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Complex Lie point transformations are used to linearize a class of systems of second order ordinary differential equations (ODEs)
which have Lie algebras of maximum dimension d, with 𝑑 ≤ 4. We identify such a class by employing complex structure on the
manifold that defines the geometry of differential equations. Furthermore we provide a geometrical construction of the procedure
adopted that provides an analogue inR3 of the linearizability criteria in R2.

1. Introduction

One method of solving a nonlinear ODE or a system of
such equations is to reduce it to linear form, which is
called linearization, by invertible transformations of the
independent and dependent variables (point transforma-
tions). There are many ways to convert to linear form like
Lie point transformations, contact transformations, nonlo-
cal transformations, and so forth, but for convenience we
will use the term “linearization” to signify the Lie point
transformations only and qualify the term if we mean any
other transformation. Lie presented the most general form
of a scalar second order linearizable ODE by considering
arbitrary point transformations (see, e.g., [1, 2] and the
references therein). Over the past few years there has been a
rapidly growing interest in studying linearization of higher-
order ODEs and systems of these equations. The simplest
system (𝑓

1
= 0, 𝑓

2
= 0) is a unique system that admits

a maximal algebra of dimension 15 = |sl(4,R)|, which
was proved in [3], using Cartan’s equivalence method, after
refining the result in [4]. A geometric approach is used to
obtain linearization criteria for systems of two second order
cubically semilinear ODEs obtainable by projecting down a
system of three geodesic equations [5, 6]. Indeed, utilizing
arbitrary point transformations, general forms of linearizable

systems and corresponding linearization criteria were studied
in [7–9].The use of generalized Sundman transformations in
the linearization problem is studied in [10]. The construction
of linearizing transformations from the first integrals of two-
dimensional systems is carried out in [11, 12].

It is well known [13] that to be linearizable by Lie point
transformation a system of two second order ODEs can
have an algebra of maximum dimensions, 5, 6, 7, 8, or
15. The systems which do not have maximal algebras are
clearly nonlinearizable in the sense that there exist no real
Lie point transformation which can be used to linearize
them. This paper addresses the problem of linearizability of
such a class of nonlinearizable systems by complex Lie point
transformations.

Recently we studied a special class of two-dimensional
linearizable systems that corresponds to complex linearizable
scalar ODEs [14, 15]. (The characterization for the correspon-
dence will be explained in the next section.) The linearizing
transformations tomap nonlinear systems to linear forms are
provided by the complex fibre-preserving transformations:

L
1
: (𝑥, 𝑢 (𝑥)) → (𝜒 (𝑥) , 𝑈 (𝑥, 𝑢)) , (1)

where 𝑢(𝑥), is an analytic complex function of a real variable
𝑥. The method was successfully applied to generate classes of
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systems withmaximumdimensions of their algebras 6, 7, and
15, where the linearizing transformations were obtained by
the process of “realification” of the above transformations (1).
In this paper we investigate a nonlinearizable class of systems
of two ODEs that can be obtained from a linearizable scalar
complex equation, but the complex linearizing transforma-
tions in this case are different from those given above; that
is,

L
2
: (𝑥, 𝑢 (𝑥)) → (𝜒 (𝑥, 𝑢) , 𝑈 (𝑥, 𝑢)) (2)

which is a complex Lie point transformation and contains (1)
as its special case. Notice thatL

2
cannot be used to obtain the

linearizing transformations for the corresponding systems.
The reason is that the transformed independent variable is
complex which gives two independent variables when it splits
into the real and imaginary partswhile the concerned systems
are of ODEs rather than PDEs. The standard techniques of
linearization [8, 9, 13] cannot be applied to such systems as
they have symmetry algebra of maximum dimension 𝑑 ≤ 4.
However we prove that linearization can still be achieved
for such systems in the complex plane and the solutions can
also be obtained explicitly. Most surprisingly, we find that
there can be systems that have no Lie point symmetries but
can be solved by this procedure of converting to a complex
scalar ODE and linearizing the scalar equation to write down
the solution in the complex domain and thence obtain the
solution of the system. An example of such a system is also
given. We call this procedure for linearizing systems of two
second order ODEs from complex point transformations
with less than five symmetries complex linearization.

The procedure of constructing a pair of real functions of
two variables from a single complex function of a complex
variable, leading to a system of PDEs, entails the use of
the Cauchy-Riemann (CR) equations in a transparent way.
However, the role of these equations for a system of ODEs is
far from clear as the CR-equations require two independent
variables. Here we give a simple explanation of this role using
geometry, for the free particle ODEwhich presents an elegant
framework of viewing the straight line (which is maximally
symmetric and invariant under the full group SL(3,R)) in
a higher dimensional space which is only possible if we put
on complex glasses. The CR-equations are shown to play an
essential part in establishing the correspondence between
solutions of the base complex linearizable or integrable ODEs
and emerging systems.

The outline of the paper is as follows. The criteria for
the correspondence of systems with complex linearizable
equations are given in the second section. The third section
is on the CR-equations associated with systems of two
second order ODEs and exploring their role in establishing
correspondence of solutions of systems and base scalarODEs.
The subsequent section contains application of complex
linearization procedure on systems which correspond to
linearizable complex base ODEs. The last section is devoted
to the conclusion and discussion.

