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This paper is mainly concerned with the existence of a global strong attractor for the nonlinear extensible beam equation with
structural damping and nonlinear external damping. This kind of problem arises from the model of an extensible vibration beam.
By the asymptotic compactness of the related continuous semigroup, we prove the existence of a strong global attractor which is
connected with phase space𝐷(Δ2) × 𝐻1

0
(Ω) ∩ 𝐻

2
(Ω).

1. Introduction

Global attractor is a basic concept in the study of long-time
behavior of nonlinear dissipative evolution equations with
various dissipation. There have been many methods to prove
the existence of the global attractor. It can be proved by the
theory of 𝛼-contractions of the solution semigroup 𝑆(𝑡), such
as [1–3] and the reference therein. It can also be proved by the
decomposition of the solution semigroup 𝑆(𝑡) (see Hale [4],
Temam [5], etc.).

In this paper, we use the method of the asymptotically
compact property of the solution semigroup 𝑆(𝑡) which is
different from the method of [1–5] to prove the existence of a
strong global attractor for the Kirchhoff type equations with
structural damping and nonlinear external damping which
arises from the model of the nonlinear vibration beam

𝑢
𝑡𝑡
+ 𝛼Δ
2
𝑢 + 𝛾Δ

2
𝑢
𝑡

− (𝛽 +𝑀(∫
Ω

|∇𝑢|
2
𝑑𝑥) + 𝑁(∫

Ω

∇𝑢∇𝑢
𝑡
𝑑𝑥))Δ𝑢

+ 𝑔 (𝑢) + 𝑓 (𝑢
𝑡
) = ℎ (𝑥) , in Ω × 𝑅+,

(1)

𝑢 = Δ𝑢 = 0 on 𝜕Ω × 𝑅+, (2)

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

𝑢
𝑡
(𝑥, 0) = 𝑢

1
(𝑥) in Ω,

(3)

where 𝛼, 𝛾, and 𝛽 are all positive constants, Ω is a bounded
domain of 𝑅𝑁 with smooth boundary Γ = 𝜕Ω,𝑀(𝑠), 𝑁(𝑠),
𝑔(𝑠), and 𝑓(𝑠) are nonlinear functions specified later, and
ℎ ∈ 𝐿

2
(Ω) is an external force term. 𝑢(𝑡) represents the

vertical deflection of the beam, and𝑢 = 𝑢(𝑥, 𝑡) is a real-valued
function onΩ × [0, +∞).

In this context of problem (1), based on the vibrating
beams equation

𝑢
𝑡𝑡
+ 𝑢
𝑥𝑥𝑥𝑥
− (𝛼 + 𝛽∫

𝑙

0

𝑢𝑥 (𝑠, 𝑡)


2

𝑑𝑠) 𝑢
𝑥𝑥
= 0 (4)

which is proposed by Woinowsky-krieger [6]; Ma and Nar-
ciso [7] considered problem (1) without structural damping
and posed a weak global attractor in weak phase space
𝐻
2

0
(Ω)×𝐿

2
(Ω). Eden andMilani [8] considered the existence

of exponential attractor for problem (1) with 𝑓(𝑢) = 0 and
a linear weak damping 𝑔(𝑢

𝑡
) = 𝑢

𝑡
, 𝑀(⋅) being a nonlinear

function and without structural damping. Ball [9] presented
the existence and uniqueness of global solutions for problem
(1) with𝑓 = 𝑔 = ℎ = 0,𝑀(⋅),𝑁(⋅) are all linear functions.

On the other hand, the existence of the attractor for a
related problem, with the boundary conditions 𝑢 = Δ𝑢 = 0
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of (2) replaced with 𝑢 = ∇𝑢 = 0, was considered by Ma
and Narciso [7], Eden and Milani [8] with a linear damping
𝑢
𝑡
or nonlinear damping 𝑓(𝑢

𝑡
) without structural damping,

respectively. Chueshov and Lasiecka [10] considered a kind
of boundary condition which is 𝑢 = Δ𝑢 = 0 but without
structural damping.

Generally speaking, there have been many works on the
long-time behavior for nonlinear beam equations [6–10]. But
for the beam equation (1) with structural damping, in strong
phase space 𝐷(Δ2) × 𝐻1

0
(Ω) ∩ 𝐻

2
(Ω), the global solutions

and the strong global attractor have not still been proved until
now.

The outline of this paper is arranged as follows: in
Section 2 we give the existence and uniqueness of global
solutions in space 𝐶(𝑅+; 𝐷(Δ2) × 𝐻1

0
(Ω) ∩ 𝐻

2
(Ω)), in

Section 3we give the boundedness of solutions in phase space
𝐷(Δ
2
) × 𝐻

1

0
(Ω) ∩ 𝐻

2
(Ω), and finally in Section 4, we give

the proof of the existence of a strong global attractor in phase
space𝐷(Δ2) × 𝐻1

0
(Ω) ∩ 𝐻

2
(Ω).

2. Some Assumptions and Existence of
Global Solution

In (1), we assume that damping term and the source term are
in the form of

𝑓 (𝑢
𝑡
) =
𝑢𝑡


𝑟

𝑢
𝑡
, 𝑔 (𝑢) = |𝑢|

𝜌
𝑢 (5)

with

0 < 𝜌, 𝑟 ≤
2

𝑁 − 2
if 𝑁 ≥ 3,

𝜌, 𝑟 > 0 if 𝑁 = 1, 2.
(6)

We assume that the nonlinear functions 𝑀,𝑁 : 𝑅+ →
𝑅
+ are all class 𝐶1, and satisfying𝑀(0) = 0, 𝑁(0) = 0 and

𝑀(𝑠) 𝑠 ≥ �̂� (𝑠) , where �̂� (𝑠) = ∫
𝑠

0

𝑀(𝑧) 𝑑𝑧,

𝑀 (𝑠) ≥ 2𝑠;

𝑁 (𝑠) ≥ 𝑠, ∀𝑠 ∈ 𝑅.

(7)

The functions𝑓, 𝑔 : 𝑅 → 𝑅 are also class𝐶1, with𝑓(0) =
𝑔(0) = 0, 𝛼

1
≤ 𝑓

(V) ≤ 𝛼

2
, and |𝑔(𝑢)| ≤ 𝑘

0
(1 + |𝑢|

𝜌
) for all

𝑢, V ∈ 𝑅, where 𝛼
1
, 𝛼
2
, and 𝑘

0
are all constants. There also

exists constants 𝑘
5
, 𝑘
6
such that

𝑓 (𝑢) − 𝑓 (V)
 ≤ 𝑘5 (1 + |𝑢|

𝑟
+ |V|
𝑟
) |𝑢 − V| , ∀𝑢, V ∈ 𝑅,

𝑔 (𝑢) − 𝑔 (V)
 ≤ 𝑘6 (1 + |𝑢|

𝜌
+ |V|
𝜌
) |𝑢 − V| , ∀𝑢, V ∈ 𝑅.

