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Reliable drought forecasting is necessary to develop mitigation plans to cope with severe drought. This study developed a
probabilistic scheme for drought forecasting and outlook combined with quantification of the prediction uncertainties. The
Bayesian network was mainly employed as a statistical scheme for probabilistic forecasting that can represent the cause-effect
relationships between the variables.The structure of the Bayesian network-based drought forecasting (BNDF) model was designed
using the past, current, and forecasted drought condition. In this study, the drought conditionswere represented by the standardized
precipitation index (SPI). The accuracy of forecasted SPIs was assessed by comparing the observed SPIs and confidence intervals
(CIs), exhibiting the associated uncertainty. Then, this study suggested the drought outlook framework based on probabilistic
drought forecasting results. The overall results provided sufficient agreement between the observed and forecasted drought
conditions in the outlook framework.

1. Introduction

Drought is a natural disaster caused by lack of precipitation
or available water. Droughts are destructive, causing signifi-
cant damage to both natural environments and human lives
[1]. Several studies examining hydro-climate projections
reported that drought frequency and severity are expected to
increase in the future due to climate change [2, 3]. Several
researchers have reported the occurrence probability of a
mega drought, which is defined as a severe drought lasting
one decade or longer, in southwestern United States, South
America, and Southern Africa [4, 5].

Recent severe droughts have occurred in different parts
of the world, such as the African drought in 2011 and the
California drought in 2015. South Korea experiences drought
approximately every two years [6]. The most recent severe
drought in South Korea occurred in the Han River basin in
2015 due to significantly below normal rainfall since 2014.
In South Korea, more than 50% of the annual rainfall is

concentrated during the flood season from June to early
September. This summer-intensive weather pattern con-
tributes to increased vulnerability to drought [7]. Because of
this vulnerability, the water manager conservatively operates
multipurpose reservoirs, even during the flood season, so
as to secure sufficient water for the dry season. Therefore,
prediction of drought plays an important role in water
resource management in South Korea.

Unlike other natural disasters, detecting drought onset is
difficult because it develops slowly and affects diffuse local
communities. Nevertheless, well-timed mitigation measures
combined with appropriate monitoring and forecasting can
reduce drought damages. Various studies have been con-
ducted to predict the occurrence of future droughts and
conditions using stochastic and/or statistical methods such
as Markov chain, stochastic time series model, artificial
neural networks, and hybrid model [1, 8–13]. However,
drought forecasting is often accompanied by high uncertainty
due to the prediction uncertainty of hydro-meteorological
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variables. Therefore, drought prediction with uncertainty
estimation is needed to provide reliable forecast information
to water managers [14]. For example, the drought probability
forecast method was developed by combining the historical
temperatures and precipitation with the seasonal forecast
from the United States National Oceanic and Atmospheric
Administration (NOAA) Climate Prediction Center (CPC)
[15]. Historical climate records were applied to nonparamet-
ric autoregressive models for producing drought ensemble
forecasts and resampling residuals to constrain the forecast
bounds [14]. Currently, ensemble forecast models are widely
used in the practice of probabilistic drought forecast.

This study proposed a probabilistic model for forecasting
drought based on Bayesian networks, which can be applied
to complex systems to explicitly represent the uncertainties
of variables [16–18]. Bayesian networks have been applied in
various academic fields, such asmedical sciences, economics,
industrial engineering, sociology, and environmental engi-
neering, in order to make decisions and predictions [16, 19].
In hydrology and water resources, few studies have attempted
to utilize Bayesian network models for risk assessment [20–
22]; to the best of our knowledge, only one study employed
Bayesian networks to calculate the conditional probability
of copula-based forecasting [23]. In this study, the Bayesian
network and its inference algorithm were applied as a main
tool to forecast drought considering the persistence of a
drought index. Since Bayesian networks express uncertainties
through probability distribution [24], the present study sug-
gested a drought outlook framework based onmeteorological
drought forecasting results.