2. Complexification of Systems of
ODEs and Classification

Wefirst explain the basic formalismof complex linearizability
by taking a general system of two second order ODEs:

𝑓


1
= 𝜔
1
(𝑥, 𝑓
1
, 𝑓
2
, 𝑓


1
, 𝑓


2
) ,

𝑓


2
= 𝜔
2
(𝑥, 𝑓
1
, 𝑓
2
, 𝑓


1
, 𝑓


2
) ,

(3)

which may be regarded as a surface 𝑆 in a 2(3) + 1 = 7-
dimensional spacewhose components comprise the indepen-
dent and dependent variables along with their derivatives.
Hence a solution of system (3) is an integral curve on surface
𝑆. We now introduce a complex structure 𝐽C : R6 → C3, on
the 6-dimensional subspace of 𝑆 by assuming𝑓

1
(𝑥)+𝑖𝑓

2
(𝑥) =

𝑢(𝑥), where all first order and second order derivatives of
the real functions 𝑓

1
, 𝑓
2
of a real variable 𝑥 are determined

with 𝑢
 and 𝑢

, respectively. Therefore our solution curve
is now embedded in a complex 3C-dimensional space, C3.
If we regard 𝑥 as the dimension of time then this can be
viewed as the propagation of our solution curve in time in
a complex space C3. This identification gives deeper insights
into the symmetry analysis which we will see as we proceed
to the subsequent sections. This yields a class of those two-
dimensional systems (3) which can be projected to a scalar
second order complex equation:

𝑢

= 𝜔 (𝑥, 𝑢, 𝑢


) , (4)

where 𝜔(𝑥, 𝑢) = 𝜔
1
(𝑥, 𝑢) + 𝑖𝜔

2
(𝑥, 𝑢), in a 3C + 1 =

4-dimensional partially complex space 𝑆C, which is com-
prised of a 3C-complex dimensional subspace and a one-
dimensional subspace that correspond to independent vari-
able 𝑥 which is not complex. The basic criterion to identify
such systems is that both 𝜔

1
and 𝜔

2
in (3) satisfy the CR-

equations:

𝜔
1,𝑓
1

= 𝜔
2,𝑓
2

, 𝜔
1,𝑓
2

= −𝜔
2,𝑓
1

,

𝜔
1,𝑓


1

= 𝜔
2,𝑓


2

, 𝜔
1,𝑓


2

= −𝜔
2,𝑓


1

,

(5)

namely, both functions are analytic of their arguments.
This line of approach has been followed in [14, 15] to
characterize systems of ODEs that emerge from linearizable
complex equations. Several nontrivial and interesting results
are obtained for two-dimensional systems despite “trivial”
identification of systems (3) from scalar equations (4).

A two-dimensional system of ODEs

𝑓


1
= 𝐴
1
𝑓
3

1
− 3𝐴
2
𝑓
2

1
𝑓


2
− 3𝐴
1
𝑓


1
𝑓
2

2
+ 𝐴
2
𝑓
3

2

+ 𝐵
1
𝑓
2

1
− 2𝐵
2
𝑓


1
𝑓


2
− 𝐵
1
𝑓
2

2
+ 𝐶
1
𝑓


1
− 𝐶
2
𝑓


2
+ 𝐷
1
,

𝑓


2
= 𝐴
2
𝑓
3

1
+ 3𝐴
1
𝑓
2

1
𝑓


2
− 3𝐴
2
𝑓


1
𝑓
2

2
− 𝐴
1
𝑓
3

2

+ 𝐵
2
𝑓
2

1
+ 2𝐵
1
𝑓


1
𝑓


2
− 𝐵
2
𝑓
2

2
+ 𝐶
2
𝑓


1
+ 𝐶
1
𝑓


2
+ 𝐷
2
,

(6)

where 𝐴
𝑗
, 𝐵
𝑗
, 𝐶
𝑗
, 𝐷
𝑗
(𝑗 = 1, 2) are functions of 𝑥 and

𝑓
𝑗
, is a candidate of complex linearization if and only if its
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coefficients satisfy a set of four constraint equations given
in [15]. It was shown that the system (6) corresponds to a
cubically semilinear complex scalar equation of the form

𝑢

+ 𝐸
3 (𝑥, 𝑢) 𝑢

3
+ 𝐸
2 (𝑥, 𝑢) 𝑢

2
+ 𝐸
1 (𝑥, 𝑢) 𝑢



+ 𝐸
0
(𝑥, 𝑢) = 0,

(7)

where 𝐸
𝑘
, (𝑘 = 0, 1, 2, 3) are complex functions of 𝑥 and 𝑢,

which according to Lie is linearizable using complex point
transformations provided the coefficients satisfy linearization
criteria given in [2].Therefore system (6) is complex lineariz-
able if and only if the associated base equation (7) can be
mapped to𝑈 = 0, using a complex Lie point transformation
(2). It may be pointed out that there is only one candidate of
complex linear equation which is 𝑈 = 0, unlike systems of
two linear ODEs which have five candidates corresponding
to their algebras 5, 6, 7, 8, or 15 of maximum dimensions.
Therefore to be linearizable by real Lie point transformations
system (6) can have one of these algebras.

