random variation.  When interrogating a whole genome of 30,000 

targets, this will result in 1,500 false positives.  Thus, a statistical correction for 

multiple comparisons has to be built into the analysis using Bonferroni statistical 

methods
156

.  This, however, has the unfortunate effect of producing too many false 

negative errors, especially when the statistical power of the experiment is low, as in 

this case where samples were only compared in triplicate. 

 

In order to overcome this, gene expression changes were ranked according to the 

magnitude of change, and included in analyses if they displayed a significance of 

p<0.05 on standard t-testing.  This is held to be a valid method of interpreting gene 

expression data, provided that potential “hits” are validated by a more accurate 

method of quantifying gene expression changes, such as qRT-PCR
156

. 

 

Out of the top 200 upregulated and downregulated genes in T 4 -/Y hearts and 

embryos, 22 were selected for validation and further analysis, mostly on the basis of a 

previously described vascular expression pattern, functional activity in vascular 

development or involvement with one of the candidate pathways previously tested.  

All of the candidates identified through gene array studies were validated in material 

from E12.5 embryos, in order to establish the relevance of targets derived from 
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analysis of the adult T 4 -/Y heart to the embryonic situation.  However, surprisingly 

only one of these identified genes, Symplekin, was successfully validated. 

 

There are several possibilities for why the other twenty one genes could not be 

validated.  One possibility is that their original appearances in the list of up regulated 

and down regulated genes was due to statistical or random error and they do not truly 

represent genes that had significant expression differences between T 4 -/Y and T 4 

+/Y samples.  As previously mentioned, this could be a possibility due to performing 

the experiment in triplicate.  The power of the experiment would be boosted to detect 

true biological change, if the experiments had been conducted with six biological 

samples in each group.  Alternatively, those genes acquired from assessment of the 

adult T 4 -/Y hearts may simply be dysregulated in the context of the adult heart, and 

may not be changed in the embryonic setting. 

 

Another explanation could be that these genes truly were dysregulated in the samples 

subject to microarray testing.  However, as the validation was performed on RNA 

derived from E12.5 T 4 -/Y and T 4 +/Y embryos separate from those which had 

been used for the microarray, it could be that the real differences observed in the array 

do not necessarily exist in the population of T 4 -/Y embryos as a whole. There is a 

possible mechanistic explanation of why this might occur.   

 

Many of the gene expression changes revealed by the array studies could, rather than 

being directly regulated by T 4, be altered as a compensation mechanism for ablated 

T 4 expression.  Hypothetically, it could be such compensatory mechanisms, which 

keep most E10.5 T 4 -/Y embryos from displaying overt haemorrhage.  However, 
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such compensatory gene expression changes could vary from embryo to embryo 

resulting in a failure to validate the array data in independent samples.  If this were 

the case, boosting the number of biological replicates used in the array could have the 

effect of reducing the significance of compensatory gene changes whilst highlighting 

gene expression directly influenced by the presence or absence of T 4. 

 

The single gene, which was validated, codes for the protein Symplekin.  The primary 

function of this protein has been described as involvement in polyadenylation, the 

process by which mRNA molecules acquire a poly-adenosine tail.  It is thought to 

function mainly in cytoplasmic polyadenylation, allowing mRNAs to be retained and 

stored in the extranuclear cytosol
189

.  As initial descriptions of gene expression stated 

that symplekin was a tight junction protein that was not expressed in the 

endothelium
187

, it was deemed necessary to test whether this report was correct.  

Upon immunofluorescent examination, it became clear that symplekin was expressed 

in the endothelium of E10.5 wild type embryos.  Several different functions have been 

ascribed to this protein including the promotion of tumourigenicity
191

 and the 

repression of gastrointestinal stem cell differentiation
190

, but it is difficult to 

understand how these roles could mediate the vascular defects observed in T 4 -/Y 

mice.  Further work would either centre around the production of a murine Symplekin 

knockout, or if an in vitro model of T 4 mediated mural cell differentiation could be 

constructed, the effects of knocking down symplekin in such a system. 

 

In order to analyse the gene expression changes observed in T 4 -/Y samples in a 

broader sense, than that achieved simply by focusing on changes at the individual 

gene level, Metacore software produced by the company Genego was used.  One 
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feature of this software allows reverse pathway analysis.  The gene expression 

changes observed in samples are compared to a proprietary database of gene 

expression changes catalogued from analysis of the literature.  The software can then 

calculate which know pathways are most likely to have caused these gene expression 

changes.  Four out of the five top ranked pathways produced by this software involve 

TGF-  as a signalling node.   

 

This is highly interesting, as TGF-  signalling has been identified as the key 

molecular pathway in mural cell differentiation
88

.  However, as with all bioinformatic 

analyses of gene expression data, this should not be taken as proof of T 4’s 

involvement in TGF-  signalling at this stage.  As mentioned above, the inability to 

adequately validate most of the observed gene expression changes of interest, 

suggests caution be exercised.  However, a role for T 4 in TGF-  pathway signalling 

does provide an attractive mechanism to explain the mural cell defects observed in 

T 4 -/Y mice. 

 

This result, once again highlights the need to create an adequate model of in vitro 

mural cell differentiation in which the effects of T 4 can be tested.  Such a model 

would more readily allow measurement and manipulation of TGF-  signalling, 

through the use of western blotting for activated pathway components, qRT-PCR for 

target gene expression, pathway reporter constructs and specific pathway inhibitors. 
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6  Modelling the Function of T 4 In Vitro 
 

6.1  Introduction: 

 

 

Having observed that global or endothelial specific knockout of T 4 in the developing 

mouse embryo leads to a reduction in mural cell investiture of the developing 

vasculature; a search was conducted for the molecular and cellular basis of this 

phenotype.  There are four main cellular processes in which, a defect could 

conceivably have led to such a phenotype, namely: increased apoptosis of mural cells, 

decreased proliferation of mural cells, impaired migration of mural cell progenitors or 

deficient differentiation of mesoderm into mature mural cells.  The first two of these 

possibilities were eliminated via direct quantification of apoptosis and proliferation of 

mural cells as described earlier.  Impaired migration of mural cell progenitors due to a 

deficiency in cell autonomous T 4 seems unlikely, due to the lack of a mural cell 

defect in the neonatal retina, the absent/low levels of T 4 expressed in wild type 

mural cells and the lack of any effect of T 4 on VSMC migration in the literature
57

.   

 

This leaves the intriguing possibility that mural cell defects in murine T 4 loss of 

function models, may be due to disrupted differentiation of mesoderm to a mature 

mural cell state.  Such a hypothesis is difficult to confirm in vivo as no currently 

available technique can either image deeply placed murine embryonic cells intra 

vitally or readily ascertain cellular ancestry based on marker analysis.  However, a 

number of in vitro models can be exploited to determine the effect of exogenous 

molecules on the differentiation of cells of a mesodermal and non-mesodermal nature.   
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In vitro models used to dissect out cellular mechanism also display the advantage of 

facilitating elucidation of molecular mechanisms.  Candidate pathway analysis of 

E10.5 T 4 -/Y and T 4 +/Y embryos showed a trend to dysregulation of several 

components of the TGF-  signalling pathway.  Subsequent bioinformatic pathway 

analysis of gene expression changes in E12.5 T 4 -/Y embryos determined by gene 

array, as previously described, revealed that changes in transcription factor expression 

within these embryos could most readily be explained by disturbance of TGF-  

associated pathways.  In order to test whether these results are relevant to the 

phenotype observed in the T 4 -/Y mouse, further experimental models must be used 

to obtain confirmatory data.  Use of a cellular system of in vitro differentiation can 

enable the effects of T 4 on TGF-  pathway activity to be directly assayed by means 

of western blotting for phosphorylated signalling molecules, luciferase assays for 

Smad activation and qRT-PCR quantification of TGF-  transcriptional targets – all of 

which are very difficult to assess in vivo. 

 

Thus, the following data will describe the effects of T 4 on four such systems of 

mural cell differentiation in order to resolve the question about whether paracrine 

endothelial secreted T 4 can stimulate the differentiation of primitive mesoderm to 

mature mural cells.  The systems of cellular differentiation to be explored will involve 

differentiation of murine embryonic stem cells (ES cells), a P19 embryonal carcinoma 

cell line clonally selected for its propensity to differentiate to vascular smooth muscle 

known as A404, a mouse embryonic fibroblast-like cell line named 10T1/2 and 

primary isolated mouse embryonic fibroblasts (MEFs).   
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These cell lines were chosen as each of them has been shown to display the property 

of mural cell gene expression upon stimulation by exogenous trophic factors.  Each 

cell type may also be viewed as a correlate of a different developmental stage or a 

representative of a different cell type within the embryo.  In vitro differentiation of ES 

cells is a model for the initial differentiation of lineage uncommitted stem cells and 

may provide insight as to whether T 4 can affect the earliest stages of embryonic cell 

differentiation in vivo
92,193

.  10T1/2 cells are a cell line derived from the mesodermal 

tissue of E9.5 C3H mice.  They may, thus, represent the truest in vitro model of 

differentiation of uncommitted mesodermal progenitor cells
89,90

.  Embryonal 

carcinomas are germ cell tumours and as such can contain cells of any lineage 

normally present during development of an organism.  The A404 cell line is a 

derivative of the P19 embryonal carcinoma cell line clonally selected for its ability to 

differentiate into vascular smooth muscle cells upon stimulation by retinoic acid
194

.  

Such cells represent, similarly to the 10T1/2 line, an intermediate stage of 

differentiation between the undifferentiated ES cell and the fully differentiated 

functional mural cell.  Primary mouse embryonic fibroblasts (MEF) have also been 

used to represent mural cell precursors in differentiation assays, notably by injecting 

them into the tail veins of adult mice in a cocktail with mouse fibrosarcoma cells.  It 

has been shown that these fibrosarcoma cells can recruit the co-injected MEFs to 

newly formed blood vessels at a location similar to that occupied by mural cells
195

.  It 

is not yet clear to what extent this phenomenon applies only to the development of 

tumour vasculature. 

 

It is for these reasons that ES cells, 10T1/2 cells, A404 cells and MEFs were initially 

used to examine the induction of mural cell markers when cultured in vitro with T 4.  
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Mural cell phenotype of the T 4 stimulated cells was assayed by the quantification of 

mRNAs of mural cell associated marker genes by qRT-PCR.  As mural cells exist on 

a phenotypic continuum between vascular smooth muscle cells and pericytes, markers 

were chosen to represent a wide range of differentiated mural cell phenotypes.  These 

markers are summarised in Table 6.1. 