(8)

In addition, nonlinear function 𝑔(⋅) also satisfies

𝜑 (𝑢) +
𝛼 − 𝜀𝛾

8
‖𝑢‖
2
≥ −𝑘
1
,

∫
Ω

𝑔 (𝑢) 𝑢 𝑑𝑥 − 𝐶
1
𝜑 (𝑢) +

𝛼

4
‖𝑢‖
2
≥ −𝑘
2
,

(9)

where 𝜑(𝑢) = ∫
Ω
𝐺(𝑢)𝑑𝑥, 𝐺(𝑢) = ∫

Ω
𝑔(𝑢)𝑑𝑢, and 𝑘

1
, 𝑘
2
are

all constants, 𝐶
1
≥ 1.

Our analysis is based on the following Sobolev spaces:
𝐻 = 𝐿

2
(Ω), 𝑉 = 𝐻1

0
(Ω) ∩ 𝐻

2
(Ω), with the usual inner

products and norms as follows, respectively:

(𝑢, V) = ∫
Ω

𝑢V 𝑑𝑥, |𝑢| = (𝑢, 𝑢)
1/2
, ∀𝑢, V ∈ 𝐿

2
(Ω) ,

(Δ𝑢, ΔV) = ∫
Ω

Δ𝑢ΔV 𝑑𝑥, ‖𝑢‖ = (Δ𝑢, Δ𝑢)
1/2
,

∀𝑢, V ∈ 𝐻
1

0
(Ω) ∩ 𝐻

2
(Ω) .

(10)

Consider 𝐷(Δ2) = {𝑢 | 𝑢 ∈ 𝑉, 𝑢 ∈ 𝐻4(Ω), Δ2𝑢 ∈
𝐻, Δ𝑢|

𝜕Ω
= 0} with the inner products (Δ2𝑢, Δ2𝑢) and the

norms |Δ2𝑢|2 = (Δ2𝑢, Δ2𝑢).
Take 𝐸

0
= 𝐻
1

0
(Ω) ∩ 𝐻

2
(Ω) × 𝐿

2
(Ω) and 𝐸 = 𝐷(Δ2) ×

𝐻
2
(Ω) ∩ 𝐻

1

0
(Ω) with the inner products and norms as

follows, respectively:

(𝑦
1
, 𝑦
2
)
𝐸0
= (Δ𝑢

1
, Δ𝑢
2
) + (V

1
, V
2
) ,

𝑦
𝐸0
= (𝑦, 𝑦)

1/2

𝐸0
,

∀𝑦
𝑖
= (𝑢
𝑖
, V
𝑖
)
𝑇

, 𝑦 = (𝑢, V)
𝑇
∈ 𝐸
0
, 𝑖 = 1, 2,

(𝑦
1
, 𝑦
2
)
𝐸
= (Δ
2
𝑢
1
, Δ
2
𝑢
2
) + (ΔV

1
, ΔV
2
) ,

𝑦
𝐸
= (𝑦, 𝑦)

1/2

𝐸
,

∀𝑦
𝑖
= (𝑢
𝑖
, V
𝑖
)
𝑇

, 𝑦 = (𝑢, V)
𝑇
∈ 𝐸, 𝑖 = 1, 2.

(11)

Note that assumption (6) implies that𝐻1
0
(Ω)∩𝐻

2
(Ω) →

𝐻
1

0
(Ω) → 𝐿

2(𝑝+1)
(Ω), with 𝑝 = 𝜌 or 𝑝 = 𝑟.

Finally, we assume that 𝜆, 𝜎 are the first eigenvalue of Δ2
and Δ, respectively; then we have

‖𝑢‖
2
≥ 𝜎|𝑢|

2
, ∀𝑢 ∈ 𝑉,


Δ
2
𝑢


2

≥ 𝜆‖V‖
2
, ∀𝑢 ∈ 𝐷 (Δ

2
) .

(12)

In the following, we state the result of the existence and
uniqueness of the solutions for systems (1)–(3).

Theorem 1. Assume that (𝑢
0
, 𝑢
1
) ∈ 𝐸, ℎ ∈ 𝐿2(Ω), and

the assumptions of these functions 𝑀(⋅), 𝑁(⋅), 𝑓(⋅), and 𝑔(⋅)
hold; then problems (1)–(3) have unique solutions (𝑢, 𝑢

𝑡
) ∈

𝐶([0, 𝑇]; 𝐷(Δ
2
)) × 𝐶([0, 𝑇];𝐻

1

0
(Ω) ∩ 𝐻

2
(Ω)) depending con-

tinuously on initial data in 𝐸.

By virtue of Galerkin method, we may prove Theorem 1
combined with the priori estimates of Section 3.

According byTheorem 1, for any 𝑡 > 0, we may introduce
the mapping

{𝑆 (𝑡) , 𝑡 ≥ 0} : {𝑢
0
, 𝑢
1
} → {𝑢 (𝑡) , 𝑢

𝑡
(𝑡)} . (13)

It maps 𝐸 into itself, and it enjoys the usual semigroup
properties as follows:

𝑆 (0) = 𝐼,

𝑆 (𝑡 + 𝜏) = 𝑆 (𝑡) 𝑆 (𝜏) , ∀𝑡 ≥ 0.

(14)
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And it is obvious that the map {𝑆(𝑡), 𝑡 > 0}, for all 𝑡 ∈ 𝑅,
is continuous in space 𝐸. In the following, we will introduce
the existence of bounded absorbing set and global attractor
in space 𝐸 for map {𝑆(𝑡), 𝑡 ≥ 0}.

3. The Existence of Bounded Absorbing
Set in Space 𝐸

In this section, we will show boundedness of the solutions for
systems (1)–(3).

Theorem 2. Assume that these assumptions ofTheorem 1 hold
then for the dynamic system determined by problems (1)–(3),
there exists the boundary absorbing set in space 𝐸.

