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Hom-Poisson superalgebras can be considered as a deformation of Poisson superalgebras. We prove that Hom-Poisson
superalgebras are closed under tensor products. Moreover, we show that Hom-Poisson superalgebras can be described using only
the twisting map and one binary operation. Finally, all algebra endomorphisms on 2-dimensional complex Poisson superalgebras
are computed, and their associated Hom-Poisson superalgebras are described explicitly.

1. Introduction

Poisson algebras are used in many fields in mathematics
and physics. In mathematics, Poisson algebras play a funda-
mental role in Poisson geometry [1], quantum groups [2],
and deformation of commutative associative algebras. In
physics, Poisson algebras are a major part of deformation
quantization, Hamiltonian mechanics [3], and topological
field theories [4]. Poisson-like structures are also used in the
study of vertex operator algebras [5]. Poisson superalgebras
can be seen as a direct generalization of Poisson algebras.
Remm show that a Poisson superalgebra can be described
using only one binary operation in [6, 7].

Recently, a twisted generalization of noncommutative
Poisson algebras, called Hom-noncommutative Poisson alge-
bras, are studied in [8]. In a noncommutative Hom-Poisson
algebra, there exists a twisted map, a Hom-Lie bracket
and a Hom-associative product. The associativity, the Jacobi
identity, and the Leibniz identity are considered as their
Hom-type analogues in a noncommutative Hom-Poisson
algebra.The purpose of this paper is to introduce and study a
twisted generalization of Poisson superalgebras, called Hom-
Poisson superalgebras.

This paper is organized as follows. In Section 2, we recall
the construction of the Hom-Lie superalgebras. In Section 3,
we give the definition of Hom-Poisson superalgebras. We
show that starting with a Poisson superalgebra and an even
Poisson superalgebra endomorphism, a Hom-Poisson super-
algebra can be constructed. Moreover, we prove that Hom-
Poisson superalgebras are closed under tensor products. In
Section 4, we show that a Hom-Poisson superalgebra can
be described using only the twisting map and one binary
operation. Section 5 is devoted to classifying all the algebra
endomorphisms 𝛼 on all the 2-dimensional complex Poisson
superalgebras and 2-dimensional Hom-Poisson superalge-
bras.

Throughout the paper C is the field of complex numbers.
All algebras and vector spaces are considered over C.

2. Hom-Lie and
Hom-Associative Superalgebras

In this section, we first recall the notion of Hom-Lie super-
algebras and then give some construction of the Hom-Lie
superalgebras.
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Definition 1 (see [9]). A Hom-associative superalgebra is a
triple (𝐴, ∘, 𝛼) consisting of a Z

2
-graded vector space 𝐴, an

even bilinear map ∘ : 𝐴 × 𝐴 → 𝐴, and an even homomor-
phism of algebras 𝛼 : 𝐴 → 𝐴 satisfying

𝛼 (𝑥) ∘ (𝑦 ∘ 𝑧) = (𝑥 ∘ 𝑦) ∘ 𝛼 (𝑧) (1)

for all homogeneous elements 𝑥, 𝑦, 𝑧 ∈ 𝐴.

Definition 2 (see [9]). A Hom-Lie superalgebra is a triple
(𝐴, [⋅, ], 𝛼) consisting of a Z

2
-graded vector space 𝐴, an even

bilinear map [⋅, ⋅] : 𝐴×𝐴 → 𝐴 and an even homomorphism
of algebras 𝛼 : 𝐴 → 𝐴 satisfying

[𝑥, 𝑦] = − (−1)
|𝑥||𝑦|

[𝑦, 𝑥] , (2)

(−1)
|𝑥||𝑧|

[𝛼 (𝑥) , [𝑦, 𝑧]] + (−1)
|𝑧||𝑦|

[𝛼 (𝑧) , [𝑥, 𝑦]]

+ (−1)
|𝑥||𝑦|

[𝛼 (𝑦) , [𝑧, 𝑥]] = 0

(3)

for all homogeneous elements 𝑥, 𝑦, 𝑧 ∈ 𝐴.

Let (𝑉, [⋅, ⋅], 𝛼) and (𝑉
󸀠
, [⋅, ⋅]
󸀠
, 𝛼
󸀠
) be two Hom-Lie super-

algebras. An even homomorphism 𝑓 : 𝑉 → 𝑉
󸀠 is said to be

a morphism of Hom-Lie superalgebras if

[𝑓 (𝑥) , 𝑓 (𝑦)]
󸀠

= 𝑓 ([𝑥, 𝑦]) , ∀𝑥, 𝑦 ∈ 𝑉, (4)

𝑓 ∘ 𝛼 = 𝛼
󸀠
∘ 𝑓. (5)

Morphisms ofHom-associative superalgebras are defined
similarly.

The following theorem provides a method to construct
a Hom-Lie superalgebra by a Lie superalgebra and an even
homomorphism of Lie superalgebras.

Proposition 3 (see [9]). Let (𝑉, [⋅, ⋅]) be a Lie superalgebra and
let 𝛼 : 𝑉 → 𝑉 be an even endomorphism of Lie superalgebras.
Then (𝑉, [⋅, ⋅]

𝛼
, 𝛼) is a Hom-Lie superalgebra, where [𝑥, 𝑦]

𝛼
=

𝛼([𝑥, 𝑦]).
Moreover, suppose that (𝑉󸀠, [⋅, ⋅]󸀠) is another Lie superalge-

bra and𝛼󸀠 : 𝑉󸀠 → 𝑉
󸀠 is an even endomorphismof Lie superal-

gebras. If𝑓 : 𝑉 → 𝑉
󸀠 is amorphism of Lie superalgebras satis-

fying 𝑓 ∘ 𝛼 = 𝛼
󸀠
∘ 𝑓, then

𝑓 : (𝑉, [⋅, ⋅]𝛼
, 𝛼) 󳨀→ (𝑉

󸀠
, [⋅, ⋅]
󸀠

𝛼
󸀠 , 𝛼
󸀠
) (6)

is a morphism of Hom-Lie superalgebras.

Example 4 (see [9]). From the orthosymplectic Lie superal-
gebra osp(1, 2) = 𝑉

0
⊕ 𝑉
1
, where 𝑉

0
is spanned by

𝐻 = (

1 0 0

0 0 0

0 0 −1

) ,

𝑋 = (

0 0 1

0 0 0

0 0 0

) ,

𝑌 = (

0 0 0

0 0 0

1 0 0

) ,

(7)

and 𝑉
1
is spanned by

𝐹 = (

0 0 0

1 0 0

0 1 0

) ,

𝑋 = (

0 1 0

0 0 −1

0 0 0

) .

(8)

The defining nonzero relations are

[𝐻,𝑋] = 2𝑋,

[𝐻, 𝑌] = −2𝑌,

[𝑋, 𝑌] = 𝐻,

[𝑌, 𝐺] = 𝐹,

[𝑋, 𝐹] = 𝐺,

[𝐻, 𝐹] = −𝐹,

[𝐻, 𝐺] = 𝐺,

[𝐺, 𝐹] = 𝐻,

[𝐺, 𝐺] = −2𝑋,

[𝐹, 𝐹] = 2𝑌.

(9)

Let 𝜆 ∈ R∗ define a linear map 𝛼
𝜆
: osp(1, 2) → osp(1, 2) by

𝛼
𝜆
(𝑋) = 𝜆

2
𝑋,

𝛼
𝜆
(𝑌) =

1

𝜆
2
(𝑌) ,

𝛼
𝜆
(𝐻) = 𝐻,

𝛼
𝜆
(𝐹) =

1

𝜆

(𝐹) ,

𝛼
𝜆
(𝐺) = 𝜆𝐺;

(10)
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then 𝛼
𝜆
is an even Lie superalgebra automorphism; by

Proposition 3, we obtain a family of Hom-Lie superalgebras
(osp(1, 2), [, ]

𝜆
, 𝛼
𝜆
). These Hom-Lie superalgebras are not Lie

superalgebras for 𝜆 ̸= 1.

3. Hom-Poisson Superalgebras

Definition 5. A Hom-Poisson superalgebra is a tuple (𝐴, ⋅,
[⋅, ⋅], 𝛼) consisting of a Z

2
-graded vector space 𝑉, two even

bilinear maps ⋅, [⋅, ⋅] : 𝑉 × 𝑉 → 𝑉, and an even homomor-
phism of algebras 𝛼 : 𝑉 → 𝑉, where 𝛼(𝑥 ⋅ 𝑦) = 𝛼(𝑥) ⋅ 𝛼(𝑦),
𝛼([𝑥, 𝑦]) = [𝛼(𝑥), 𝛼(𝑦)], satisfying the following axioms.

(1) (𝐴, ⋅, 𝛼) is a supercommutative Hom-associative su-
peralgebra.

(2) (𝐴, [⋅, ⋅], 𝛼) is a Hom-Lie superalgebra.
(3) The Hom-Leibniz superidentity [𝑥 ⋅ 𝑦, 𝛼(𝑧)] = 𝛼(𝑥) ⋅

[𝑦, 𝑧]+(−1)
|𝑦||𝑧|

[𝑥, 𝑧]⋅𝛼(𝑦) holds for all homogeneous
elements 𝑥, 𝑦, 𝑧 ∈ 𝐴.