2. Methods

2.1. Study Area and Available Data. To forecast the proba-
bility of drought occurrence, we secured two data sources,
observed past precipitation and predicted future precipita-
tion. The observed past precipitation values from 1973 to
2014 were acquired from the Korea Meteorological Admin-
istration. Daily precipitation data from 16 weather stations,
the locations of which are shown in Figure 1, were used to
compile monthly precipitation.

Predicted future precipitation data were provided by the
Asia-Pacific Economic CooperationClimate Center (APCC).
Since 2007, the APCC has maintained a data bank for sea-
sonal forecasting products (e.g., precipitation, temperature at
850 hPa, and geopotential height at 500 hPa) using a multi-
model ensemble (MME) method. The APCC MME method
includes a single probabilistic method and four deterministic
methods: simple composite method (SCM), super ensemble
method (SEM), synthetic super ensemble (SSE), and step-
wise pattern projection- (SPP-) basedMME [25].The present
study adopted the SCM, the simplest and most widely used
method.The SCMgives equal weight to each singlemodel for
constructing a multimodel prediction [25, 26].The predicted
precipitation (termed APCC MME precipitation) gridded at
2.5∘ latitude and 2.5∘ longitude spatial resolution for the study
area (longitude: 35.0∼37.5∘ east, latitude: 127.5∼130.0∘ north)
was extracted from the APCC data service system web portal
(http://cis.apcc21.org/). The prediction products of APCC
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Figure 1: Weather stations of which rainfall data are used in this
study.

MME are applied for predicting Asia summer monsoon,
extreme flood, and drought [27–30]. In order to predict
drought, statistical downscaled APCC MME prediction was
used to estimate SPI and SPEI (Standardized Precipitation
Evapotranspiration Index) [28, 30], while we focused on
the development of drought forecasting method and the
statistical downscaling method was not adopted. For this
purpose, the APCC MME precipitation data were converted
into the site-based data for 16 stations by applying predictive
anomaly to the monthly historical precipitation mean values.

2.2. Bayesian Network-Based Drought Forecasting (BNDF)
Model. Bayesian networks have been applied to many
domains including forecasting, estimation, classification,
recognition, and inference [31, 32]. ABayesian network-based
stochastic predictive model was employed in this study to
determine the drought forecasting uncertainty. The network
is a type of directed acyclic graph that represents the depen-
dencies among variables.Therefore, the network consists of a
set of nodes representing random variables and directed arcs.
The set of arcs connects a pair of nodes, and the direction
of an arc is represented by arrows demonstrating the causal
relationships among the nodes [33, 34]. The arc starts from a
casual or preceding event of the parent node and progresses
to an outcome event of the child node. And the relationship
between nodes is defined as a conditional probability based
on prior information or statistically observed correlations
[19].
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Figure 3: The structure of Bayesian network-based drought fore-
casting model.

The proposed Bayesian network-based drought forecast-
ing (BNDF) model is a probabilistic drought prediction sys-
tem based on the drought forecast model in [23] and applied
historical runoff in Bayesian networks. We proposed that
three types of variables frompast, current, and future drought
conditions could be used for predicting drought. Various
stochastic forecasting methods have developed based on past
and current drought related variables [1, 8, 35], while, in
other forecasting studies, precipitation production of climate
model was used to estimate future drought condition [14, 36].
Similarly, precipitation derived from climate models has high
uncertainty and drought prediction only with precipitation
can show low skill score [37]. Therefore, we have developed
the BNDF model which uses both historical and predicted
drought conditions utilizing Bayesian networks and its con-
ceptual framework is shown in Figure 2. The structure of
the model is composed of four nodes: three parent nodes
(𝐷
𝑁−1

, 𝐷

𝑁
, and 𝑃𝐷

𝑁+1
) and one child node (𝐷

𝑁+1
), as

shown in Figure 3. Each node (parent and child nodes)
was described by monthly drought condition defined using
the probability distribution of SPI [38], and the predicted
drought information was interpreted using the APPC MME
forecasted precipitation.

