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This paper presents a novel method of simultaneously locating chemical sources by a virtual physics-based multirobot system with
a release strategy. The proposed release strategy includes setting forbidden area, releasing the robots from declared sources and
escaping from it by a rotary force and goal force. This strategy can avoid the robots relocating the same source which has been
located by other robots and leading them to move toward other sources. Various turbulent plume environments are simulated by
Fluent and Gambit software, and a set of simulations are performed on different scenarios using a group of six robots or parallel
search by multiple groups’ robots to validate the proposed methodology.The experimental results show that release strategy can be
successfully used to find multiple chemical sources, even when multiple plumes overlap. It can also extend the operation of many
chemical source localization algorithms developed for single source localization.

1. Introduction

Chemical signals from any source propagate through a fluid
environment in a peculiar way. They disperse through the
environment by molecular diffusion and bulk flow [1]. The
chemical source gradually dissolves into the ambient fluid
medium resulting in a chemical trail or, in other words, an
“odor plume.” A plume is a dynamic structure composed of
packets of odorant under the influence of fluidmovements. A
plume-tracingmobile robot is capable of tracing odor plumes
and further locates a chemical source. The applications for
employing autonomous robots to perform plume tracing
and chemical source localization are widely ranging, for
instance, searching for explosives and demining operations
(by tracing volatile chemicals dispersed from the ordnance),
judging toxic or harmful gas leakage location, checking
for contraband (e.g., heroin), searching for survivors and
casualties following a disaster, and antiterrorist attacks.

The chemical source localization task usually consists
of three subtasks [2]: (1) finding the chemical plume; (2)
tracing the chemical plume to the source; and (3) declaring
the chemical source. There are three main characteristics of

the problemof chemical source localization. First, there exists
a global concentration maximum that occurs in the vicinity
of the position of a chemical source and multiple local con-
centration maxima along the plume. Second, the positions
with local concentration maxima are time varying due to
the influence of wind. Finally, the chemical concentration is
only detected within a plume at each time. On the basis of
these three main characteristics, many chemical localization
strategies have been proposed. According to the different
possible contexts, existing methods can be divided into three
categories. The first category is probabilistic strategies [3–5],
which employ a spatial map keeping track of the probabilities
for source presence. Such as “infotaxis” [5], the robot’s move-
ments can be determined such as to reduce the uncertainty on
the source location. It is successful in the difficult context of
turbulent conditions and a sensor suite consisting of a single
chemical and wind sensor, but the computational complexity
of the algorithms can be considerable. The second approach
draws inspiration frombiology. For example, chemical source
localization algorithms have been based on the strategies of
bacteria (Escherichia coli) [6], silkworm moths [7–9], dung
beetles (Geotrupes stercorarius) [10], birds flocking [11, 12],
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and glowworms [13]. A drawback of biological strategies is
that suitable behavior for the animals on which they are
inspired may not be a suitable behavior for the robot. The
third category is evolutionary approach [14]. This approach
may be hard to formalize using mathematical approaches.

There have been many results on chemical source local-
ization by using only one mobile robot [15, 16]. Compared
with a single robot, a multirobot system obviously provides
several advantages, namely, wider detection region to cap-
ture the time-varying plume, faster exploration in a search
environment, and system fault tolerance to individual robot
failures. Cooperation is a key parameter in the performance
of a group of robots which are trying to solve a general
search problem [17]. The cooperation, communication, and
management of the robots in a multiagent system can be
done either in centralized way by using a base station as
the server or decentralized way by having a distributed
behavioral based method [18–20]. To achieve robustness,
predictability, and scalability of the robotic swarm, we used a
decentralized control multirobot cooperation strategy based
on the principles of virtual physics. We use the term “virtual
physics” because although these forces are defined only inside
the control software, the robots act as though the forces
are real. Physics-based systems, whether natural or virtual,
can be analyzed using standard mathematical and physics
theoretical principles. Such analysis facilitates a thorough
understanding of the system and its predictability. When
systems are predictable, it is straightforward to provide the
necessary behavioral assurances that the swarm will perform
as desired, even in the absence of human supervision [21].
The physics-based approach we adapted may lack some of
the biomimetic intuition, but we gain much in terms of our
analytic ability to evaluate and predict the collective’s long-
term behavior.

Zarzhitsky et al. [22] proposed physics based framework
for distributed control of autonomous vehicles during local-
ization of the source of a toxic plume.The problem statement
in this paper explained that there are multiple chemical
sources in the environment and the robots should locate all of
them.Different from the case of one chemical source, locating
several chemical sources usingmultirobot faces the following
new problems: (1) how to partition the robots during a search
to ensure that all sources are located in minimal time; (2)
how to continue searching for other sources once a source
has been found; (3) how to avoid refinding the same source.
However, the existing methods of locating multiple chemical
sources still has the following deficiencies: (1) a stationary
plume environment is utilized to simulate the distribution
of chemical plume in natural environment [23, 24], which
is actually dynamic and turbulent; (2) a robot is regarded
as a particle, that is to say, his physical shape is neglected
[13, 24]; (3) a sequential way is adopted to locate multiple
chemical sources, that is to say, the method can locate only
one chemical source at one run [25, 26].