Definition 6. Let (𝐴, ⋅, [⋅, ⋅], 𝛼) and (𝐴
󸀠
, ⋅
󸀠
, [⋅, ⋅]
󸀠
, 𝛼
󸀠
) be two

Hom-Poisson superalgebras. An even homomorphism 𝑓 :

𝐴 → 𝐴
󸀠 is said to be amorphismofHom-Poisson superalge-

bras if

𝑓 (𝑥) ⋅
󸀠
𝑓 (𝑦) = 𝑓 (𝑥 ⋅ 𝑦) , ∀𝑥, 𝑦 ∈ 𝐴,

[𝑓 (𝑥) , 𝑓 (𝑦)]
󸀠

= 𝑓 ([𝑥, 𝑦)] , ∀𝑥, 𝑦 ∈ 𝐴,

𝑓 ⋅ 𝛼 = 𝛼
󸀠
⋅ 𝑓.

(11)

Proposition 7. Let (𝐴, ⋅, 𝛼) be aHom-associative superalgebra
and [⋅, ⋅] : 𝐴 × 𝐴 → 𝐴 be a binary operation on 𝐴 defined by

[𝑥, 𝑦] = 𝑥 ⋅ 𝑦 − (−1)
|𝑥||𝑦|

𝑦 ⋅ 𝑥, ∀𝑥, 𝑦 ∈ 𝐴, (12)

then (𝐴, ⋅, [⋅, ⋅], 𝛼) is aHom-Poisson superalgebrawith the same
twisting map 𝛼.

Proof. It is straightforward.

From Proposition 7, there is the following construction
of Hom-Poisson superalgebras by Poisson superalgebras and
homomorphisms.

Theorem 8. Let (𝐴, ⋅, [⋅, ⋅]) be a Poisson superalgebra and let
𝛼 : 𝐴 → 𝐴 be an even endomorphism of Poisson superal-
gebras. Then (𝐴, ⋅

𝛼
, [⋅, ⋅]
𝛼
, 𝛼) is a Hom-Poisson superalgebra,

where 𝑥⋅
𝛼
𝑦 = 𝛼(𝑥 ⋅ 𝑦) and [𝑥, 𝑦]

𝛼
= 𝛼([𝑥, 𝑦]).

Moreover, suppose that (𝐴
󸀠
, ⋅
󸀠
, [⋅, ⋅]
󸀠
) is another Poisson

superalgebra and 𝛼
󸀠
: 𝐴
󸀠
→ 𝐴
󸀠 is an even endomorphism of

Poisson superalgebras. If𝑓 : 𝐴 → 𝐴
󸀠 is a morphism of Poisson

superalgebras satisfying 𝑓 ⋅ 𝛼 = 𝛼
󸀠
⋅ 𝑓, then

𝑓 : (𝐴, ⋅
𝛼
, [⋅, ⋅]𝛼

, 𝛼) 󳨀→ (𝐴
󸀠
, ⋅
𝛼
󸀠 , [⋅, ⋅]
󸀠

𝛼
󸀠 , 𝛼
󸀠
) (13)

is a morphism of Hom-Poisson superalgebras.

Proof. By Proposition 3, (𝐴, [⋅, ⋅]
𝛼
, 𝛼) is a Hom-Lie superalge-

bra.

We will show that (𝐴, ⋅
𝛼
, 𝛼) satisfies the axioms (1) and (3)

of Definition 5. In fact

𝛼 (𝑥) ⋅
𝛼
(𝑦⋅
𝛼
𝑧) = 𝛼 (𝑥) ⋅

𝛼
𝛼 (𝑦 ⋅ 𝑧) = 𝛼 (𝛼 (𝑥) ⋅ (𝑦 ⋅ 𝑧))

= 𝛼 ((𝑥 ⋅ 𝑦) ⋅ 𝛼 (𝑧)) = 𝛼 (𝑥 ⋅ 𝑦) ⋅
𝛼
𝛼 (𝑧)

= (𝑥⋅
𝛼
𝑦) ⋅
𝛼
𝛼 (𝑧) ,

[𝑥⋅
𝛼
𝑦, 𝛼 (𝑧)]

𝛼
= 𝛼 ([𝑥⋅

𝛼
𝑦, 𝛼 (𝑧)])

= 𝛼 ([𝛼 (𝑥 ⋅ 𝑦) , 𝛼 (𝑧)])

= 𝛼
2
([𝑥 ⋅ 𝑦, 𝑧])

= 𝛼
2
((−1)
|𝑦||𝑧|

[𝑥, 𝑧] ⋅ 𝑦 + 𝑥 ⋅ [𝑦, 𝑧])

= (−1)
|𝑦||𝑧|

𝛼 (𝛼 ([𝑥, 𝑧]) ⋅ 𝛼 (𝑦))

+ 𝛼 (𝛼 (𝑥) ⋅ 𝛼 ([𝑦, 𝑧]))

= (−1)
|𝑦||𝑧|

𝛼 ([𝑥, 𝑧]) ⋅𝛼
𝛼 (𝑦)

+ 𝛼 (𝑥) ⋅
𝛼
𝛼 ([𝑦, 𝑧])

= (−1)
|𝑦||𝑧|

[𝑥, 𝑧]𝛼
⋅
𝛼
𝛼 (𝑦) + 𝛼 (𝑥)

⋅
𝛼
[𝑦, 𝑧]
𝛼
.

(14)

Hence (𝐴, ⋅
𝛼
, [⋅, ⋅]
𝛼
, 𝛼) is a Hom-Poisson superalgebra. Then

second assertion follows from

𝑓 ([𝑥, 𝑦]
𝛼
) = 𝑓 (𝛼 ([𝑥, 𝑦])) = 𝑓 ⋅ 𝛼 ([𝑥, 𝑦])

= 𝛼
󸀠
⋅ 𝑓 ([𝑥, 𝑦]) = 𝛼

󸀠
([𝑓 (𝑥) , 𝑓 (𝑦)])

= [𝑓 (𝑥) , 𝑓 (𝑦)]
𝛼
󸀠 ;

𝑓 (𝑥⋅
𝛼
𝑦) = 𝑓 (𝛼 (𝑥 ⋅ 𝑦)) = 𝑓 ⋅ 𝛼 (𝑥 ⋅ 𝑦)

= 𝛼
󸀠
⋅ 𝑓 (𝑥 ⋅ 𝑦) = 𝛼

󸀠
(𝑓 (𝑥) ⋅ 𝑓 (𝑦))

= 𝑓 (𝑥) ⋅
𝛼
󸀠𝑓 (𝑦) .

(15)

This theorem provides a method to construct a Hom-
Poisson superalgebra by a Poisson superalgebra and an even
homomorphism of Poisson superalgebras.

Example 9. Let 𝐴 = 𝐴
0
⊕ 𝐴
1
be a 2-dimensional Z

2
-graded

vector space, where𝐴
0
is generated by 𝑒

1
and𝐴

1
is generated

by 𝑒
2
and nonzero products are given by

𝑒
1
⋅ 𝑒
1
= 𝑒
1
,

𝑒
2
⋅ 𝑒
2
= 𝑒
1
,

𝑒
1
⋅ 𝑒
2
= 𝑒
2
⋅ 𝑒
1
= 𝑒
2
,

[𝑒
2
, 𝑒
2
] = 2𝑒

1
;

(16)

then (𝐴, ⋅, [⋅, ⋅]) is a Poisson superalgebra. For any 𝑎 ∈ C,
we consider the homomorphism 𝛼 : 𝐴 → 𝐴 defined by
𝛼(𝑒
1
) = 𝑎𝑒

1
, 𝛼(𝑒
2
) = 𝑎𝑒

2
. By Theorem 8, for any 𝑎 ∈ C,
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there is the corresponding Hom-Poisson superalgebra 𝐴
𝑎
=

(𝐴, ⋅
𝛼
, [⋅, ⋅]
𝛼
, 𝛼) with the nonzero products

𝑒
1
⋅
𝛼
𝑒
1
= 𝑎𝑒
1
,

𝑒
2
⋅
𝛼
𝑒
2
= 𝑎𝑒
1
,

𝑒
1
⋅
𝛼
𝑒
𝛼
= 𝑎𝑒
2
,

[𝑒
2
, 𝑒
2
]
𝛼
= 2𝑎𝑒

1
.

(17)

It is not a Poisson superalgebra when 𝑎 ̸= 0, 1.

Example 10. Let 𝐴 = 𝐴
0
⊕ 𝐴
1
be a 3-dimensional Z

2
-

graded vector space, where 𝐴
0
is generated by 𝑒

1
, 𝑒
2
and 𝐴

1

is generated by 𝑒
3
and the nonzero products are given by

𝑒
1
⋅ 𝑒
2
= 𝑒
1
,

𝑒
2
⋅ 𝑒
2
= 𝑒
2
,

𝑒
3
⋅ 𝑒
2
= 𝑒
3
,

[𝑒
1
, 𝑒
2
] = 𝑎𝑒

1
;

(18)

then (𝐴, ⋅, [⋅, ⋅]) is a Poisson superalgebra. For any 𝑎 ∈ C, we
consider the homomorphism 𝛼 : 𝐴 → 𝐴 defined by

𝛼 (𝑒
1
) = 𝑎𝑒

1
,

𝛼 (𝑒
2
) = 𝑒
1
+ 𝑒
2
.

(19)

By Theorem 8, for any 𝑎 ∈ C, there is the corresponding
Hom-Poisson superalgebra 𝐴

𝛼
= (𝐴, ⋅

𝛼
, [⋅, ⋅]
𝛼
, 𝛼) with the

nonzero products

𝑒
1
⋅
𝛼
𝑒
2
= 𝑎𝑒
1
,

𝑒
2
⋅
𝛼
𝑒
2
= 𝑒
1
+ 𝑒
2
,

[𝑒
1
, 𝑒
2
]
𝛼
= 𝑎𝑒
1
.