The proposed model assumed that each node was a con-
tinuous variable under a Gaussian distribution, as given in

𝑓 (𝑥 | 𝜇, 𝜎) =
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] , (1)

where 𝑥 is precipitation data, 𝜇 is the local parameter, and
𝜎 is the scale parameter. A Kolmogorov-Smirnov (K-S) test
was performed to determine the goodness of fit and to justify
the application of the Gaussian distribution. In addition, the
maximum deviation between the empirical distribution and
Gaussian distribution was calculated [39], as given in
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where 𝐷max is the test statistic of the K-S test, 𝐹(𝑥) is the
empirical distribution of the observed data, and 𝐹

𝑜
(𝑥) is the

Gaussian distribution. If 𝐷max is larger than the value of
significant level (this study supposed 5%, 𝐷

0.05
= 0.2243),

then null hypothesis is rejected.
The test results showed that Gaussian distribution could

be applied to majority of the months in the selected 16
stations. The Gaussian probability density function (PDF) of
each node was estimated using the three-month SPI, which
was calculated from the monthly precipitation. Then the
Gaussian PDF of𝑁month (current drought condition, node
𝐷

𝑁
) was constructed using the SPI values from 1973 to the

current year in month 𝑁. And 𝑁 − 1 month SPI PDF (past
drought condition,𝐷

𝑁−1
) was obtained by the same method.

Similarly, 𝑃𝐷
𝑁+1

(future drought condition) was estimated
with𝑁+1month SPI, calculated from 1973 to the current year
for the one-month lead APCC MME precipitation. In this
study, the distribution parameters were estimated employing
the maximum likelihood method, as given in
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𝑖
, 𝛼) , (3)

where ln 𝐿 is the log likelihood function, 𝑥
𝑖
is the SPI values

of each node, and 𝛼 represents the Gaussian distribution
parameters (mean and standard deviation). The child node,
posterior probability of our forecast result, was given in
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(4)

where𝐷

𝑁
is the PDF of SPI in the current month,𝐷

𝑁−1
is the

PDF of SPI in the previous month, 𝑃𝐷
𝑁+1

is the PDF of SPI
in the next month with APCCMME predicted precipitation,
and 𝐷

𝑁+1
is our forecasted result of SPI PDF.

The inference algorithms for variable elimination are like-
lihood weighting, rejection sampling, and Gibbs sampling
which are generally used to compute conditional proba-
bility in Bayesian networks. The posterior probability was
calculated based on the likelihood weighting [40, 41] of the
Bayesian network approximated inference algorithm [17, 33]:
likelihood weighting is a simple model that can be applied
to discrete and continuous type of nodes [42]. The model
fixes the values of the evidence variables and samples only the
nonevidence variables [33]. To infer the conditional probabil-
ity (𝑃(𝑌 = 𝑦 | 𝐸 = 𝑒), where 𝐸 denotes a set of observed
nodes of the network and 𝑌 is the nodes not contained in
𝐸), 𝑃(𝑌 = 𝑦, 𝐸 = 𝑒) and 𝑃(𝐸 = 𝑒) were estimated using
the posterior probability equation. A path probability distri-
bution (𝜌(𝑦, 𝑒)) and a weighting distribution (𝜔(𝑦, 𝑒)) were
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Figure 4: An example of the Bayesian network-based drought forecasting model forWonju station (∗one-month lead predicted precipitation
of APCCMME was applied to calculate March SPI).

used to generate the relative approximation of probabilities
(𝑃(𝑌 = 𝑦, 𝐸 = 𝑒) and 𝑃(𝐸 = 𝑒)), as given in

𝜌 (𝑦, 𝑒) = ∏

𝑌𝑖∈𝑌

𝑃 [𝑌

𝑖
| Parents(

𝑌

𝑖

𝐸

)]