This paper proposes a novel methodology—release strat-
egy. One chemical source is located at a time and a forbidden
area is set and published to the searching robots. Thus, they
can release from the forbidden area and proceed with the
search process, eventually finding other existing plumes and

sources. In our previous work [27, 28], the virtual physics
has been used for chemical localization.The proposed results
are limited to simplified models of one or two chemical
sources dispersion, with the same release rate to the source
and without obstacles. In this paper, an approach based
on the generalization of the virtual physics with a release
strategy to the more difficult case of a turbulent chemical
plume is proposed. Compared with the existing methods
in the literature that work with localization of multiple
chemical sources, our method has the following advantages:
(1) a dynamic and turbulent plume environment is utilized
to simulate the distribution of chemical plume in natural
environment using computational fluid dynamics (CFD)
software, Fluent (Fluent, Inc.).Theplume fromvaried sources
is converged together, which makes the robots unable to tell
which source the plume they detected comes from; (2) the
robot used in this paper has a physical shape and foot print
of finite size; (3) the method can locate multiple chemical
sources at one run using parallel search by more than one
group. In addition, the physics-based approach we adapted
can be analyzed using standard mathematical and physics
theoretical principles. Such analysis facilitates a thorough
understanding of the system and its predictability. So, this
method facilitates transplanting the control strategy on the
true swam robots in real-world environments.

2. Benchmark Cases of
Multiple Chemical Sources

The benchmark cases of multiple chemical sources include
the following attributes: the characterization and distribu-
tion of sources, the presence of dead space (involving no
perceptible gradient), the characterization and distribution
of obstacles, presence of time-varying background flow, and
the model of robots. The characterization and distribution
of the sources in the field provide sources are occluded by
other sources with lesser, greater, or equal intensity. Dead
space is occupied to determine the impact of an imperceptible
gradient on search performance. The characterization and
distribution of obstacles in the field block the chemical
plume propagation and the robot motions to determine the
impact of search performance in obstructed environment.
The presence of time-varying background flow makes the
distribution of the plume still more dynamic and turbulent.
The robot used in this paper is not regarded as a particle,
but has a physical shape and foot print of finite size, so the
robots must avoid collisions with other robots in addition to
avoiding obstacles in the obstructed environment.

2.1. Dynamic Plume Models of Multiple Chemical Sources.
Three plume models used in the paper are obtained from Liu
and Lu [29]. The chemical plume propagation was simulated
using computational fluid dynamics (CFD) software, Fluent
(Fluent, Inc.). The plume data produced by Fluent were then
imported into Matlab (Mathworks, Inc.) and used by simu-
lated mobile robots for plume-tracing behavior simulations.
More efforts were engaged and the simulation frameworkwas
improved to simulate scenarios including multiple chemical
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Figure 1: Instantaneous distribution of turbulent plume (a) Case 1, (b) Case 2, and (c) Case 3.

sources environments with different chemical release rate
as well as multiple robots. The first scenario includes two
chemical sources located at (1, 11) and (3, 9), respectively,
in the environment with of size 20m × 20m, called Case 1,
and the second scenario called Case 2, adds three obstacles
besides the same two chemical sources as Case 1 and the third
scenario includes five chemical sources located at (8, 6), (5,
12), (5, 6), (2, 13), and (2, 5), respectively, in the environment
with size of 15m in the 𝑋 direction and 20m in the 𝑌
direction, called Case 3. In Case 1, two chemical sources have
the same release rates 500 kg/m3-s. In Case 2, three obstacles
with (7 ± 1, 13 ± 1), (11 ± 1, 8 ± 2), and (16 ± 2, 17 ± 1) as
their vertices block the chemical plume propagation and the
robot motions. In Case 3, the release rates of five chemical
sources are not the same: source 1 has the lowest release rate
150 kg/m3-s; source 2 and source 3 have the same highest
release rate 500 kg/m3-s; source 5 and source 6 have the
same release rate 300 kg/m3-s. Figure 1 shows instantaneous
distribution of turbulent plumes of the three cases.Thehigher
concentration is shown brighter in Figure 1. In color, highest
concentration is shown as red and then yellow, green, and
finally white as can be seen from Figure 1.The airflow entered
into the left-hand side boundary of the domain at a constant
5m/s velocity and existed from the right-hand side boundary
of the domain. The wind direction changes between −22.5∘
and 22.5∘measured along the 𝑥 axis of Figure 1 is governed by
the equation of “22.5 ∗ sin(10 ∗ 𝑡)”, where 𝑡 is the time steps.
The combined settings of the chemical sources and wind thus
produce snapshots of complicated but realistic transient wind
and plume propagations and distributions at different time
steps with one-second increments for robot plume tracing
and source localization to take place and are retained the
same to be repeated for the required studies [30].

2.2. Model of the Robots. Consider a group of 𝑁 simulated
mobile robots, moving in 𝑅2 that are labeled as 𝑅
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Figure 2: Configuration of the ultrasonic sensors of the robot.

to sense the chemical concentration and the wind velocity
(speed and direction). The wind and chemical concentration
information can always be “measured” by the robot wherever
it is by reading in the data from the data file or interpolating
among nodes if needed. Because the robot used in this paper
has a physical shape and foot print of finite size, the robot
must avoid obstacles in the obstructed environment. The
robot has five ultrasonic sensors; as each ultrasonic sensor
covers a 36∘ angle; five sensors cover totally 180∘ area in front
of this robot which is enough for the robot to detect objects at
the front.The configuration of ultrasonic sensors is illustrated
in Figure 2.

As seen from Figure 1, the distribution of chemical
plume we use is actually dynamic and turbulent. In Case
2 (see Figure 1(b)), the obstacles block the chemical plume
propagation, make the plume more diversified and block
the robot motions, make the search more difficult. In Case
3 (see Figure 1(c)), the variable intensities sources in the
field are occluded by other sources with lesser, equal or
greater intensity and provide the challenge in multisource
localization because when sources of unequal intensity are
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Figure 3: Six usual formations with different robot number 𝑛.

within range of a robot, the robot is likely to locate the
stronger source and overlook the weaker source.

According to the benchmark cases of multiple chemical
sources we use, there are the following problems that need to
be solved in the rest of the paper: how to allocate the robots
which have physical shape during a search to ensure that
all sources are simultaneously located in minimal time; how
to reset the robots to continue searching for other sources
once a source has been located; and how to avoid the robots
relocating the same source that has located and continue
searching the other sources.