(20)

It is not a Poisson superalgebra when 𝑎 ̸= 0, 1.

We know Hom-Poisson algebras are closed under tensor
products ([8] Theorem 2.9). Here we aim to consider it in
detail in the superalgebra case.

Theorem 11. Let (𝐴
𝑖
, ⋅
𝑖
, [⋅, ⋅]
𝑖
, 𝛼
𝑖
) be Hom-Poisson superalge-

bras for 𝑖 = 1, 2, and let 𝐴 = 𝐴
1
⊗ 𝐴
2
. Define the operations

𝛼 : 𝐴 → 𝐴 and ⋅, [⋅, ⋅] : 𝐴⊗2 → 𝐴 by

𝛼 = 𝛼
1
⊗ 𝛼
2
,

(𝑥
1
⊗ 𝑥
2
) ⋅ (𝑦
1
⊗ 𝑦
2
) = (−1)

|𝑥
2
||𝑦
1
|
(𝑥
1
⋅
1
𝑦
1
)

⊗ (𝑥
2
⋅
2
𝑦
2
) ,

[𝑥
1
⊗ 𝑥
2
, 𝑦
1
⊗ 𝑦
2
] = (−1)

|𝑥
2
||𝑦
1
|
[𝑥
1
, 𝑦
1
]
1
⊗ (𝑥
2
⋅
2
𝑦
2
)

+ (−1)
|𝑥
2
||𝑦
1
|
(𝑥
1
⋅
1
𝑦
1
)

⊗ [𝑥
2
, 𝑦
2
]
2
,

(21)

for 𝑥
𝑖
, 𝑦
𝑖
∈ 𝐴
𝑖
.Then (𝐴, ⋅, [⋅, ⋅], 𝛼) is a Hom-Poisson superalge-

bra.

Proof. The (𝐴, ⋅, 𝛼) is a supercommutative Hom-associative
superalgebra following from the supercommutativity and
Hom-associativity of both ⋅

𝑖
. Also, the supercommutativity

of the ⋅
𝑖
and the antisupersymmetry of the [⋅, ⋅]

𝑖
imply the

antisupersymmetry of [⋅, ⋅]. It remains to prove the Hom-
Jacobi superidentity and theHom-Leibniz superidentity in𝐴.

To simplify the typography,we abbreviate ⋅
1
, ⋅
2
, and ⋅using

juxtaposition and drop the subscripts in [⋅, ⋅]
𝑖
and 𝛼
𝑖
. Pick 𝑥 =

𝑥
1
⊗ 𝑥
2
, 𝑦 = 𝑦

1
⊗ 𝑦
2
, 𝑧 = 𝑧

1
⊗ 𝑧
2
∈ 𝐴.Then

(−1)
|𝑥||𝑧|

[[𝑥, 𝑦] , 𝛼 (𝑧)]

= (−1)
𝑠
1
[[𝑥
1
, 𝑦
1
] ⊗ (𝑥

2
𝑦
2
) , 𝛼
1
(𝑧
1
) ⊗ 𝛼
2
(𝑧
2
)]

+ (−1)
𝑠
1
[(𝑥
1
𝑦
1
) ⊗ [𝑥

2
, 𝑦
2
] , 𝛼
1
(𝑧
1
) ⊗ 𝛼
2
(𝑧
2
)]

= (−1)
𝑠
2
[[𝑥
1
, 𝑦
1
] , 𝛼
1
(𝑧
1
)] ⊗ (𝑥

2
𝑦
2
) 𝛼
2
(𝑧
2
)

+ (−1)
𝑠
2
[𝑥
1
, 𝑦
1
] 𝛼
1
(𝑧
1
) ⊗ [𝑥

2
𝑦
2
, 𝛼
2
(𝑧
2
)]

+ (−1)
𝑠
2
[𝑥
1
𝑦
1
, 𝛼
1
(𝑧
1
)] ⊗ [𝑥

2
, 𝑦
2
] 𝛼
2
(𝑧
2
)

+ (−1)
𝑠
2
(𝑥
1
𝑦
1
) 𝛼
1
(𝑧
1
) ⊗ [[𝑥

2
, 𝑦
2
] , 𝛼
2
(𝑧
2
)] ,

(22)

where 𝑠
1
= |𝑥
1
||𝑧
1
| + |𝑥
1
||𝑧
2
| + |𝑥
2
||𝑧
1
| + |𝑥
2
||𝑧
2
| + |𝑥
2
||𝑦
1
|,

𝑠
2
= |𝑥
1
||𝑧
1
| + |𝑥
1
||𝑧
2
| + |𝑥
2
||𝑧
2
|+ |𝑥
2
||𝑦
1
| + |𝑦
2
||𝑧
1
|. Consider

(−1)
|𝑥||𝑦|

[[𝑦, 𝑧] , 𝛼 (𝑥)]

= (−1)
𝑠
3
[[𝑦
1
, 𝑧
1
] , 𝛼
1
(𝑥
1
)] ⊗ (𝑦

2
𝑧
2
) 𝛼
2
(𝑥
2
)

+ (−1)
𝑠
3
[𝑦
1
, 𝑧
1
] 𝛼
1
(𝑥
1
) ⊗ [𝑦

2
𝑧
2
, 𝛼
2
(𝑥
2
)]

+ (−1)
𝑠
3
[𝑦
1
𝑧
1
, 𝛼
1
(𝑥
1
)] ⊗ [𝑦

2
, 𝑧
2
] 𝛼
2
(𝑥
2
)

+ (−1)
𝑠
3
(𝑦
1
𝑧
1
) 𝛼
1
(𝑥
1
) ⊗ [[𝑦

2
, 𝑧
2
] , 𝛼
2
(𝑥
2
)] ,

(23)

where 𝑠
3
= |𝑦
1
||𝑥
1
| + |𝑦
1
||𝑥
2
| + |𝑦
2
||𝑥
2
| + |𝑦
2
||𝑧
1
| + |𝑧
2
||𝑥
1
|.

Consider

(−1)
|𝑦||𝑧|

[[𝑧, 𝑥] , 𝛼 (𝑦)]

= (−1)
𝑠
4
[[𝑧
1
, 𝑥
1
] , 𝛼
1
(𝑦
1
)] ⊗ (𝑧

2
𝑥
2
) 𝛼
2
(𝑦
2
)

+ (−1)
𝑠
4
[𝑧
1
, 𝑥
1
] 𝛼
1
(𝑦
1
) ⊗ [𝑧

2
𝑥
2
, 𝛼
2
(𝑦
2
)]

+ (−1)
𝑠
4
[𝑧
1
𝑥
1
, 𝛼
1
(𝑦
1
)] ⊗ [𝑧

2
, 𝑥
2
] 𝛼
2
(𝑦
2
)

+ (−1)
𝑠
4
(𝑧
1
𝑥
1
) 𝛼
1
(𝑦
1
) ⊗ [[𝑧

2
, 𝑥
2
] , 𝛼
2
(𝑦
2
)] ,

(24)

where 𝑠
4

= |𝑧
1
||𝑦
1
| + |𝑧

1
||𝑦
2
| + |𝑧

2
||𝑦
2
| + |𝑧

2
||𝑥
1
| +

|𝑥
2
||𝑦
1
|. Using the Hom-Jacobi superidentity in 𝐴

1
and the

supercommutativity and Hom-associativity in 𝐴
2
, we have

(−1)
𝑠
2
[[𝑥
1
, 𝑦
1
] , 𝛼
1
(𝑧
1
)] ⊗ (𝑥

2
𝑦
2
) 𝛼
2
(𝑧
2
)

+ (−1)
𝑠
3
[[𝑦
1
, 𝑧
1
] , 𝛼
1
(𝑥
1
)] ⊗ (𝑦

2
𝑧
2
) 𝛼
2
(𝑥
2
)

+ (−1)
𝑠
4
[[𝑧
1
, 𝑥
1
] , 𝛼
1
(𝑦
1
)] ⊗ (𝑧

2
𝑥
2
) 𝛼
2
(𝑦
2
)

= 0.

(25)
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Likewise, using the supercommutativity and Hom-asso-
ciativity in 𝐴

1
and the Hom-Jacobi superidentity in 𝐴

2
, we

obtain

(−1)
𝑠
2
(𝑥
1
𝑦
1
) 𝛼
1
(𝑧
1
) ⊗ [[𝑥

2
, 𝑦
2
] , 𝛼
2
(𝑧
2
)]

+ (−1)
𝑠
3
(𝑦
1
𝑧
1
) 𝛼
1
(𝑥
1
) ⊗ [[𝑦

2
, 𝑧
2
] , 𝛼
2
(𝑥
2
)]

+ (−1)
𝑠
4
(𝑧
1
𝑥
1
) 𝛼
1
(𝑦
1
) ⊗ [[𝑧

2
, 𝑥
2
] , 𝛼
2
(𝑦
2
)]

= 0.