𝑌=𝑦,𝐸=𝑒

, (5)

𝜔 (𝑦, 𝑒) = ∏

𝐸𝑖∈𝐸

𝑃 [𝐸

𝑖
| Parents (𝐸)]

𝑌=𝑦,𝐸=𝑒

. (6)

The weighted probability of 𝑃(𝑌 = 𝑦, 𝐸 = 𝑒) was
calculated by multiplying (5) and (6), and 𝑃(𝐸 = 𝑒) was
estimated by a weighting distribution [43]. Therefore, the
conditional probability can be estimated from the ratio of
𝑃(𝑌 = 𝑦, 𝐸 = 𝑒) and 𝑃(𝐸 = 𝑒).

A one-month lead forecasting example is shown in
Figure 4, which demonstrates application of the BNDFmodel
for theWonju station inMarch 2008.The observed SPI values
in January and February from 1973 to 2008 were applied
to construct nodes 𝐷

𝑁−1
and 𝐷

𝑁
. Similarly, node 𝑃𝐷

𝑁+1

was constructed using observed SPI values from 1973 to
2007 and APPCC MME precipitation for March in 2008. In
addition, the prediction from our proposed model based on
the posterior probability was calculated using the likelihood
weighting method.

3. Results

3.1. Drought Probability Forecasting. The results obtained
from this study demonstrated a future probabilistic drought
forecasting method that showed prediction uncertainty. The
proposed BNDFmodel was described in Section 2.2. Specifi-
cally, Figure 4 shows the probabilistic forecast results in the
form of PDF of SPI (𝐷Mar, 𝑁(−1.067, 0.9872)) for Wonju
station inMarch 2008.ThepredictedPDFof SPI also followed
a Gaussian distribution, and confidence intervals (CIs) were
estimated by the quantiles of the predicted PDF in Table 1.

Table 1 shows the forecast results of the predicted PDF,
for example, parameters of predicted Gaussian distribution,
the 95% CIs, the observed SPI, and the drought occurrence
probability. The observed drought conditions (the observed
SPI is under zero) are in italic font in Table 1; almost drought
occurrence probability (the area under the curve bounded
by zero and minus infinity of the predicted PDF) is over 0.5
in italic font in the table. The probabilistic forecast results
were estimated using the BNDF model from March 2008
to December 2012 at the study area. Figure 5 shows the SPI
probabilistic forecast examples with 50% and 95% CIs and
the time series of observed SPI data, which are represented
by dotted lines. Also the observed drought condition which is
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Table 1: Results of drought forecasting in Wonju station during September 2008 to December 2009 (∗the drought conditions (observed SPI
is under zero) are in italic font in the table).

Date (year/month) Gaussian distribution Confidence intervals Drought occurrence probability Observed SPI∗
𝜇 𝜎 2.5 (%) 97.5 (%)

2008/03 −1.05 1.09 −3.18 1.08 0.83 0.02
2008/04 −0.31 1.02 −2.30 1.68 0.62 −0.53
2008/05 −0.39 1.06 −2.46 1.68 0.64 −0.33
2008/06 −0.75 1.02 −2.75 1.26 0.77 −0.92
2008/07 −0.85 0.95 −2.72 1.02 0.81 −0.06
2008/08 −0.20 1.00 −2.17 1.77 0.58 −0.69
2008/09 −0.68 0.97 −2.59 1.23 0.76 −0.68
2008/10 −1.31 0.99 −3.25 0.63 0.91 −1.09
2008/11 −1.40 1.07 −3.49 0.69 0.91 −0.99
2008/12 −1.82 1.07 −3.92 0.27 0.96 −1.16
2009/01 −1.35 1.05 −3.41 0.71 0.90 −1.22
2009/02 −1.04 1.02 −3.04 0.97 0.84 0.03
2009/03 −0.52 0.97 −2.43 1.39 0.70 0.10
2009/04 0.15 0.92 −1.65 1.94 0.44 −0.49
2009/05 −0.55 1.03 −2.56 1.47 0.70 −0.09
2009/06 −0.30 1.08 −2.42 1.83 0.61 −0.64
2009/07 −0.53 1.13 −2.74 1.68 0.68 1.19
2009/08 1.24 0.98 −0.68 3.15 0.10 0.65
2009/09 1.39 0.98 −0.54 3.32 0.08 0.39
2009/10 −0.24 0.98 −2.15 1.68 0.60 −0.74
2009/11 −0.67 1.13 −2.88 1.54 0.72 −0.35
2009/12 0.30 0.99 −1.63 2.24 0.38 0.96

