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We regularized the field equations of 𝑓(𝑇) gravity theories such that the effect of local Lorentz transformation (LLT), in the case
of spherical symmetry, is removed. A “general tetrad field,” with an arbitrary function of radial coordinate preserving spherical
symmetry, is provided. We split that tetrad field into two matrices; the first represents a LLT, which contains an arbitrary function,
and the second matrix represents a proper tetrad field which is a solution to the field equations of 𝑓(𝑇) gravitational theory (which
are not invariant under LLT).This “general tetrad field” is then applied to the regularized field equations of 𝑓(𝑇). We show that the
effect of the arbitrary function which is involved in the LLT invariably disappears.

1. Introduction

Amended gravitational theories have become very interesting
due to their ability to provide an alternative framework for
understanding the nature of dark energy.This is done through
the modifications of the gravitational Lagrangian so as it
renders an arbitrary function of its original argument, for
instance,𝑓(𝑅) instead of Ricci scalar𝑅 in the Einstein-Hilbert
action [1–4].

Indeed there exists an equivalent construction of general
relativity (GR) dependent on the concept of parallelism. The
idea is initially done by Einstein who had tried to make
a unification between electromagnetism and gravity fields
using absolute parallelism spacetime [5, 6]. This goal was
frustrated by the lack of a Schwarzschild solution.Much later,
the theory of absolute parallelism gained much attention as
a modification theory of gravity, referred to as “teleparallel
equivalent of general relativity” (TEGR) (cf. [7–11]).The basic
block in TEGR is the tetrad field. The tetrad field consists
of fields of orthonormal bases which belong to the tangent
space of themanifold. Note that the contravariant tetrad field,
ℎ
𝑖

𝜇, has sixteen components while the metric tensor has only

ten. However, the tetrads are invariant under local Lorentz
rotations.

The aim of the modification is to treat a more general
manifold which comprises in addition to curvature a quantity
called “torsion.” The curvature tensor, consisting of a part
without torsion plus a part with torsion, is vanishing iden-
tically. One can generally use either the torsion-free part or
the torsion part to represent the gravitational field. The most
suitable way is to deal with the covariant tetrad field, ℎ𝑖

𝜇
,

and the so-calledWeitzenböck spacetime [12].The tetrad field
describes fields of orthonormal bases, which are related to
the tangent spacetime of the manifold with spacetime coor-
dinates 𝑥𝜇. This tangent spacetime is Minkowski spacetime
with the metric 𝜂

𝑖𝑗
that can be defined at any given point on

the manifold.
Recently, modifications of TEGR have been studied in the

domain of cosmology [13–15]. This is known as 𝑓(𝑇) gravity
and is built from a generalized Lagrangian [13–15]. In such a
theory, the gravitational field is not characterized by curved
spacetime but with torsion. Moreover, the field equations are
only second order unlike the fourth order equations of the
𝑓(𝑅) theory.
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Many of 𝑓(𝑇) gravity theories had been analyzed in [16–
28]. It is found that 𝑓(𝑇) gravity theory is not dynamically
equivalent to TEGR Lagrangian through conformal trans-
formation [29]. Many observational constraints had been
studied [30–33]. Large-scale structure in 𝑓(𝑇) gravity theory
had been analyzed [34, 35]; perturbations in the area of
cosmology in 𝑓(𝑇) gravity had been demonstrated [36–40];
Birkhoff ’s theorem in 𝑓(𝑇) gravity had been studied [41].
Stationary solutions having spherical symmetry have been
derived for 𝑓(𝑇) theories [42–45]. Relativistic stars and the
cosmic expansion derived in [46, 47].

Nevertheless, a major problem of 𝑓(𝑇) gravitational the-
ories is that they are not locally Lorentz invariant and appear
to harbour extra degrees of freedom.

The goal of this study is to regularize the field equations
of 𝑓(𝑇) gravitational theory so that we remove the effect of
LLT. We then apply a “general tetrad” field, which consists of
two matrices: the first is a solution to the noninvariant field
equation of 𝑓(𝑇) and the second matrix is a local Lorentz
transformation, to the amended field equations, and shows
that the effect of LLT disappears.