3. Multirobot Cooperation Method Based on
Virtual Physics with a Release Strategy

In this section, a multirobot cooperation method based on
virtual physics is presented to solve the problem of multiple
chemical sources localization. Virtual physics (VP) provides a
distributed control of mobile robots in sensor network. Every
robot observes the environment, notes the position of nearby
robots, and then computes virtual forces imposed upon it.
After taking a vector sum of all forces on the robot, it takes
derivatives to convert the net force into a velocity vector for
the robot’s next move. Generally, the control force includes
two kinds of effort, which are virtual structure force 𝐹(VS)
and virtual goal force 𝐹(VG). Then, taking a vector sum of all
forces, that is, 𝐹 = 𝐹(VS) + 𝐹(VG), it converts the net force
into a velocity vector for the robot’s next move.

3.1. Virtual Structure Force. 𝐹(VS) is a function of distance
between the neighboring robots and may depend on the
pairwise combination of the vehicles, but 𝐹(VS) does not
depend on time.

3.1.1. Virtual Structure Force Based on Regular Polygon For-
mation. This paper adopted virtual structure force in [31],
which makes the robotic swarms keep a regular polygon
formation.The input force (𝐹󸀠

𝑥𝑘
(VS), 𝐹󸀠

𝑦𝑘
(VS)) to the𝐾th (𝑘 =

1, 2, 3, . . . , 𝑛) robot for regular polygon formation based on
the virtual structure can be stated as follows:
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The force defined in (1) makes the robot move toward
the circle with center (𝑥

𝑐
, 𝑦
𝑐
) and radius 𝛼 when (𝑥
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We obtained united vector as follows:
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Six usual structures corresponding to different robot
numbers on the basis of virtual structure force (𝐹

𝑥𝑘
(VS),

𝐹
𝑦𝑘
(VS)) are illustrated in Figure 3.
For swarm formation of the robots, a virtual robot is

considered at the center of the circle while the robots are
placed on the circle around it.Therefore, (𝑥

𝑐
, 𝑦
𝑐
) in (1) should

be replaced by (𝑥V,𝑦V) that is the coordinate of the virtual
robot. In this paper, the virtual robot was considered as
a leader who received the sensor data (including chemical
concentration, wind speed, and wind direction) available on
robot 𝑘 (𝑘 = 1, 2, 3, . . . , 𝑛), processed the data, and made the
motion decision.

3.1.2. Virtual Structure Force Based on Obstacle Avoidance.
Because robots have a physical shape and foot print of
finite size and cannot occupy the same position at the same
time. Thus, robots must avoid collisions with other robots
in addition to avoiding obstacles in the environment. In this
paper, we adopted the simple reactive wall-following obstacle
avoidance method which requires less computation and does
not require a prior knowledge of the environment and past
history of robot navigation.

Based on the sensory information from the ultrasonic
sensors illustrated in Figure 2, if the robot detects an object
within its alarmdistance, it adjusts themovement direction to
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detour around that object until no obstacles are detected and
then the robot will continue moving forward. The obstacle
avoidance force is defined bellow.

Let 𝐷 be the distance readings from the five ultrasonic
sensors:

𝐷 = {𝑑
𝑖
(𝑡)} , 𝑖 = 1, 2, 3, 4, 5,
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(4)

where 𝑑
0
is alarm distance.

The deflection angle of the move direction of the robot 𝜃
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Let ̃𝜃 be the included angle between 𝐹
𝑘
(VS) (𝑘 = 1, 2, 3,

. . . , 𝑛) to the𝐾th (𝑘 = 1, 2, 3, . . . , 𝑛) robot and positive axis of
𝑥; then the virtual structure force (𝐹
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3.2. Virtual Goal Force. 𝐹(VG), a task-specific force that is
responsible for directing the swarm toward a goal location, is
typically computed using the sensor data available on robot
𝑖 at time 𝑡 and therefore depends on both time and the
individual robot that is computing the goal force. We put the
virtual goal force only on virtual robot.

3.2.1. Virtual Goal Force Based on Different
Plume-Tracing Algorithms

Chemotaxis. The gradient strategy simply follows the chemi-
cal gradient, so the direction of the largest chemical concen-
tration is the goal direction. The virtual robot receives the
sensor data available on robot 𝑘 (𝑘 = 1, 2, 3, . . . , 𝑛), chooses
the robot 𝑗 who has the highest concentration and moves
toward it a distance of step length 𝑠

1
. The virtual goal force

is defined as follows:

𝐹 (VG) =
𝑋
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󵄩
󵄩
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where𝑋V(𝑡) and𝑋𝑗(𝑡) are positions of virtual robot and robot
𝑗 at time step 𝑡, respectively. ‖⋅‖ represents the Euclideannorm
operator.

Anemotaxis. The intuition behind the anemotaxis is to move
the lattice upstream while keeping the robots inside the

plume. If the gas concentration of a robot sensed is lower than
a given threshold 𝜌

𝑇
, the robots perform chemotaxis. Oth-

erwise, if the gas concentrations all robots sensed exceeded
𝜌
𝑇
and the wind velocities were not all zero, the virtual

robot receives the sensor data available on robot 𝑘 (𝑘 =

1, 2, 3, . . . , 𝑛), records all the wind velocities: V⃗
1
, V⃗
2
, . . . , V⃗

𝑛
,

and calculates the average wind velocity V⃗ = (1/𝑛)∑
𝑛

𝑖=1
V⃗
𝑖
.

