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Using the coherent potential approximation, we investigate the effects of disorder on the optical absorption and the density of
states of Frenkel exciton systems on square, rectangular, and triangular lattices with nearest-neighbor interactions and a Gaussian
distribution of transition energies. The analysis is based on an elliptic integral approach that gives results over the entire spectrum.
The results for the square lattice are in good agreement with the finite-array calculations of Schreiber and Toyozawa. Our findings
suggest that the coherent potential approximation can be useful in interpreting the optical properties of two-dimensional systems
with dominant nearest-neighbor interactions and Gaussian diagonal disorder provided the optically active states are Frenkel
excitons.

1. Introduction

In a series of recent papers [1–3], we have applied the coherent
potential approximation (CPA) to the calculation of the
optical absorption and density of states of the Frenkel exciton
model in one- and three-dimensional arrays with nearest-
neighbor interactions and Gaussian disorder associated with
the single-site transition energies. In the case of the one-
dimensional systems we have shown that the results for the
density of states are in excellent agreement with numerical
calculations carried out on arrays of 107–108 sites [1]. The
accuracy of the CPA for the optical absorption in one dimen-
sion [2] was tested in a comparison with data obtained from
finite-array calculations by Schreiber [4]. Good agreement
was obtained with the ensemble average of data from arrays
of 199 sites.TheCPAwas applied to cubic lattices in [3]. In the
case of the simple cubic lattice, good agreement was obtained
with the corresponding finite-array calculations of Schreiber
andToyozawa [5, 6] for the optical absorption and the density

of states. Along with the simple cubic data, corresponding
CPA results were reported for the body-centered and face-
centered cubic lattices.

A preliminary CPA analysis of the optical absorption
and the density of states for the square lattice was reported
in [7]. The approach followed was based on a large-energy
expansion of Green’s function, and the calculations were
limited to energies below the absorption edge of the ideal
system. Like the simple cubic analysis, the results were in
good agreement with findings reported in [5, 6]. In this paper,
we investigate the square lattice using an approach for the
calculation of Green’s function that is based on the evaluation
of a complete elliptic integral of the first kind. Unlike the
previous approach, we obtain results that are applicable over
the entire absorption band. We also extend the theory to
rectangular and triangular lattices for which there are no
finite-array results to compare with.

In the CPA, the starting point in all three dimensions is
lattice Green’s function, 𝐺0(𝐸), which in turn depends on
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Figure 1: Normalized optical absorption for the square lattice. From
left to right along the energy axis, the curves correspond to𝜎= 0.263,
0.186, 0.131, 0.093, and 0.066. In this and all other figures, energy is
in units of the band width.

the structure of the lattice. The calculation of the optical
absorption and the density of states follow once one knows
CPA Green’s function which is obtained from lattice Green’s
function by the replacement 𝐸 → 𝐸 − 𝑉𝐶(𝐸), where 𝑉𝐶(𝐸) is
the coherent potential. Equations relating to the calculation
of 𝑉𝐶(𝐸) and the connection of CPA Green’s function to the
absorption and the density of states are given in [1–3] and will
not be reproduced here.

2. Square Lattice

In analyzing the square, rectangular, and triangular systems,
we take the unit of energy to be the width of the ideal (no
disorder) exciton band and assume the absorption edge is at
the bottom of the band. In the case of the square lattice, this
leads to the exciton energy

𝐸k = −(14) (cos 𝑘𝑥 + cos 𝑘𝑦) (1)

in the absence of disorder. The corresponding expression for
ideal Green’s function for complex energy takes the form [8]

𝐺0 (𝐸) = ( 2𝜋𝐸)K (2𝐸−1) , (2)

where K(𝑚) denotes the complete elliptic integral with
modulus𝑚.

The Gaussian averaging associated with the diagonal
disorder is discussed in detail in [1–3]. It depends on the
variance, 𝜎2. Following [4–6], we carried out calculations
for the square lattices with 𝜎 = 0.263, 0.186, 0.131, 0.093,
and 0.066, where 𝜎 is in units of the ideal band width.
Our results for the normalized optical absorption, 𝐹(𝐸), and
the normalized density of states, 𝜌(𝐸), for the square lattice
are shown in Figures 1 and 2, respectively. They are seen

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E


(E

)

Figure 2: Normalized density of states for the square lattice. From
left to right along the energy axis, the curves correspond to𝜎= 0.263,
0.186, 0.131, 0.093, and 0.066.