Proof. Taking the inner products of V = 𝑢
𝑡
+ 𝜀𝑢 with both

sides of (1) and then making summation, we have

1

2

𝑑

𝑑𝑡
𝐸 (𝑡) − 𝜀|V|

2
+ 𝜀 (𝛼 − 𝜀𝛾) ‖𝑢‖

2
+ 𝜀𝛽|∇𝑢|

2
+ 𝛾|V|

2

+ 𝜀
2
(𝑢, V) + 𝜀�̂� (𝑧) + 𝑁 (�̇�) �̇� + (𝑔 (𝑢) , V)

+ (𝑓 (𝑢
𝑡
) , V) = (ℎ, V) ,

(15)

where �̂�(𝑧) = ∫𝑧
0
𝑀(𝑧)𝑑𝑧, 𝑧(𝑡) = |∇𝑢|2 and 𝜀 is fixed at

arbitrary time, and here the energy function 𝐸(𝑡) is defined
on 𝐸
0
by

𝐸 (𝑡) = |V|
2
+ (𝛼 − 𝜀𝛾) ‖𝑢‖

2
+ 𝛽|∇𝑢|

2
+ �̂� (𝑧) + |∇𝑢|

4
. (16)

Considering the assumption ∫
Ω
𝑢𝑔(𝑢)𝑑𝑥 − 𝐶

1
𝜑(𝑢) +

(𝛼/4)‖𝑢‖
2
≥ −𝑘
2
, we have

(𝑔 (𝑢) , V) =
𝑑

𝑑𝑡
𝜑 (𝑢) + 𝜀 (𝑔 (𝑢) , 𝑢)

≥
𝑑

𝑑𝑡
𝜑 (𝑢) + 𝜀𝐶

1
𝜑 (𝑢)

−
𝜀𝛼

4
‖𝑢‖
2
− 𝜀𝑘
2
.

(17)

With |𝜀2(𝑢, V)| ≤ (𝜀2/𝜎2)‖𝑢‖2 + (𝜀2/4)|V|2, we have

− 𝜀|V|
2
+ 𝜀 (𝛼 − 𝜀𝛾) ‖𝑢‖

2
+ 𝜀𝛽|∇𝑢|

2
+ 𝛾|V|

2
+ 𝜀
2
(𝑢, V)

≥ (𝜀𝛼 − 𝜀
2
𝛾 −
𝜀
2

𝜎2
) ‖𝑢‖
2
+ (𝛾𝜆

2
− 𝜀 −

𝜀
2

4
) |V|
2

+ 𝜀𝛽|∇𝑢|
2
.

(18)

With the assumptions 𝑓(0) = 0, 𝑓 ∈ 𝐶1(𝑅, 𝑅), and 𝛼
1
≤

𝑓

(V) ≤ 𝛼

2
and by using Mean Value Theorem and Mean

Value inequality, we have

(𝑓 (𝑢
𝑡
) , V) = ∫𝑓


(𝜉) V
2
𝑑𝑥 − 𝜀∫𝑓


(𝜉) 𝑢V 𝑑𝑥

≥ (𝛼
1
−
𝜀𝛼
2

2
) |V|
2
−
𝜀𝛼
2

2𝜎2
‖𝑢‖
2
,

(19)

where 𝜉 among 0 and V − 𝜀𝑢. Set

𝐸 (𝑡) = |V|
2
+ (𝛼 − 𝜀𝛾) ‖𝑢‖

2
+ 𝛽|∇𝑢|

2
+ �̂� (𝑧)

+ |∇𝑢|
4
+ 2𝜑 (𝑢) + 2𝑘

1
.

(20)

Consider

𝑌 (𝑡) = (𝜀𝛼 − 𝜀
2
𝛾 −
𝜀
2

𝜎2
−
𝜀𝛼

4
−
𝜀𝛼
2

2𝜎2
) ‖𝑢‖
2

+ (𝛾𝜆
2
− 𝜀 −

𝜀
2

4
+ 𝛼
1
−
𝛾𝜎
2

4
−
𝜀𝛼
2

2
) |V|
2

+ 𝜀𝛽|∇𝑢|
2
+ 𝜀�̂� (𝑧) + 𝑁 (�̇�) �̇� + 𝜀𝐶

1
𝜑 (𝑢) + 𝜀𝑘

1
.

(21)

So (15) is transformed into

1

2

𝑑

𝑑𝑡
𝐸 (𝑡) + 𝑌 (𝑡) ≤

1

𝛾𝜎2
|ℎ|
2
+ 𝜀𝑘
2
+ 𝜀𝑘
1
. (22)

Considering the assumptions 𝑀(𝑠)𝑠 ≥ �̂�(𝑠), 𝑀(𝑠) ≥ 2𝑠,
𝑁(𝑠) > 𝑠, ‖𝑢‖2 ≥ 𝜎2|𝑢|2, and |Δ2𝑢|2 ≥ 𝜆2‖𝑢‖2, 𝐶

1
≥ 1

and letting 0 < 𝜀 < min{(𝛼𝜎2 + 2𝛼
2
)/(2𝛾𝜎

2
+ 4), −(3 + 𝛼

2
) +

√(3 + 𝛼
2
)
2
+ (4𝛼
1
+ 3𝛾𝜎2)} = 𝜀

0
, we have

2

𝜀
𝑌 (𝑡) − 𝐸 (𝑡) > 0. (23)

Substituting (23) into (22), we have

1

2

𝑑

𝑑𝑡
𝐸 (𝑡) +

𝜀

2
𝐸 (𝑡) ≤

1

𝛾𝜎2
|ℎ|
2
+ 𝜀𝑘
2
+ 𝜀𝑘
1
. (24)

On the one hand, applying the Gronwall inequality to (24),
we get

𝐸 (𝑡) ≤ 𝐸 (0) 𝑒
−𝜀𝑡
+
2

𝜀
(
1

𝛾𝜎2
|ℎ|
2
+ 𝜀𝑘
2
+ 𝜀𝑘
1
) , 𝑡 ≥ 0. (25)

Note that ‖𝑢(0)‖ and |𝑢
𝑡
(0)| are bounded; then there exists a

positive constant 𝑅 > 0 such that 𝐸(0) ≤ 𝑅2 is bounded; so

lim sup
𝑡→∞

𝐸 (𝑡) ≤ 𝜌
2

0
=
2

𝜀
(
1

𝛾𝜎2
|ℎ|
2
+ 𝜀𝑘
2
+ 𝜀𝑘
1
) . (26)

On the other hand, considering that 𝜑(𝑢)+((𝛼−𝜀𝛾)/8)‖𝑢‖2 ≥
−𝑘
1
, fixing 𝜇

0
> 𝜌
0
, and assuming that 𝐸(0) ≤ 𝑅2, then as

𝑡 ≥ 𝑡
0
= 𝑡
0
(𝑅, 𝜌
0
) = (1/𝜀

0
) log(𝑅/(𝜇2

0
− 𝜌
2

0
)), we have

𝐸 (𝑡) ≤ 𝜇
2

0
, (27)

that is,

|V|
2
+
𝛼 − 𝜀𝛾

4
‖𝑢‖
2
≤ 𝜇
2

0
. (28)
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Take the inner products by Δ2V in both sides of (1); then
make summation to get

1

2

𝑑

𝑑𝑡
(‖V‖
2
+ (𝛼 − 𝜀𝛾)


Δ
2
𝑢


2

) − 𝜀‖V‖
2

− (𝛽 +𝑀(𝑧 (𝑡)) + 𝑁 (�̇� (𝑡))) (Δ𝑢, Δ
2
V)