(26)

Using the Hom-Leibniz superidentity in𝐴
𝑖
, then we have

(−1)
𝑠
2
[𝑥
1
, 𝑦
1
] 𝛼
1
(𝑧
1
) ⊗ [𝑥

2
𝑦
2
, 𝛼
2
(𝑧
2
)] + (−1)

𝑠
2

⋅ [𝑥
1
𝑦
1
, 𝛼
1
(𝑧
1
)] ⊗ [𝑥

2
, 𝑦
2
] 𝛼
2
(𝑧
2
) + (−1)

𝑠
3
[𝑦
1
, 𝑧
1
]

⋅ 𝛼
1
(𝑥
1
) ⊗ [𝑦

2
𝑧
2
, 𝛼
2
(𝑥
2
)] + (−1)

𝑠
3
[𝑦
1
𝑧
1
, 𝛼
1
(𝑥
1
)]

⊗ [𝑦
2
, 𝑧
2
] 𝛼
2
(𝑥
2
) + (−1)

𝑠
4
[𝑧
1
, 𝑥
1
] 𝛼
1
(𝑦
1
)

⊗ [𝑧
2
𝑥
2
, 𝛼
2
(𝑦
2
)] + (−1)

𝑠
4
[𝑧
1
𝑥
1
, 𝛼
1
(𝑦
1
)]

⊗ [𝑧
2
, 𝑥
2
] 𝛼
2
(𝑦
2
) = (−1)

𝑠
2
+|𝑦
2
||𝑧
2
|
[𝑥
1
, 𝑦
1
] 𝛼
1
(𝑧
1
)

⊗ [𝑥
2
, (𝑧
2
)] 𝛼
2
(𝑦
2
) + (−1)

𝑠
2
[𝑥
1
, 𝑦
1
] 𝛼
1
(𝑧
1
)

⊗ 𝛼
2
(𝑥
2
) [𝑦
2
, 𝑧
2
] + (−1)

𝑠
3
+|𝑧
2
||𝑥
2
|
[𝑦
1
, 𝑧
1
] 𝛼
1
(𝑥
1
)

⊗ [𝑦
2
, 𝑥
2
] 𝛼
2
(𝑧
2
) + (−1)

𝑠
3
[𝑦
1
, 𝑧
1
] 𝛼
1
(𝑥
1
)

⊗ 𝛼
2
(𝑦
2
) [𝑧
2
, 𝑥
2
] + (−1)

𝑠
3
+|𝑧
1
||𝑥
1
|
[𝑦
1
, 𝑥
1
] 𝛼
1
(𝑧
1
)

⊗ [𝑦
2
, 𝑧
2
] 𝛼
2
(𝑥
2
) + (−1)

𝑠
3
𝛼
1
(𝑦
1
) [𝑧
1
, 𝑥
1
]

⊗ [𝑦
2
, 𝑧
2
] 𝛼
2
(𝑥
2
) + (−1)

𝑠
4
+|𝑦
2
||𝑧
2
|
[𝑧
1
, 𝑥
1
] 𝛼
1
(𝑦
1
)

⊗ [𝑧
2
𝑥
2
, 𝛼
2
(𝑦
2
)] + (−1)

𝑠
4
[𝑧
1
, 𝑥
1
] 𝛼
1
(𝑦
1
)

⊗ [𝑧
2
, 𝑦
2
] 𝛼
2
(𝑥
2
) + (−1)

𝑠
4
[𝑧
1
, 𝑥
1
] 𝛼
1
(𝑦
1
)

⊗ 𝛼
2
(𝑧
2
) [𝑥
2
, 𝑦
2
] + (−1)

𝑠
4
+|𝑥
1
||𝑦
1
|
[𝑧
1
, 𝑦
1
] 𝛼
1
(𝑥
1
)

⊗ [𝑧
2
, 𝑥
2
] 𝛼
2
(𝑦
2
) + (−1)

𝑠
4
𝛼
1
(𝑧
1
) [𝑥
1
, 𝑦
1
]

⊗ [𝑧
2
, 𝑥
2
] 𝛼
2
(𝑦
2
) = {(−1)

𝑠
2
+|𝑦
2
||𝑧
2
|
[𝑥
1
, 𝑦
1
] 𝛼
1
(𝑧
1
)

⊗ [𝑥
2
, 𝑧
2
] 𝛼
2
(𝑦
2
) + (−1)

𝑠
4
𝛼
1
(𝑧
1
) [𝑥
1
, 𝑦
1
]

⊗ [𝑧
2
, 𝑥
2
] 𝛼
2
(𝑦
2
)} + {(−1)

𝑠
2
[𝑥
1
, 𝑦
1
] 𝛼
1
(𝑧
1
)

⊗ 𝛼
2
(𝑥
2
) [𝑦
2
, 𝑧
2
] + (−1)

𝑠
3
+|𝑧
1
||𝑥
1
|
[𝑦
1
, 𝑥
1
] 𝛼
1
(𝑧
1
)

⊗ [𝑦
2
, 𝑧
2
] 𝛼
2
(𝑥
2
)} + {(−1)

𝑠
3
[𝑦
1
, 𝑧
1
] 𝛼
1
(𝑥
1
)

⊗ 𝛼
2
(𝑦
2
) [𝑧
2
, 𝑥
2
] + (−1)

𝑠
3
+|𝑧
1
||𝑥
1
|
[𝑦
1
, 𝑥
1
] 𝛼
1
(𝑧
1
)

⊗ [𝑦
2
, 𝑧
2
] 𝛼
2
(𝑥
2
)} + {(−1)

𝑠
3
[𝑦
1
, 𝑧
1
] 𝛼
1
(𝑥
1
)

⊗ 𝛼
2
(𝑦
2
) [𝑧
2
, 𝑥
2
] + (−1)

𝑠
4
+|𝑥
1
||𝑦
1
|
[𝑧
1
, 𝑦
1
] 𝛼
1
(𝑥
1
)

⊗ [𝑧
2
, 𝑥
2
] 𝛼
2
(𝑦
2
)} + {(−1)

𝑠
3
𝛼
1
(𝑦
1
) [𝑧
1
, 𝑥
1
]

⊗ [𝑦
2
, 𝑧
2
] 𝛼
2
(𝑥
2
) + (−1)

𝑠
4
+|𝑥
2
||𝑦
2
|
[𝑧
1
, 𝑥
1
] 𝛼
1
(𝑦
1
)

⊗ [𝑧
2
, 𝑦
2
] 𝛼
2
(𝑥
2
)} + {(−1)

𝑠
2
+|𝑦
1
||𝑧
1
|
[𝑥
1
, 𝑧
1
] 𝛼
1
(𝑦
1
)

⊗ [𝑥
2
, 𝑦
2
] 𝛼
2
(𝑧
2
) + (−1)

𝑠
4
[𝑧
1
, 𝑥
1
] 𝛼
1
(𝑦
1
)

⊗ 𝛼
2
(𝑧
2
) [𝑥
2
, 𝑦
2
]} = 0 + 0 + 0 + 0 + 0 + 0 = 0.

(27)

This shows that (𝐴, [⋅, ⋅], 𝛼) satisfies the Hom-Jacobi superi-
dentity:

(−1)
|𝑥||𝑧|

[[𝑥, 𝑦] , 𝛼 (𝑧)] + (−1)
|𝑥||𝑦|

[[𝑦, 𝑧] , 𝛼 (𝑥)]

+ (−1)
|𝑦||𝑧|

[[𝑧, 𝑥] , 𝛼 (𝑦)] = 0.

(28)

Finally, we check the Hom-Leibniz superidentity in 𝐴. Using
the Hom-associativity and the Hom-Leibniz superidentity in
the 𝐴

𝑖
, we have

[𝑥𝑦, 𝛼 (𝑧)] = [(𝑥
1
⊗ 𝑦
1
) (𝑦
1
⊗ 𝑦
2
) , 𝛼
1
(𝑧
1
) ⊗ 𝛼
2
(𝑧
2
)]

= (−1)
|𝑥
2
||𝑦
1
|+|𝑥
2
||𝑧
1
|+|𝑦
2
||𝑧
1
|
[𝑥
1
𝑦
1
, 𝛼
1
(𝑧
1
)] ⊗ (𝑥

2
𝑦
2
)

⋅ 𝛼
2
(𝑧
2
) + (−1)

|𝑥
2
||𝑦
1
|+|𝑥
2
||𝑧
1
|+|𝑦
2
||𝑧
1
|
(𝑥
1
𝑦
1
) 𝛼
1
(𝑧
1
)

⊗ [𝑥
2
𝑦
2
, 𝛼
2
(𝑧
2
)] = (−1)

|𝑥
2
||𝑦
1
|+|𝑥
2
||𝑧
1
|+|𝑦
2
||𝑧
1
|+|𝑦
1
||𝑧
1
|

⋅ [𝑥
1
, 𝑧
1
] 𝛼
1
(𝑦
1
) ⊗ (𝑥

2
𝑦
2
) 𝛼
2
(𝑧
2
)

+ (−1)
|𝑥
2
||𝑦
1
|+|𝑥
2
||𝑧
1
|+|𝑦
2
||𝑧
1
|
𝛼
1
(𝑥
1
) [𝑦
1
, 𝑧
1
] ⊗ (𝑥

2
𝑦
2
)

⋅ 𝛼
2
(𝑧
2
) + (−1)

|𝑥
2
||𝑦
1
|+|𝑥
2
||𝑧
1
|+|𝑦
2
||𝑧
1
|+|𝑦
2
||𝑧
2
|
(𝑥
1
𝑦
1
)

⋅ 𝛼
1
(𝑧
1
) ⊗ [𝑥

2
, 𝑧
2
] 𝛼
2
(𝑦
2
)

+ (−1)
|𝑥
2
||𝑦
1
|+|𝑥
2
||𝑧
1
|+|𝑦
2
||𝑧
1
|
(𝑥
1
𝑦
1
) 𝛼
1
(𝑧
1
) ⊗ 𝛼
2
(𝑥
2
)

⋅ [𝑦
2
, 𝑧
2
] ,

(−1)
|𝑦||𝑧|

[𝑥, 𝑧] 𝛼 (𝑦) + 𝛼 (𝑥) [𝑦, 𝑧]