The systems of the form (6) that correspond to a complex
linear equation using fibre-preserving transformations (1)
were studied in [14], where it was found that they are at
most quadratic in the first derivatives and can have algebras
of maximum dimensions 6, 7, or 15. They can also be
linearized using real Lie point transformations by standard
techniques because the dimensions of their algebras coincide
with the dimensions of linearizable systems. We denote this
class of quadratically semilinear systems by Υ

1
. It turns out

that if we take systems (6) with cubic dependence on the
first derivatives they are no longer linearizable because the
dimensions of their Lie algebras do not coincide with the
dimensions of linearizable systems. Therefore we obtain a
class Υ

2
, of systems of the form (6), with cubic nonlinearity

and such that the maximum dimensions of their Lie algebras
can be 4, 3, 2, 1, or 0. Such systems are not linearizable but they
correspond to a linearizable (complex) scalar second order
ODE. Now all systems of the form (6) for which coefficients
satisfy constraint equations [15] correspond to complex linear
equation (7) under the complex point transformation (2);
therefore all systems inΥ

2
are also complex linearizable. Since

the dimensions of Lie algebras of systems in classes Υ
1
and Υ

2

are not equal, therefore there do not exist any complex point
transformations that map a system inΥ

1
to a system inΥ

2
and

vice versa; therefore

Υ
1
∩ Υ
2
= 0. (8)

In short, the class Υ
1
contains those complex linearizable

systems which are at most quadratically semilinear and they
can be mapped to the optimal canonical form [14], whereas
all complex linearizable systems with cubic nonlinearity are
contained in Υ

2
. Below we summarize two classes arising

from a complex linear equation in Table 1.
Note that the cases of Lie algebras of maximum dimen-

sions 5 and 8 are not contained in Υ
1
∪ Υ
2
but do give

linearizable systems. For completeness we also discuss a class
of those systems that can be solved from complex methods in
which systems are solved due to their correspondence with
complex solvable equation. It is given in the appendix.

Table 1: Classification of two-dimensional systems arising from linear
complex equation.

Class Lie algebra
dimensions Linearizable Complex

linearizable Type

Υ
1

6, 7, 15 Yes Yes Quadratic
Υ
2

0, 1, 2, 3, 4 No Yes Cubic

In order to construct the representative system for the
class Υ

2
with fewer symmetries yet is complex linearizable we

focus on a class of cubically semilinear systems:

𝑓


1
= 𝛽𝑓
3

1
− 3𝛾𝑓

2

1
𝑓


2
− 3𝛽𝑓



1
𝑓
2

2
+ 𝛾𝑓
3

2
,

𝑓


2
= 𝛾𝑓
3

1
+ 3𝛽𝑓

2

1
𝑓


2
− 3𝛾𝑓



1
𝑓
2

2
− 𝛽𝑓
3

2
,

(9)

from (6), where 𝛽 = 𝛽(𝑥, 𝑓
1
, 𝑓
2
) and 𝛾 = 𝛾(𝑥, 𝑓

1
, 𝑓
2
).

The complex linearizability criteria [15] are satisfied for these
systems if and only if the coefficients satisfy

𝛽
𝑥𝑥

= 0, 𝛾
𝑥𝑥

= 0; (10)

that is, 𝛽 = 𝑏
1
𝑥 + 𝑏
2
, 𝛾 = 𝑐

1
𝑥 + 𝑐
2
, therefore the system (9)

is complex linearizable. It is easy to verify that the systems
(9) have symmetry algebras of maximum dimensions less
than 4, provided all constants 𝑏

1
, 𝑏
2
, 𝑐
1
, and 𝑐

2
do not vanish

simultaneously. The system (9) satisfies (5) and thus can be
projected to (7):

𝑢

+ 𝐸
3
(𝑥, 𝑢) 𝑢

3
= 0; (11)

with 𝐸
2
= 0 = 𝐸

1
= 𝐸
0
, which can be linearized to 𝑈


= 0,

using a complex point transformation (2). Before proceeding
to the applications and characterizing such systems we first
describe the geometry of 𝑈 = 0, under general complex Lie
point transformations (2).

3. Geometry of Complex Linearization

We know that all linearizable scalar differential equations are
equivalent to the free particle equations (see, e.g., [1, 2])whose
solution is a straight line. The crucial step after ensuring
complex linearizability is to obtain the transformationswhich
help in the integration of the systems in Υ

1
and Υ

2
. In [14],

the complex fibre-preserving transformations (1) were used
to map a system in class Υ

1
into the free particle complex

equation, 𝑈 = 0, where prime denotes differentiation with
respect to 𝜒. The real and imaginary parts of such a free
particle equation yields a system

𝐹


1
= 0, 𝐹



2
= 0, (12)

where𝑈 = 𝐹
1
+𝑖𝐹
2
; therefore the corresponding system can be

mapped to system (12), where the complex transformations
(1) were used to obtain the real linearizing transformations.
It is noteworthy that the transformations in this case are
(𝑟𝑒𝑎𝑙, 𝑐𝑜𝑚𝑝𝑙𝑒𝑥) → (𝑟𝑒𝑎𝑙, 𝑐𝑜𝑚𝑝𝑙𝑒𝑥). On the other hand a
general complex point transformation is of the form