to be in good agreement with the finite-array calculations
of Schreiber and Toyozawa as displayed in Figure 2 in [5]
(absorption) and Figure 5(b) in [6] (density of states). This
result is also consistent with [7], where a similar level of
agreement was established for 𝐸 < −0.5.
3. Rectangular Lattice

In the absence of disorder, the exciton energy for a rectangu-
lar lattice with unit band width takes the form

𝐸k = −(𝜆 cos 𝑘𝑥 + cos 𝑘𝑦)2 (𝜆 + 1) , (3)

where 𝜆 is the interaction between neighboring sites on the𝑥-axis.The corresponding expression for Green’s function for
complex energy is given in the Appendix to [8]

𝐺0 (𝐸) = 2 (𝜆 + 1) (𝜋𝜆1/2)−1 𝑘1 (𝐸)K (𝑘1 (𝐸)) , (4)

where

𝑘1 (𝐸) = { 4𝜆
[4 (𝜆 + 1)2 𝐸2 − (𝜆 − 1)2]}

1/2

. (5)

Since the absorption is weakly affected by changes in 𝜆,
we focus on results for the density of states where we take 𝜎
= 0.131 and 𝜆 = 0.5, 1.0, and 1.5 (Figure 3). It is apparent that
the density of states near the center of the band is strongly
affected by changes in 𝜆. The lower curve shows the results
for 𝜆 = 0.5, the middle curve for 𝜆 = 1.5, and the upper curve
for 𝜆 = 1.0. The dip at the center of the band, which grows
stronger as with increasing anisotropy, reflects the fact that, in
the limits 𝜆 ≫ 1 and 𝜆 → 0, the system approaches an array
of decoupled chains with the consequence that the optical
properties and the density of states become characteristic of
one-dimensional arrays [1, 2].
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Figure 3: Normalized density of states for the rectangular lattice
with 𝜎 = 0.131. From bottom to top at 𝐸 = 0, the curves are for 𝜆
= 0.5, 1.5, and 1.0.

4. Triangular Lattice

In the absence of disorder, the exciton energy for the triangu-
lar lattice with unit band width has the form [9]

𝐸k = −(29) (cos 2𝑘𝑥 + 2 cos 𝑘𝑥 cos 𝑘𝑦) (6)

with the optical absorption edge at −2/3 and the upper edge
at 1/3. Analogous to the face-centered cubic lattice and unlike
the square and rectangular lattices, the exciton band does not
have a reflection point for the density of states. In units of the
band width, the corresponding Green function for complex
energy with negative real part has the form

𝐺0 (𝐸) = ( 94𝜋)𝑔 (𝐸)K (𝑘2 (𝐸)) , (7)

where

𝑔 (𝐸) = − 8
[(−9𝐸 + 3)1/2 − 1]3/2 [(−9𝐸 + 3)1/2 + 3]1/2 ,

𝑘2 (𝐸) = 4 (−9𝐸 + 3)1/4
[(−9𝐸 + 3)1/2 − 1]3/2 [(−9𝐸 + 3)1/2 + 3]1/2 .

(8)

The results for the optical absorption and the density of
states are shown in Figures 4 and 5, respectively. For small
disorder, the absorption peaks are near the ideal (no disorder)
band edge at −2/3. With increasing disorder, the absorption
peak broadens and shifts to lower energy as occurs with
the other lattices. In the case of the density of states, the
ideal lattice has band edges at 𝐸 = −2/3 and 1/3 as well
as a singularity at 𝐸 = 2/9. The behavior of the density of
states below the absorption edge is shown in greater detail
in Figure 6. It is similar to the corresponding results for the
square lattice shown in [6, 7].
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Figure 4: Normalized optical absorption for the triangular lattice.
From left to right along the energy axis, the curves correspond to 𝜎
= 0.263, 0.186, 0.131, 0.093, and 0.066.
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Figure 5: Normalized density of states for the triangular lattice.
From left to right along the energy axis, the curves correspond to𝜎 = 0.263, 0.186, 0.131, 0.093, and 0.066.