+ 𝛾

Δ
2
V


2

+ 𝜀
2
(Δ
2
𝑢, V) + 𝜀�̂� (𝑧) + 𝑁 (�̇�) �̇�

+ (𝑔 (𝑢) , Δ
2
V) + (𝑓 (V − 𝜀𝑢) , Δ

2
V) = (ℎ, Δ

2
V) .

(29)

Considering the continuity of the functions𝑀(⋅) and𝑁(⋅),
we have

− (𝛽 +𝑀(𝑧 (𝑡)) + 𝑁 (�̇� (𝑡))) (Δ𝑢, Δ
2
V)

≥ − (𝛽 + 𝐶
2
𝜇
2

0
+ 𝐶
3
𝜇
2

0
) |Δ𝑢|


Δ
2
V


≥ −

(𝛽 + 𝐶
2
𝜇
2

0
+ 𝐶
3
𝜇
2

0
) 𝜇
2

0

𝛾
−
𝛾

4


Δ
2
V


2

,

(30)

where 𝐶
2
, 𝐶
3
are all positive constants. Also

𝜀
2
(Δ
2
𝑢, V) ≥ −

𝜀
2

𝜎2


Δ
2
𝑢


2

−
𝜀
2

4
‖V‖
2
,

(ℎ, Δ
2
V) =

𝑑

𝑑𝑡
(ℎ, Δ
2
𝑢) + 𝜀 (ℎ, Δ

2
𝑢) .

(31)

In addition, with |𝑔(𝑢)| ≤ 𝑘
0
(1+ |𝑢|

𝜌
), there exists a constant

𝑘
3
such that |𝑔(𝑢)|

𝐿
∞ ≤ 𝑘

3
, |𝑔

(𝑢)|
𝐿
∞ ≤ 𝑘

3
; so

(𝑔 (𝑢) , Δ
2
V)

=
𝑑

𝑑𝑡
(𝑔 (𝑢) , Δ

2
V) − (𝑔


(𝑢) 𝑢
𝑡
, Δ
2
𝑢) + 𝜀 (𝑔 (𝑢) , Δ

2
𝑢)

≥
𝑑

𝑑𝑡
(𝑔 (𝑢) , Δ

2
𝑢) + 𝜀 (𝑔 (𝑢) , Δ

2
𝑢) −

𝜀
2

8


Δ
2
𝑢


2

−
2𝑘
2

3
𝜇
2

0

𝜀2
.

(32)

Also by using Schwarz andMeanValue inequalities andMean
ValueTheorem, we have

(𝑓 (V − 𝜀𝑢) , Δ
2
V)

≤
𝛾

4


Δ
2
V


2

+
1

𝛾
∫ (𝑓

(𝜉))
2

(V − 𝜀𝑢) 𝑑𝑥

≤
𝛾

4


Δ
2
V


2

+
𝛼
2

2

𝛾
(1 + 3𝜀

2
) 𝜇
2

0
,

(33)

where 𝜉 among 0 and V − 𝜀𝑢. Set

𝑌
1
(𝑡) = (𝜀𝛼 − 𝜀

2
𝛾 −
𝜀
2

𝜎2
−
𝜀
2

8
)

Δ
2
𝑢


2

+ (
𝛾𝜆
2

2
− 𝜀 −

𝜀
2

4
) ‖V‖
2
+ 𝜀 (𝑔 (𝑢) , Δ

2
𝑢)

+ 𝜀 (ℎ, Δ
2
𝑢) ,

(34)

and write𝑀 = (𝛼2
2
/𝛾)(1+3𝜀

2
)𝜇
2

0
+ ((𝛽+𝐶

2
𝜇
2

0
+𝐶
3
𝜇
2

0
)𝜇
2

0
)/𝛾+

2𝑘
2

3
𝜇
2

0
/𝜀
2; then (29) is transformed into

1

2

𝑑

𝑑𝑡
𝐸
1
(𝑡) + 𝑌

1
(𝑡) ≤ 𝑀. (35)

Here the function

𝐸
1
(𝑡) = ‖V‖

2
+ (𝛼 − 𝜀𝛾)


Δ
2
𝑢


2

+ 2 (𝑔 (𝑢) , Δ
2
𝑢) + 2 (ℎ, Δ

2
𝑢)

(36)

is obtained by the energy function being changed slightly.
Let 0 < 𝜀 ≤ min{𝜀

0
, 2𝛼/(𝛾 + (2/𝜎

2
) + (1/4)), −3 +

√9 + 2𝛾𝜆2, 𝛼/(𝛾 + (1/8))}, we have 𝑌
1
(𝑡) ≥ (𝜀/2)𝐸

1
(𝑡), and

so

1

2

𝑑

𝑑𝑡
𝐸
1
(𝑡) +

𝜀

2
𝐸
1
(𝑡) ≤ 𝑀, ∀𝑡 ≥ 𝑡

0
(𝐵) . (37)

Then an application of the Gronwall inequality leads to

𝐸
1
(𝑡) ≤ 𝐸

1
(0) 𝑒
[−𝜀(𝑡−𝑡0)] +

2𝑀

𝜀
, ∀𝑡 ≥ 𝑡

0
(ß) . (38)

If 𝐵 ⊂ 𝐵
𝐸
(0, 𝜌), there exists a positive constant 𝑅

1
> 0 such

that 𝐸
1
(𝑡
0
) ≤ 𝑅
2

1
.

Putting 𝑡
1
satisfing 𝑡

1
− 𝑡
0
> (1/𝜀) log𝑅2

1
, then as 𝑡 ≥ 𝑡

1
,

we get

𝐸
1
(𝑡) ≤ 𝑅

2

1
𝑒
−𝜀×(1/𝜀) log𝑅2

1 +
2𝑀

𝜀
= 1 +

2𝑀

𝜀
. (39)

So

(𝛼 − 𝜀𝛾 −
𝜀

8
)

Δ
2
𝑢


2

+ ‖V‖
2

≤
16

𝜀
|ℎ|
2
+
16

𝜀
𝑘
2

3
|Ω| + 1 +

2𝑀

𝜀
.

(40)

The global estimate (40) shows the existence of an absorbing
set of 𝑆(𝑡).

4. The Existence of Global Attractor in Space 𝐸

The general theory [11] indicates that the continuous semi-
group 𝑆(𝑡) defined on a Banach space 𝑋 has a global
attractor which is connected when the following conditions
are satisfied.

(i) There exists a bounded absorbing set 𝐵 ⊂ 𝑋 such that
for any bounded set 𝐵

0
⊂ 𝑋,

dist (𝑆 (𝑡) 𝐵
0
, 𝐵) → 0, as 𝑡 → +∞. (41)

(ii) 𝑆(𝑡) is asymptotically compact; that is, for any
bounded sequence {𝑢

𝑛
} in 𝑋 and {𝑡

𝑛
} tending to∞,

there exists a subsequence {𝑛} such that {𝑆(𝑡
𝑛
)𝑢
𝑛
} is

convergent as 𝑛 → ∞.