 

Marker name Phenotype Reference 

Smooth muscle actin (SMA) VSMC 
196

 

SM22 alpha (SM22 ) VSMC 
153

 

NG2 VSMC/Pericyte 
197

 

Endosialin Pericyte 
198

 

Angiopoietin 1 (Ang1) Pericyte 
199

 

CD13 Pericyte 
196

 

Desmin Pericyte 
200

 

   

Table 6.1 

Mural cell markers and their cell specific expression 

 

Summary of mural cell markers used during T 4 stimulated in vitro differentiation 

studies. 

 

 

6.2  Results: 

 

6.2.1  T 4 Treatment of ES Cells Has No Effect on the Expression 
of Mural Cell Markers 

 

The first cell type on which T 4 mediated mural cell induction was tested was the 

wild type ES cell.  Two ES cell lines, R1 and E14, were maintained under non-

differentiating culture conditions.  In order to test the ability of T 4 to induce the 

expression of mural cell markers in these ES cells, cells were transferred into 
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differentiating medium which lacked the LIF containing ESGro culture additive and 

was supplemented with 100ng/ml T 4, TGF-  or a combination of both.  Cells were 

cultured under these conditions for six days before RNA was extracted and analysed 

for mural cell marker upregulation.  Consistent with previously published data
92

, 

TGF-  was able to upregulate expression of the VSMC marker genes SMA and 

SM22  in both ES cell lines tested (Fig. 6.1).  However, T 4 was not able to induce 

upregulation of any of the mural cell markers probed.  Culture with T 4 plus TGF-  

was not able to significantly increase mural cell marker expression in these cells 

above and beyond that achieved through TGF-  alone. 
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Fig. 6.1 

Wild type ES cells express mural cell marker genes under stimulation by TGF-  

but not T 4 

 

Six day culture of wild type R1 (a, c and e) and E14 (b, d and f) ES cells in the 

presence of PBS, 100ng/ml T 4, 2ng/ml TGF-  or 2ng/ml TGF-  plus 100ng/ml T 4 

revealed that TGF-  could induce significant expression of the mural cell markers 

SMA and SM22 , but not NG2 in ES cells.  T 4 had no effect on this process.  * 

p<0.05, ** p<0.01, *** p<0.001.  Error bars represent standard error. 
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6.2.2  Treatment of 10T1/2 Cells with T 4 Can Induce the 

Expression of Mural Cell Markers 

 

Next, the ability of T 4 to induce mural cell marker upregulation in 10T1/2 cells was 

tested.  These cells are thought to represent an in vitro population of mesodermal 

progenitor cells.  Cells were maintained in their progenitor state under standard 

culture conditions supplemented with 10% heat inactivated FCS.  In order to induce 

mural cell differentiation, culture medium was replaced with medium that contained 

only 0.5% FCS supplemented with either 0.1μg/ml T 4, 1μg/ml T 4, 2ng/ml TGF-  

or a combination thereof.  TGF-  was included in this assay in order to test whether 

TGF-  and T 4 had additive/synergistic effects on mural cell marker expression.  

Cells were grown in this differentiating medium for three days, with the medium 

being replaced each day, before being cultivated for a further three days in 

maintenance medium.  At this point, RNA was extracted.  Mural cell marker 

upregulation was prominent in several of the growth factor combinations tested, but 

was most consistently upregulated in 10T1/2 cells treated with 0.1μg/ml of 

recombinant T 4.  Markers significantly upregulated in this population of cells 

included the VSMC markers SMA and SM22 , the pan-mural cell marker NG2, and 

pericyte markers Endosilain, CD13 and Angiopoietin-1 (Fig. 6.2). 
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Fig. 6.2(i) 

T 4 can induce up regulation of mural cell markers in 10T1/2 cells – part 1 

 

10T1/2 cells were cultured in the presence of PBS, 0.1μg/ml T 4, 1μg/ml T 4, 

2ng/ml TGF- , 2ng/ml TGF-  plus 0.1μg/ml T 4 or 2ng/ml TGF-  plus 1μg/ml T 4 

for six days.  qRT-PCR revealed that culture in 0.1μg/ml T 4 alone could upregulate 

expression of the mural cell marker genes SMA (a), SM22  (b), NG2 (c) and 

Endosialin (d). * p<0.05.  Error bars represent standard error. 
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Fig. 6.2(ii) 

T 4 can induce up regulation of mural cell markers in 10T1/2 cells – part 2 

 

10T1/2 cells were cultured in the presence of PBS, 0.1μg/ml T 4, 1μg/ml T 4, 

2ng/ml TGF- , 2ng/ml TGF-  plus 0.1μg/ml T 4 or 2ng/ml TGF-  plus 1μg/ml T 4 

for six days.  qRT-PCR revealed that culture in 0.1μg/ml T 4 alone could upregulate 

expression of the mural cell marker genes CD13 (a) and Ang1 (b).  (c) Summarises 

the results obtained for PBS treatment and treatment with 100ng/ml T 4. * p<0.05.  

Error bars represent standard error. 

 

6.2.3  Treatment of A404 Cells with T 4 Can Induce the Expression 

of Mural Cell Markers 

 

A404 cells were also used as a substrate for T 4.  Cells were maintained in an 

undifferentiated state under standard culture conditions.  In order to induce mural cell 
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differentiation, A404 cells were treated with 0.1μg/ml T 4, 1μg/ml T 4, 1nmol/ml all 

trans retinoic acid, or a combination thereof or control PBS.  Cells were treated for six 

days, with the culture medium and differentiation stimulus replaced each day.  

Consistent with previous reports
194

, retinoic acid induced the expression of mural cell 

markers SMA, SM22  and Endosialin by several hundred fold, as compared to PBS 

treated controls (Fig. 6.3).  Treating cells with T 4 in addition to retinoic acid had no 

statistically significant effect on the level of mural cell gene expression, over and 

above that achieved with retinoic acid alone.  Retinoic acid did not induce 

upregulation of all the mural markers tested, with no increase in Angiopoietin-1, NG2 

or Desmin being observed.  However, treatment with 1μg/ml of T 4 alone, even 

without the addition of RA was able to induce highly significant degrees of mural cell 

marker expression.  This was true for all of the markers tested, with the exception of 

Desmin. 
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Fig. 6.3(i) 

T 4 can induce upregulation of mural cell markers in A404 cells – part 1 

 

Culture of A404 cells for six days in the presence of PBS, 0.1μg/ml T 4, 1μg/ml T 4, 

1nmol/ml RA, 1nmol/ml RA plus 0.1μg/ml T 4 or 1nmol/ml RA plus 1μg/ml T 4 

revealed that 1μg/ml T 4 could stimulate significant upregulated expression of the 

mural cell marker genes SMA (a), SM22  (b), NG2 (c) and Endosialin (d). * p<0.05, 

** p<0.01.  Error bars represent standard error. 
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Fig. 6.3(ii) 

T 4 can induce upregulation of mural cell markers in A404 cells – part 2 

 

Culture of A404 cells for six days in the presence of PBS, 0.1μg/ml T 4, 1μg/ml T 4, 

1nmol/ml RA, 1nmol/ml RA plus 0.1μg/ml T 4 or 1nmol/ml RA plus 1μg/ml T 4 

revealed that 1μg/ml T 4 could stimulate significant upregulated expression of the 

mural cell marker genes CD13 (a) and Ang1 (b), but not desmin (c).  (d) Summarises 

the results obtained for treatment of A404 cells with 1,000ng/ml T 4 or PBS. * 

p<0.05, ** p<0.01.  Error bars represent standard error. 

 

6.2.4  T 4 Treatment of T 4 +/Y and T 4 -/Y MEFs Fails to Induce 
the Expression of Mural Cell Markers 

 

Next, the ability of T 4 to induce mural cell marker expression in primary mouse 

cells rather than a cell line was tested.  It was decided to test mouse embryonic 

fibroblasts (MEFs) as they have been shown to localise to a mural cell typical location 
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both in vitro
193

 and in vivo
195

.  MEFs were isolated from both T 4 -/Y and T 4 +/Y 

mice to test if endogenous expression of T 4 made any difference to this process.  

MEF cells were serum starved and treated for six days with 0.1μg/ml T 4, 1μg/ml 

T 4, 2ng/ml TGF-  or a combination thereof.  Once again, TGF-  was tested to 

observe whether co-treatment with T 4 and TGF-  led to any additive or synergistic 

upregulations in mural cell markers.  Surprisingly, not only was TGF-  generally 

unable to upregulate any mural cell markers other than Angiopoietin-1, but it actually 

repressed the expression of mural cell markers such as SMA, SM22a, NG2 and 

Endosialin, both in T 4 +/Y cells and T 4 -/Y cells (Fig. 6.4).  In general, culture 

with T 4, had little, if any effect on MEF mural cell marker expression.  Interestingly, 

and again surprisingly, it appeared that T 4 -/Y MEFs expressed mural cell markers 

at a consistently, significantly higher level than T 4 +/Y MEFs. 
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Fig. 6.4 

T 4 has no effect on the expression of mural cell markers in primary MEFs 

 

qRT-PCR on RNA extracted from T 4 +/Y or T 4 -/Y MEFs revealed that T 4 was 

not able to induce significant upregulation of the mural cell markers genes SMA (a 

and b), SM22  (c and d), NG2 (e and f), CD13 (g and h), Endosialin (i and j), 

Ang1 (k and l) or Desmin (m and n) in either cell type.  Left hand columns allow 

comparisons to be made within a cell type.  Right hand columns present the same 

data, but with it arranged to aid appreciation that in nearly all circumstances T 4 -/Y 

MEFs expressed higher levels of mural cell markers than T 4 +/Y MEFs.  * p<0.05, 

** p<0.01, *** p<0.001.  Error bars represent standard error. 
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6.2.5  T 4 Can Stimulate TGF-  Signalling Pathway In Vitro 

 

T 4 dependent mural cell marker induction had been most robustly observed in 

10T1/2 and A404 cells.  One explanation for why mural cell marker up regulation was 

more prominently demonstrated in 10T1/2 and A404 cells, as opposed to ES cells and 

primary MEFs, could be that they represent an intermediate stage of differentiation 

more closely resembling the state of undifferentiated mesoderm than either of the 

other two cell types.  As such, these in vitro models became the focus of 

investigation.  In the previous chapter, the TGF-  pathway, using Metacore software, 

was identified as being potentially disrupted in T 4 -/Y embryos.  It therefore became 

necessary to assess whether treatment with T 4 could activate the TGF-  pathway in 

10T1/2 and A404 cell models of T 4 induced mural cell differentiation.  In order to 

accomplish this, qRT-PCR was used to quantify the expression levels of three TGF-  

responsive transcription factors; PAI-1, Id-1 and c-myc.  Treatment of 10T1/2 cells 

for six days with 0.1μg/ml T 4 led to significant induction of Id-1 and c-myc, (Fig. 