5. Anisotropic Triangular Lattice

For the triangular lattice discussed above all nearest-neighbor
interactions are the same. In [10], Horiguchi investigated an
anisotropic triangular lattice in which interactions along two
of the three connecting lines took on the value 𝛾 while the
interaction on the third line was equal to 1. When the optical
edge is at the bottom of the band, the exciton energy is given
by

𝐸k = − [cos (2𝑎𝑘𝑥) + 2𝛾 cos (𝑎𝑘𝑥) cos (𝑏𝑘𝑦)] , (9)

where 𝑎 = 1/2 and 𝑏 = √3/2 when the length of the side of
the triangle is 1 [10].The lower and upper band edges and the
band width (BW) are given in Table 1.
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Table 1: The locations of the band edges and the band width for the ideal anisotropic triangular lattice. The nearest-neighbor interaction on
two of the three lines of sites is equal to 𝛾 while it is equal to 1 on the third line [10].

Range of 𝛾 Lower band edge Upper band edge Band width (BW)
0 < 𝛾 < 2 −(1 + 2𝛾) 1 + 𝛾2/2 2 + 2𝛾 + 𝛾2/2𝛾 = 2 −5 3 8𝛾 > 2 −(1 + 2𝛾) 2𝛾 − 1 4𝛾
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Figure 6: Semilog plot of the density of states below the absorption
edge for the triangular lattice. From left to right along the energy
axis, the curves correspond to 𝜎 = 0.263, 0.186, 0.131, 0.093, and
0.066.

The density of states is strongly affected by the ratio of
the interaction strength. Apart from the band edges, the
singularities in the ideal Green function for the anisotropic
triangular lattice are associated with 𝛾-dependent critical
points on the energy axis and corresponding peaks in the
density of states [10]. In units of the bandwidth, BW, the peaks
are at (2𝛾−1)/BW and 1/BW for 0 < 𝛾 < 1. For 𝛾 = 1, there is
a single peak at 1/BW = 2/9. For 1 < 𝛾 < 2, the peaks are also
at (2𝛾 − 1)/BW and 1/BW, and when 𝛾 ≥ 2 there is a single
peak at 1/BW. In Figure 7, we show the effects of disorder on
the density of states for 𝛾 = 1/2. In this calculation, we made
use of the expression for the Green function given in [10]. In
the absence of disorder, the band edges are at −4/7 and 3/7,
and the peaks are at 0 and 2/7.

6. Conclusions

The results for the square lattice extend the earlier work
[7] to the entire spectrum. As we mentioned previously,
our findings are consistent with numerical studies of the
square lattice [5, 6]. The results for the rectangular arrays
are expected to be reasonably accurate since the coherent
potential approximation works well in the limiting cases𝜆 ≫ 1 and 𝜆 → 0, where the rectangular array reduces
to decoupled chains. In the case of the triangular lattice,
finite-array calculations are needed to test the accuracy of the
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Figure 7: Normalized density of states for the anisotropic triangular
latticewith 𝛾= 1/2. From left to right along the energy axis, the curves
correspond to 𝜎 = 0.263, 0.186, 0.131, 0.093, and 0.066.

coherent potential approximation. If this is established, one
has confidence that the approximation works reasonably well
for the anisotropic triangular lattice since, in the limit 𝛾 = 0,
the system decouples into independent chains, whereas when𝛾 ≫ 1, each site is strongly coupled to four nearest neighbors
with the consequence that the behavior approaches that of the
square array.

In the field of optical spectroscopy, a two-parameter
assessment of the characteristics of the absorption line is
provided by the peak position (𝐸Peak) and the full width at half
maximum (FWHM). In Figure 8 we show the behavior of the
two parameters with the increasing 𝜎 for both the square and
triangular lattices. It is evident that the peak positions for the
two lattices approach a common value for large 𝜎whereas the
increase in the linewidth occurs more rapidly for the square
lattice. The latter behavior may reflect the fact that the effects
of the disorder in the triangular lattice may be weaker due
to an averaging of the contributions from a larger number of
nearest neighbors.

Our results along with earlier studies [6, 7] suggest
that the coherent potential approximation can be useful
in interpreting the optical properties of two-dimensional
systems with dominant nearest-neighbor interactions and
Gaussian diagonal disorder provided the optically active
states are Frenkel excitons.Thefindings reported in this paper
are applicable to optically active monolayers. In addition,
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Figure 8: Peak position (𝐸Peak) and full width at half maximum
(FWHM) versus 𝜎 for the square and triangular lattices. Energy and𝜎 are in units of the bandwidth. From top to bottom, square FWHM,
triangle FWHM, square 𝐸Peak, and triangle 𝐸Peak.

there are quasi-two-dimensional magnetic exciton systems
where the nearest-neighbor approximation is appropriate.
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