Theorem 3. Under the assumptions of Theorem 1, the contin-
uous semigroup 𝑆(𝑡) has a global attractor which is connected
to 𝐸.
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Proof. Let 𝑢, V be two solutions of Problems (1)–(3) in
space 𝐶(𝑅+; 𝐸) as shown above corresponding to the initial
data (𝑢

0
, 𝑢
1
) and (V

0
, V
1
) with |(𝑢

0
, 𝑢
1
)|
2

𝐸
+ |V
0
, V
1
|
2

𝐸
≤ 𝑅
2,

respectively. Then 𝑤 = 𝑢 − V satisfies

𝑤
𝑡𝑡
+ 𝛼Δ
2
𝑤 + 𝛾Δ

2
𝑤
𝑡
− 𝛽Δ𝑤

= (𝑀(|∇𝑢|
2
) Δ𝑢 −𝑀(|∇V|

2
) ΔV)

+ (𝑁(∫∇𝑢∇𝑢
𝑡
𝑑𝑥)Δ𝑢 − 𝑁(∫∇V∇V

𝑡
𝑑𝑥)ΔV)

− (𝑔 (𝑢) − 𝑔 (V)) − (𝑓 (𝑢
𝑡
) − 𝑓 (V

𝑡
)) ,

(42)

(𝑤, 𝑤𝑡)


2

𝐸0
≤ 𝐶 (𝜇

2

0
) . (43)

Taking the inner products in both sides of (42) by 𝑤
𝑡
, 𝐴𝑤,

and 𝐴𝑤
𝑡
, respectively, we have

1

2

𝑑

𝑑𝑡
(
𝑤𝑡


2

+ 𝛼|Δ𝑤|
2
+ 𝛽|∇𝑤|

2
) + 𝛾
Δ𝑤𝑡


2

= (𝑀(|∇𝑢|
2
) Δ𝑢 −𝑀(|∇V|

2
) ΔV, 𝑤

𝑡
)

+ (𝑁(∫
Ω

∇𝑢∇𝑢
𝑡
𝑑𝑥)Δ𝑢 − 𝑁(∫

Ω

∇V∇V
𝑡
𝑑𝑥)ΔV, 𝑤

𝑡
)

+ (𝑔 (𝑢) − 𝑔 (V) + 𝑓 (𝑢
𝑡
) − 𝑓 (V

𝑡
) , 𝑤
𝑡
) ,

(44)

1

2

𝑑

𝑑𝑡
(𝛾

Δ
2
𝑤


2

+ 2 (Δ𝑤, Δ𝑤
𝑡
)) + 𝛼


Δ
2
𝑤


2

− 𝛽 (Δ𝑤, Δ
2
𝑤) +

Δ𝑤𝑡


2

= (𝑀(|∇𝑢|
2
) Δ𝑢 −𝑀(|∇V|

2
) ΔV, Δ

2
𝑤)

+ (𝑁(∫
Ω

∇𝑢∇𝑢
𝑡
𝑑𝑥)Δ𝑢 − 𝑁(∫

Ω

∇V∇V
𝑡
𝑑𝑥)ΔV, Δ

2
𝑤)

+ (𝑔 (𝑢) − 𝑔 (V) + 𝑓 (𝑢
𝑡
) − 𝑓 (V

𝑡
) , Δ
2
𝑤) ,

(45)

1

2

𝑑

𝑑𝑡
(
Δ𝑤𝑡


2

+ 𝛼

Δ
2
𝑤


2

) + 𝛾

Δ
2
𝑤
𝑡



2

− 𝛽 (Δ
2
𝑤, Δ𝑤

𝑡
)

= (𝑀(|∇𝑢|
2
) Δ𝑢 −𝑀(|∇V|

2
) ΔV, Δ

2
𝑤
𝑡
)

+ (𝑁(∫
Ω

∇𝑢∇𝑢
𝑡
𝑑𝑥)Δ𝑢 − 𝑁(∫

Ω

∇V∇V
𝑡
𝑑𝑥)ΔV, Δ

2
𝑤
𝑡
)

+ (𝑔 (𝑢) − 𝑔 (V) + 𝑓 (𝑢
𝑡
) − 𝑓 (V

𝑡
) , Δ
2
𝑤
𝑡
) .

(46)

Equation (46)+ �̃� × (45)+ ̃̃𝑘 × (44) yields

1

2

𝑑

𝑑𝑡
(
Δ𝑤𝑡


2

+ 𝛼

Δ
2
𝑤


2

+ �̃�𝛾

Δ
2
𝑤


2

+ 2�̃� (Δ
2
𝑤,𝑤
𝑡
)

+
̃̃
𝑘
𝑤𝑡


2

+
̃̃
𝑘𝛼|Δ𝑤|

2
+
̃̃
𝑘𝛽|∇𝑤|

2
)

+ 𝛾

Δ
2
𝑤
𝑡



2

+ �̃�𝛼

Δ
2
𝑤


2

+ �̃�
Δ𝑤𝑡


2

+
̃̃
𝑘𝛾
Δ𝑤𝑡


2

= (𝑔 (𝑢) −𝑔 (V) +𝑓 (𝑢
𝑡
) −𝑓 (V

𝑡
) , Δ
2
𝑤
𝑡
+�̃�Δ
2
𝑤 +
̃̃
𝑘𝑤
𝑡
)

+ (𝑀(|∇𝑢|
2
) ∇𝑢 −𝑀(|∇V|

2
) ΔV

+ 𝑁(∫
Ω

∇𝑢∇𝑢
𝑡
𝑑𝑥)Δ𝑢

−𝑁(∫
Ω

∇V∇V
𝑡
𝑑𝑥)ΔV, Δ

2
𝑤
𝑡
)

+ �̃� (𝑀(|∇𝑢|
2
) Δ𝑢 −𝑀(|∇V|

2
) ΔV

+ 𝑁(∫
Ω

∇𝑢∇𝑢
𝑡
𝑑𝑥)Δ𝑢

−𝑁(∫
Ω

∇V∇V
𝑡
𝑑𝑥)ΔV, Δ

2
𝑤)

+
̃̃
𝑘 (𝑀(|∇𝑢|

2
) Δ𝑢 −𝑀(|∇V|

2
) ΔV

+ 𝑁(∫
Ω

∇𝑢∇𝑢
𝑡
𝑑𝑥)Δ𝑢

−𝑁(∫
Ω

∇V∇V
𝑡
𝑑𝑥)ΔV, 𝑤

𝑡
)

+ (𝛽Δ𝑤, Δ
2
𝑤
𝑡
) + �̃�𝛽 (Δ𝑤, Δ

2
𝑤) .