In Section 2, a brief survey of the 𝑓(𝑇) gravitational the-
ory is presented.

In Section 3, a “general tetrad” field, having spherical
symmetry with an arbitrary function of the radial coordinate
𝑟, is applied to the field equations of 𝑓(𝑇) which are not
invariant under LLT. It is shown that the arbitrary function
has an effect in this application.

In Section 4, we derive the field equations of 𝑓(𝑇) which
are invariant under LLT. We then apply these amended field
equations to a “general tetrad” field. We show that the effect
of the arbitrary function invariably disappears.

Section 5 is devoted to discussion.

2. Brief Review of 𝑓(𝑇)

In the Weitzenböck spacetime, the fundamental field vari-
ables describing gravity are a quadruplet of parallel vector
fields [12] ℎ

𝑖

𝜇, which we call the tetrad field. This is charac-
terized by

𝐷]ℎ𝑖
𝜇 = 𝜕]ℎ𝑖

𝜇 + Γ𝜇
𝜆]ℎ𝑖
𝜆 = 0, (1)

where Γ𝜇
𝜆] defines the nonsymmetric affine connection:

Γ𝜆
𝜇]

def
= ℎ
𝑖

𝜆ℎ𝑖
𝜇,], (2)

with ℎ
𝑖𝜇,] = 𝜕]ℎ𝑖𝜇. (Spacetime indices 𝜇, ], . . . and SO(3, 1)

indices 𝑎, 𝑏, . . . run from 0 to 3. Time and space indices are
indicated by 𝜇 = 0, 𝑖, and 𝑎 = (0), (𝑖).)

Equation (1) leads to themetricity condition and the iden-
tical vanishment of the curvature tensor defined by Γ𝜆

𝜇],
given by (2). The metric tensor 𝑔

𝜇] is defined by

𝑔
𝜇]

def
= 𝜂
𝑖𝑗
ℎ𝑖
𝜇
ℎ𝑗], (3)

with 𝜂
𝑖𝑗

= (−1, +1, +1, +1) that is metric of Minkowski spac-
etime.We note that, associated with any tetrad field ℎ

𝑖

𝜇, there

is a metric field defined uniquely by (3), while a given metric
𝑔𝜇] does not determine the tetrad field completely, and any
LLT of the tetrad ℎ

𝑖

𝜇 leads to a new set of tetrad which also
satisfies (3).

The torsion components and the contortion are defined
as

𝑇𝛼
𝜇]

def
= Γ𝛼]𝜇 − Γ𝛼

𝜇] = ℎ
𝑎

𝛼 (𝜕
𝜇
ℎ𝑎] − 𝜕]ℎ

𝑎

𝜇
) ,

𝐾𝜇]
𝛼

def
= −

1

2
(𝑇𝜇]
𝛼
− 𝑇]𝜇
𝛼
− 𝑇
𝛼

𝜇]) ,

(4)

where the contortion equals the difference between Weitz-
enböck and Levi-Civita connection; that is, 𝐾𝜇]𝜌 = Γ𝜇]𝜌 −

{ 𝜇]𝜌}.
One can define the skew-symmetric tensor 𝑆

𝛼

𝜇] as

𝑆
𝛼

𝜇] def
=

1

2
(𝐾𝜇]
𝛼
+ 𝛿𝜇
𝛼
𝑇𝛽]
𝛽
− 𝛿]
𝛼
𝑇𝛽𝜇
𝛽
) , (5)

which is skew symmetric in the last two indices. The torsion
scalar is defined as

𝑇
def
= 𝑇𝛼
𝜇]𝑆𝛼
𝜇]. (6)

Similar to the 𝑓(𝑅) theory, one can define the action of 𝑓(𝑇)
theory as

L (ℎ𝑎
𝜇
) = ∫𝑑4𝑥ℎ [

1

16𝜋
𝑓 (𝑇)] ,

where ℎ = √−𝑔 = det (ℎ𝑖
𝜇
)

(7)