Then, the virtual robot chooses upwind direction −V⃗ and
moves toward it a distance of step length 𝑠

1
. The virtual goal

force is defined as follows:
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3.2.2. Virtual Goal Force Based on Repulsion Force in Parallel
Search. To make search faster, we can use parallel search
by several groups’ robots. Parallel search logically makes
searching time shorter. Several groups of robots run and find
chemical sources separately. However, the robots from one
group are movable obstacles because robots have a physical
shape; the other group must avoid collisions with them. In
order to guarantee the positions of one group’s robots to be
away from the other, we assume that there is a repulsion
force 𝑓V between the virtual robots of different groups. The
repulsion force 𝑓V acting on the virtual robot of group 𝑘 by
other groupsis defined as follows:
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where𝑋
𝑘V and𝑋𝑖V are the positions of virtual robots of group

𝑘 and group 𝑖, respectively. 𝑚 is the number of groups in
parallel search. ‖ ⋅ ‖ represents the Euclidean norm operator.
Then, the virtual goal force of group 𝑘 is modified by

𝐹
󸀠

𝑘
(VG) = 𝐹

𝑘
(VG) + 𝑓V. (10)

3.2.3. Virtual Goal Force Based on Release Strategy. Once the
robots of group 𝑖 (𝑖 = 1, 2, 3, . . . , 𝑚) first locate a source and
declare it, we set a circular forbidden areawith its center at the
virtual robot of group 𝑖 and radius 𝑟V𝑇. Forbidden area setting
has two objectives: one is to ensure that the robots within the
forbidden area are released and thus have the opportunity to
find the other chemical source; the other is to ensure that
the robots outside the forbidden area do not relocate this
chemical source.

The circular forbidden area with its center at the virtual
robot of group 𝑖 and radius 𝑟V𝑇 is set as follows:

(𝑥 − 𝑥
𝑖V)
2
+ (𝑦 − 𝑦

𝑖V)
2
≤ 𝑟
2

V𝑇, (11)

where (𝑥
𝑖V, 𝑦𝑖V) is the position of the virtual robot of group 𝑖

and 𝑟V𝑇 (𝛼 < 𝑟V𝑇 < 5𝛼) is a parameter.
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F(VG)
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direction
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𝜃1
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󳰀
�)

Figure 4: Three kinds of goal forces acting on the virtual robot of
the group 𝑖.

In order to release from the forbidden area, the virtual
robot of the group 𝑖 can move vertical to the wind direction
(left or right). The possibility of robot movement at the left
or right side is equal.This behavior is similar to the silkworm
moth “cast” across the wind. In this moment, the goal force
acting on the virtual robot of the group 𝑖 can be modified as
follows:

𝑓
󸀠󸀠

release left (VG) = (V⃗𝑥, −V⃗𝑦) ,

𝑓
󸀠󸀠

release right (VG) = (−V⃗𝑥, V⃗𝑦) .
(12)

Let us normalize it as follows:

𝐹
󸀠󸀠

release (VG) =
𝑓
󸀠󸀠

release (VG)
󵄩
󵄩
󵄩
󵄩
𝑓
󸀠󸀠

release (VG)
󵄩
󵄩
󵄩
󵄩

. (13)

For making the robots of group 𝑖 quickly out of the
forbidden area (indicated by a red circle in Figure 4), we
specify the step length 𝑠

1
of the virtual robot and the robots

of the group 𝑖 are 3 × 𝑟V𝑇 such that the robots of group
𝑖 can move out of the forbidden area by one step. Then,
the virtual robot restores to the original step length. At the
moment, there are three kinds of goal forces we assumed
acted on the virtual robot of the group 𝑖: 𝐹(VG), 𝐹

𝑟𝑐
(VG),

and 𝐹
𝑟𝑐𝑐
(VG) as can be seen from Figure 4, where 𝐹(VG) is

defined by plume-tracing algorithm (formulas (7) and (8)).
𝐹
𝑟𝑐
(VG) and 𝐹

𝑟𝑐𝑐
(VG) are normalized clockwise force and

counter clockwise force, respectively, which are defined as
follows:

𝐹
󸀠

V𝑟 (VG) =
𝑓
𝑥V𝑟
󵄨
󵄨
󵄨
󵄨
𝑓V𝑟
󵄨
󵄨
󵄨
󵄨

⃗𝑖 +

𝑓
𝑦V𝑟
󵄨
󵄨
󵄨
󵄨
𝑓V𝑟
󵄨
󵄨
󵄨
󵄨

⃗𝑗. (14)

The following equations express the direction of the
rotary force in two different conditions:

𝑓
𝑥V𝑟 = 𝑓𝑥V𝑟𝑐, 𝑓

𝑦V𝑟 = 𝑓𝑦V𝑟𝑐 𝜃
1
≤ 𝜃
2
,

𝑓
𝑥V𝑟 = 𝑓𝑥V𝑟𝑐𝑐, 𝑓

𝑦V𝑟 = 𝑓𝑦V𝑟𝑐𝑐 𝜃
1
> 𝜃
2
,

(15)

where (𝑓
𝑥V𝑟𝑐, 𝑓𝑦V𝑟𝑐) is clockwise force and (𝑓

𝑥V𝑟𝑐𝑐, 𝑓𝑦V𝑟𝑐𝑐) is
counter clockwise force. 𝜃

1
is the angle between the positive

direction of 𝑥-axis and the directed line connected the posi-
tions of the virtual robot of group 𝑖 in and out of the forbidden
area (the start for the current position (𝑥V, 𝑦V), the end for
the previous position (𝑥󸀠V, 𝑦

󸀠

V)) in counterclockwise direction.
And 𝜃

2
is the angle between the positive direction of 𝑥-axis

and the goal force 𝐹(VG) of the group 𝑖 in counterclockwise
direction:

𝑓
𝑥V𝑟𝑐 = − (𝑦

󸀠

V − 𝑦V) ,

𝑓
𝑦V𝑟𝑐 = (𝑥

󸀠

V − 𝑥V) ,

𝑓
𝑥V𝑟𝑐𝑐 = (𝑦

󸀠

V − 𝑦V) ,

𝑓
𝑦V𝑟𝑐𝑐 = − (𝑥

󸀠

V − 𝑥V) ,

(16)

where (𝑥V, 𝑦V) and (𝑥
󸀠

V, 𝑦
󸀠

V) are the positions of the virtual
robot of group 𝑖 in and out of the forbidden area by one step,
respectively.