under the zero value of SPI is presented in the figure using the
color bar.The figures show that the 95%CIs contained almost
all observation data and the 50% CIs included a sufficient
number of observations. In Figure 5, most of study areas
have experienced drought for two years from 2008 to 2009;
the predicted results showed similar trend of the drought
condition.

In addition, the Ranked Probability Score (RPS) [44] was
used to measure the overall performance of the probabilistic
forecasts [45]. The RPS evaluates probability forecasting
that matches the probability distribution with the observed
outcome and is expressed as

RPS =

𝑛

∑

𝑘=1

(CDFfc,𝑘 − CDFobs,𝑘)
2

, (7)

where CDFfc,𝑘 is the cumulative distribution function (CDF)
of forecasts (the probabilistic drought forecast result) and
CDFobs,𝑘 is the CDF of observations. The lower RPS value
indicates small forecast probability error and a perfect fore-
cast world result in an RPS value of zero [46]. The average
RPS values during September 2008 toDecember 2012 for each
station are shown in Table 2; the average RPS was between
1.3 and 1.7. Compared to results reported in [47] where
the drought outlook was performed using the ensemble
technique, the overall average RPS (1.6) of the BNDF model
showed statistically more accurate forecast.

Table 2: Average RPS values for 16 stations during September 2008
to December 2012.

Station RPS Station RPS
Wonju 1.5 Boeun 1.7
Uljin 1.4 Yeongju 1.6
Chupungnyeong 1.5 Mungyeong 1.5
Pohang 1.5 Uiseong 1.4
Daegu 1.6 Yeongcheon 1.6
Ulsan 1.5 Geochang 1.7
Busan 1.6 Hapcheon 1.6
Jecheon 1.6 Miryang 1.7

3.2. Drought Outlook. This section demonstrates the drought
outlook method and its corresponding results for probabilis-
tic drought forecasting. Drought outlook provides expected
drought status and drought improving or deteriorating con-
ditions and compares them with the current drought condi-
tion [12]. Unlike traditional weather forecasts, which consist
of weathermaps that predict exactly howmuch rainmight fall
or the daily maximum temperature of an area, outlooks offer
users forecasts of future weather conditions relative to what
is normal for the region (NOAA, https://www.climate.gov/).
The NOAA CPC provides seasonal and monthly drought
outlook information. The climate data outlook information
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Figure 5: Results of drought forecasting (2008/03∼2012/12) with confidence interval (the drought states (SPI value is under zero) are provided
with the background bar color).

is widely provided by meteorological administrations in
countries such as USA, Australia, New Zealand, and South
Korea.