(assuming units in which 𝐺 = 𝑐 = 1). Considering the action
in (7) as a function of the fields ℎ𝑖

𝜇
and putting the variation

of the function with respect to the field ℎ𝑖
𝜇
to be vanishing,

one can obtain the following equations of motion [16, 48]:

𝑆
𝜇

𝜌]𝑇
,𝜌
𝑓 (𝑇)𝑇𝑇 + [ℎ−1ℎ𝑖

𝜇
𝜕
𝜌
(ℎℎ
𝑖

𝛼𝑆
𝛼

𝜌]) − 𝑇𝛼
𝜆𝜇

𝑆
𝛼

]𝜆] 𝑓 (𝑇)𝑇

−
1

4
𝛿]
𝜇
𝑓 (𝑇) = −4𝜋T]

𝜇
,

(8)

where 𝑇
,𝜌

= 𝜕𝑇/𝜕𝑥𝜌, 𝑓(𝑇)
𝑇

= 𝜕𝑓(𝑇)/𝜕𝑇, 𝑓(𝑇)
𝑇𝑇

= 𝜕2𝑓(𝑇)/

𝜕𝑇2, andT]
𝜇
is the energy momentum tensor.

In this study we are interested in studying the vacuum
case of 𝑓(𝑇) gravity theory; that is,T]

𝜇
= 0.

3. Spherically Symmetric Solution in 𝑓(𝑇)
Gravity Theory

Assume that the manifold is a stationary and spherically
symmetric (ℎ𝑖

𝜇
) having the form:
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(ℎ𝑖
𝜇
) = (

𝐿𝐴 + 𝐻𝐴
2

𝐿𝐴
1
+ 𝐻𝐴

3
0 0

− (𝐿𝐴
2
+ 𝐻𝐴) sin 𝜃 cos𝜙 − (𝐿𝐴

3
+ 𝐻𝐴

1
) sin 𝜃 cos𝜙 −𝑟 cos 𝜃 cos𝜙 𝑟 sin 𝜃 sin𝜙

− (𝐿𝐴
2
+ 𝐻𝐴) sin 𝜃 sin𝜙 − (𝐿𝐴

3
+ 𝐻𝐴

1
) sin 𝜃 sin𝜙 −𝑟 cos 𝜃 sin𝜙 −𝑟 sin 𝜃 cos𝜙

− (𝐿𝐴
2
+ 𝐻𝐴) cos 𝜃 − (𝐿𝐴

3
+ 𝐻𝐴

1
) cos 𝜃 𝑟 sin 𝜃 0

) , (9)

where 𝐴(𝑟), 𝐴
1
(𝑟), 𝐴

2
(𝑟), and 𝐴

3
(𝑟) are four unknown

functions of the radial coordinate 𝑟, 𝐿 = 𝐿(𝑟) = √𝐻(𝑟)2 + 1,
and 𝐻 = 𝐻(𝑟) is an arbitrary function. Tetrad fields (9)
transform as

(ℎ𝑖
𝜇
) = (Λ𝑖

𝑗
) (ℎ𝑗
𝜇
)
1
, (10)

where (ℎ𝑗
𝜇
)
1
is given by

(ℎ𝑗
𝜇
)
1
= (

𝐴 (𝑟) 𝐴
1 (𝑟) 0 0

𝐴
2 (𝑟) sin 𝜃 cos𝜙 𝐴

3 (𝑟) sin 𝜃 cos𝜙 𝑟 cos 𝜃 cos𝜙 −𝑟 sin 𝜃 sin𝜙
𝐴
2 (𝑟) sin 𝜃 sin𝜙 𝐴

3 (𝑟) sin 𝜃 sin𝜙 𝑟 cos 𝜃 sin𝜙 𝑟 sin 𝜃 cos𝜙
𝐴
2 (𝑟) cos 𝜃 𝐴

3 (𝑟) cos 𝜃 −𝑟 sin 𝜃 0

) . (11)

The tetrad field (11) has been studied [43] and it has been
shown that the solution to the 𝑓(𝑇) gravitational theory has
the form:

𝐴 = 1 −
𝑀

𝑟
,

𝐴
1
=

𝑀

𝑟 (1 − 𝑀/𝑟)
,

𝐴
2
=

𝑀

𝑟
,

𝐴
3
=

1 − 𝑀/𝑟

1 − 2𝑀/𝑟
,

(12)

where 𝑀 is the gravitational mass. Equation (12) is an exact
vacuum solution to field equations of 𝑓(𝑇) gravitational
theory provided that

𝑓 (0) = 0,

𝑓
𝑇 (0) ̸= 0,

𝑓
𝑇𝑇

̸= 0.