6.5a) whilst treatment of A404 cells with 1μg/ml T 4 for six days led to statistically 

significant upregulation of all three genes studied (Fig. 6.5b).  These results provided 

evidence that T 4 can stimulate TGF-  pathway activation in in vitro models of mural 

cell progenitor differentiation. 
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Fig. 6.5 

T 4 can induce the expression of TGF-  responsive transcription factors in 

10T1/2 and A404 cells 

 

qRT-PCR analysis reveals that following six days in culture with 0.1μg/ml T 4 for 

10T1/2 cells (a) and 1μg/ml T 4 for A404 cells (b), significant upregulation of the 

TGF-  responsive genes PAI-1, Id-1 and c-myc was observed.  * p<0.05, ** p<0.01, 

*** p<0.001.  Error bars represent standard error. 

 

In order to provide further evidence for the ability of T 4 to activate the TGF-  

signalling pathway in mural cell progenitors, 10T1/2 cells were transfected with a 

Smad reporter luciferase construct.  This construct permits transcription of firefly 

luciferase under the control of a Smad binding element.  Thus, when the TGF-  

pathway is activated, this will lead to transcription of firefly luciferase, the extent of 

which can be measured via luciferin stimulated luminescence.  Treatment for 18 hours 

with 100ng/ml or 2ng/ml TGF-  induced a statistically significant four fold and six 

fold increase in luciferase activity over and above that achieved with control PBS 

(Fig. 6.6).  Interestingly, treatment with a combination of 0.1μg/ml T 4 plus 2ng/ml 

TGF-  significantly increased luciferase activity to a higher level than that achieved 

with T 4 of TGF-  alone, demonstrating an additive effect.  These data conclusively 

show that treatment of 10T1/2 cells with T 4 stimulates an up regulation of TGF-  

pathway activity. 
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Fig 6.6 

T 4 can stimulate the activity of a Smad responsive luciferase reporter 

 

Treatment of 10T1/2 cells for 18 hours with 0.1μg/ml T 4 or 2ng/ml TGF-  could 

significantly upregulate activity of a Smad responsive luciferase reporter to a level 

above that achieved with PBS alone.  Treatment of the cells with both 0.1μg/ml T 4 

plus 2ng/ml TGF-  could increase the levels of Smad reporter activity significantly 

higher than that achieved with 2ng/ml TGF-  alone.  * p<0.05, *** p<0.001.  Error 

bars represent standard error. 

 

6.2.6  T 4 Stimulated TGF-  Pathway Activation Correlates with 
Increased Smad Phosphorylation 

 

Having established that T 4 could induce TGF-  pathway activity at the level of 

transcriptional outputs, further mechanistic insight into how T 4 was accomplishing 

this was sought.  One possibility, which was considered, was that T 4 was somehow 

stimulating the expression of TGF-  signalling pathway components, such as TGF-  

receptors. This, in theory, could lead to pathway activation by allowing TGF-  

secreted cell autonomously by the 10T1/2 cells themselves to have a greater effect.  

This could also explain the additive effects of T 4 on TGF-  induced luciferase 

expression in the previous experiment.  Thus, cells treated with 0.1μg/ml T 4, 2ng/ml 
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TGF- , or a combination thereof were analysed by qRT-PCR for expression of TGF-  

receptors. Levels of neither Alk-1 (Fig. 6.7a) nor Alk-5 (Fig. 6.7b), increased with 

any of the treatments tested.  Although treatment of 10T1/2 cells with TGF- , induced 

upregulation of the TGF-  RII, treatment with T 4 alone had no discernible effect on 

expression levels (Fig. 6.7c).  Furthermore, addition of T 4 to TGF-  had no greater 

effect on TGF-  RII upregulation than TGF-  alone.  This indicates that T 4 

mediated activation of the T 4 signalling pathway is not likely to arise due to 

increased TGF-  receptor expression. 
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Fig. 6.7 

T 4 cannot up regulate the expression of TGF-  receptors in 10T1/2 cells 

 

Treatment of 10T1/2 cells for 6 days with PBS, 0.1μg/ml T 4, 2ng/ml TGF-  or 

2ng/ml TGF-  plus 100ng/ml revealed that treatment with T 4 alone could not 

significantly upregulate mRNA expression levels of the TGF-  receptors TGF-  RII 

(a), Alk-5 (b) or Alk-1 (c) compared to treatment with PBS as measured by qRT-

PCR.  * p<0.05.  Error bars represent standard error. 

 

One of the genes identified by gene array screening as being upregulated in E12.5 

T 4 -/Y embryos was Usp9x.  This gene codes for a deubiquitinase enzyme.  Often, 

in vivo, Smad 4 is monoubiquitinated at lysine residue 519.  This inhibits TGF-  

signalling by preventing physical interaction between Smad 4 and phospho-Smad 2.  

Usp9x acts as a positive modulator of TGF-  signalling by maintaining Smad 4 in its 
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deubiquitinated form
81

.  Thus it was hypothesised, that T 4 might exert its effects on 

the TGF-  pathway by stimulating increased expression of Usp9x in 10T1/2 cells, 

thereby making cells more responsive to cell autonomous or exogenous TGF-  

signalling.  10T1/2 cells were stimulated for six days with 0.1μg/ml T 4, 2ng/ml 

TGF- , or a combination thereof and levels of Usp9x measured by qRT-PCR (Fig. 

6.8).  Studies disclosed that treatment with TGF-  could stimulate increased Usp9x, 

presumably as part of a positive feedback signalling loop, but that T 4 could not do 

the same.  Combination treatment with TGF-  plus T 4 did not stimulate Usp9x 

expression beyond that of TGF-  alone.  Thus, it is unlikely that T 4 exerts its effects 

on the TGF-  pathway by stimulating increased expression of Usp9x. 
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Fig. 6.8 

T 4 cannot up regulate the expression of Usp9x in 10T1/2 cells 

 

qRT-PCR revealed that treatment of 10T1/2 cells for six days with 2ng/ml TGF-  or 

2ng/ml TGF-  plus 0.1μg/ml T 4 could upregulate levels of Usp9x mRNA higher 

than that achieved by PBS treatment.  However, treatment with 0.1μg/ml T 4 could 

not achieve this.  ** p<0.01, *** p<0.001.  Error bars represent standard error. 

 

An alternative mechanistic explanation for T 4 induced TGF-  pathway activation is 

that T 4 acts directly to activate TGF-  receptors, leading to increased Smad 

phosphorylation and pathway stimulation.  In order to test this, 10T1/2 cells were 

serum starved overnight and treated for 30 minutes with control PBS, 0.1μg/ml T 4, 

2ng/ml TGF- , or 0.1μg/ml T 4 plus 2ng/ml TGF- .  Protein was rapidly extracted 

from these cells and western blotting conducted for activated phospho-Smad 

complexes (Fig. 6.9).  It is typically thought that the type1 TGF-  receptor Alk-5 

signals via phosphorylation of Smads 2 and 3, whilst the type 1 TGF-  receptor Alk-1 

signals via phosphorylation of Smads 1, 5 and 9
163

.  It was observed that whilst 

treatment with T 4 alone could not stimulate Smad2 or Smad1/5 phosphorylation, 
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treatment of cells with TGF-  plus T 4 could stimulate both Smad2 and Smad1/5 

phosphorylation to a level greater than that achieved by TGF-  alone.  This implies, 

that T 4 acts cooperatively with TGF-  to induce Smad phosphorylation and TGF-  

pathway activation. 

 

 

Fig. 6.9 

T 4 co-operates with TGF-  to stimulate Smad phosphorylation 

 

Western blotting followed by quantification with scanning densitometry demonstrated 

that although treatment of 10T1/2 cells for 30 minutes with 0.1μg/ml T 4 alone could 

not upregulate levels of phospho-Smad2 (a) or phospho-Smad1/5 (b) greater than that 

achieved with PBS treatment, treatment with a combination of 0.1μg/ml T 4 plus 

2ng/ml TGF-  could induce phospho-Smad2 and phospho-Smad1/5 at levels higher 

than that achieved by treatment with 2ng/ml TGF-  alone. 

 

6.2.7  T 4 Can Stimulate the Activity of the TGF-  Pathway In Vivo 

 

In order to attempt to assess whether the effects of T 4 on TGF-  pathway activation 

in vitro held any relevance in vivo, RNA derived from somite matched pairs of E10.5 

T 4-/Y and T 4 +/Y embryos were assayed by qRT-PCR for levels of the TGF-  

responsive transcriptional targets PAI-1, Id-1 and c-myc (Fig. 6.10).  In all cases 
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tested, T 4 -/Y embryos expressed significantly lower levels of these three TGF-  

responsive transcriptional targets than somite matched T 4 +/Y controls.  This is 

good evidence that TGF-  signalling is diminished in E10.5 T 4 -/Y embryos in vivo.    

 

 

Fig. 6.10 

E10.5 T 4 -/Y embryos display a reduced level of TGF-  target genes in vivo 

 

qRT-PCR on RNA extracted from somite matched pairs of E10.5 T 4 +/Y and T 4 

-/Y embryos demonstrated that T 4 -/Y embryos express significantly lower levels of 

the Smad responsive genes PAI-1, Id-1 and c-myc.  * p<0.05, ** p<0.01, *** 

p<0.001.  Error bars represent standard error.  

 

6.3  Discussion 

 

6.3.1  Summary 

 

In order to investigate whether T 4 could stimulate the differentiation of progenitors 

into mature mural cells, a number of in vitro models of mural cell differentiation were 

explored.  A number of cell types were treated with T 4 and the induction of mural 

cell markers assessed by qRT-PCR.  Wild type ES cells were stimulated to 

differentiate through the withdrawal of LIF and grown to confluence.  T 4 had no 
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effect on the expression of mural cell markers under this protocol but treatment with 

TGF-  resulted in up regulation of SMA and SM22 .  10T1/2 cells represent a 

mesodermal progenitor cell line, whilst A404 cells are P19 embryonal carcinoma 

cells, clonally selected for their ability to differentiate into VSMCs.  Upon serum 

starvation and subsequent treatment with T 4, both of these cell types expressed a 

wide range of mural cell markers at significantly higher levels than control PBS 

treated cells.  This indicates that T 4 can stimulate differentiation of progenitor cells 

into mature mural cells.  Primary MEFs were also isolated from E14.5-16.5 T 4 -/Y 

and T 4 +/Y embryos.  These cells did not modulate their expression of mural cell 

marker genes in response to T 4, and surprisingly down regulated the expression of 

mural cell markers when exposed to TGF- .  Also, somewhat surprisingly, T 4 -/Y 

MEFs expressed higher levels of mural cell marker genes than T 4 +/Y MEFs. 