L : (𝑥, 𝑢) → (𝜒 (𝑥, 𝑢) , 𝑈 (𝑥, 𝑢)) , (13)
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namely, (𝑟𝑒𝑎𝑙, 𝑐𝑜𝑚𝑝𝑙𝑒𝑥) → (𝑐𝑜𝑚𝑝𝑙𝑒𝑥, 𝑐𝑜𝑚𝑝𝑙𝑒𝑥), in which
the first argument 𝜒, can be a complex function thereby
adds a superficial dimension. It makes a huge difference on
linearizability of systems in Υ

2
. In particular, upon splitting it

into the real and imaginary parts

𝜒 (𝑥, 𝑢) = 𝜒
1
(𝑥, 𝑓
1
, 𝑓
2
) + 𝑖𝜒
2
(𝑥, 𝑓
1
, 𝑓
2
) (14)

and since the dependent function 𝑈(𝜒) is complex which
yields two real functions 𝐹

1
and 𝐹
2
, both of them are not only

functions of 𝜒
1
but also of 𝜒

2
; that is,

𝑈(𝜒) = 𝐹
1
(𝜒
1
, 𝜒
2
) + 𝑖𝐹
2
(𝜒
1
, 𝜒
2
) ; (15)

therefore the linearized scalar equation, 𝑈 = 0, fails to
produce the free particle system (12). Notwithstanding, the
solution of a system in class Υ

2
is extractable from the com-

plex solution 𝑈(𝑥), upon its split. We now give a geometrical
understanding of complex linearization associated with base
equation𝑈 = 0. Since the prime denotes differentiationwith
respect to 𝜒 which upon using the chain rule yields

𝜕

𝜕𝜒
=

1

2
(

𝜕

𝜕𝜒
1

− 𝑖
𝜕

𝜕𝜒
2

) , (16)

and so𝑈 = 0 is a system of two partial differential equations

𝐹
1
𝜒1𝜒1

− 𝐹
1
𝜒2𝜒2

+ 2𝐹
2
𝜒1𝜒2

= 0,

𝐹
2
𝜒1𝜒1

− 𝐹
2
𝜒2𝜒2

− 2𝐹
1
𝜒1𝜒2

= 0.

(17)

Now by definition a complex Lie point transformation is
analytic thusL is analytic. Since the derivative 𝑢 transforms
into a complex derivative 𝑈 which exists if and only if 𝑈(𝜒)

is complex analytic and is preserved underL therefore

𝐹
1
𝜒1

= 𝐹
2
𝜒2

, 𝐹
1
𝜒2

= −𝐹
2
𝜒1

, (18)

which are the CR equations.The solution of system (17) along
with the condition (18) upon using invertible transformations
(2) reveals solutions of the original system. Hence we have
established the following result.

Theorem 1. All complex linearizable two-dimensional systems
of ODEs in class Υ

2
can be transformed into systems of PDEs

(17) and (18) under the transformation (2).

We now develop some geometrical aspects of complex
linearization. In order to do that we employ the original idea
of Riemann that a complex mapping may be regarded as
the dependence of one plane on another plane, unlike the
dependence of a real function on a line. To do this we first
obtain the solution of system (17)-(18) which is

𝐹
1
(𝜒
1
, 𝜒
2
) = 𝑐
1
𝜒
1
+ 𝑐
2
𝜒
2
+ 𝑐
3
,

𝐹
2
(𝜒
1
, 𝜒
2
) = 𝑐
1
𝜒
2
− 𝑐
2
𝜒
1
+ 𝑐
4
,

(19)

where 𝑐
𝑚
, (𝑚 = 1, 2, 3, 4) are real arbitrary constants. These

are two coordinate planes determined by 𝜒
1
and 𝜒

2
with

normals
n
1
= [𝑐
1
, 𝑐
2
] ;

n
2
= [𝑐
2
, −𝑐
1
] ,

(20)

→

n
1

→

n
2

→

n
3

F
2
(𝜒

1
, 𝜒

2
)

F
1
(𝜒

1
, 𝜒

2
)

Figure 1: The geometry of complex linearization. The straight
line on the left is a solution of a linear second order real ODE.
The concept naturally extends in the complex domain where a
straight line arises in the intersection of two perpendicular planes
determined by 𝐹

1
and 𝐹

2
which are linear functions of 𝜒

1
and 𝜒

2
.

The third axis is then naturally given by ⃗𝑛
1
× ⃗𝑛
2
.

thus they intersect at right angles

n
1
⋅ n
2
= 0, (21)

resulting in a straight line at intersection.Thus the geometric
linearizing criterion for scalar second order differential equa-
tions; namely, a straight line is extended to the intersection
of two planes at right angle in the complex linearization
of two-dimensional systems. Note that both 𝜒

1
and 𝜒

2
in

(16) are functions of (𝑥, 𝑓
1
, 𝑓
2
). Therefore the role of 𝜒

2
can

be regarded as slicing the three-dimensional space R3 =

{(𝑥, 𝑓
1
, 𝑓
2
)} into two coordinate planes. Interestingly, the

solution (𝑓
1
, 𝑓
2
) of the system under consideration is found

by solving (19) with the use of 𝐹
1
and 𝐹

2
from 𝑈(𝜒) in (2).