(13)

The LLT (Λ𝑖
𝑗
) has the form:

(Λ𝑖
𝑗
) = (

𝐿 𝐻 sin 𝜃 cos𝜙 𝐻 sin 𝜃 sin𝜙 𝐻 cos 𝜃
−𝐻 sin 𝜃 cos𝜙 1 + 𝐻

1
sin 𝜃2 cos𝜙2 𝐻

1
sin 𝜃2 sin𝜙 cos𝜙 𝐻

1
sin 𝜃 cos 𝜃 cos𝜙

−𝐻 sin 𝜃 sin𝜙 𝐻
1
sin 𝜃2 sin𝜙 cos𝜙 1 + 𝐻

1
sin 𝜃2 sin𝜙2 𝐻

1
sin 𝜃 cos 𝜃 sin𝜙

−𝐻 cos 𝜃 𝐻
1
sin 𝜃 cos 𝜃 cos𝜙 𝐻

1
sin 𝜃 cos 𝜃 sin𝜙 1 + 𝐻

1
cos 𝜃2

),

where 𝐻
1
= (𝐿 − 1) .

(14)

From the general spherically symmetric local Lorentz trans-
formation (14), one can generate the previous spherically
symmetric solution [36].

Using (12) in (9), one can obtain ℎ = det(ℎ𝜇
𝑎
) = 𝑟2 sin 𝜃

and, with the use of (4) and (5), we obtain the torsion scalar
and its derivatives in terms of 𝑟:

𝑇 (𝑟) =
4 ([1 − 𝑀𝐻] 𝐿 + 𝐻𝐻 [𝑀 − 𝑟] − 𝐿2)

𝑟2𝐿
,

where 𝐻 =
𝜕𝐻 (𝑟)

𝜕𝑟
,

𝑇 (𝑟) =
𝜕𝑇 (𝑟)

𝜕𝑟

= − (4 {𝑟𝐿2𝐻 [(𝑟 − 𝑀)𝐻 + 𝑀𝐿] − 𝑟 (𝑀 − 𝑟)𝐻
2

− 2𝑀𝐻𝐿2 [𝐿 − 𝐻] + 2𝐿3 (1 − 𝐿)})

⋅ (𝑟3𝐿3)
−1

.

(15)
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The field equations (7) have the form

4𝜋T0
0
= −

𝑓
𝑇𝑇

𝑇 [𝑀 (2 + 𝐻) + 𝐿 (𝑟 − 𝑀) − 𝑟]

𝑟2

+
𝑓
𝑇

𝑟2𝐿
[𝐿 (1 − 𝑀𝐻) + 𝐻𝐻 (𝑀 − 𝑟) − 𝐿2] +

𝑓

4
,

4𝜋T0
1
=

4𝑓
𝑇𝑇

𝑇 [(𝑀 − 𝑟)𝐻 − 𝑀𝐿]

𝑟 (𝑟 − 2𝑀)
,

4𝜋T1
1
=

𝑓
𝑇
{(1 − 𝑀𝐻) 𝐿 + 𝐻𝐻 (𝑀 − 𝑟) − 𝐿2}

𝑟2𝐿
+

𝑓

4
,

4𝜋T2
2
= 4𝜋T3

3

= −
𝑓
𝑇𝑇

𝑇 {𝑀 (1 + 𝐻) − 𝑟 + 𝐿 (𝑟 − 𝑀)}

2𝑟2

+
𝑓
𝑇
{(1 − 𝑀𝐻) 𝐿 + (𝑀 − 𝑟)𝐻𝐻 − 𝐿2}

𝑟2𝐿
+

𝑓

4
.