Figure 6 illustrates the framework of drought outlook
proposed in this study, and its corresponding procedure
is outlined below. First, current drought condition (mild,
moderate, severe, extreme drought, or no drought) was
determined using the SPI value. Then drought occurrence
probability was estimated from the PDF of drought forecast-
ing employing the BNDF model. The forecasted results for
drought occurrence were determined based on the cumula-
tive probabilities of SPI that takes values less than or equal
to zero; we supposed that the drought begins when the SPI
falls below zero [38]. If the CDF, equal to the area underneath
a PDF, of drought forecasting is over 0.5, then drought will

occur. This process has been expressed using the CDF of the
drought forecast in

CDFdrought forecasting (𝑥 = 0) < 0.5

no expected drought,
(8a)

CDFdrought forecasting (𝑥 = 0) ≥ 0.5

expected drought.
(8b)

Based on (8a) and (8b), when the CDF of drought
forecasting of 𝑥 = 0 is lower than 0.5, we can conclude
that drought will not occur; however, if it is higher than 0.5,
we can expect drought to occur. For an expected drought
to occur, future drought conditions could be estimated by
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Figure 6: Drought outlook framework using the BNDF results.

Table 3: Drought classification (drought intensity determined from
[38]).

Drought condition SPI values
Mild drought (D1) 0∼−0.99
Moderate drought (D2) −1.00∼−1.49
Severe drought (D3) −0.50∼−1.99
Extreme drought (D4) −2.00 and less

comparing the probabilities of each drought condition, for
which drought condition is classified into mild (D1), mod-
erate (D2), severe (D3), and extreme drought (D4) in Table 3.
The drought occurrence probability of each condition was
calculated by the area under the PDF curve bounded by SPI
values in Table 3. In this situation, the highest probability
value of drought condition is adopted for future drought
condition. The drought outlook was decided based on the
comparison between the current drought condition and its
forecasted value, as shown in the last step of Figure 6. If future
drought condition shows a value higher than the current
condition, it could be the base for the expected drought.

In Figure 7, theCDFof drought forecastingwas estimated
at 0.84 (the area under the curve bounded by zero and
minus infinity as indicated by the shaded area in Figure 7)
which indicates that drought will occur in the next month.
In addition, the probability of the mild drought (D1) shows
the highest value of 0.38 compared to D2, D3, and D4.
In order to make decision about the drought outlook, we
compared the current drought conditions (calculated D1
values) with the expected drought conditions (forecasted
D1 values). Finally, drought outlook in the next month was
determined. If the current drought conditions showed D2,
then the drought outlook results in a weak drought. If

0.380.210.180.23

Mild drought
Moderate drought

Severe drought
Extreme drought

0 321 4−1−3−4 −2−5

SPI (3 months)

CDFdrought forecasting = 0.84

0
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0.4

Pr
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Figure 7: Drought forecasting probability from the BNDF model
(Wonju station, March 2008).

current drought conditions showed D2, then the result of
drought outlook is forecast as “drought remains but is weak.”
Figure 8 shows the drought outlook examples in August and
September 2012; South Korea experienced drought fromMay
to August 2012.

4. Conclusions

In this study, we proposed a new stochastic drought fore-
casting method and drought outlook framework using prob-
abilistic drought forecasting results. The proposed BNDF
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Figure 8: The map of drought outlook in study areas.

model estimated near future drought with forecast uncer-
tainty via Bayesian networks. These networks were useful
tools that can be applied to complex systems with a large
number of variables [48] and were efficient under certain
circumstances [49]. Similarly, the model structure was easy
to understand since it is based on nodes and arrows. The
probabilistic presentation was a benefit of the model to assess
uncertainty explicitly. The predictions based on the BNDF
model included the SPI Gaussian distribution, followed by
the forecasting uncertainties via their corresponding CIs. In
addition, the significant agreement between the observed
and forecasted data indicated that the BNDF model showed
reliable results. Moreover, this study suggested a drought
outlook framework using probabilistic drought forecasting.
Drought outlook predicted the changes in drought status
in the coming months, which can render future forecast
information understandable to the public.

Probabilistic drought forecasting has the flexibility to
respond to undesirable future drought risk identification.
In the current study, the simple BNDF model considered
only the past and forecasted SPI for meteorological drought
forecasting; however, Bayesian network applicability can be
extended to forecast other types of droughts (e.g., agri-
cultural and hydrological) by incorporating other hydro-
climatological variables.
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