Hence we arrive at the following geometrical result.

Theorem 2. The necessary and sufficient condition for a two-
dimensional system (6) to be complex linearizable is that the
two planes determined by (19) intersect at right angle resulting
in a straight line which corresponds to scalar linear equations.

Figure 1 illustrates the geometry and presents an elegant
description of complex linearization.

Illustrative Example. We consider an example of a physical
system known as coupled modified Emden system [2]:

𝑓


1
= −3𝑓

1
𝑓


1
+ 3𝑓
2
𝑓


2
− 𝑓
3

1
+ 3𝑓
1
𝑓
2

2
,

𝑓


2
= −3𝑓

2
𝑓


1
− 3𝑓
1
𝑓


2
+ 𝑓
3

2
− 3𝑓
2

1
𝑓
2
,

(22)

to explain briefly how the procedure works. This system has
three symmetries𝑋

1
,𝑋
2
, and𝑋

3
, where

𝑋
1
=

𝜕

𝜕𝑥
, 𝑋

2
= 𝑥

𝜕

𝜕𝑥
− 𝑓
1

𝜕

𝜕𝑓
1

− 𝑓
2

𝜕

𝜕𝑓
2

,

𝑋
3
= 𝑥
2 𝜕

𝜕𝑥
− 2𝑥𝑓

1

𝜕

𝜕𝑓
1

− 2𝑥𝑓
2

𝜕

𝜕𝑓
2

,

(23)
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with Lie algebra [𝑋
1
, 𝑋
2
] = 𝑋

1
, [𝑋
1
, 𝑋
3
] = 2𝑋

2
, and

[𝑋
2
, 𝑋
3
] = 𝑋

3
. The system (22) is solvable only by complex

linearization. The complex point transformation

𝜒 = 𝑥 −
1

𝑢
, 𝑈 =

𝑥
2

2
−
𝑥

𝑢
, (24)

is of the form (2), which does the trick to map the associated
complex equation (4) of (22), into the complex free particle
equation, whose solution after inverting the above transfor-
mations directly yields the solution of the system (22). In this
case (17) and (18) yield

𝐹
1
= 𝑎
1
𝜒
1
− 𝑎
2
𝜒
2
+ 𝑏
1
,

𝐹
2
= 𝑎
2
𝜒
1
+ 𝑎
1
𝜒
2
+ 𝑏
2
,

(25)

where

𝜒
1
= 𝑥 −

𝑓
1

𝑓2
1
+ 𝑓2
2

, 𝜒
2
=

𝑓
2

𝑓2
1
+ 𝑓2
2

,

𝐹
1
=

𝑥
2

2
−

𝑥𝑓
1

𝑓2
1
+ 𝑓2
2

, 𝐹
2
=

𝑥𝑓
2

𝑓2
1
+ 𝑓2
2

,

(26)

obtained from (24). Now by solving (25), for 𝑓
1
and 𝑓

2
, and

by invoking equations (26), we get the solution

𝑓
1
(𝑥) = (2𝑥

3
− 6𝑥
2
𝑎
1
+ 4 (𝑎

2

2
+ 𝑎
2

1
− 𝑏
1
) 𝑥 + 4𝑎

1
𝑏
1
+ 4𝑎
2
𝑏
2
)

× (𝑥
4
− 4𝑥
3
𝑎
1
+ 4 ((𝑎

2

2
+ 𝑎
2

1
− 𝑏
1
) 𝑥
2

+2 (𝑎
2
𝑏
2
+ 𝑎
1
𝑏
1
) 𝑥 + 𝑏

2

1
+ 𝑏
2

2
))
−1

,

𝑓
2
(𝑥) = ((2𝑥

2
+ 4𝑏
1
) 𝑎
2
+ 4𝑏
2
(𝑥 − 𝑎

1
))

× (𝑥
4
− 4𝑥
3
𝑎
1
+ 4 ((𝑎

2

2
+ 𝑎
2

1
− 𝑏
1
) 𝑥
2

+2 (𝑎
2
𝑏
2
+ 𝑎
1
𝑏
1
) 𝑥 + 𝑏

2

1
+ 𝑏
2

2
))
−1

,

(27)

of system (22).

4. Applications

Wenow illustrate the theory with the aid of examples on class
Υ
2
, that is, the complex linearizable systems with algebras of

dimensions 𝑑 ≤ 4. It may be pointed out that systems which
cannot be dealt via standard Lie symmetry approach are solv-
able via symmetry approach!We also highlight the procedure
with which we obtained these systems systematically.