= (−1)
|𝑦
1
||𝑧
1
|+|𝑦
1
||𝑧
2
|+|𝑦
2
||𝑧
1
|+|𝑦
2
||𝑧
2
|+|𝑥
2
||𝑧
1
|

⋅ ([𝑥
1
, 𝑧
1
] ⊗ (𝑥

2
𝑧
2
)) (𝛼
1
(𝑦
1
) ⊗ 𝛼
2
(𝑦
2
))

+ (−1)
|𝑦
1
||𝑧
1
|+|𝑦
1
||𝑧
2
|+|𝑦
2
||𝑧
1
|+|𝑦
2
||𝑧
2
|+|𝑥
2
||𝑧
1
|

⋅ ((𝑥
1
𝑧
1
) ⊗ [𝑥

2
, 𝑧
2
]) (𝛼
1
(𝑦
1
) ⊗ 𝛼
2
(𝑦
2
))

+ (−1)
|𝑦
2
||𝑧
1
|
𝛼
1
(𝑥
1
⊗ 𝛼
2
(𝑥
2
)) ([𝑦
1
, 𝑧
1
] ⊗ (𝑦

2
𝑧
2
))

+ (−1)
|𝑦
2
||𝑧
1
|
𝛼
1
(𝑥
1
⊗ 𝛼
2
(𝑥
2
)) ((𝑦

1
𝑧
1
) ⊗ [𝑦

2
, 𝑧
2
])

= (−1)
|𝑦
1
||𝑧
1
|+|𝑦
2
||𝑧
1
|+|𝑥
2
||𝑧
1
|+|𝑥
2
||𝑦
1
|
[𝑥
1
, 𝑧
1
] 𝛼
1
(𝑦
1
)

⊗ (𝑥
2
𝑧
2
) 𝛼
2
(𝑦
2
) + (−1)

|𝑦
2
||𝑧
1
|+|𝑦
2
||𝑧
2
|+|𝑥
2
||𝑧
1
|+|𝑥
2
||𝑦
1
|

⋅ (𝑥
1
𝑧
1
) 𝛼
1
(𝑦
1
) ⊗ [𝑥

2
, 𝑧
2
] 𝛼
2
(𝑦
2
)

+ (−1)
|𝑦
2
||𝑧
1
|+|𝑥
2
||𝑦
1
|+|𝑥
2
||𝑧
1
|
𝛼
1
(𝑥
1
) [𝑦
1
, 𝑧
1
] ⊗ 𝛼
2
(𝑥
2
)
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⋅ (𝑦
2
𝑧
2
) + (−1)

|𝑦
2
||𝑧
1
|+|𝑥
2
||𝑦
1
|+|𝑥
2
||𝑧
1
|
𝛼
1
(𝑥
1
) (𝑦
1
𝑧
1
)

⊗ 𝛼
2
(𝑥
2
) [𝑦
2
, 𝑧
2
] .

(29)

Therefore, we have

[𝑥𝑦, 𝛼 (𝑧)] = (−1)
|𝑦||𝑧|

[𝑥, 𝑧] 𝛼 (𝑦) + 𝛼 (𝑥) [𝑦, 𝑧] . (30)

Setting 𝛼
𝑖
= 𝐼𝑑
𝐴
𝑖

in Theorem 11, we obtain the result
about Poisson superalgebras.

Corollary 12. Let (𝐴
𝑖
, ⋅
𝑖
, [⋅, ⋅]
𝑖
, ) be Poisson superalgebras for

𝑖 = 1, 2, and let 𝐴 = 𝐴
1
⊗ 𝐴
2
. Define the operations ⋅, [⋅, ⋅] :

𝐴
⊗2

→ 𝐴 by

(𝑥
1
⊗ 𝑥
2
) ⋅ (𝑦
1
⊗ 𝑦
2
) = (−1)

|𝑥
2
||𝑦
1
|
(𝑥
1
⋅
1
𝑦
1
)

⊗ (𝑥
2
⋅
2
𝑦
2
) ,

[𝑥
1
⊗ 𝑥
2
, 𝑦
1
⊗ 𝑦
2
] = (−1)

|𝑥
2
||𝑦
1
|
[𝑥
1
, 𝑦
1
]
1
⊗ (𝑥
2
⋅
2
𝑦
2
)

+ (−1)
|𝑥
2
||𝑦
1
|
(𝑥
1
⋅
1
𝑦
1
)

⊗ [𝑥
2
, 𝑦
2
]
2
,

(31)

for 𝑥
𝑖
, 𝑦
𝑖
∈ 𝐴
𝑖
.Then (𝐴, ⋅, [⋅, ⋅]) is a Poisson superalgebra.

4. Admissible Hom-Poisson Superalgebras

A Poisson algebra has two binary operations, the Lie bracket
and the commutative associative product. It is shown in
[10] that Poisson algebras can be described using only one
binary operation via the polarization-depolarization process.
Moreover, the result of Poisson algebras is extended to Hom-
Poisson algebras in [8]. In other words, the paper shows
that a Hom-Poisson algebra can be described using only the
twisting map and one binary operation. The purpose of this
section is to extend this alternative description of Poisson
algebras to Hom-Poisson superalgebras.

Definition 13. An admissible Hom-Poisson superalgebra 𝐴 is
a Hom-superalgebra satisfying

3𝐴 (𝑥, 𝑦, 𝑧) + (−1)
|𝑥||𝑦|

(𝑦𝑥) 𝛼 (𝑧)

− (−1)
|𝑦||𝑧|

(𝑥𝑧) 𝛼 (𝑦)

− (−1)
|𝑥||𝑦|+|𝑥||𝑧|

(𝑦𝑧) 𝛼 (𝑥)

+ (−1)
|𝑥||𝑧|+|𝑦||𝑧|

(𝑧𝑥) 𝛼 (𝑦) = 0,

(32)

where𝐴(𝑥, 𝑦, 𝑧) = (𝑥𝑦)𝛼(𝑧)−𝛼(𝑥)(𝑦𝑧), for any homogeneous
elements 𝑥, 𝑦, 𝑧 ∈ 𝐴, the identity (32) is called the Hom-
Remm identity.

Remark 14. In particular, taking 𝛼 = 𝐼𝑑
𝐴
, we find the notion

of admissible Poisson superalgebra presented in [8].

Theorem 15. Let (𝐴, ⋅, [⋅, ⋅], 𝛼) be a double Hom-superalgebra.
Then (𝐴, ⋅, [⋅, ⋅], 𝛼) is a Hom-Poisson superalgebra if and only if
there exists on𝐴 a nonassociative product 𝑥𝑦 such that (𝐴, ⋅, 𝛼)
is an admissible Hom-Poisson superalgebra.

Proof. Assume that (𝐴, ⋅, [⋅, ⋅], 𝛼) is aHom-Poisson superalge-
bra. Consider the multiplication

𝑥𝑦 = 𝑥 ⋅ 𝑦 + [𝑥, 𝑦] . (33)

We deduce that

𝑥 ⋅ 𝑦 =

1

2

(𝑥𝑦 + (−1)
|𝑥||𝑦|

𝑦𝑥) . (34)

Thus the associativity condition can be denoted by

V
1
(𝑥, 𝑦, 𝑧) = 𝐴 (𝑥, 𝑦, 𝑧)

− (−1)
|𝑥||𝑦|+|𝑥||𝑧|+|𝑦||𝑧|

𝐴 (𝑧, 𝑦, 𝑥)

+ (−1)
|𝑥||𝑦|

(𝑦𝑥) 𝛼 (𝑧)

− (−1)
|𝑦||𝑧|

𝛼 (𝑥) (𝑧𝑦)

− (−1)
|𝑥||𝑦|+|𝑥||𝑧|

(𝑦𝑧) 𝛼 (𝑥)

+ (−1)
|𝑥||𝑧|+|𝑦||𝑧|

𝛼 (𝑧) (𝑥𝑦) = 0,

(35)

where 𝐴(𝑥, 𝑦, 𝑧) = (𝑥𝑦)𝛼(𝑧) − 𝛼(𝑥)(𝑦𝑧). Likewise, the Hom-
Poisson bracket can be denoted by

[𝑥, 𝑦] =

1

2

(𝑥𝑦 − (−1)
|𝑥||𝑦|

𝑦𝑥) (36)

and the Hom-super Jacobi condition

V
2
(𝑥, 𝑦, 𝑧) = (−1)

|𝑥||𝑧|
𝐴 (𝑥, 𝑦, 𝑧)

− (−1)
|𝑥||𝑦|+|𝑥||𝑧|

𝐴 (𝑦, 𝑥, 𝑧)

− (−1)
|𝑥||𝑦|+|𝑦||𝑧|

𝐴 (𝑧, 𝑦, 𝑥)

− (−1)
|𝑥||𝑧|+|𝑦||𝑧|

𝐴 (𝑥, 𝑧, 𝑦)

+ (−1)
|𝑥||𝑦|

𝐴 (𝑦, 𝑧, 𝑥)

+ (−1)
|𝑦||𝑧|

𝐴 (𝑧, 𝑥, 𝑦) = 0.

(37)

The Hom-Leibniz superidentity can be denoted by

V
3
(𝑥, 𝑦, 𝑧) = 𝐴 (𝑥, 𝑦, 𝑧) − (−1)

|𝑥||𝑦|
𝐴 (𝑦, 𝑥, 𝑧)

+ (−1)
|𝑥||𝑦|+|𝑥||𝑧|+|𝑦||𝑧|

𝐴 (𝑧, 𝑦, 𝑥)

+ (−1)
|𝑦||𝑧|

𝐴 (𝑥, 𝑧, 𝑦)

+ (−1)
|𝑥||𝑦|+|𝑥||𝑧|

𝐴 (𝑦, 𝑧, 𝑥)

− (−1)
|𝑥||𝑧|+|𝑦||𝑧|

𝐴 (𝑧, 𝑥, 𝑦) = 0.