 

In order to further understand the molecular mechanism behind T 4 stimulated 

induction of mural cell markers in 10T1/2 and A404 cells, and to assess whether 

bioinformatic evidence of TGF-  pathway abnormalities in the T 4 -/Y mouse had 

any relevance to this process, the levels of TGF-  pathway transcriptional targets 

were quantified in T 4 stimulated 10T1/2 and A404 cells.  It was observed that 

treatment with T 4, did indeed stimulate expression of TGF-  target genes in these 

cells.  Transfection of A404 cells with a luciferase Smad activity reporter construct 

revealed that treatment of 10T1/2 cells with exogenous T 4 could directly stimulate 

Smad reporter activity – an effect that was additive with TGF- .  Altered expression 

levels of TGF-  receptors or the Smad4 deubiquitinating enzyme Usp9x could not 

account for the TGF-  pathway stimulatory effects of T 4.  Co-treatment of 10T1/2 

cells with T 4 and TGF-  was shown to induce higher levels of Smad2 and Smad 1/5 
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phosphorylation than treatment with T 4 alone.  Finally, it was observed that the 

expression levels of TGF-  pathway transcriptional targets were reduced in E10.5 

T 4 -/Y embryos compared to somite matched T 4 +/Y controls. 

 

6.3.2  Effects of T 4 on ES Cell Differentiation 

 

In keeping with previously published studies
92

, TGF-  supplementation of ES cell 

differentiating medium was able to induce expression of the mural cell markers SMA 

and SM22  in wild type differentiating ES cells.  However, treatment of these ES 

cells with T 4, either alone or in combination with TGF-  did not have any inductive 

effect on mural cell markers.  One explanation for why T 4 had no effect on ES cells, 

but did act as a stimulus for mural cell differentiation in other cell types such as 

10T1/2 and A404 cells, could be that the differentiating ES cell represents a cell 

population that exists in too undifferentiated a state, to provide an accurate model for 

the process of in vivo mural cell induction.  It is possible that T 4 acts in vivo to 

induce differentiation from mesodermal progenitors and that some cellular 

differentiation/specification already needs to be in place, for T 4 induced mural cell 

differentiation to occur.  TGF-  may be able to exert its effects on a less differentiated 

substrate both in vitro and in vivo. 

 

These experimental data can be placed in the context of previously published 

observations.  Smart et al. noted that embryoid bodies derived from ES cells deficient 

for the basic helix-loop-helix transcription factor Hand1, had diminished expression 

of SMA.  However, this deficiency could be rescued by the addition of T 4 to the 

culture medium
51

.  This would imply that under certain circumstances T 4 can induce 
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mural cell marker expression in differentiating ES cells – although this has not, as yet, 

been shown in wild type ES cells.   

 

Differences in these two studies might be explained through analysis of the 

differentiation protocols that were used.  Smart et al. cultured ES cells as embryoid 

bodies before dispersing them and re-culturing them in differentiating medium for 16 

days.  This might have two possible consequences.  First of all, the effect of embryoid 

body aggregation followed by prolonged re-culture might serve as a significantly 

stronger signal to differentiation than the protocol of monolayer culture for 6 days 

used here.  This could mean that T 4 only effects ES cell differentiation at a time 

point later than the 6
th
 day or that the T 4 differentiation signal needs to be placed in 

the context of other, stronger signals to differentiation, in order to exert its effect. 

 

The second possibility is that ES cells which have been cultured as embryoid 

aggregates represent a partially differentiated population of cells, some of which are 

already lineage committed to the mesoderm.  Thus, they may represent a more viable 

substrate for T 4 induced mural cell differentiation than truly totipotent ES cells.  In 

order to resolve these disparities, further work could be conducted in which ES cells 

were cultured as a monolayer for a prolonged period – a strategy that has yielded 

mural cell differentiation for workers researching other aspects of this process
201

.  

Alternatively, wild type ES cells could be cultured as embryoid bodies before being 

cultured in T 4 supplemented differentiation medium.  In order to resolve the 

question of whether T 4 can only influence this process in cells, which are mesoderm 

lineage committed, clonal analyses could be preformed on cells with or without the 

expression of mesodermal markers such as Brachyury (T). 
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6.3.3  Effect of T 4 on MEF Phenotype 

 

Although, T 4 was able to upregulate the expression of mural cell markers in 10T1/2 

and A404 cells, surprising results were obtained when mural differentiation of MEFs 

was examined.  Apart from T 4 being unable to consistently, significantly induce 

mural cell marker genes in this population, the first strange observation is that TGF-  

has a repressive effect on mural cell marker expression in these cells.  The 

experimental basis for using these cells as a substrate for mural cell differentiation, is 

work, which showed that they could localise to the wall of ES cell derived vascular 

sprouts in vitro
193

.  Furthermore, these cells could localise to the blood vessel walls of 

tumours when co-injected with T241 tumour cells into the tail veins of mice
195

.  

However, unlike ES, 10T1/2 and A404 cells, MEFs have never been shown before to 

induce mural cell marker upregulation upon TGF-  treatment.  In fact, TGF-  

treatement of MEFs causes them to adopt a synthetic and proteolytic phenotype, much 

more consistent with the typical phenotypic profile of activated fibroblasts rather than 

vascular mural cells
202,203

.  Thus it is unclear, whether MEF cell culture represents a 

robust, physiologically relevant model of mural cell development.  An alternative 

explanation is that mural cells can be recruited from different cell pools during 

development, and that TGF-  responsive mural cell progenitors represent a different 

set of cells than that which the MEF model represents. 

 

The second surprising observation encountered in the MEF model of mural cell 

differentiation, was that T 4 -/Y MEFs express higher levels of mural cell marker 

genes, in general than T 4 +/Y MEFs.  This observation is puzzling due to the fact 
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that, established in chapter 3, T 4 -/Y embryos as a whole express lower levels of 

mural cell markers.  One explanation for this may lie in the fact that markers of mural 

cells and of myofibroblasts may overlap
204

.  Experimental data have shown that one 

route of origin of myofibroblasts is via the differentiation of MEFs
205

.  It has also 

been demonstrated that incisional wounds in rats attract fewer myofibroblasts, when 

treated with T 4
206

.  Thus, it is possible that T 4 may repress the differentiation of 

myofibroblasts, thus enabling excess myofibroblast differentiation from MEFs in T 4 

-/Y mice and consequent higher expression overlapping mural cell/myofibroblast 

markers.  One possible way of determing if this is the case, would be to analyse the 

T 4 -/Y and T 4 +/Y MEFs for the expression of markers, which are thought to be 

exclusively expressed by myofibroblasts, such as vimentin and fibronectin
204

. 

 

Thus, there are great difficulties in interpreting the data from MEF culture 

experiments, given that the phenotype of these cells in unclear due to their lack of 

TGF-  responsiveness.  As such, at this time, it seems prudent to discard any notion 

that these cells are a suitable model, for the process of mural cell development from 

uncommitted mesodermal progenitor cells,.   

 

6.3.4  Influence of T 4 on Alk-1/Alk-5 Signalling 

 

Typically, expression of the molecule PAI-1 is thought to be the result of TGF-  

binding to the Alk-5 receptor, causing subsequent downstream activation of the 

Smad2/3 signalling cascade.  Meanwhile, stimulation of the Alk-1 receptor results in 

phosphorylation of Smad1/5/9 signalling components and subsequent transcription of 

the gene Id-1
207

.  TGF-  signalling also has the ability to repress or induce expression 
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of the molecule c-myc dependent on the cell type being studied
164,165

.  Induction of all 

three of these TGF-  pathway marker genes was observed in T 4 treated 10T1/2 and 

A404 cells.  Furthermore, all three of these genes were observed to be downregulated 

in E10.5 T 4 -/Y mice.  This indicates that T 4 may be exerting an influence on both 

the Alk-1 and the Alk-5 TGF-  signalling pathways.  Further evidence for such an 

effect came from the observations that combination treatment with TGF-  and T 4 

could lead to both Smad2 and Smad1/5 phosphorylation to a level, greater than that 

achieved by treatment with TGF-  alone.  Though, such findings should be qualified 

by recognition that differences in Smad2 and Smad1/5 phosphorylation between 

TGF-  treated and T 4 plus TGF-  treated cells are small and come from only a 

single experiment. 

 

Such findings have implications for understanding how the ability of T 4 to stimulate 

mural cell differentiation, when added exogenously to cells in vitro, applies to the 

situation in vivo.  Mouse knockouts of both Alk-1
85,208

 and Alk-5
87,93

 embryonically 

lethal at midgestation due to vascular defects.  Here, 10T1/2 cells are used as an in 

vitro surrogate for mesodermal mural progenitor cells.  Reports concerning the 

expression patterns of Alk-1 and Alk-5 in vivo are contradictory.  Some researchers 

maintain that Alk-1 is expressed in a multitude of tissues, including cells of the 

vasculogenesis competent mesenchyme
209

, whilst others report that it is expressed 

very specifically in developing vascular endothelial cells
87

.  Thus, it is difficult to 

fully appreciate the consequence of Alk-1 pathway upregulation in 10T1/2 cells for 

mural cell differentiation in vivo. 
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Causing further confusion, are contradictory reports regarding the expression of 

Alk-5.  Some studies indicate that that Alk-5 expression is not present in the 

endothelium and is predominantly expressed in mural cells and the surrounding 

mesenchyme
87

, whilst others demonstrate its endothelial expression and the vascular 

defects which result as a consequence of its endothelial specific knockout
93

. 

 

It is therefore unclear whether the ability of T 4 to stimulate Alk-5 pathway 

activation in 10T1/2 cells is more applicable to an in vivo phenomenon of endothelial 

to mural cell progenitor signalling, or a defect in endothelial cell autonomous 

signalling.  The key facts to be appreciated, when reaching a conclusion in this matter, 

are that 10T1/2 cells are more indicative of mesodermal progenitors than mature 

endothelial cells
210

, and that T 4’s effects on mural cell differentiation occur when 

T 4 is added exogenously.  Thus, it can be argued, that the simplest interpretation of 

these experiments is that they offer evidence that T 4 secreted by endothelial cells 

can act as a paracrine factor to stimulate the differentiation of mesodermal progenitors 

into mature mural cells via activation of the Alk-5 (and possibly Alk-1) pathway. 

 

However, defective endothelial cell autonomous T 4 signalling (via Alk-1 or Alk-5) 

has not yet been unequivocally ruled out by these experiments.  In order to do this, a 

number of further experiments could be undertaken. 