4.1. Solvable System of 4-Dimensional Algebra. Considering
𝛽(𝑥, 𝑓

1
, 𝑓
2
) = 1 and 𝛾(𝑥, 𝑓

1
, 𝑓
2
) = 0, in (9) we obtain a

coupled system

𝑓


1
− 𝑓
3

1
+ 3𝑓


1
𝑓
2

2
= 0,

𝑓


2
− 3𝑓
2

1
𝑓


2
+ 𝑓
3

2
= 0,

(28)

which is complex linearizable and has only four symmetries:

𝑋
1
=

𝜕

𝜕𝑥
, 𝑋

2
=

𝜕

𝜕𝑓
1

, 𝑋
3
=

𝜕

𝜕𝑓
2

,

𝑋
4
= 2𝑥

𝜕

𝜕𝑥
+ 𝑓
1

𝜕

𝜕𝑓
1

+ 𝑓
2

𝜕

𝜕𝑓
2

,

(29)

with Lie algebra

[𝑋
1
, 𝑋
2
] = 0, [𝑋

1
, 𝑋
3
] = 0, [𝑋

2
, 𝑋
3
] = 0,

[𝑋
1
, 𝑋
4
] = 2𝑋

1
, [𝑋

2
, 𝑋
4
] = 𝑋

2
, [𝑋

3
, 𝑋
4
] = 𝑋

3
;

(30)

therefore, it is not in one of the linearizable classes of two-
dimensional systems. Now in order to carry out integration
of system (28), we linearize the corresponding equation

𝑢

− 𝑢
3
= 0, (31)

which has an 8-dimensional Lie algebra. This can be mapped
to the linear equation

𝑈

+ 1 = 0, (32)

by inverting the role of the independent and dependent
variables 𝜒 = 𝑢,𝑈 = 𝑥. It has the solution 2𝑈 = −𝜒

2
+ 𝑎𝜒+ 𝑏,

where 𝑎 and 𝑏 are complex constants, which in terms of the
original variables becomes 𝑢(𝑥) = ±√𝑎 − 2𝑥 + 𝑏, and yields
the solution

𝑓
1
(𝑥) = ±(

𝑎
1
− 2𝑥 + √(𝑎

1
− 2𝑥)
2
+ 𝑎2
2

2
)

1/2

+ 𝑏
1
,

𝑓
2 (𝑥) = ±(

−𝑎
1
+ 2𝑥 + √(𝑎

1
− 2𝑥)
2
+ 𝑎2
2

2
)

1/2

+ 𝑏
2
,

(33)

of (28). System (28) can be solved by real symmetry analysis
because it has four symmetry generators. However, we now
proceed to systems that are not solvable by real symmetry
methods as they have fewer symmetry generators than four.

4.2. Solvable System of 3-Dimensional Algebra. It is easy to
construct a system from (9) which has only three symmetries.
For example, we observe that in (9) the functions 𝛽 and 𝛾 can
be at most linear functions of independent variable 𝑥. Hence
we obtain a complex linearizable system

𝑓


1
− 𝑥𝑓
3

1
+ 3𝑥𝑓



1
𝑓
2

2
= 0,

𝑓


2
− 3𝑥𝑓

2

1
𝑓


2
+ 𝑥𝑓
3

2
= 0,

(34)

by involving 𝑥 linearly in the coefficients to remove the
𝑥-translation. Thus we obtain the following 3-dimensional
Abelian Lie algebra:

𝑋
1
= 𝑥

𝜕

𝜕𝑥
, 𝑋

2
=

𝜕

𝜕𝑓
1

, 𝑋
3
=

𝜕

𝜕𝑓
2

. (35)
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We follow the same procedure as developed in the previous
case and solve the corresponding nonlinear equation:

𝑢

− 𝑥𝑢
3
= 0. (36)

It is transformable to a linear form 𝑈


= −𝑈, which after
inverting the variables gives

𝑢 (𝑥) = arctan(
𝑥

√𝑎 − 𝑥2
) + 𝑏. (37)

System (34) is not solvable by real symmetry methods but by
complex linearization.

4.3. Solvable System of 2-Dimensional Algebras. Consider the
system

𝑓


1
− 𝑓
1
𝑓
3

1
+ 3𝑓
2
𝑓
2

1
𝑓


2
+ 3𝑓
1
𝑓


1
𝑓
2

2
− 𝑓
2
𝑓
3

2
= 0,

𝑓


2
− 𝑓
2
𝑓
3

1
− 3𝑓
1
𝑓
2

1
𝑓


2
+ 3𝑓
2
𝑓


1
𝑓
2

2
+ 𝑓
1
𝑓
3

2
= 0,

(38)

which has only two Lie symmetries

𝑋
1
=

𝜕

𝜕𝑥
, 𝑋

2
= 3𝑥

𝜕

𝜕𝑥
+ 𝑓
1

𝜕

𝜕𝑓
1

+ 𝑓
2

𝜕

𝜕𝑓
2

. (39)

The system (38) is solvable due to its correspondence with the
complex scalar second order ODE:

𝑢

− 𝑢𝑢
3
= 0, (40)

which is linearizable, despite having only a two-dimensional
algebra. Notice that even a scalar second order ODE requires
at least two symmetries to be solvable, while here complex
linearization helps to solve a system of two ODEs. In the
subsequent cases we provide the solution for a system with
only one symmetry generator,which is insufficient to solve even
a scalar second order ODE. Nevertheless, we can go further!