(47)

Consider that

(𝑀(|∇𝑢|
2
) Δ𝑢 −𝑀(|∇V|

2
) ΔV, Δ

2
𝑤
𝑡
)

= 𝑀

(𝜂
0
) |∇𝑢|

2
∫
Ω

Δ𝑤Δ
2
𝑤
𝑡
𝑑𝑥 +𝑀


(𝜂
1
)

× ∫
Ω

∇𝑤 (Δ𝑢 + ∇V) 𝑑𝑥∫
Ω

ΔVΔ
2
𝑤
𝑡
𝑑𝑥

≤ 𝐶
2
𝜇
2

0
|Δ𝑤|


Δ
2
𝑤
𝑡


+ 2𝐶
2
𝜇
2

0
|∇𝑤|


Δ
2
𝑤
𝑡



≤ 2

(𝐶
2
𝜇
2

0
+ (2𝐶

2
𝜇
2

0
/𝜎))
2

𝛾
|Δ𝑤|
2
+
𝛾

8


Δ
2
𝑤
𝑡



2

;

(48)
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�̃� (𝑀 (|∇𝑢|
2
) Δ𝑢 −𝑀(|∇V|

2
) ΔV, Δ

2
𝑤)

= �̃�𝑀

(𝜂
0
) |∇𝑢|

2
∫
Ω

Δ𝑤Δ
2
𝑤𝑑𝑥 + �̃�𝑀


(𝜂
1
)

× ∫
Ω

∇𝑤 (Δ𝑢 + ∇V) 𝑑𝑥∫
Ω

ΔVΔ
2
𝑤𝑑𝑥

≤ �̃�𝐶
2
(𝜇
2

0
|Δ𝑤|


Δ
2
𝑤

+
2𝜇
2

0

𝜎
|Δ𝑤|


Δ
2
𝑤

)

≤

[𝐶
2
�̃�𝜇
2

0
(1 + (2/𝜎))]

2

�̃�𝛼

|Δ𝑤|
2
+
�̃�𝛼

8


Δ
2
𝑤


2

;

(49)

̃̃
𝑘 (𝑀(|∇𝑢|

2
) Δ𝑢 −𝑀(|∇V|

2
) ΔV, 𝑤

𝑡
)

=
̃̃
𝑘𝑀

(𝜂
0
) |∇𝑢|

2
∫
Ω

Δ𝑤𝑤
𝑡
𝑑𝑥 +

̃̃
𝑘𝑀

(𝜂
1
)

× ∫
Ω

∇𝑤 (Δ𝑢 + ∇V) 𝑑𝑥∫
Ω

ΔV𝑤
𝑡
𝑑𝑥

≤
̃̃
𝑘𝐶
2
(𝜇
2

0
|Δ𝑤|

𝑤𝑡
 +
2𝜇
2

0

𝜎
|Δ𝑤|

𝑤𝑡
)

≤

[𝐶
2

̃̃
𝑘𝜇
2

0
(1 + (2/𝜎))]

2

2
|Δ𝑤|
2
+
𝑤𝑡


2

,

(50)

where 𝜂
0
is among 0 and |∇𝑢|2, 𝜂

1
is among |∇𝑢|2 and |∇V|2,

and

(𝑁(∫
Ω

∇𝑢∇𝑢
𝑡
𝑑𝑥)Δ𝑢 − 𝑁(∫

Ω

∇V∇V
𝑡
𝑑𝑥)ΔV, Δ

2
𝑤
𝑡
)

= 𝑁

(𝜉
0
) ∫
Ω

∇𝑢∇𝑢
𝑡
𝑑𝑥∫
Ω

Δ𝑤Δ
2
𝑤
𝑡
𝑑𝑥 + 𝑁


(𝜉
1
)

× (∫
Ω

∇V∇𝑤
𝑡
𝑑𝑥 + ∫

Ω

∇𝑤∇𝑢
𝑡
𝑑𝑥)

× ∫
Ω

ΔVΔ
2
𝑤
𝑡
𝑑𝑥

≤ 𝐶
3
[𝜇
2

0
|Δ𝑤|


Δ
2
𝑤
𝑡


+ (𝜇
0

𝑤𝑡
 + 𝜇0 |Δ𝑤|) 𝜇0


Δ
2
𝑤
𝑡


]

≤

(4𝐶
3
𝜇
2

0
)
2

𝛾
|Δ𝑤|
2
+
𝛾

8


Δ
2
𝑤
𝑡



2

+

(4𝐶
3
𝜇
2

0
)
2

𝛾

𝑤𝑡


2

,

(51)

�̃� (𝑁(∫
Ω

∇𝑢∇𝑢
𝑡
𝑑𝑥)Δ𝑢 − 𝑁(∫

Ω

∇V∇V
𝑡
𝑑𝑥)ΔV, Δ

2
𝑤)

= �̃�𝑁

(𝜉
0
) ∫
Ω

∇𝑢∇𝑢
𝑡
𝑑𝑥∫
Ω

Δ𝑤Δ
2
𝑤𝑑𝑥 + �̃�𝑁


(𝜉
1
)

× (∫
Ω

∇V∇𝑤
𝑡
𝑑𝑥 + ∫

Ω

∇𝑤∇𝑢
𝑡
𝑑𝑥)

× ∫
Ω

ΔVΔ
2
𝑤𝑑𝑥

≤ �̃�𝐶
3
[𝜇
2

0
|Δ𝑤|


Δ
2
𝑤

+ (𝜇
0

𝑤𝑡
 + 𝜇0 |Δ𝑤|) 𝜇0


Δ
2
𝑤

]

≤

(4𝐶
3
𝜇
2

0
)
2

�̃�

𝛼
|Δ𝑤|
2
+
�̃�𝛼

8


Δ
2
𝑤


2

+

(4𝐶
3
𝜇
2

0
)
2

�̃�

𝛼

𝑤𝑡


2

,

(52)

̃̃
𝑘 (𝑁(∫

Ω

∇𝑢∇𝑢
𝑡
𝑑𝑥)Δ𝑢 − 𝑁(∫

Ω

∇V∇V
𝑡
𝑑𝑥)ΔV, 𝑤

𝑡
)

=
̃̃
𝑘𝑁

(𝜉
0
) ∫
Ω

∇𝑢∇𝑢
𝑡
𝑑𝑥∫
Ω

Δ𝑤𝑤
𝑡
𝑑𝑥 +

̃̃
𝑘𝑁

(𝜉
1
)

× (∫
Ω

∇V∇𝑤
𝑡
𝑑𝑥 + ∫

Ω

∇𝑤∇𝑢
𝑡
𝑑𝑥)

× ∫
Ω

ΔV𝑤
𝑡
𝑑𝑥

≤
̃̃
𝑘𝐶
3
[𝜇
2

0
|Δ𝑤|

𝑤𝑡
 + (𝜇0

𝑤𝑡
 + 𝜇0 |Δ𝑤|) 𝜇0

𝑤𝑡
]

≤
̃̃
𝑘𝐶
3
𝜇
2

0
|Δ𝑤|
2
+
̃̃
𝑘𝐶
3
𝜇
2

0

𝑤𝑡


2

+
̃̃
𝑘𝐶
3
𝜇
2

0

𝑤𝑡


2

,

(53)

where 𝜉
0

is among 0 and ∫
Ω
∇𝑢∇𝑢

𝑡
𝑑𝑥, 𝜉

1
is among

∫
Ω
∇𝑢∇𝑢

𝑡
𝑑𝑥 and ∫

Ω
∇V∇V
𝑡
𝑑𝑥.