 

One avenue of inquiry could take the form of endothelial cell and 10T1/2 cell co-

culture experiments.  Using this established technique
89

, endothelial cells could be 

isolated from T 4 +/Y and T 4 -/Y embryos via magnetic bead separation, before 

being co-cultured with 10T1/2 cells.  The endothelial cells can be kept separate from 
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the 10T1/2 cells through the use of transwell plates which allow diffusible factors to 

pass from one cell population to the other but inhibit direct cell to cell contact.  If T 4 

+/Y endothelial cells were able to induce mural cell differentiation of 10T1/2 cells 

under these conditions, but T 4 -/Y endothelial cells were not, then this would 

provide even more compelling evidence that loss of T 4 in endothelial cells causes 

reduced secretion of a trophic factor, resulting in impaired mural cell differentiation.  

Blunting of mural cell differentiation of 10T1/2 cells when co-culured with wild type 

endothelial cells, in response to administration of an -T 4 antibody would provide 

further evidence that this trophic factor is T 4. 

 

Further insight into whether signalling, through either Alk-1, Alk-5 or both receptors, 

is critical for mural cell marker gene induction in 10T1/2 cells, could also be gleaned 

through loss of function experiments.  In the standard in vitro model of T 4 induced 

10T1/2 cell differentiation, components of the Alk-1 and Alk-5 signalling pathways 

could be knocked down via transfection with siRNA, and any impairments in mural 

cell differentiation noted.  Another approach would be to use specific chemical 

inhibitors of each TGF-  pathway such as the Alk-1 specific inhibitor RAP-041
211

 

and the Alk-5 specific inhibitor SB-431542
212

. 

 

6.3.5  Evidence for an In Vivo Defect in TGF-  Signalling 

 

One possible criticism of the experiments reported in this chapter, is that qRT-PCR 

analysis of TGF-  target genes in somite matched pairs of E10.5 T 4 +/Y and T 4 

-/Y embryos, is insufficient evidence to claim the existence of an unequivocal defect 

in vascular TGF-  signalling in vivo.  Further evidence for this proposition comes 
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from work recently performed by Nicola Smart in Paul Riley’s lab.  She has 

demonstrated, through immunofluorescent analysis of sections through E10.5 T 4 -/Y 

aortas that mural cells in the T 4 -/Y embryo reside in two distinct populations.  In 

E10.5 T 4 -/Y embryos, which display a reduced degree of mural cell coverage of the 

developing aorta, levels of phospho-Smad2 are significantly down regulated in peri-

aortic mural cells compared to T 4 +/Y controls.  However, in T 4 -/Y embryos, 

which display a normal number of mural cells around their dorsal aortas, Smad2 

phosphorylation is slightly, but significantly up regulated in comparison to T 4 +/Y 

controls.  These data, not only provide compelling evidence of a role for T 4 in 

regulation of mural cell TGF-  signalling in vivo, but also help to explain the 

incompletely penetrant mural cell phenotype in T 4 -/Y embryos, as they indicate that 

compensatory mechanisms exist to up regulate TGF-  signalling in the absence of 

T 4.  

 

An alternative method, which would provide additional evidence for this conclusion, 

would be to perform laser capture microdissection on sections through E10.5 T 4 -/Y 

and T 4 +/Y embryos.  qRT-PCR could then be conducted on amplified RNA 

collected from these samples, to determine whether the decrease in TGF-  target gene 

expression observed in material from whole T 4 -/Y embryos was due to a decrease 

in vascular TGF-  pathway activity. 

 

6.3.6  The Mechanism of T 4 Induced Smad Phosphorylation 

 

The precise mechanism underlying the ability of T 4 to induce higher levels of 

phosphorylated Smad2 and Smad1/5 in 10T1/2 cells, which were cultured with 
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TGF-  and T 4 as compared to TGF-  alone, is not as yet clear.  One possibility is 

that T 4 interacts directly with TGF-  or with one of the TGF-  receptors and forms a 

complex that increases the affinity of the receptor for the ligand.  Such a hypothesis 

could be explored by performing co-immunoprecipitation assays, to test whether a 

physical interaction can occur between T 4 and either the TGF- 1, Alk-1, Alk-5 or 

TGF-  RII molecules.  Further work could involve performing surface plasmon 

resonance assays
213

 on the relevant molecules, to test whether binding of T 4 to either 

the TGF-  ligand or the TGF-  receptors could alter the affinity of the ligand-receptor 

interaction. 

 

In these experiments, the somewhat paradoxical observation was made that treatment 

with T 4, in the absence of TGF- , could not stimulate phosphorylation of Smad2 or 

Smad1/5, above the level caused by PBS treatment, and yet T 4 alone could stimulate 

TGF-  pathway activation as measured by a Smad activity luciferase reporter.  This 

observation suggests that T 4 may exert other effects on the TGF-  signalling 

cascade than merely receptor or ligand interaction.  In relation to this, one striking 

observation has come from a co-worker in Paul Riley’s group, who conducted a yeast 

two hybrid screen for molecular interactors of T 4 (Karina Dube).  From this work, it 

appears likely that T 4 posesses an in vivo physical interaction with a molecule 

known as Ski-interacting protein (Skip).  Smad2 and Smad3 can both interact with the 

c-Ski oncoprotein.  When a Smad-Ski complex is formed, it attracts a nuclear co-

repressor complex and transcription of Smad target genes is repressed
214

.  However, 

Skip can compete with Ski for the Ski binding site on Smad proteins, and by 

preventing Ski mediated repression can serve as a co-activator for TGF-  signalling.  
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Thus, one plausible hypothesis is that T 4 can bind to Skip, enhancing its ability to 

act as a Smad activator and increasing the gain of the signalling system. 

 

This could be tested in several ways.  One approach would be to knockdown Skip in 

10T1/2 cells by siRNA transfection, with a view to testing whether this could abolish 

T 4 stimulation of mural cell differentiation.  Subsequently, cells could be transfected 

with a dominant negative version of the Skip protein, which would in theory be able 

to bind T 4 but could no longer act as a Smad co-activator.  This experiment would 

demonstrate that a functional T 4-Skip-Smad interaction was necessary for T 4 

dependent mural cell induction.  
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7  The Role of T 4 in Physiological Angiogenesis 

 

7.1  Introduction 

 

Up until this point, the focus of investigation in this study, with regards to the role of 

T 4 in the developing vasculature has been guided by the haemorrhagic phenotype 

and mural cell defects observed in T 4 -/Y embryos.  However, as of yet, no attempt 

has been made to evaluate a potential role for T 4 in the process of angiogenesis, 

from in vivo genetic loss of function models. 

 

Such an approach seems appropriate, given the volume of research, which has been 

published on the role of T 4, both as a critical intracellular mediator
43

 and as an 

extracellular stimulus of angiogenesis
215

.   

 

The process of angiogenesis comprises a series of highly ordered cellular events, 

which result in the formation of new blood vessels.  During physiological 

angiogenesis, blood vessel sprouting into an, as yet, unvascularised tissue, is led by 

endothelial tip cells.  These tip cells have a specialised cytoskeletal structure.  They 

possess many veil-like membranous protrusions known as lamellipodia.  Out of these, 

arise thin filamentous processes known as filopodia, which project into the 

extracellular space.  It is thought that it is through these structures, that tip cells are 

able to sense such chemotactic signals as VEGF gradients
216

. 

 

Lamellipodia and filopodia are both manifestations of their underlying cytoskeletal 

scaffold.  Lamellipodia possess a highly branched actin network, whilst filopodia 



 224

consist of tight bundles of filamentous actin
216

.  The formation of both of these 

structures, is highly dependent on the activity of molecules which modulate 

intracellular actin dynamics.  The initial stimulatory signal for their formation arises 

from members of the Rho family of GTPasaes.  These molecules can stimulate the 

formation of lamellipodia and filopodia through their interaction with actin binding 

molecules such as Arp2/3 and Wasp.   

 

In theory, one might expect intracellular T 4 to be able to influence the process of 

lamellipodial and filopodial formation, and consequently the processes of endothelial 

cell migration and angiogenesis, through its G-actin sequestering properties.  It could 

be hypothesised that an overexpression of T 4 might lead to decreased cell migration, 

as it could lead to a greater proportion of the intracellular G-actin pool being 

sequestered, thereby slowing or halting the production of actin filaments in 

lamellipodia and filopodia.  Conversely, a decrease in the expression of intracellular 

T 4 could exert a migratory drive due to the increased availability of unsequestered 

G-actin for filament formation.  Such an effect has already been demonstrated by 

transfecting HUVECs in vitro with T 4 siRNA
43

.   

 

However, the situation does not appear quite this simple, potentially because of the 

diverse functions of T 4.  Whilst transiently transfecting endothelial cells with T 4 

siRNA does indeed stimulate increased migratory behaviour, stable transfection of 

these HUVECs with T 4 siRNA has the opposite effect and decreases migratory 

capacity.  This effect is thought to be due to a lack of T 4 stimulated MMP secretion, 

resulting in endothelial cells which are unable to turnover the ECM
43

.  To date, all of 
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these findings have been elucidated from in vitro studies, and so testing which of 

these effects T 4 is able to mediate in vivo is a highly relevant question.            

 

One unresolved issue in endothelial T 4 biology is the extent to which extracellular or 

paracrine T 4 plays a role during in vivo angiogenesis.  The addition of exogenous 

T 4 to aortic ring explants
217

 and chick chorioallantoic membranes
54

, results in the 

formation of new blood vessels, in these ex vivo models.  As such, it is plausible that 

T 4 may act as an in vivo trophic stimulus for angiogenesis similar to VEGF. 

 

In order to investigate the possible roles of T 4 during developmental angiogenesis, 

use was made of a number of in vivo models.  Each of these assays relies on 

measuring parameters associated with active angiogenesis.  For example, in the 

neonatal retinal model of angiogenesis, endothelial tip cells migrate from the centre of 

the optic disc to the periphery of the retinal cup in a radial fashion
55

.  Thus, one 

parameter that can be measured is the distance from the central optic disc to the 

migratory front of the vascular plexus at any given time point.  This will provide an in 

vivo measure of the migratory activity of endothelial cells and thus a quantification of 

the rate of angiogenesis
161

. 

 

An alternative metric of angiogenesis is to count blood vessel intersections, also 

known as branch points.  When the filopodial processes of two tip cells meet, they can 

either separate or fuse together
218

.  If they fuse together, a new vessel is formed 

linking the two existing pillars of endothelial stalk cells that each tip cell was leading.  

For this reason, the density of vascular intersections can also be used as a surrogate 

measure of angiogenesis
161

. 
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7.2  Results 

 

7.2.1  E10.5 T 4-RIEK Embryos Display No Defect in Angiogenesis 

 

It was noted on whole mount examination of E10.5 embryos that the region 

surrounding and overlying the somites was rich in branching blood vessels.  