(38)
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Let us consider the vector

V (𝑥, 𝑦, 𝑧) =
1

3

{(−1)
|𝑥||𝑦|

(𝑦𝑥) 𝛼 (𝑧)

− (−1)
|𝑦||𝑧|

(𝑥𝑧) 𝛼 (𝑦) − (−1)
|𝑥||𝑦|+|𝑥||𝑧|

(𝑦𝑧) 𝛼 (𝑥)

+ (−1)
|𝑥||𝑧|+|𝑦||𝑧|

(𝑧𝑥) 𝛼 (𝑦)} + (𝑥𝑦) 𝛼 (𝑧) − 𝛼 (𝑥)

⋅ (𝑦𝑧) .

(39)

Then

V (𝑥, 𝑦, 𝑧) =
1

6

{2V
1
(𝑥, 𝑦, 𝑧) + (−1)

|𝑥||𝑧| V
2
(𝑥, 𝑦, 𝑧)

+ V
3
(𝑥, 𝑦, 𝑧) + 2 (−1)

|𝑥||𝑧|+|𝑦||𝑧| V
3
(𝑧, 𝑥, 𝑦)} .

(40)

We deduce that the product 𝑥𝑦 satisfies

V (𝑥, 𝑦, 𝑧) = 0 (41)

for any homogeneous elements 𝑥, 𝑦, 𝑧 ∈ 𝐴.

Conversely, assume that the produce of the nonassocia-
tive product 𝐴 satisfies V(𝑥, 𝑦, 𝑧) = 0 for any homogeneous
elements 𝑥, 𝑦, 𝑧 ∈ 𝐴. Let V

1
(𝑥, 𝑦, 𝑧), V

2
(𝑥, 𝑦, 𝑧), V

3
(𝑥, 𝑦, 𝑧)

be the elements of 𝐴 defined in the first part, respectively,
in relation to the Hom-associativity, Hom-super Jacobi, and
Hom-super Leibniz relations. We have

V
1
(𝑥, 𝑦, 𝑧) = V (𝑥, 𝑦, 𝑧)

− (−1)
|𝑥||𝑦|+|𝑥||𝑧|+|𝑦||𝑧| V (𝑧, 𝑦, 𝑥)

+ (−1)
|𝑦||𝑧| V (𝑥, 𝑧, 𝑦)

− (−1)
|𝑥||𝑧|+|𝑦||𝑧| V (𝑧, 𝑥, 𝑦) ,

V
2
(𝑥, 𝑦, 𝑧) = (−1)

|𝑥||𝑧| V (𝑥, 𝑦, 𝑧)

− (−1)
|𝑥||𝑦|+|𝑥||𝑧| V (𝑦, 𝑥, 𝑧)

− (−1)
|𝑥||𝑦|+|𝑦||𝑧| V (𝑧, 𝑦, 𝑥)

− (−1)
|𝑥||𝑧|+|𝑦||𝑧| V (𝑥, 𝑧, 𝑦)

+ (−1)
|𝑥||𝑦| V (𝑦, 𝑧, 𝑥)

+ (−1)
|𝑦||𝑧| V (𝑧, 𝑥, 𝑦) ,

V
3
(𝑥, 𝑦, 𝑧) = V (𝑥, 𝑦, 𝑧) − (−1)

|𝑥||𝑦| V (𝑦, 𝑥, 𝑧)

+ (−1)
|𝑥||𝑦|+|𝑥||𝑧|+|𝑦||𝑧| V (𝑧, 𝑦, 𝑥)

+ (−1)
|𝑦||𝑧| V (𝑥, 𝑧, 𝑦)

+ (−1)
|𝑥||𝑦|+|𝑥||𝑧| V (𝑦, 𝑧, 𝑥)

− (−1)
|𝑥||𝑧|+|𝑦||𝑧| V (𝑧, 𝑥, 𝑦) .

(42)

Taking 𝛼 = 𝐼𝑑
𝐴
in Theorem 15, we obtain the following

result, which is Theorem 1 in [7].

Corollary 16. Let (𝐴, ⋅, [⋅, ⋅]) be a double superalgebra. Then
(𝐴, ⋅, [⋅, ⋅]) is a Poisson superalgebra if and only if there exists
on 𝐴 a nonassociative product 𝑥𝑦 satisfying

3𝐴 (𝑥, 𝑦, 𝑧) + (−1)
|𝑥||𝑦|

(𝑦𝑥) 𝑧 − (−1)
|𝑦||𝑧|

(𝑥𝑧) 𝑦

− (−1)
|𝑥||𝑦|+|𝑥||𝑧|

(𝑦𝑧) 𝑥 + (−1)
|𝑥||𝑧|+|𝑦||𝑧|

(𝑧𝑥) 𝑦

= 0,

(43)

where 𝐴(𝑥, 𝑦, 𝑧) = (𝑥𝑦)𝑧 − 𝑥(𝑦𝑧), for any homogeneous
elements 𝑥, 𝑦, 𝑧 ∈ 𝐴.

Definition 17. A Hom-nonassociative superalgebra (𝐴, ⋅, 𝛼) is
called Hom-superflexive if the multiplication 𝑥𝑦 satisfies

𝐴 (𝑥, 𝑦, 𝑧) + (−1)
|𝑥||𝑦|+|𝑥||𝑧|+|𝑦||𝑧|

𝐴 (𝑧, 𝑦, 𝑥) = 0 (44)

for any homogeneous elements 𝑥, 𝑦, 𝑧 ∈ 𝐴, where 𝐴
𝛼
(𝑥, 𝑦,

𝑧) = (𝑥𝑦)𝛼(𝑧) − 𝛼(𝑥)(𝑦𝑧) is called a Hom-associator of the
multiplication.

Proposition 18. Let (𝐴, ⋅, [⋅, ⋅], 𝛼) be a Hom-Poisson superal-
gebra.Then theHom-Remmproduct defining theHom-Poisson
superalgebra structure is Hom-superflexive.

Proof. Let

𝐵 (𝑥, 𝑦, 𝑧)

= 3 {𝐴 (𝑥, 𝑦, 𝑧) + (−1)
|𝑥||𝑦|+|𝑥||𝑧|+|𝑦||𝑧|

𝐴 (𝑧, 𝑦, 𝑥)} .

(45)

We have

𝐵 (𝑥, 𝑦, 𝑧) = − (−1)
|𝑥||𝑦|

(𝑦𝑥) 𝛼 (𝑧) + (−1)
|𝑦||𝑧|

(𝑥𝑧)

⋅ 𝛼 (𝑦) + (−1)
|𝑥||𝑦|+|𝑥||𝑧|

(𝑦𝑧) 𝛼 (𝑥) − (−1)
|𝑥||𝑧|+|𝑦||𝑧|

⋅ (𝑧𝑥) 𝛼 (𝑦) + (−1)
|𝑥||𝑦|+|𝑥||𝑧|+|𝑦||𝑧|

⋅ {− (−1)
|𝑧||𝑦|

(𝑦𝑧) 𝛼 (𝑥)

+ (−1)
|𝑦||𝑥|

(𝑧𝑥) 𝛼 (𝑦) + (−1)
|𝑧||𝑦|+|𝑧||𝑥|

(𝑦𝑥) 𝛼 (𝑦)

− (−1)
|𝑧||𝑥|+|𝑦||𝑧|

(𝑥𝑧) 𝛼 (𝑦)} = {− (−1)
|𝑥||𝑦|

+ (−1)
|𝑥||𝑦|

} (𝑦𝑥) 𝛼 (𝑧) + {(−1)
|𝑦||𝑧|

− (−1)
|𝑦||𝑧|

}

⋅ (𝑥𝑧) 𝛼 (𝑦) + {(−1)
|𝑥||𝑦|+|𝑥||𝑧|

− (−1)
|𝑥||𝑦|+|𝑥||𝑧|

}

⋅ (𝑦𝑧) 𝛼 (𝑥) + {− (−1)
|𝑥||𝑧|+|𝑦||𝑧|

+ (−1)
|𝑥||𝑧|+|𝑦||𝑧|

}

⋅ (𝑧𝑥) 𝛼 (𝑦) = 0.

(46)

Taking𝛼 = 𝐼𝑑
𝐴
in Proposition 18, we obtain the following

result, which is Proposition 3 in [7].

Corollary 19. Let (𝐴, ⋅, [⋅, ⋅]) be a Poisson superalgebra. Then
the Remm product defining Poisson superalgebra structure is
superflexive.
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Remark 20. The deformation cohomology of Hom-Poisson
superalgebras can be computed with the Hom-Remm iden-
tity, which is similar to the method in [11].This content is not
primary in the paper, we do not have a detailed discussion
here.

5. A Classification of 2-Dimensional
Hom-Poisson Superalgebras

In this section, we only consider that 𝐴
1
is nontrivial. 𝐴𝑖

2

denotes one of the 2-dimensional admissible Poisson super-
algebra types. 𝛼𝑖

2
denotes one of the homomorphism types

corresponding to 𝐴
𝑖

2
. 𝐴𝑖
2
denotes one of the 2-dimensional

admissible Hom-Poisson superalgebra types corresponding
to 𝛼𝑖
2
. In the following, the products equal to zero are omitted.

Lemma 21. Let (𝐴, ()) be an admissible Poisson superalgebra
and let 𝛼 : 𝐴 → 𝐴 be an even Poisson superalgebra
endomorphism.Then (𝐴, ()

𝛼
, 𝛼) is an admissible Hom-Poisson

superalgebra, where (𝑥𝑦)
𝛼
= 𝛼(𝑥𝑦).