4.4. Solvable System of 1-Dimensional Algebra. Consider
𝛽(𝑥, 𝑓

1
, 𝑓
2
) = 𝑥𝑓

1
and 𝛾(𝑥, 𝑓

1
, 𝑓
2
) = 𝑥𝑓

2
, in (9) we obtain

𝑓


1
− 𝑥𝑓
1
𝑓
3

1
+ 3𝑥𝑓

2
𝑓
2

1
𝑓


2
+ 3𝑥𝑓

1
𝑓


1
𝑓
2

2
− 𝑥𝑓
2
𝑓
3

2
= 0;

𝑓


2
− 𝑥𝑓
2
𝑓
3

1
− 3𝑥𝑓

1
𝑓
2

1
𝑓


2
+ 3𝑥𝑓

2
𝑓


1
𝑓
2

2
+ 𝑥𝑓
1
𝑓
3

2
= 0.

(41)

This system is nonlinearizable as it has only a scaling sym-
metry 𝑋

1
= 𝑥𝜕

𝑥
. The corresponding scalar second order

complex ODE is

𝑢

− 𝑥𝑢𝑢

3
= 0, (42)

which has an 8-dimensional algebra and linearizes to

𝑈

+ 𝜒𝑈 = 0, (43)

which is theAiry equationwhose solutions areAiry functions
extended to the complex plane. The solution of the complex
linearized equation for 𝑈(𝑥) is given by

𝑈 (𝜒) = 𝑐
1
Ai (−𝜒) + 𝑐

2
Bi (−𝜒) , (44)

where Ai(−𝜒) and Bi(−𝜒), are the two Airy functions. Invert-
ing (44), we obtain a solution of the associated nonlinear
equation which implicitly provides a solution:

R (𝑐
1
Ai (−𝑓

1
− 𝑖𝑓
2
) + 𝑐
2
Bi (−𝑓

1
− 𝑖𝑓
2
)) = 𝑥,

I (𝑐
1
Ai (−𝑓

1
− 𝑖𝑓
2
) + 𝑐
2
Bi (−𝑓

1
− 𝑖𝑓
2
)) = 0,

(45)

where R and I are the real and imaginary parts of the
arguments, for the system (41).

4.5. Solvable System of 0-Dimensional Algebra. We now take
the quadratic freedom of 𝑓

1
and 𝑓

2
, in 𝛽 and 𝛾, to get rid of

the remaining symmetry in the above system. Consider 𝛽 =

𝑥 − 𝑓
2

1
+ 𝑓
2

2
and 𝛾 = 2𝑓

1
𝑓
2
, in (9), we obtain

𝑓


1

= (𝑥
2
− 𝑓
2

1
+ 𝑓
2

2
) (𝑓
3

1
− 3𝑓


1
𝑓
2

2
) + 2𝑓

1
𝑓
2
(3𝑓
2

1
𝑓


2
− 𝑓
3

2
) ;

𝑓


2

= (𝑥
2
− 𝑓
2

1
+ 𝑓
2

2
) (3𝑓
2

1
𝑓


2
− 𝑓
3

2
) − 2𝑓

1
𝑓
2
(𝑓
3

1
− 3𝑓


1
𝑓
2

2
) .

(46)

This system has no real point symmetry. However the corres-
ponding complex equation

𝑢

− 𝑥𝑢
2
𝑢
3
= 0 (47)

is again linearizable to 𝑈


= 0, producing the solution of
system (46).

5. Conclusion

Complex symmetry analysis provides a class of systems of
two ODEs obtainable from a scalar second order equation
if the dependent variable is a complex function of a real
independent variable.The linearizability of this base complex
equation generates two different classes of systems of two
second order ODEs: (a) real linearizable systems that can
be linearized from real Lie point transformations; and (b)
complex linearizable systems that can only be linearized using
complex Lie point transformations. In [14], it was shown
that systems that can be transformed into a complex linear
equation has 6, 7, or 15 maximum dimensional algebra
which can, therefore, also be linearized by real Lie point
transformations. The second class is investigated here and
it is found that these systems are not linearizable by any
real Lie point transformations but they are solvable due
to their correspondence with linearizable scalar complex
equations. This class contains complex linearizable systems
withmaximum dimensions of Lie algebras less than four.The
complex point transformations play a significant role in their
linearization.

It would be worthwhile to investigate the contact sym-
metries of given systems that might provide deeper insights
into complex point transformations. The group of contact
transformations is infinite-dimensional for linear systems
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Table 2: Lie canonical forms of complex scalar equations.

Type Complex symmetry generators Representative equations
I 𝑍

1
= 𝜕
𝑥
, 𝑍
2
= 𝜕
𝑢
, 𝑢

 = 𝑤(𝑢

)

II 𝑍
1
= 𝜕
𝑢
, 𝑍
2
= 𝑥𝜕
𝑢
, 𝑢

 = 𝑤(𝑥)

III 𝑍
1
= 𝜕
𝑢
, 𝑍
2
= 𝑥𝜕
𝑥
+ 𝑢𝜕
𝑢
, 𝑥𝑢

 = 𝑤(𝑢

)

IV 𝑍
1
= 𝜕
𝑢
, 𝑍
2
= 𝑢𝜕
𝑢
, 𝑢

 = 𝑢

𝑤(𝑥)

and contains the group of fibre-preserving transformations
and point transformations as its special cases.The last system
with no symmetry clearly indicates an inherited beauty in the
complex domain which is not visible in the real domain. It is
a benchmark problem as to why this system is solvable in the
complex domain and not in the real.