Quantification of the branch point density in this region, has been used by other 

groups as a surrogate measure for angiogenesis at this time point
219,220

.  Therefore, 

E10.5 T 4 RIEK and wild type embryos had their blood vessels highlighted through 

the use of whole mount immunohistochemistry for the endothelial cell marker 

PECAM, and had their vessel branch points counted in the somatic region of the 

embryo (Fig. 7.1).  However, no difference was observed in the branch point densities 

of T 4-RIEK mutant and wild type embryos. 
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Fig. 7.1 

E10.5 T 4 -/Y embryos display no angiogenic defect 

 

Whole mount PECAM immunohistochemistry of E10.5 T 4-RIEK mutant and 

control embryos revealed that angiogenesis was not impaired in the mutants (a).  This 

was performed by counting the number of intersecting branch points over a defined 

section of the somatic region of the embryo, as shown in (b). 

 

Due to the previously described concerns about the efficiency and magnitude of T 4 

knockdown in the T 4-RIEK mouse a decision was made to abandon this model and 

move to a different one.  As the T 4 global loss of function mouse had presented with 

a mural cell phenotype, this was thought to be the best genetic mutant to pursue.  The 

decision was also taken to make use of the neonatal retinal angiogenesis model.  This 

is because several more parameters can be measured in the retinal model than the 

embryo/somite model.  For example, as well as branch point density; migratory 

distance, tip cell filopodial number and secondary vascular sprouting can all be 

quantified. 
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7.2.2  T 4 Is Expressed in the Developing Retinal Vasculature 

 

In order to gain further insight into what role T 4 might play in retinal angiogenesis, 

and to confirm its expression in the retinal vasculature, whole mount in situ 

hybridisation for T 4 mRNA was conducted on P6 wild type retinas.  Wild type P6 

retinas displayed staining for T 4 throughout the retinal vascular plexus, but could 

also be observed expressed in a speckled pattern in cells of the unvascularised retinal 

periphery (Fig. 7.2).  Subjectively, it was thought that T 4 might be slightly higher in 

those vascular cells closest to the sprouting front. 

 

 

Fig. 7.2 

T 4 is expressed in the retinal primary vascular plexus 

 

Whole mount in situ hybridisation for T 4 mRNA reveals expression of T 4 in the 

developing vascular plexus of wild type P6 retinas at low magnification (red 

arrowheads) (a), and at high magnification (b).  The dashed red line in (b) represents 

the age of the sprouting vascular front.  More peripheral to this front, weaker T 4 

expression can be viewed in non-vascular cells.  Scale bars: (a) 100μm, (b) 50μm. 

 

7.2.3  Loss of T 4 Function Has No Effect on Retinal Vascular 

Angiogenesis  

 

In order to determine whether deletion of the T 4 gene, could affect physiological 

angiogenesis in vivo, whole mount retinas from P6 T 4 -/Y and T 4 +/Y mice were 
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stained with the endothelial cell marker Isolectin B4 and imaged using fluorescent 

microscopy.  On gross examination, no differences could be observed between the 

retinas from T 4 -/Y and T 4 +/Y mice (Fig. 7.3). 

 

 

Fig. 7.3 

The appearance of the retinal vasculature in T 4 -/Y mice is grossly normal 

 

Whole mount staining of P6 T 4 +/Y (a) and T 4 -/Y (b) retinas with the endothelial 

specific lectin Isolectin B4 reveals no gross differences between T 4 +/Y and T 4 -/Y 

specimens.  Scale bar: 100μm. 

  

In order to provide a more systematic and quantitative analysis of angiogenesis in T 4 

-/Y and T 4 +/Y retinas, P2, P4 and P6 T 4 +/Y and T 4 -/Y retinas were stained 

with Isolectin B4.  From the pictures, which resulted, the first parameter that was 

measured was the radial distance that the vascular sprouting front had migrated.  

There was no significant difference observed in the distances achieved between the 

two genotypes examined at any of the time points that were assessed (Fig. 7.4). 
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Fig. 7.4 

There is no defect in the migration of the sprouting vascular front in T 4 -/Y 

retinas 

 

Quantification of the radial distance migrated by the endothelial sprouting front in 

T 4 +/Y and T 4 -/Y mice at P2, P4 and P6 demonstrates no difference between the 

two genotypes. 

 

The next step was to assess whether there were any differences in the branch point 

density between the T 4 +/Y and T 4 -/Y retinas.  Branch point density was 

measured in the vascular plexus just proximal to the sprouting front in P2, P4, and P6 

T 4 +/Y and T 4 -/Y retinas.  Once again, no difference could be observed between 

the wild type and T 4 null specimens (Fig. 7.5). 
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Fig. 7.5 

T 4 -/Y retinas display no abnormality in vascular branch point density 

 

Quantification of branch points in the sub tip cell layer of T 4 +/Y and T 4 -/Y mice 

at P4, P6 and P7 again reveals no significant differences between the genotypes. 

 

Given the necessity of a functional actin cytoskeleton for the formation of 

lamellipodia and filopodia as previously described, it was hypothesised that T 4 -/Y 

tip cells might display a greater number of lamellipodia or filopodia due to a 

theoretical increase in intracellular free G-actin to allow formation of actin filaments.  

In order to assess this, high powered pictures of the Isolectin B4 labelled sprouting 

front were taken and the lamellipodial and filopodial density along the vascular front 

calculated.  Somewhat surprisingly, there was no difference observed in the number 

of lamellipodia per field or filopodia per tip cell between the T 4 +/Y and T 4 -/Y 

mice (Fig. 7.6). 
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Fig. 7.6 

T 4 -/Y retinal vascular tip cells possess a normal number of filopodia and 

lamellipodia 

 

Endothelial tip cells possess characteristic lamellipodia (white arrows) and filopodia 

(red arrowheads) (a).  Microscopic examination of Isolectin B4 stained retinas reveals 

no significant difference in the density of lamelipodia along the sprouting front (b) 

and no significant difference in the number of filopodia per tip cell (c) between P6 

T 4 +/Y and P6 T 4 -/Y retinas.  Scale bar: 10μm.  

 

Following development of the primary vascular plexus, a deeper vascular plexus 

starts to form at around P7 in the neonatal mouse retina
55

.  If the flat mounted retina is 

viewed as in Fig. 7.3, then initial sprouting takes place downwards along the z axis 

into the page.  This makes formation of the secondary vascular plexus a difficult 

phenomenon to observe with fluorescence microscopy.  However, there are 

parameters which can be measured which act as a sufficient markers for deeper 

vascular plexus development.  The initial downward sprouts from the primary plexus 

can be viewed as small circular foci of fluorescence hyperdensity.  The density of 

these across the retinal field where sprouting is taking place can act as a surrogate for 

secondary plexus formation.  Likewise, the percentage of the primary plexus, which is 

producing downward sprouts can also be assessed.  These concepts are illustrated in 

Fig. 7.7a.   

 

When P9 T 4 +/Y retinas were compared to P9 T 4 -/Y retinas, it was observed that 

the T 4 -/Y retinas appeared to have both a decreased density of downward sprouts 



 233

and a reduced area of downward sprouting than T 4 +/Y mice (Fig. 7.7b and c).  

However, it is difficult to draw any firm conclusions from these observations as the 

differences did not reach statistical significance.  This is likely due to the low N 

numbers used in this analysis (3 T 4 +/Y retinas versus 3 T 4 -/Y retinas).  As there 

is a lot of variation from animal to animal, this sample was not of sufficient size to be 

sure of the observation. 

 

 

Fig. 7.7 

T 4 -/Y retinas display a trend towards a reduction in secondary vascular plexus 

sprouting 

 

The boundary of the secondary retinal vascular plexus (red dashed line) can be 

defined as the tightest surface area which encloses a region of small round fluorescent 

hyperdensities (red arrowheads) on whole mount retinal Isolectin B4 staining (a).  

Quantification of the density of downward sprouts (b) and the area of downward 

sprouting (c) show a non-significant reduction in downward sprouting in P9 T 4 -/Y 

as compared to T 4 +/Y retinas.    

 

7.2.4  T 4-HEK Mice Display No Defect in Retinal Vascular 
Sprouting 

 

It has been reported that the migratory phenotype of endothelial cells is extremely 

sensitive to the gene dose of T 4
43

.  In vitro studies show that transient transfection of 

endothelial cells with a T 4 shRNA expressing construct leads to an increase in 

migratory capacity, whilst stable transfection with the same T 4 shRNA construct 
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leads to dramatically decreased migration of the cells.  This variability in endothelial 

cell migration was ascribed to a difference in T 4 knockdown of about 30% between 

the two cell lines.  Thus, a decision was made to investigate the phenotype of P6 

retinas in T 4 HEK-mice.  The rationale behind this strategy, was that, due to the 

T 4-HEK mouse being a model of T 4 knockdown, rather than knockout, the 

vasculature in the T 4-HEK mouse would display a different level of T 4 reduction 

to the T 4 -/Y mouse.  This alteration in gene dose might manifest itself an 

endothelial migratory phenotype different to that observed in the T 4 -/Y mouse. 

 

The mutant T 4-HEK mutant specimens, again displayed no significant difference in 

the magnitude of sprouting front migration compared to controls.  Nor, did they show 

any change in branch point density in both the peripheral and central areas of the 

plexus compared to wild type littermates (Fig. 7.8). 

 

 

Fig. 7.8 

No angiogenic defect is observed in the T 4-HEK retinal vasculature 

 

Examination of Isolectin B4 stained whole mount P6 T 4 HEK mutant and control 

retinas disclose no differences in migratory distance of the sprouting front (a), branch 

point density at the vascular front (b) or branch point density at the central region (c) 

between mutants and controls. 
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7.3  Discussion 

 

7.3.1  Summary 

 

In order to determine whether T 4 played an important role in physiological 

angiogenesis in vivo, T 4 genetic loss of function models were interrogated.  Analysis 

of the peri-somitic vasculature of E10.5 T 4 RIEK embryos, through whole mount 

PECAM staining revealed no defect in angiogenesis. 

 

Attention was then switched to the T 4 -/Y mouse, and the retinal vasculature used as 

a model system.  Whole mount in situ hybridisation showed prominent expression of 

T 4 in the developing retinal vascular plexus but careful phenotyping demonstrated 

no defect in migration of the endothelial sprouting front, nor an abnormality in branch 

point density in T 4 -/Y specimens.  Somewhat surprisingly the T 4 -/Y mice 

possessed the same density of filopodia and lamellipodia on their endothelial tip cells 

as did T 4 +/Y mice.  In fact, the only possible abnormality observed in the T 4 -/Y 

mice, might be a reduction in secondary vascular plexus sprouting.  However, 

unfortunately the sample sizes tested were not sufficient to be able to exclude random 

variance about the mean as a cause for this difference. 