As shown in Figure 4, when |𝜃
1
− 𝜃
2
| ≤ 𝜋/2, the group 𝑖

by force 𝐹V𝑟(VG) can successfully bypass source 1 and locate
source 2. It should be noted that once the virtual robot
of group 𝑖 chose a rotary method (clockwise or counter
clockwise), it should keep on until it escaped from source
1. When |𝜃

1
− 𝜃
2
| > 𝜋/2, the group 𝑖 by force 𝐹(VG)

can successfully move away from source 1. The method of
movement direction chosen by virtual robot of the group 𝑖
is shown in Figure 5.

In order to avoid the robots relocating the same source
that has been located and continue searching the other
sources, when a group of robots move around a forbidden
area, that is, the distance between the virtual robot of this
group and the center of the forbidden area is less than 3 ×
𝑟V𝑇, the virtual robot will also choose a movement direction
according to Figure 5. The robots will not stop until all
chemical sources are found or after maximum iterations (in
our simulation, maximum iterations is 2000).

3.3. Movement of the Robots of a Group. The discrete-time
model of the virtual robot movements can be stated as

𝑋V (𝑡 + 1) = 𝑋V (𝑡) + 𝑠1 ⋅ 𝐹 (VG) , (17)

where𝑋V(𝑡 + 1) and𝑋V(𝑡) are positions of the virtual robot at
time step 𝑡 + 1 and 𝑡, respectively.

As the virtual robot moved to a new position, the robots
would also move a distance of step length 𝑠

2
under the action

of the virtual structure force 𝐹(VS).
So, the discrete-time model of the robot movements can

be stated as

𝑋
𝑘
(𝑡 + 1) = 𝑋

𝑘
(𝑡) + 𝑠

2
⋅ 𝐹
𝑘
(VS) , (18)

where𝑋
𝑘
(𝑡 + 1) and𝑋

𝑘
(𝑡) are position of the robot 𝑘 (𝑘 = 1,

2, 3, . . . , 𝑛) at time step 𝑡 + 1 and 𝑡, respectively.
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Table 1: Parameters of algorithm with release strategy.

𝑘
𝑠

𝛼 𝑘
𝑟

𝑠
1

𝑠
2

𝑑
0

𝑛
𝑠

Φ
𝑇

𝑟V𝑇

0.0001 0.3 [m] 5 0.06 [m] 0.12 [m] 0.8 [m] 10 0.1 [kg/m2
⋅s] 0.6 [m]

Yes

Yes

No

No

|𝜃2 − 𝜃1| > 𝜋/2

𝜃1 > 𝜃2

F(VG) Frcc(VG) Frc(VG)

Figure 5: The method of movement direction chosen by virtual
robot of the group 𝑖.

4. Experiments and Analysis: Scenarios with
Two Chemical Sources

Experiments are performed on two scenarios with two chem-
ical sources (Case 1 and Case 2). Both types of experiments
provided successful solutions. One aim of these experiments
is to investigate the impacts caused by the random localiza-
tion of the robots when they are released in an environment
with no prior knowledge available to commence plume
tracing. The other is to test the search efficiency of the
proposed multirobot system based virtual physics force at
different frequencies of wind direction/speed and methane
release.

Here, three positions (𝑥 coordinate, 𝑦 coordinate of the
virtual robot) are randomly chosen, (18, 10) called P1, (18, 4)
called P2, and (18, 16) called P3.Three kinds of frequencies of
wind direction/speed and release frequency of two methane
sources are used: standard frequency, twice frequency, and
treble frequency. According to the results in [27], we choose
a group of 6 robots composed of hexagonal grids to multiple
sources localization.

At the beginning, when the robots of a group find no
plume, the robots would perform passive monitoring [10] to
find plume, that is, the robots remain stationary and wait for
a chemical plume to intersect the robots’ current location.
The male silkworm moth employs this strategy. When trying
to detect the plume of pheromone released by the female
silkworm moth, the male moth waits, head into the wind in
an exposed position, until it detects the pheromone. If one
robot of the group find plume, the robots will use chemotaxis
to trace the gas plume. When arriving at the source region,
because of the balance of the inner structure force and
external goal force, the robots get bogged down and become

Table 2: Comparisons on time consumption used by robots at three
different frequencies with three different initial positions in Case 1.

Standard
frequency

Twice
frequency

Treble
frequency Average time

P1 523 529 873 642
P2 500 835 941 759
P3 1053 862 1146 1020
Average time 692 742 987

a circle surrounding the potential source. If the totalmass flux
measured by the sensor grid consistently exceeds some small,
empirically-determined threshold Φ

𝑇
in a given number of

steps 𝑛
𝑠
, we decide that the chemical source is located.

4.1. Parameters of the Algorithm. By simulating extensive
numerical search trials for each parameter, we choose the
parameter given by Table 1.

4.2. Performance Metrics. Two measures are adopted to
evaluate the performance of an algorithm in this paper. The
first is the success rate which reflects the ratio of the times that
successfully locate all chemical sources to the total runtimes.
The second is the time consumption of localizing all chemical
sources by the robots with proposed strategy.