Important features of the given systems can be explored
in terms of first integrals by applying the Noether symmetry
analysis, provided the given systems come from a variational
principle. In contrast, Cartan’s equivalence approach (which
does not necessarily depend on the existence of a Lagrangian)
can be applied to investigate invariants and differential
invariants of such systems. Further directions may include
the problem of linearization of even dimensional systems of
ODEs from complex point transformations.

Appendix

For completeness we also examine the solvability of those
systems that are not complex linearizable yet can be solved via
complex procedure if they aremapped to solvable (integrable)
scalar complex equations with two-dimensional solvable
algebras. For this purpose we state the general form of scalar
equations with two symmetries. The integration strategies
developed to solve a scalar complex second order ODE (4)
require a two parameter complex group (see, e.g., [1, 2]) called
G
2
. The integrable forms of complex second order equations

admitting G
2
are given in Table 2.

The following theorem summarizes the complex method
to solve systems of ODEs due to their correspondence with
the complex scalar solvable second order ODEs.

Theorem A.1. A system of two second order ODEs (3) is solv-
able regardless of the number of symmetries if the corresponding
complex scalar equation (4) is

(i) integrable; that is, it has a two parameter group G
2
; or

(ii) linearizable via invertible complex point transforma-
tions of the formL

2
: (𝑥, 𝑢) → (𝜒,𝑈).

Now we give an example of a solvable system which is
neither complex linearizable nor linearizable.

Example A.2. Consider a nonlinear coupled system

𝑓


1
=

(𝑓
2

1
− 𝑓
2

2
) 𝑓


1

(𝑓2
1
− 𝑓2
2
)
2
+ 4𝑓2
1
𝑓2
2

+
2𝑓
1
𝑓
2
𝑓


2

(𝑓2
1
− 𝑓2
2
)
2
+ 4𝑓2
1
𝑓2
2

,

𝑓


2
=

(𝑓
2

1
− 𝑓
2

2
) 𝑓


2

(𝑓2
1
− 𝑓2
2
)
2
+ 4𝑓2
1
𝑓2
2

−
2𝑓
1
𝑓
2
𝑓


1

(𝑓2
1
− 𝑓2
2
)
2
+ 4𝑓2
1
𝑓2
2

,

(A.1)

which has a two-dimensional algebra [𝑋
1
, 𝑋
2
] = 2𝑋

1
, where

𝑋
1
=

𝜕

𝜕𝑥
, 𝑋

2
= 2𝑥

𝜕

𝜕𝑥
+ 𝑓
1

𝜕

𝜕𝑓
1

+ 𝑓
2

𝜕

𝜕𝑓
2

. (A.2)

Using standard Lie analysis it is not straightforward to carry
out integration of this system. Here we highlight the crucial
steps involved in using the complex transformations (2) in the
form of invariants and differential invariants of symmetries.
We first observe that 𝜔

1
and 𝜔

2
in (3), given by the right-

hand sides of system (A.1) satisfy CR-equations (5); therefore
system (A.1) can be mapped to a scalar complex equation.
Indeed, the equation

𝑢

=

𝑢


𝑢2
(A.3)

corresponds to system (A.1) and it has two complex symme-
tries 𝑋

1
and 2𝑥𝜕

𝑥
+ 𝑢𝜕
𝑢
; therefore (A.3) has a solvable Lie

algebraG
2
.The integration of above equation can be obtained

using both approaches, canonical coordinates or differential
invariants. Since scaling is inherited under 𝑋

1
therefore we

employ canonical coordinates relative to symmetry 𝑋
1
. The

canonical transformation

𝜒 = 𝑢, 𝜓 = 𝑥, 𝑈 (𝜒) =
𝑑𝜓

𝑑𝑥
=

1

𝑢
, (A.4)

converts (A.3) into a first-order equation

𝑈

=

𝑈
2

𝜒2
, (A.5)

which upon realification yields a system of partial differential
equations as 𝜒 is a complex independent variable. That is
why the system (A.1) is reduced to a pair of first-order partial
differential equations rather ODEs. This is a similar situation
that arises in complex linearization except the difference that
here the target equation is a reduced solvable ODE not a
linear equation. By integrating the above equation and using
invertible transformation we obtain the solution

2𝑐
1
𝑓
1
+ ln ((𝑐

1
𝑓
1
− 1)
2
+ 𝑐
2

2
𝑓
2

2
) − 2𝑐

2

1
𝑥 − 2𝑐

2

1
𝑐
2
= 0,

𝑐
1
𝑓
2
+ arctan(

𝑐
1
𝑓
1
− 1

𝑐
1
𝑓
2

) = 0,

(A.6)

of system (A.1).
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