 

The final model system employed was the T 4 HEK mouse.  Once again, no 

difference could be observed in either the migratory distance of endothelial cells, nor 

the density of branch points in T 4 HEK mutant mice. 
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7.3.2  T 4 Loss of Function Does Not Lead to an Angiogenic Defect 
In Vivo 

 

Somewhat surprisingly, no statistically significant and major angiogenic defect 

exhibited itself in T 4 loss of function models.  This was unexpected, as a role for 

T 4 as both a stimulator of ex vivo vasculogenesis
215

 and a critical intracellular 

mediator of endothelial cell migration
43

 has already been established in the literature.   

 

One explanation for the failure to observe a phenotype in the T 4 shRNA models 

tested could be due to incomplete and inefficient knockdown of T 4, for reasons 

previously discussed in Chapter 4.  However, this does not explain the lack of 

phenotype in T 4 -/Y specimens.  One plausible explanation could lie in the array 

data first presented in Chapter 5.  Gene array analysis of T 4 -/Y hearts revealed that 

they possessed reduced amounts of mRNA for the genes Arp2/3 and profilin 

(Appendix 3).  Arp2/3 is an actin nucleating factor, which promotes the addition of 

branching chains to F-actin, whilst profilin has the almost exact opposite effect to 

canonical T 4 action, as it desequesters G-actin and promotes its polymerisation to F-

actin.   

 

The result of these gene expression changes could be that they effectively maintain 

the ratio of actin depolymerising molecule to actin polymerising molecules constant, 

thus keeping the dynamic F-actin/G-actin equilibrium in balance.  There is some 

precedent for such an effect.  Through an unknown transcriptional regulatory 

mechanism, overexpression of T 4 in NIH 3T3 cells was able to stimulate an increase 

in the expression of -actin, vinculin and Talin, with the result that G-actin to F-actin 

ratio was kept constant
21

.  This hints at the existence of some as yet unexplained 
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transcriptional feedback loop, which keeps the cytoskeletal machinery in perfect 

balance.  In order to determine whether this could be the explanation for normal 

endothelial cell migration in T 4 -/Y mice, qRT-PCR could be conducted on RNA 

extracted from T 4 +/Y and T 4 -/Y retinas.  If levels of molecules such as Arp2/3, 

-actin, and profilin were down regulated, this would provide good evidence for 

compensatory changes in actin dynamics following loss of T 4. 

 

7.3.3  Sprouting of the Secondary Vascular Plexus 

 

The only possible defect observed in the retina of the T 4 -/Y mouse was potentially 

a reduction or delay in sprouting of the secondary vascular plexus.  The molecular 

mechanisms, which govern sprouting of the secondary deeper vascular plexus are not 

well understood.  Although, it is speculated that there might be a molecular trigger 

which reactivates quiescent endothelium in the primary plexus to initiate downward 

sprouting (Fruttiger M. – personal communication).  

 

The next experimental step would be to conduct a full characterisation of the 

secondary vascular plexus in T 4 -/Y pups.  The same experiments as performed here 

could be conducted on a greater number of specimens to improve the statistical power 

of the experiment.  In addition, confocal microscopy could be used to visualise the 

secondary plexus directly and note any branching abnormalities which were confined 

to this vascular bed.   

 

One possible hypothesis, as to how T 4 could be functioning to induce secondary 

plexus sprouting defects, is that T 4 is secreted by non-endothelial cells, and acts in a 
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paracrine extracellular role to stimulate angiogenesis from the quiescent cells of the 

primary plexus.  Such a niche would correspond well to experiments performed by 

other researchers, which have marked T 4 as a potent extracellular driver of 

angiogenesis
54,215

.  Circumstantial evidence that this is how T 4 might function 

comes from the observation, made here, that T 4 does not appear to be expressed 

solely in the endothelial cells of the retina.  Fig. 7.2b, certainly shows expression of 

T 4 in cells which are not part of the vascular plexus.  Key to further exploration of 

this theory, would be identification of the non-endothelial cells which express T 4.  

This could be achieved by performing immunostaining for astrocyte, neuronal or 

macrophage markers on whole mount retinas, which have already undergone in situ 

hybridisation for T 4. 
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8  Discussion and Future Work 

 

8.1  A Molecular Model for T 4 Action 

 

The favoured model for the action of T 4 proposed in this thesis is that, T 4 is 

secreted by the endothelial cells of the developing vasculature.  This paracrine T 4 

signal then acts on mesodermal progenitors, to stimulate their differentiation into 

mature mural cells by activating the TGF-  signalling pathway (Fig. 8.1). 
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Fig. 8.1 

A model for T 4 action in mural cell development 

 

A schematic to explain the proposed mechanism of T 4 action in vascular 

development.  T 4 is secreted by the developing endothelium.  This T 4 acts on 

mesodermal progenitor cells to stimulate TGF-  target gene transcription through a 

co-operational effect on Smad phosphorylation with TGF-  ligand.  This results in 

increased transcription of typical mural cell genes such as smooth muscle actin, NG2, 

endosialin and others.  This leads to mural cell differentiation and investiture of the 

endothelium with a fully formed mural cell coat.  In the absence of T 4, the effect of 

endothelial secreted TGF-  is reduced leading to decreased Smad phosphorylation in 

mesodermal progenitors resulting in lower TGF-  target gene activation.  This causes 

less mural cell differentiation and reduced mural cell recruitment to the developing 

vessel wall.  If a critical threshold of mural cell coverage is not achieved, the vessel 

loses structural integrity and haemorrhage results. 

 

Such a model is plausible, but is also illustrative of a number of unresolved issues 

with regards to T 4 biology.  The first of these regards the secretion of T 4.  It is 

clear, for several reasons, that T 4 is secreted during physiological processes.  First of 

all, levels of T 4 can be measured in the serum
221,222

, salivary fluid and lacrimal 

secretions
223

.  Secondly, cells in culture have been shown to secrete T 4 into the 
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culture medium
224

.  Finally, the effects on target cells of exogenous T 4 are too 

numerous and too well described to not, in many instances, be representative of true 

physiological phenomena
1
. 

 

In eukaryotes, the majority of secreted proteins possess a secretion signal peptide, 

which allows them to be packaged in vesicles and exported via the Golgi/endoplasmic 

reticulum (ER)
225

.  T 4 does not possess such a secretory peptide, and thus, how T 4 

can be secreted remains unknown.  However, T 4 is not the only molecule, which is 

secreted from cells without possessing a classical secretory sequences.  In recent 

times a number of proteins such as the fibroblast growth factor (FGF) and the 

inflammatory cytokine IL-1  have been identified as being secreted by non-classical 

secretory pathways.   Such non-classical secretory pathways are typically thought to 

rely on secretory lysosomes, membrane blebbing or transport by specific 

transmembrane channel proteins
226

.  Some indication that T 4 can be secreted by one 

of these non-classical means comes from a screen, which identified the closely related 

molecule T 10, as being secreted by keratinocytes in a manner dependent on the 

activity of the enzyme Caspase-1
227

.  It is plausible to suggest that T 4 might be 

secreted via a similar mechanism. 

 

In order to fully validate the model for vascular T 4 action presented here, it would 

be necessary to provide evidence of endothelial T 4 secretion above and beyond that 

implied by the effects of exogenous T 4 on 10T1/2 and A404 cells.  The ideal, would 

be to elucidate the non-classical mechanism of T 4 secretion, and then to perturb it.  

For example, if T 4 was found to be secreted in a Caspase-1 dependent fashion, then 

mutant constructs coding for forms of either Caspase-1 or T 4 which did not interact 
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with each other could be created.  These could be transfected into endothelial cells 

and used in 10T1/2 cell co-culture assays to determine if they abrogated the effect of 

T 4 on mural cell differentiation.   

 

An alternative approach could be to inject recombinant, synthetic T 4 into the 

pregnant mothers of E9.5 T 4 -/Y embryos.  Maternal injection of T 4 has previously 

been shown to be able to cross the placental barrier and rescue the yolk sac vascular 

defects of Hand1 null embryos
51

.  The rationale behind such an experiment, is that 

T 4 would be able to enter the foetal circulation, cross the endothelial and rescue the 

mural cell defect apparent in E10.5 T 4 -/Y mice.  This would provide good evidence 

that the mural cell defect in E10.5 -/Y embryos is due to a paracrine rather than a 

endothelial cell autonomous loss of T 4. 

 

A Receptor for T 4 

 

To date, no cell surface receptor has been definitively identified for T 4.  Although, 

treatment of A404 and 10T1/2 cells with exogenous T 4 activates the TGF-  

signalling pathway, it is difficult to confirm the validity of the model of action 

proposed beyond all reasonable doubt, without insight into how T 4 mediates this 

effect. 

 

A number of molecules, have been put forward as candidates for a T 4 receptor.  The 

first of these is known as Integrin linked kinase (ILK).  It has been demonstrated that 

in adult hearts, T 4 can bind to ILK and form a complex which can phosphorylate 

and activate the survival kinase Akt
27

.  This observation is interesting, as considerable 
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evidence exists for crosstalk between Akt and the TGF-  signalling pathway
228

.  

However, it is not clear whether the effect of Akt activation is activatory
229

 or 

inhibitory on the TGF-  pathway
230

.  Another potential receptor is the Ku80 subunit 

of the DNA Helicase II complex
56,231

.  T 4 has been shown to bind to this molecule in 

vitro and knockdown of Ku80 by siRNA has been shown to inhibit T 4 stimulated 

PAI-1 expression in colorectal carcinoma cells.   

 

One common theme, which emerges from these observations, is that interactors of 

exogenous T 4 are generally intracellular.  Ku80 is predominantly a nuclear protein, 

although it can also be expressed on the cell surface
232

.  In addition, functional 

interaction of T 4 with ILK and subsequent activation of Akt2 in endothelial cells 

was thought to be localised, to the intracellular side of the cell membrane in 

HUVECs
43

.  This raises the intriguing possibility that T 4 exerts its paracrine effects 

by binding to an internal rather than an external molecular target.   

 

Further evidence for this hypothesis comes from observations that T 4 mediated 

protection of human corneal epithelial cells from ethanol induced apoptosis, is 

correlated with the accumulation of Histidine tagged T 4 in the cell cytoplasm.  

Furthermore, T 4 apoptotic protection was abolished by treatment of the corneal 

epithelial cells by cytochalasin D, which as an inhibitor of endocytosis, prevented 

intracellular accumulation of T 4
233

. 