4.3. Simulation Results

4.3.1. Simulation Results in Case 1. Firstly, we give the sim-
ulation results in Case 1. To get a better understanding of
the effect that the control algorithm with release strategy has
on the plume tracing task, we give a series of snap shots of
the tracing chemical plumes process of the six robots of a
group in Case 1 (see Figure 6). At the beginning, six robots
(indicated by “I”) and a virtual robot (indicated by “+”) are
distributed randomly in position P1. At the time 𝑡 = 295 s (see
Figure 6(a)), the robots trace the plume to the Source 1 with
the control algorithm while preserving a stable hexagonal
structure. Then, a circular forbidden area (indicated by a red
circle) is set. At the time 𝑡 = 298 s (see Figure 6(b)), the
robots are released from forbidden area with release strategy
and choose counterclockwise movement bypass the located
Source 1. At last, the robots find the other source Source 2
and the search is complete (see Figure 6(c)).

Figures 7, 8 and 9 give the plume tracing paths of a group
of robots using chemotaxis at three kinds of frequency with
three initial positions, respectively, in Case 1. Table 2 gives
the time consumption used by two sources locating at three
different frequencies with three different initial positions.

Figures 7–9 and Table 2 tell us that the proposed search
strategy using chemotaxis is effective and obtains 100%
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(a) 𝑡 = 295 s (b) 𝑡 = 298 s (c) 𝑡 = 455 s

Figure 6: Search process by one group of six robots with release strategy.

(a) Standard frequency (b) Twice frequency (c) Treble frequency

Figure 7: Search process by one group of six robots with release strategy at different frequencies with initial position P1.

(a) Standard frequency (b) Twice frequency (c) Treble frequency

Figure 8: Search process by one group of six robots with release strategy at different frequencies with initial position P2.

success rate; however, with the increasing of the wind
direction/speed frequency and methane release frequency,
the time consumption used by the robots increases.Themain
reason is that the increasing of the wind direction/speed
frequency and methane release frequency make the plume
drift up and down drastically, the robots using the chemotaxis

move towards the direction of the largest chemical concen-
tration which make the tracing paths similar to the variation
pattern of the wind direction which changes between −22.5∘
and 22.5∘ governed by the equation of “22.5 ∗ sin(10 ∗ 𝑡).”
For example, the average time is 692 s at standard frequency,
while the average search time is 987 s at treble frequency.
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(a) Standard frequency (b) Twice frequency (c) Treble frequency

Figure 9: Search process by one group of six robots with release strategy at different frequencies with initial position P3.

(a) Standard frequency (b) Twice frequency (c) Treble frequency

Figure 10: Search process by one group of six robots with release strategy at different frequencies with initial position P1.

Considering three different initial positions we had tested,
Groups start out from P3 spent the most time to locate
two sources and groups start from P1 spent the least time
at three different frequencies of wind direction/speed and
methane release. For example, the average time is 642 s with
P1, 759 s with P2, and 1020 s with P3. The main reason is
that P3 is farthest from two sources; the farther the initial
positions from two sources the longer time should be spent
to located them. So, different initial positions of two groups
exert influence on the search efficiency.

4.3.2. Simulation Results in Case 2. The simulated mobile
robots using the proposed control strategies were also tested
in an obstacle-filled arena (Case 2). The obstacles block
the chemical plume propagation, make the plume more
diversified and block the robot motions, make the search
more difficult.

Figures 10, 11 and 12 give the plume tracing paths of a
group of robots using chemotaxis at three kinds of frequency
with three initial positions respectively in Case 2. Table 3
gives the time consumption used by two sources locating
at three different frequencies with three different initial
positions.

Table 3: Comparisons on time consumption used by robots at three
different frequencies with three different initial positions in Case 2.

Standard
frequency

Twice
frequency

Treble
frequency Average time

P1 600 518 621 580
P2 986 585 591 721
P3 809 882 530 740
Average time 798 662 581

Figures 10–12 and Table 3 tell us that the proposed strat-
egy is very effective and obtain 100% success rate even in Case
2. With the increasing of the wind direction/speed frequency
and methane release frequency, the search time used by
the robots slightly decrease (see Table 3). For example, the
average time is 798 s at standard frequency, while the average
search time is 581 s at treble frequency. The main reason
is that the robots moved in an obstructed environment,
obstacle avoidance is prior to the robots; in addition, with
the increasing of the frequency, the obstacles make the
distribution of the plumemore diversified andmore available
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(a) Standard frequency (b) Twice frequency (c) Treble frequency

Figure 11: Search process by one group of six robots with release strategy at different frequencies with initial position P2.

(a) Standard frequency (b) Twice frequency (c) Treble frequency

Figure 12: Search process by one group of six robots with release strategy at different frequencies with initial position P3.

to the robots which made the search time slightly decrease.
Considering three kinds of initial position we had tested, the
average time is 580 s with P1, 721 s with P2, and 740 s with P3.
In advanced investigation, we deduced that the robots start
from P2 and P3 are far from the sources and also behind
obstacles; the group with this initial position should bypass
the obstacle to locate the sources.

5. Experiments and Analysis: Scenario with
Five Chemical Sources

5.1. Influence of Forbidden Area Radius 𝑟V𝑇 on the Proposed
Strategy. The proposed release strategy uses the circular
forbidden area to make the robots release from the located
chemical sources; therefore, it is understandable that the
radius 𝑟V𝑇 plays a crucial role in the performance of our
strategy. This experiment performs an extensive analysis
about the impact of 𝑟V𝑇 on the performance of our strategy
at different frequencies of wind direction/speed andmethane
release, where the 𝑟V𝑇 is allowed to vary from 0.3m to 0.6m.

To make search faster, we use parallel search by two
groups’ robots; then, there is a total of twelve robots used

for five chemical sources localization in Case 3. Each group
runs by itself.There is a repulsion force𝑓V between the virtual
robots of two groupswhich is defined by (9). According to the
results in [28], more dispersed initial positions of two groups,
themore effective by parallel search; we choose two positions,
(𝑥 coordinate, 𝑦 coordinate of the virtual robot), (18, 5) and
(18, 8) as initial positions of two groups. We use the same
strategy of plume finding and chemical source declaration as
the fourth section and use anemotaxis to trace the chemical
plume.