Also considering |𝑔(𝑢) − 𝑔(V)| ≤ 𝑘
6
(1 + |𝑢|

𝜌
+ |V|𝜌)|𝑢 −

V| for all 𝑢, V ∈ 𝑅, |𝑓(𝑢) − 𝑓(V)| ≤ 𝑘
5
(1 + |𝑢|

𝑟
+ |V|𝑟)|𝑢 − V|,

for all 𝑢, V ∈ 𝑅, and 𝜌/(2(𝜌 + 1)) + 1/(2(𝜌 + 1)) + (1/2) =
1, 𝑟/(2(𝑟+1))+1/(2(𝑟+1))+ (1/2) = 1, by Hölder inequality
we have

− (𝑔 (𝑢) − 𝑔 (V) + 𝑓 (𝑢
𝑡
) − 𝑓 (V

𝑡
) , Δ
2
𝑤
𝑡
)

≤ 𝑘
6
∫
Ω

(1 + |𝑢|
𝜌
+ |V|
𝜌
) |𝑤|

Δ
2
𝑤
𝑡


𝑑𝑥

+ 𝑘
5
∫
Ω

(1 +
𝑢𝑡


𝑟

+
V𝑡


𝑟

)
𝑤𝑡



Δ
2
𝑤
𝑡


𝑑𝑥

≤ 𝑘
6
[∫
Ω

(1 + |𝑢|
𝜌
+ |V|
𝜌
)
2(𝜌+1)/𝜌

𝑑𝑥]

𝜌/(2(𝜌+1))

× |𝑤|2(𝜌+1)


Δ
2
𝑤
𝑡



+ 𝑘
5
[∫
Ω

(1 +
𝑢𝑡


𝑟

+
V𝑡


𝑟

)
2(𝑟+1)/𝑟

𝑑𝑥]

𝑟/(2(𝑟+1))

×
𝑤𝑡
2(𝑟+1)


Δ
2
𝑤
𝑡



≤ 𝐶 (𝜇
0
) |∇𝑤|


Δ
2
𝑤
𝑡


+ 𝐶 (𝜇

0
)
∇𝑤𝑡



Δ
2
𝑤
𝑡


;

(54)

− (𝑔 (𝑢) − 𝑔 (V) + 𝑓 (𝑢
𝑡
) − 𝑓 (V

𝑡
) , �̃�Δ
2
𝑤)

≤ �̃�𝑘
6
∫
Ω

(1 + |𝑢|
𝜌
+ |V|
𝜌
) |𝑤|

Δ
2
𝑤

𝑑𝑥

+ �̃�𝑘
5
∫
Ω

(1 +
𝑢𝑡


𝑟

+
V𝑡


𝑟

)
𝑤𝑡



Δ
2
𝑤

𝑑𝑥

≤ �̃�𝑘
6
[∫
Ω

(1 + |𝑢|
𝜌
+ |V|
𝜌
)
2(𝜌+1)/𝜌

𝑑𝑥]

𝜌/(2(𝜌+1))

× |𝑤|2(𝜌+1)


Δ
2
𝑤


+ �̃�𝑘
5
[∫
Ω

(1 +
𝑢𝑡


𝑟

+
V𝑡


𝑟

)
2(𝑟+1)/𝑟

𝑑𝑥]

𝑟/(2(𝑟+1))

×
𝑤𝑡
2(𝑟+1)


Δ
2
𝑤


≤ �̃�𝐶 (𝜇
0
) |𝑤|2(𝜌+1)


Δ
2
𝑤

+ �̃�𝐶 (𝜇

0
)
𝑤𝑡
2(𝑟+1)


Δ
2
𝑤


≤ �̃�𝐶 (𝜇
0
) |∇𝑤|


Δ
2
𝑤

+ �̃�𝐶 (𝜇

0
)
∇𝑤𝑡



Δ
2
𝑤

;

(55)



Mathematical Problems in Engineering 7

− (𝑔 (𝑢) − 𝑔 (V) + 𝑓 (𝑢
𝑡
) − 𝑓 (V

𝑡
) ,
̃̃
𝑘𝑤
𝑡
)

≤
̃̃
𝑘𝑘
6
∫
Ω

(1 + |𝑢|
𝜌
+ |V|
𝜌
) |𝑤|
𝑤𝑡
 𝑑𝑥

+
̃̃
𝑘𝑘
5
∫
Ω

(1 +
𝑢𝑡


𝑟

+
V𝑡


𝑟

)
𝑤𝑡


𝑤𝑡
 𝑑𝑥

≤
̃̃
𝑘𝑘
6
[∫
Ω

(1 + |𝑢|
𝜌
+ |V|
𝜌
)
2(𝜌+1)/𝜌

𝑑𝑥]

𝜌/(2(𝜌+1))

× |𝑤|2(𝜌+1)
𝑤𝑡


+
̃̃
𝑘𝑘
5
[∫
Ω

(1 +
𝑢𝑡


𝑟

+
V𝑡


𝑟

)
2(𝑟+1)/𝑟

𝑑𝑥]

𝑟/(2(𝑟+1))

×
𝑤𝑡
2(𝑟+1)

𝑤𝑡


≤
̃̃
𝑘𝐶 (𝜇

0
) |𝑤|2(𝜌+1)

𝑤𝑡
 +
̃̃
𝑘𝐶 (𝜇

0
)
𝑤𝑡
2(𝑟+1)

𝑤𝑡


≤
̃̃
𝑘𝐶 (𝜇

0
) |∇𝑤|

𝑤𝑡
 +
̃̃
𝑘𝐶 (𝜇

0
)
∇𝑤𝑡


𝑤𝑡
 .