 

Thus, it is possible that T 4 exerts its effects on mural cell differentiation and TGF-  

pathway activation in 10T1/2 and A404 cells via intracellular uptake by endocytosis.  

This presents an attractive model, as it would allow for a functional interaction 
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between T 4 and the protein Skip/SNW1 as speculated in the discussion of chapter 6.  

This could be tested by treating A404 and/or 10T1/2 cells with Histidine or FLAG 

tagged T 4, and observing whether labelled T 4 was taken up by target cells.  

Various inhibitors of endocytosis such as cytochalasin D could be administered to 

these cells to observe whether they prevented T 4 uptake and suppressed T 4 induced 

mural cell differentiation. 

 

In theory, one could test the in vivo relevance of a potential internalisation dependent 

T 4 signalling mechanism by creating a transgenic T 4-GFP or T 4-6His mouse.  If 

T 4 internalisation does take place in vivo in mural cells, then the presence of GFP or 

Histidine tagged T 4 inside mural cells, without the expression of T 4 mRNA in 

these cells, would provide good evidence that this phenomenon has in vivo relevance.    

 

A Potential Role for T 4 in the Nervous System 

 

The studies reported in this thesis also report expression of T 4 in the nervous system 

consistent with other entries in the literature
52,108

.  It appears to be expressed 

predominantly in grey matter at sites of active neurogenesis.  These observations are 

striking, as many parallels can be drawn between T 4 expression and function in the 

CNS and T 4 expression and function in the cardiovascular system.   

 

In the heart, T 4 is secreted by the developing myocardium, in order that it can signal 

to the overlying epicardium to stimulate the migration of EPDCs into the myocardium 

and their differentiation into the cells of the coronary vasculature
50

.  In the systemic 
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vasculature, as shown in this thesis, T 4 is secreted by endothelial cells to signal to 

mesodermal progenitors, to induce their differentiation into mature mural cells. 

 

However, T 4 also plays a role in the setting of adult cardiovascular disease.  Upon 

surgically induced myocardial infarction in mice, administration of T 4 can restore 

cardiac function partly through stimulation of revascularisation
101

, and partly through 

the promotion of myocardial regeneration from adult EPDCs (Paul Riley – personal 

communication).  Thus, it is thought that T 4 exerts its cardioprotective effects by re-

induction of the embryological mechanisms of cardiac development. 

 

T 4 has also been shown to possess therapeutic function in treatment of neurological 

disorders.  In an embolic model of stroke conducted in the rat, administration of 

synthetic T 4 was shown to promote functional outcome.  This was correlated with an 

increase in myelinated axons in the ischaemic boundary
41

.  In another model of 

neurological disease, in this case experimental autoimmune myeloencephalitis – a 

mouse model for multiple sclerosis, T 4 was able to induce functional recovery.  

Once again, this was correlated with an ability to induce proliferation of an N20.1 

oligodendrocyte progenitor line
36

. 

 

Thus T 4 appears to possess similar functions in the adult central nervous and 

cardiovascular systems.  It can stimulate the proliferation and differentiation of adult 

progenitor cells to promote recovery in a damaged target tissue.  Given that T 4 

seems to have the same function in the adult CNS and heart, it is very possible that 

they may have a similar function during development.  This makes a study of the 

functional role of T 4 in the developing neural system an attractive proposition.  In 
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order to determine whether T 4 has a function during embryonic neurogenesis the 

random integrant or Hprt targeted T 4 shRNA mice could be crossed with a Cre 

driver strain, which expresses Cre recombinase in the neural lineage of interest.  As 

an alternative, the brains of T 4 -/Y embryos could be examined for subtle defects in 

neurogenesis. 

 

T 4 in Vascular Disease 

 

The findings outlined in this thesis may have relevance for understanding the 

pathogenesis and treatment vascular disease.  Preliminary results from Paul Riley’s 

lab, indicate that adult T 4 -/Y mice, which survive the process of embryogenesis 

have abnormally dilated aortas, somewhat reminiscent of aortic aneurysm.  Co-

incident with this, the mural cells of these aortas appear to express lower levels of 

differentiation markers such as smooth muscle actin.  Thus, if these preliminary 

results hold true, it appears that T 4 -/Y mice may display an adult vascular disease 

with an aetiology of abnormal development due to a lack of T 4. 

 

T 4 in Aneurismal Disease 

 

Such a finding may have applicability to understanding the formation of aneurysmal 

disease of the aorta in humans.  Several syndromic forms of aortic aneurysm, 

including those of Loeys-Dietz syndrome are caused by mutations in components of 

the TGF-  signalling pathway
234

.  Given that, a role for T 4 in TGF-  signalling has 

been demonstrated in this thesis, it is plausible that T 4 modulation of TGF-  

signalling has activity in human aortic aneurysm.  Such a hypothesis is given more 
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credence by the observation that T 4 is one of the most highly expressed transcripts 

in human abdominal aortic aneurysms
235

. 

 

This theory becomes all the more important, when placed in the context that 

endovascular administration of VSMCs to aneurismal xenografts in rats was able to 

prevent aneurysm progression
236

.  Administration of TGF-  was also able to achieve a 

similar effect
237

.  Although, it has not been concluded that TGF-  exerts its protective 

effect on aortic aneurysm through the de novo induction of stabilising mural cells, this 

is a possibility.  As such, if T 4 -/Y animals do possess significant aneurysm, it would 

be intriguing to determine whether systemic administration of recombinant T 4 could 

halt or reverse the disease through stimulation of appropriate ad full mural cell 

differentiation.  Moreover, it would be interesting to test whether T 4 could exert 

therapeutic effects on other models of aortic aneurysm. 

 

T 4 in Diabetic Retinopathy 

 

The endothelial-pericyte signalling axis has become a critical focus for understanding 

the pathogenesis of several diseases.  One of these is proliferative diabetic 

retinopathy.  Vascular insufficiency in the retina is thought to stimulate a hypoxic 

drive for the proliferation of new blood vessels across the retinal surface.  However, 

fibrous traction caused by these new blood vessels can lead to retinal detachment 

whilst growth of blood vessels into the vitreous can cause blindness.  The first 

pathological step in this process is thought to be death of vascular pericytes in the 

retinal vascular plexus
238

.  Evidence that pericyte loss is causative for the 

pathogenesis of diabetic retinopathy comes from studies involving mice heterozygous 
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for a PDGF-B null allele.  These mice have reduced retinal pericyte coverage and are 

more susceptible to proliferative change in hypoxia induced retinopathy
239

. 

 

Thus, one approach to treat proliferative diabetic retinopathy might be to prevent 

pericyte loss or to replace pericytes that have died.  Although, in this thesis, no defect 

was observed in the mural cell coverage of T 4 -/Y mice, it is not implausible that 

T 4 may be able to act as a stimulus for mural cell differentiation in the adult retina.  

The explanation for why loss of T 4 during development does not affect mural cell 

coverage of neonatal retinas is that the retina lacks vasculogenesis competent 

mesenchyme, which can act as a substrate for mural cell development
151

.  However, 

in the adult, there might potentially be other sources of progenitor cells, which can 

undergo mural cell differentiation.  For example, there are reports that bone marrow 

cells can act as pericyte precursors
240

. 

 

Therefore, it is possible that T 4 might play a role in the pathogenesis or treatment of 

diabetic retinopathy.  In order to test whether loss of T 4 makes animals more 

susceptible to diabetic retinopathy, the retinas of old T 4 -/Y adult mice could be 

examined for the presence of vascular proliferation, aneurysm and haemorrhage.  T 4 

-/Y mice could also be exposed to a hyperoxic environment followed by a hypoxic 

environment to promote proliferative change.  The degree of proliferative change and 

pericyte dropout could be assessed and compared to that present in T 4 +/Y mice.   

 

In order to test whether T 4 might be protective against diabetic retinopathy, PDGF-

B heterozygous null mice, which have a 30% reduction in vascular pericyte coverage, 

could be injected with T 4 to observe if exogenous T 4 could stimulate re-coverage 
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of the vasculature with newly differentiated mural cells, perhaps arising from bone 

marrow precursors.   

 

T 4 in Tumour Angiogenesis 

 

Another disease system where the endothelial-pericyte signalling axis is important is 

the tumour vasculature.  Tumours require a blood supply in order to grow.  Most 

tumours display abnormal vascularisation, being in possession of highly tortuous, 

leaky and incomplete blood vessels
241

.  Recently, anti-VEGF immunotherapy has 

proved a very effective adjunct to typical surgical and radiotherapy treatments for 

cancer, by targeting the blood supply of growing tumours
242

.  However, some tumours 

become resistant to anti-VEGF therapy.  It is thought that this may be due, in part, to 

the endothelial-pericyte interaction, as this relationship stabilises the endothelial 

vasculature and makes the cells less dependent on VEGF
243

.  Thus, combination 

immunotherapy targeting both the endothelial and the pericyte components of the 

tumour vasculature has increasingly become a focus of interest. 

 

Treatment of mice on the tumourigenic RIP1Tag2 genetic background with a 

combination of anti-VEGF and anti-PDGFR-  was more effective at treating tumours 

than therapy with either one of these agents alone
244

.  However, recent data suggest 

that this approach may not be as beneficial as originally perceived as reductions in 

primary tumour size are offset by an increased propensity for tumours to metastasise 

haematogenously, due to weakened blood vessel walls
243

. 
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Due to the key nature of the endothelial-pericyte relationship in tumour biology, it 

will be important to explore a potential role for T 4 in this interaction.  In order to 

explore a possible role for T 4 in recruitment of mural cells to tumour blood vessels, 

T 4 -/Y and T 4 +/Y mice could be inoculated with a tumour cell line.  As, in this 

animal model of cancer, the vasculature is derived from the host animal, a reduction 

in mural cell coverage of the tumour vasculature in T 4 -/Y mice would indicate a 

role for host T 4 in establishment of a competent neoplastic blood supply.  An 

alternative approach would be to treat tumour, which have been induced in wild type 

mice with an anti-T 4 antibody to observe whether this had any effect on the structure 

of the tumour vasculature.  Such experiments would be particularly appropriate given 

that T 4 is over expressed in many types of primary tumour
23,245

.   
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Appendix 1:  Top 100 Genes Down Regulated in E12.5 
T 4 -/Y Embryos 
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Appendix 2:  Top 100 Genes Up Regulated in E12.5 
T 4 -/Y Embryos 
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Appendix 3:  Top 100 Genes Down Regulated in T 4 

-/Y Adult Hearts 
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Appendix 4:  Top 100 Genes Up Regulated in T 4 -/Y 

Adult Hearts 
 

 

 

 

 

 

 

 

 

 

 

 

 