Proof. It is straightforward by Definition 13.

Lemma 22 (see [7]). Let (𝐴, ()) be a 2-dimensional admissible
Poisson superalgebra with a basis {𝑒

0
, 𝑒
1
}, where 𝑒

0
∈ 𝐴
0
, 𝑒
1
∈

𝐴
1
. Then 𝐴 is one of the following types:

𝐴
1

2
: 𝑒
0
𝑒
0
= 𝑎𝑒
0
, 𝑒
0
𝑒
1
= 𝑎𝑒
1
, 𝑒
1
𝑒
0
= 𝑎𝑒
1
, 𝑒
1
𝑒
1
= 𝑑𝑒
0
,

𝑑 ̸= 0.
𝐴
2

2
: 𝑒
0
𝑒
0
= 𝑎𝑒
0
.

𝐴
3

2
: 𝑒
0
𝑒
0
= 𝑎𝑒
0
, 𝑒
0
𝑒
1
= 𝑎𝑒
1
, 𝑒
1
𝑒
0
= 𝑎𝑒
1
, 𝑎 ̸= 0.

𝐴
4

2
: 𝑒
0
𝑒
1
= 𝑏𝑒
1
, 𝑒
1
𝑒
0
= −𝑏𝑒

1
, 𝑏 ̸= 0.

Proof. Let

𝑒
0
𝑒
0
= 𝑎𝑒
0
,

𝑒
0
𝑒
1
= 𝑏𝑒
1
,

𝑒
1
𝑒
0
= 𝑐𝑒
1
,

𝑒
1
𝑒
1
= 𝑑𝑒
0
.

(47)

By Corollary 16, we have

3 (𝑎 − 𝑏) 𝑏 + 𝑎𝑏 − 2𝑏𝑐 + 𝑐
2
= 0,

𝑑 (𝑏 − 𝑎) = 0,

3 (𝑎 − 𝑐) 𝑐 + 𝑎𝑏 − 2𝑏𝑐 + 𝑐
2
= 0,

𝑑 (3𝑐 − 𝑏 − 2𝑎) = 0,

𝑑 (𝑏 − 𝑐) = 0.

(48)

Now we consider the cases as follows.

Case 1. If 𝑑 ̸= 0, then 𝑏 = 𝑎 = 𝑐; hence we have 𝐴1
2
.

Case 2. If 𝑑 = 0, then (𝑏 − 𝑐)(𝑎 − 𝑏 − 𝑐) = 0.

Subcase 2.1. If 𝑏 = 𝑐, then 𝑏(𝑎 − 𝑏) = 0.
If 𝑏 = 0, then we have 𝐴2

2
.

If 𝑏 ̸= 0, then 𝑎 = 𝑏 = 𝑐 ̸= 0; hence we have 𝐴3
2
.

Subcase 2.2. If 𝑏 ̸= 𝑐, then 𝑏 = −𝑐 ̸= 0, 𝑎 = 0; hence we have
𝐴
4

2
.

Remark 23. Lemma 5.2 in [6] has been obtained; however,
there is one minor inaccuracy on the product operation in
that proof.

Lemma 24. Let (𝐴, ()) be a 2-dimensional admissible Poisson
superalgebra with dim 𝐴

0
= 1 and dim 𝐴

1
= 1. Then an even

homomorphism 𝛼 of type 𝐴1
2
is as follows:

𝛼
1

2(1)
:

{

{

{

𝛼 (𝑒
0
) = 𝑘
2
𝑒
0

𝛼 (𝑒
1
) = 𝑘𝑒

1
;

𝛼
1

2(2)
:

{

{

{

𝛼 (𝑒
0
) = 0

𝛼 (𝑒
1
) = 0;

𝛼
1

2(3)
:

{

{

{

𝛼 (𝑒
0
) = 𝑒
0

𝛼 (𝑒
1
) = ±𝑒

1
.

(49)

Proof. Let

𝛼 (𝑒
0
) = 𝑎
10
𝑒
0
,

𝛼 (𝑒
1
) = 𝑎
11
𝑒
1
.

(50)

From 𝛼 is an even homomorphism, we obtain

𝛼 (𝑒
0
𝑒
0
) = 𝛼 (𝑒

0
) 𝛼 (𝑒
0
) ,

𝛼 (𝑒
0
𝑒
1
) = 𝛼 (𝑒

0
) 𝛼 (𝑒
1
) ,

𝛼 (𝑒
1
𝑒
0
) = 𝛼 (𝑒

1
) 𝛼 (𝑒
0
) ,

𝛼 (𝑒
1
𝑒
1
) = 𝛼 (𝑒

1
) 𝛼 (𝑒
1
) .

(51)

By Lemma 22 and (50) and (51), we obtain

𝑎𝑎
10
(𝑎
10
− 1) = 0,

𝑎𝑎
11
(𝑎
10
− 1) = 0,

𝑎
10
= 𝑎
2

11
.

(52)

Case 1. If 𝑎 = 0, then we have 𝛼1
2(1)

.

Case 2. If 𝑎 ̸= 0, then we consider two cases as follows.
If 𝑎
10
= 0, then 𝑎

11
= 0; hence we have 𝛼1

2(2)
.

If 𝑎
10

̸= 0, then 𝑎
10
= 1, 𝑎
11
= ±1; hencewe have𝛼1

2(3)
.

Corollary 25. Let (𝐴, ()
𝛼
, 𝛼) be a 2-dimensional admissible

Hom-Poisson superalgebra. Then 𝐴 with respect to 𝛼
1

2
is as

follows:

𝐴
1

2(1)
: (𝑒
1
𝑒
1
)
𝛼
= 𝑑𝑘
2
𝑒
0
, 𝑑 ̸= 0.

𝐴
1

2(2)
: (𝐴𝐴)

𝛼
= 0.
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𝐴
1

2(3)
: (𝑒
0
𝑒
0
)
𝛼
= 𝑎𝑒
0
, (𝑒
0
𝑒
1
)
𝛼
= ±𝑎𝑒

1
, (𝑒
1
𝑒
0
)
𝛼
= ±𝑎𝑒

1
,

(𝑒
1
𝑒
1
)
𝛼
= 𝑑𝑒
0
, 𝑎 ̸= 0, 𝑑 ̸= 0.

Proof. Apply Lemmas 21, 22, and 24.

Lemma 26. Let (𝐴, ()) be a 2-dimensional admissible Poisson
superalgebra with dim𝐴

0
= 1 and dim𝐴

1
= 1. Then an even

homomorphism 𝛼 of type 𝐴2
2
is as follows:

𝛼
2

2(1)
:

{

{

{

𝛼 (𝑒
0
) = 𝑘
0
𝑒
0

𝛼 (𝑒
1
) = 𝑘𝑒

1
;

𝛼
2

2(2)
:

{

{

{

𝛼 (𝑒
0
) = 0

𝛼 (𝑒
1
) = 𝑘𝑒

1
;

𝛼
2

2(3)
:

{

{

{

𝛼 (𝑒
0
) = 𝑒
0

𝛼 (𝑒
1
) = 𝑘𝑒

1
.

(53)

Proof. By Lemma 22 and (20) and (21), we obtain 𝑎𝑎
10
(𝑎
10
−

1) = 0.
Case 1. Suppose that 𝑎 = 0, we have 𝛼2

2(1)
.

Case 2. Suppose that 𝑎 ̸= 0, we consider two cases as follows.
If 𝑎
10
= 0, then we have 𝛼2

2(2)
.

If 𝑎
10

̸= 0, then 𝑎
10
= 1; hence we have 𝛼2

2(3)
.

Corollary 27. Let (𝐴, ()
𝛼
, 𝛼) be a 2-dimensional admissible

Hom-Poisson superalgebra. Then 𝐴 with respect to 𝛼
2

2
is as

follows:

𝐴
2

2(1)
: (𝐴𝐴)

𝛼
= 0.

𝐴
2

2(2)
: (𝐴𝐴)

𝛼
= 0.

𝐴
2

2(3)
: (𝑒
0
𝑒
0
)
𝛼
= 𝑎𝑒
0
, 𝑎 ̸= 0.

Proof. Apply Lemmas 21, 22, and 26.

Lemma 28. Let (𝐴, ()) be a 2-dimensional admissible Poisson
superalgebra with dim 𝐴

0
= 1 and dim 𝐴

1
= 1. Then an even

homomorphism 𝛼 of type 𝐴3
2
is as follows:

𝛼
3

2(1)
:

{

{

{

𝛼 (𝑒
0
) = 0

𝛼 (𝑒
1
) = 0;

𝛼
3

2(2)
:

{

{

{

𝛼 (𝑒
0
) = 𝑒
0

𝛼 (𝑒
1
) = 𝑘𝑒

1
;

𝛼
3

2(3)
:

{

{

{

𝛼 (𝑒
0
) = 0

𝛼 (𝑒
1
) = 0;

𝛼
3

2(4)
:

{

{

{

𝛼 (𝑒
0
) = 𝑒
0

𝛼 (𝑒
1
) = 0;

𝛼
3

2(5)
:

{

{

{

𝛼 (𝑒
0
) = 𝑒
0

𝛼 (𝑒
1
) = 𝑘𝑒

1
,

𝑘 ̸= 0.

(54)

Proof. By Lemma 22 and (20) and (21), we obtain

𝑎
10
(𝑎
10
− 1) = 0,

𝑎
11
(𝑎
10
− 1) = 0.