(56)

Setting

𝐸
2
(𝑡) =

Δ𝑤𝑡


2

+ 𝛼

Δ
2
𝑤


2

+ �̃�𝛾

Δ
2
𝑤


2

+ 2�̃� (Δ
2
𝑤,𝑤
𝑡
)

+
̃̃
𝑘
𝑤𝑡


2

+
̃̃
𝑘𝛼|Δ𝑤|

2
+
̃̃
𝑘𝛽|∇𝑤|

2
+ 𝛽|∇Δ𝑤|

2
,

𝑌
2
(𝑡) =

𝛾

2


Δ
2
𝑤
𝑡



2

+
�̃�𝛼

2


Δ
2
𝑤


2

+
�̃�

2

Δ𝑤𝑡


2

+

̃̃
𝑘𝛾

2

Δ𝑤𝑡


2

+ �̃�𝛽|∇Δ𝑤|
2
,

(57)

then substituting (48)–(56) into (47), by Schwarz inequality
and Young inequality, and taking �̃� > (4𝐶2(𝜇

0
))/𝛾𝜎
2 and ̃̃𝑘 ≥

(8�̃�𝐶
2
(𝜇
0
))/𝛼𝜎
2
𝛾, we have

1

2

𝑑

𝑑𝑡
𝐸
2
(𝑡) + 𝑌

2
(𝑡) ≤ 𝐶 (|Δ𝑤|

2
+
𝑤𝑡


2

) . (58)

Again setting 𝜉 = max{4/𝛼 + 4/�̃� + 4𝛾/𝛼, 2/�̃�, (4/𝜆2 +
4/𝛼𝜆
4
)(
̃̃
𝑘/�̃�), 2/𝛾𝜆

2
+ (2/𝛾𝜆

2
)(�̃�/
̃̃
𝑘)}, and considering that

−2�̃�(Δ
2
𝑤,𝑤
𝑡
) ≥ −�̃�|Δ

2
𝑤|
2
−�̃�|𝑤
𝑡
|
2, we have 𝜉𝑌

2
(𝑡)−𝐸

2
(𝑡) ≥ 0.

On the one hand, from (58) we have

1

2

𝑑𝐸
2
(𝑡)

𝑑𝑡
+
1

𝜉
𝐸
2
(𝑡) ≤ 𝐶 (|Δ𝑤|

2
+
𝑤𝑡


2

) . (59)

Applying the Gronwall inequality to (59), we get

𝐸
2
(𝑡) ≤ 𝐸

2
(0) 𝑒
−(2/𝜉)𝑡

+ 𝐶∫

𝑡

0

𝑒
−(2/𝜉)𝑡

(‖𝑤 (𝜏)‖
2
+
𝑤𝑡 (𝜏)



2

) 𝑑𝜏.

(60)

On the other hand, with (2�̃�𝑤
𝑡
, Δ
2
𝑤) ≥ −(�̃�𝛾/2)|Δ

2
𝑤|
2
−

(4�̃�/𝛾)|𝑤
𝑡
|
2 and setting ̃̃𝑘 > 4�̃�/𝛾, we get

𝐸
2
(𝑡) ≥

Δ𝑤𝑡


2

+ 𝛼

Δ
2
𝑤


2

. (61)

Hence
𝑤, 𝑤𝑡



2

𝐸
≤ 𝐶𝐸
2
(0) 𝑒
−2𝑡/𝜉

+ 𝐶∫

𝑡

0

𝑒
−(2/𝜉)𝑡

(|Δ𝑤 (𝜏)|
2
+
𝑤𝑡 (𝜏)



2

) 𝑑𝜏.

(62)

Now, let {(𝑢
0𝑚
, 𝑢
1𝑚
)} be a bound sequence in 𝐵

0
⊂ 𝐸, and

{𝑢
𝑚
(𝑡), 𝑢
𝑚𝑡
(𝑡)} the corresponding solutions of problems (1)–

(3) in 𝐶(𝑅+, 𝐸). We assume 𝑡
𝑛
> 𝑡
𝑚
. Let 𝑇 > 0 and 𝑡

𝑛
, 𝑡
𝑚
> 𝑇.

Then, applying estimate (62) to𝑤𝑚,𝑛 = 𝑢
𝑛
(𝑡 + 𝑡
𝑛
−𝑇)−𝑢

𝑚
(𝑡 +

𝑡
𝑚
− 𝑇), 𝑡 ≥ 0, we have

(𝑤
𝑚,𝑛
, 𝑤
𝑚,𝑛

𝑡
)
2

𝐸

≤ 𝐶𝐶 (𝜇
0
) 𝑒
−(2/𝜉)𝑡

+ 𝐶

× sup
0≤𝑠≤𝑡

(𝑢𝑛 (𝑡𝑛 − 𝑇 + 𝑠) − 𝑢𝑚 (𝑡𝑚 − 𝑇 + 𝑠)) ,

(𝑢
𝑛𝑡
(𝑡
𝑛
− 𝑇 + 𝑠) − 𝑢

𝑚𝑡
(𝑡
𝑚
− 𝑇 + 𝑠))



2

𝐸0
.

(63)

By taking 𝑡 = 𝑇 in the above, we have

(𝑢𝑛 (𝑡𝑛) − 𝑢𝑚 (𝑡𝑚) , 𝑢𝑛𝑡 (𝑡𝑛) − 𝑢𝑚𝑡 (𝑡𝑚))


2

𝐸

≤ 𝐶𝐶 (𝜇
0
) 𝑒
−(2/𝜉)𝑇

+ 𝐶 (𝜇
0
)

× sup
0≤𝑠≤𝑇

(𝑢𝑛 (𝑡𝑛 + 𝑠) − 𝑢𝑚 (𝑡𝑚 + 𝑠)) ,

(𝑢
𝑛𝑡
(𝑡
𝑛
+ 𝑠) − 𝑢

𝑚𝑡
(𝑡
𝑚
+ 𝑠))


2

𝐸0
.

(64)

By Sobolev embedding Theorem, for any 𝑇 > 0, we
can extract a subsequence {(𝑢

𝑛
 , 𝑢
𝑛

𝑡
}which is convergent in

𝐶([0, 𝑇]; 𝐸
0
) for any 𝑇 > 0. For any 𝜀 > 0, we first fix 𝑇 > 0

such that

𝐶𝐶 (𝜇
0
) 𝑒
−(2/𝜉)𝑇

<
𝜀

2
, (65)

And, next, taking large𝑚, 𝑛, we have

𝐶 (𝜇
0
) sup
0≤𝑠≤𝑇

(𝑢𝑛 (𝑡𝑛 + 𝑠) − 𝑢𝑚 (𝑡𝑚 + 𝑠) ,

𝑢
𝑛𝑡
(𝑡
𝑛
+ 𝑠) − 𝑢

𝑚𝑡
(𝑡
𝑚
+ 𝑠))



2

𝐸0
≤
𝜀

2
.

(66)

Then by (62) we have that

(𝑢𝑛 (𝑡𝑛) − 𝑢𝑚 (𝑡𝑚) , 𝑢𝑛𝑡 (𝑡𝑛) − 𝑢𝑚𝑡 (𝑡𝑚))


2

𝐸
≤ 𝜀. (67)

We conclude that 𝑆(𝑡) is asymptotically compact on 𝐸. The
theorem is now proved.
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