We chose the parameter given by Table 4.
To get a better understanding of the effect that the control

algorithm with release strategy has on the plume tracing task
inCase 3, we give a series of snap shots of the tracing chemical
plumes process of two groups of robots with 𝑟V𝑇 = 0.3m (see
Figure 13).

At the beginning, two groups of robots (indicated by
yellow “I” and black “I,” resp.) are distributed randomly in
(18, 5) and (18, 8). At the time 𝑡 = 174 s (see Figure 13(a)), a
group of robots indicated by black “I” locate the first source
Source 1. Then, a circular forbidden area (indicated by a red
circle) is set. At the time 𝑡 = 229 s and 𝑡 = 270 (see Figures
13(b) and 13(d), resp.), this group released from forbidden
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Table 4: Parameters of algorithm.

𝑘
𝑠

𝛼 𝑘
𝑟

𝑠
1

𝑠
2

𝜌
𝑇

Φ
𝑇

𝑛
𝑠

0.0001 0.3 [m] 5 0.06 [m] 0.12 [m] 0.0095 [kg/m3] 0.1 [kg/m3] 10

(a) 𝑡 = 174 s (b) 𝑡 = 229 s (c) 𝑡 = 254 s

(d) 𝑡 = 270 s (e) 𝑡 = 306 s

Figure 13: Process of chemical source localization using anemotaxis at standard frequency.

area with release strategy and locate the Source 3 and the
Source 5, respectively. At the time 𝑡 = 254 s (see Figure 13(c)),
the other group of robots indicated by yellow “I” locate the
Source 2. At last, the robots of this group locate the last source
Source 4 and the search is ending (see Figure 13(e)).

Figures 14–16 give the plume tracing paths of two groups
of robots using anemotaixs at three kinds of frequency with
different radius 𝑟V𝑇, respectively in Case 3. Table 5 gives the
search time used by sources locating.

It can be seen from Table 5 and Figures 14–16, when 𝑟V𝑇 =
0.3m, the proposed algorithm only locates four chemical
sources at twice frequency (see Figure 15). The main reason
is that, at this frequency, the group of robots indicated by
yellow “I” using anemotaxis miss locating the source 2 when
it is tracing plume and locates the source 4 (see Figure 15(a)).
Forbidden area with smaller radius 𝑟V𝑇 and rotary force could
not guarantee the group to escape from the plume of the
source 4 thus finding the source downwind to the located
source (anemotaxis makes the robots to move towards the
upwind direction, not downwind direction). When 𝑟V𝑇 =

0.4m or lager, the robots successfully locate the source 2
using rotary force and goal force (see Figures 15(b) and 15(c)).
However, with the increasing of the radius 𝑟V𝑇, the stepsize of
the robots moving out of the forbidden area increases that
would make the robots that performing rotating search move
out of the search area (see Figure 14(d)).

Therefore, the smaller forbidden area radius can enhance
the exploitation of the robots and the larger radius can

Table 5: Comparisons on time consumption of sources located at
three different frequencies with four different radii of taboo domain.

Number of sources located 1 2 3 4 5
Standard frequency
𝑟V𝑇 = 0.3m 174 229 254 270 306
𝑟V𝑇 = 0.4m 174 230 254 280 315
𝑟V𝑇 = 0.5m 174 231 254 280 301
𝑟V𝑇 = 0.6m 174 231 254 276 248

Twice frequency
𝑟V𝑇 = 0.3m 173 238 332 343 —
𝑟V𝑇 = 0.4m 173 242 307 343 658
𝑟V𝑇 = 0.5m 173 270 321 343 391
𝑟V𝑇 = 0.6m 173 287 343 365 749

Treble frequency
𝑟V𝑇 = 0.3m 181 256 278 335 379
𝑟V𝑇 = 0.4m 181 257 278 284 323
𝑟V𝑇 = 0.5m 181 261 278 326 378
𝑟V𝑇 = 0.6m 181 269 278 370 613

enhance the exploration. With respect to time consumption,
the proporite radius is 0.4 or 0.5 for parallel search by two
groups; for one group search, the proporite radius is 0.6 or
larger (see Figure 15(d)) which can make the paths of two
groups interlaced together. In consideration of the possibility
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(a) 𝑟V𝑇 = 0.3m (b) 𝑟V𝑇 = 0.4m (c) 𝑟V𝑇 = 0.5m

(d) 𝑟V𝑇 = 0.6m

Figure 14: Paths of chemical source localization using anemotaxis at standard frequency with four different 𝑟V𝑇.

(a) 𝑟V𝑇 = 0.3m (b) 𝑟V𝑇 = 0.4m (c) 𝑟V𝑇 = 0.5m

(d) 𝑟V𝑇 = 0.6m

Figure 15: Paths of chemical source localization using anemotaxis at twice frequency with four different 𝑟V𝑇.

of moving out of the search area, we choose 𝑟V𝑇 = 0.6m for
one group search.

5.2. Performance Comparison on Different Plume Tracing
Algorithm. Two measures are adopted to evaluate the per-
formance of an algorithm in this section: the number of the
chemical sources that the robots successfully locate and the

time consumption of localizing every chemical source by the
robots.

5.2.1. Simulation Results in Case 3 Using Parallel Search by
TwoGroups. We choose 0.4 for forbidden area radius and the
other parameter as same as Table 4. Since, the plum tracing
paths using anemotaxis at three different frequencies have
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(a) 𝑟V𝑇 = 0.3m (b) 𝑟V𝑇 = 0.4m (c) 𝑟V𝑇 = 0.5m

(d) 𝑟V𝑇 = 0.6m

Figure 16: Paths of chemical source localization using anemotaxis at treble frequency with four different 𝑟V𝑇.