(55)

Case 1. If 𝑎
10
= 0, then 𝑎

11
= 0; hence we have 𝛼3

2(1)
.

Case 2. If 𝑎
10

̸= 0, then 𝑎
10
= 1; hence we have 𝛼3

2(2)
.

Case 3. If 𝑎
11
= 0, then we consider two cases as follows.

If 𝑎
10
= 0, we have 𝛼3

2(3)
.

If 𝑎
10

̸= 0, then 𝑎
10
= 1; hence we have 𝛼3

2(4)
.

Case 4. If 𝑎
11

̸= 0, then 𝑎
10
= 1; hence we have 𝛼3

2(5)
.

Corollary 29. Let (𝐴, ()
𝛼
, 𝛼) be a 2-dimensional admissible

Hom-Poisson superalgebra. Then 𝐴 with respect to 𝛼
3

2
is as

follows:

𝐴
3

2(1)
: (𝐴𝐴)

𝛼
= 0.

𝐴
3

2(2)
: (𝑒
0
𝑒
0
)
𝛼
= 𝑎𝑒
0
, (𝑒
0
𝑒
1
)
𝛼
= 𝑘𝑎𝑒

1
, (𝑒
1
𝑒
0
)
𝛼
= 𝑘𝑎𝑒

1
,

𝑎 ̸= 0.
𝐴
3

2(3)
: (𝐴𝐴)

𝛼
= 0.

𝐴
3

2(4)
: (𝑒
0
𝑒
0
)
𝛼
= 𝑎𝑒
0
, 𝑎 ̸= 0.

𝐴
3

2(5)
: (𝑒
0
𝑒
0
)
𝛼
= 𝑎𝑒
0
, (𝑒
0
𝑒
1
)
𝛼
= 𝑘𝑎𝑒

1
, (𝑒
1
𝑒
0
)
𝛼
= 𝑘𝑎𝑒

1
,

𝑎 ̸= 0, 𝑘 ̸= 0.

Proof. Apply Lemmas 21, 22, and 28.

Lemma 30. Let (𝐴, ()) be a 2-dimensional admissible Poisson
superalgebra with dim𝐴

0
= 1 and dim𝐴

1
= 1. Then an even

homomorphism 𝛼 of type 𝐴4
2
is as follows:

𝛼
4

2(1)
:

{

{

{

𝛼 (𝑒
0
) = 𝑘𝑒

0

𝛼 (𝑒
1
) = 0;

𝛼
4

2(2)
:

{

{

{

𝛼 (𝑒
0
) = 𝑒
0

𝛼 (𝑒
1
) = 𝑘𝑒

1
,

𝑘 ̸= 0.

(56)

Proof. By Lemma 22 and (20) and (21), we obtain 𝑎
11
(𝑎
10

−

1) = 0.

Case 1. If 𝑎
10
= 0, then we have 𝛼4

2(1)
.

Case 2. If 𝑎
10

̸= 0, then 𝑎
10
= 1; hence we have 𝛼4

2(2)
.
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Corollary 31. Let (𝐴, ()
𝛼
, 𝛼) be a 2-dimensional admissible

Hom-Poisson superalgebra. Then 𝐴 with respect to 𝛼
4

2
is as

follows:

𝐴
4

2(1)
: (𝐴𝐴)

𝛼
= 0.

𝐴
4

2(2)
: (𝑒
0
𝑒
1
)
𝛼
= 𝑘𝑏𝑒

1
, (𝑒
1
𝑒
0
)
𝛼
= −𝑘𝑏𝑒

1
, 𝑏 ̸= 0, 𝑘 ̸= 0.

Proof. Apply Lemmas 21, 22, and 30.

Theorem 32. Let (𝐴, ()) be a 2-dimensional admissible Pois-
son superalgebra with dim𝐴

0
= 1 and dim𝐴

1
= 1. Then an

even homomorphism 𝛼 of 𝐴 is as follows:

𝛼
1

2(1)
:

{

{

{

𝛼 (𝑒
0
) = 𝑘
2
𝑒
0

𝛼 (𝑒
1
) = 𝑘𝑒

1
;

𝛼
1

2(2)
:

{

{

{

𝛼 (𝑒
0
) = 0

𝛼 (𝑒
1
) = 0;

𝛼
1

2(3)
:

{

{

{

𝛼 (𝑒
0
) = 𝑒
0

𝛼 (𝑒
1
) = ±𝑒

1
;

𝛼
2

2(1)
:

{

{

{

𝛼 (𝑒
0
) = 𝑘
0
𝑒
0

𝛼 (𝑒
1
) = 𝑘𝑒

1
;

𝛼
2

2(2)
:

{

{

{

𝛼 (𝑒
0
) = 0

𝛼 (𝑒
1
) = 𝑘𝑒

1
;

𝛼
2

2(3)
:

{

{

{

𝛼 (𝑒
0
) = 𝑒
0

𝛼 (𝑒
1
) = 𝑘𝑒

1
;

𝛼
3

2(1)
:

{

{

{

𝛼 (𝑒
0
) = 0

𝛼 (𝑒
1
) = 0;

𝛼
3

2(2)
:

{

{

{

𝛼 (𝑒
0
) = 𝑒
0

𝛼 (𝑒
1
) = 𝑘𝑒

1
;

𝛼
3

2(3)
:

{

{

{

𝛼 (𝑒
0
) = 0

𝛼 (𝑒
1
) = 0;

𝛼
3

2(4)
:

{

{

{

𝛼 (𝑒
0
) = 𝑒
0

𝛼 (𝑒
1
) = 0;

𝛼
3

2(5)
:

{

{

{

𝛼 (𝑒
0
) = 𝑒
0

𝛼 (𝑒
1
) = 𝑘𝑒

1
,

𝑘 ̸= 0;

𝛼
4

2(1)
:

{

{

{

𝛼 (𝑒
0
) = 𝑘𝑒

0

𝛼 (𝑒
1
) = 0;

𝜎
4

2 (2)
:

{

{

{

𝛼 (𝑒
0
) = 𝑒
0

𝛼 (𝑒
1
) = 𝑘𝑒

1
,

𝑘 ̸= 0.

(57)

Proof. Apply Lemmas 24–30.

Corollary 33. Let (𝐴, ()
𝛼
, 𝛼) be a 2-dimensional admissible

Hom-Poisson superalgebra. Then 𝐴 with respect to 𝛼
𝑖

2
is as

follows:

𝐴
1

2(1)
: (𝑒
1
𝑒
1
)
𝛼
= 𝑑𝑘
2
𝑒
0
, 𝑑 ̸= 0.

𝐴
1

2(2)
: (𝐴𝐴)

𝛼
= 0.

𝐴
1

2(3)
: (𝑒
0
𝑒
0
)
𝛼
= 𝑎𝑒
0
, (𝑒
0
𝑒
1
)
𝛼
= ±𝑎𝑒

1
, (𝑒
1
𝑒
0
)
𝛼
= ±𝑎𝑒

1
,

(𝑒
1
𝑒
1
)
𝛼
= 𝑑𝑒
0
, 𝑎 ̸= 0, 𝑑 ̸= 0.

𝐴
2

2(1)
: (𝐴𝐴)

𝛼
= 0.

𝐴
2

2(2)
: (𝐴𝐴)

𝛼
= 0.

𝐴
2

2(3)
: (𝑒
0
𝑒
0
)
𝛼
= 𝑎𝑒
0
, 𝑎 ̸= 0.

𝐴
3

2(1)
: (𝐴𝐴)

𝛼
= 0.

𝐴
3

2(2)
: (𝑒
0
𝑒
0
)
𝛼
= 𝑎𝑒
0
, (𝑒
0
𝑒
1
)
𝛼
= 𝑘𝑎𝑒

1
, (𝑒
1
𝑒
0
)
𝛼
= 𝑘𝑎𝑒

1
,

𝑎 ̸= 0.

𝐴
3

2(3)
: (𝐴𝐴)

𝛼
= 0.

𝐴
3

2(4)
: (𝑒
0
𝑒
0
)
𝛼
= 𝑎𝑒
0
, 𝑎 ̸= 0.

𝐴
3

2(5)
: (𝑒
0
𝑒
0
)
𝛼
= 𝑎𝑒
0
, (𝑒
0
𝑒
1
)
𝛼
= 𝑘𝑎𝑒

1
, (𝑒
1
𝑒
0
)
𝛼
= 𝑘𝑎𝑒

1
,

𝑎 ̸= 0, 𝑘 ̸= 0.

𝐴
4

2(1)
: (𝐴𝐴)

𝛼
= 0.

𝐴
4

2(2)
: (𝑒
0
𝑒
1
)
𝜎
= 𝑘𝑏𝑒

1
, (𝑒
1
𝑒
0
)
𝛼
= −𝑘𝑏𝑒

1
, 𝑏 ̸= 0, 𝑘 ̸= 0.

Proof. Apply Corollaries 25–31.

Remark 34. (1) Some nonisomorphic 2-dimensional admis-
sible Poisson superalgebras have isomorphic admissible
Hom-Poisson deformations. For example, the admissible
Poisson superalgebras 𝐴

2

2
(with 𝑘 = 0 in its algebra

homomorphism 𝛼
2

2(3)
) and 𝐴3

2
can be deformed into isomor-

phic admissible Hom-Poisson superalgebras 𝐴2
2(3)

and 𝐴
3

2(4)
.

There are several other such pairs in the cases above.
(2) We give a classification of 2-dimensional admis-

sible Hom-Poisson superalgebras in Corollary 33. Using
Theorem 15, a classification of 2-dimensional Hom-Poisson
superalgebras will be obviously obtained.
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