(a) Standard frequency (b) Twice frequency (c) Treble frequency

Figure 17: Plume tracing paths using chemotaxis at three different frequencies.

been presented in Figures 14(b)−16(b), we only give the plum
tracing paths using chemotaxis at three different frequencies
in Figure 17. Table 6 shows the performance comparison of
chemotaxis and anemotaxis at three different frequencies.

Figure 17 tells us that chemotaxis is effective and obtains
100% success rate. However, at third frequency, the tracing
paths of the robots indicated by yellow “I” are very twist
only after they just start. The reason is that, at this region, the
plumes from the up and down sources combined together.
When the strand of plume from up sources flows to this
region, the robots using chemotaxis move upward. While,
when the strand of plume from down sources flows to this
region, the robots using chemotaxis move downward. This
would explain that, for some complex plume, chemotaxis
has poor performance. From Table 6, we can see that, with
the increasing of the wind direction/speed frequency and
methane release frequency, the tracing paths of the robots
using anemotaxis is very similar to each other, so the search

time used by the robots is also similar. The main reason is
that the increasing of the wind direction/speed frequency
and methane release frequency make the plume to high
concentrations which always exceeded threshold 𝜌

𝑇
and

the robots using the anemotaxis move towards the upwind
direction which make the two groups run and find chemical
sources separately andmake the search time increase slightly.
So, anemotaxis is more effective in parallel search than
chemotaxis. For example, in order to find all five sources, the
average time consumption used by two groups of robots using
anemotaxis is 432 s; while the average time consumption is
956 s using chemotaxis.

5.2.2. Simulation Results in Case 3 Using One Group of Robots.
Then, we use one group of robots start from (18, 5) optimizing
Case 3. We choose 0.6 for forbidden area radius and the
other parameter as same as Table 4. Figures 18 and 19 give
the plume tracing paths using chemotaxis and anemotaxis at
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Table 6: Comparisons on search performance at different frequencies.

Chemotaxis Anemotaxis
Standard
frequency

Twice
frequency

Treble
frequency

Standard
frequency

Twice
frequency

Treble
frequency

Number of sources located
1 225 252 285 174 173 181
2 281 562 592 230 242 257
3 331 622 825 254 307 278
4 562 709 1461 280 343 284
5 534 779 1554 315 658 323

Average time 956 432

(a) Standard frequency (b) Twice frequency (c) Treble frequency

Figure 18: Plume tracing paths using chemotaxis with one group robots at three different frequencies.

(a) Standard frequency (b) Twice frequency (c) Treble frequency

Figure 19: Plume tracing paths using anemotaxis with one group robots at three different frequencies.

three different frequencies, respectively. And Table 7 shows
the performance comparison of chemotaxis and anemotaxis
at three different frequencies.

Figures 18 and 19 and Table 7 tell us that one group of
robots could performfive sources localization inCase 3. Since
the initial position of the robots is in the plume of down
three sources Source 1, Source 3 and Source 5, the robots can
locate them easily. In order to locate the other two sources
Source 2 and Source 4, the robots should move to the plume
of up sources. As be seen from Figures 18 and 19, the robots
successfully escape from the plume of down sources with the
help of three set forbidden area, rotary force and goal force,
move to the plume of up sources and locate all five sources.
It is worth noting that the goal force which make the robots
escape from the down plume is chemotaxis, not anemotaxis.
So, we can see from the Table 7, when using one group of

robots chemotaxis is more effective than anemotaxis.We also
admit that, when the two strands of plumes are far apart,
this strategy is not feasible. In this case, we may increase the
self-exploration of the robots or use parallel search by more
groups’ robots to solve this problem.

Although one group of robots could perform five sources
localization in Case 3, the time consumption is much more
than parallel search by two groups’ robots. For example, using
anemotaxis, the average time consumption used by one group
of robots is 715 s; while the average time consumption is 432 s
by two groups’ robots (see Tables 6 and 7).

6. Conclusion

The problem of locating multiple chemical sources is dis-
cussed, and a method of simultaneously locating chemical
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Table 7: Comparisons on search performance at different frequencies.

Chemotaxis Anemotaxis
Standard
frequency

Twice
frequency

Treble
frequency

Standard
frequency

Twice
frequency

Treble
frequency

Number of sources located
1 225 252 285 174 173 181
2 469 393 325 233 230 281
3 501 469 347 273 259 331
4 959 761 551 645 636 623
5 1000 790 598 686 759 701

Average time 796 715

sources using robots based on virtual physics with release
strategy is presented in this study. The release strategy
includes setting forbidden area, releasing the robots from
declared sources, and escaping from it by a rotary force and
goal force.The proposed release strategy can avoid the robots
relocating the same source which has been located by other
robots and lead them to move toward other sources. Various
turbulent plume environments are simulated by Fluent and
Gambit software, and the proposed method was employed
to locate chemical sources in various scenarios. Simula-
tion experiments compared two plume-tracing algorithms:
chemotaxis and anemotaxis and discussed the influence of
the varied wind direction/speed frequencies and methane
release frequencies and different initial positions of the robots
to the search performance. The experimental results show
that the proposed strategy is suitable for multiple chemical
sources localization even in environment where multiple
plumes overlap.

However, this study assumes that the robot can sense
the information precisely. In fact, the measurement results
have somewhat errors or noises. So how to locate multiple
chemical sources in a noisy environment is one topic of
our future research. Also, the presented method in the
experiments observed that the radius of the forbidden area
requires to be defined prior to starting the search; how to
define a methodology to adapt this parameter at runtime
is another topic of our future research. In addition, this
study is performed in simulated environment; so how to
verify the performance of the proposed strategy in real-world
environments is the third research topic.
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