(16)

Equations (15)-(16) show that the field equations of 𝑓(𝑇) are
effected by the inertia which is located in the LLT given by
(14). This effect is related to the noninvariance of the field
equations of 𝑓(𝑇) gravitational theory under LLT.

4. Regularization of 𝑓(𝑇) Gravitational
Theory under LLT

The tetrad field (ℎ𝑖
𝜇
) transforms under LLT as:

(ℎ
𝑖

𝜇
) = (Λ𝑖

𝑗 (𝑥)) (ℎ
𝑗

𝜇
) . (17)

The derivatives of (ℎ
𝑖

𝜇
) have the form:

𝜕 (ℎ
𝑖

𝜇
)

𝜕𝑥] = (ℎ
𝑖

𝜇,])

= (Λ𝑖
𝑗 (𝑥))
,]
(ℎ𝑗
𝜇
) + (Λ𝑖

𝑗 (𝑥)) (ℎ
𝑗

𝜇,]) .

(18)

The nonsymmetric affine connection constructed from the
tetrad field (ℎ

𝑖

𝜇
) has the form

Γ
𝜇

]𝜌 = 𝜂𝑖𝑗 (ℎ
𝑖

𝜇

) (ℎ
𝑗],𝜌) . (19)

Using (17) and (18) in (19) one gets

Γ
𝜇

]𝜌 = Γ𝜇]𝜌 + (Λ
𝑗

𝑖
(𝑥)) (ℎ𝑖

𝜇) (Λ𝑗
𝑘 (𝑥))

,𝜌
(ℎ𝑘]) , (20)

where Γ𝜇]𝜌 is the nonsymmetric affine connection con-
structed from the tetrad field (ℎ

𝑖

𝜇) which is assumed to
satisfy the field equation of𝑓(𝑇).Therefore, for Γ𝜇]𝜌 (which is

effected by LLT) to be identical with Γ𝜇]𝜌 (which is assumed
to satisfies the field equation of 𝑓(𝑇)) we must have

(Γ
𝜇

]𝜌)Regularized

= 𝜂𝑖𝑗 (ℎ
𝑖

𝜇

) (ℎ
𝑗],𝜌)

− (Λ
𝑗

𝑖
(𝑥)) (ℎ𝑖

𝜇) (Λ𝑗
𝑘 (𝑥))

,𝜌
(ℎ𝑘]) .

(21)

Equation (21) means that the affine connection is invariant
under LLT in the linear case; that is, 𝑓(𝑇) = 𝑇, which means
that the extra degrees of freedom, six ones, are controlled.
Also (21) breaks the restriction of teleparallelism. From (21)
we have

(Γ
𝜇

]𝜌)Regularized
≡ Γ𝜇]𝜌. (22)

Therefore, if Γ𝜇]𝜌 satisfies the field equations of 𝑓(𝑇) then
(Γ
𝜇

]𝜌)Regularized need not to be a solution to the field equations
of 𝑓(𝑇) given by (8). The main reason for this is the second
term in (8), that is, ℎ−1ℎ𝑖

𝜇
𝜕
𝜌
(ℎℎ
𝑖

𝛼𝑆
𝛼

𝜌]). This term depends
on the choice of the tetrad field. Using (21), the torsion, the
contortion, and 𝑆

𝜇]
𝛼
tensors have the form

(𝑇
𝜇

]𝜌)Regularized

= 𝑇
𝜇

]𝜌 + (ℎ
𝑖

𝜇) (Λ𝑖
𝑗 (𝑥))

⋅ {(Λ𝑗
𝑘 (𝑥))

,]
(ℎ𝑘
𝜌
) − (Λ𝑗

𝑘 (𝑥))
,𝜌
(ℎ𝑘])} ,

(𝐾
𝛼

𝜇]
)
Regularized

= −
1

2
[(𝑇
𝛼

𝜇]
)
Regularized

− (𝑇
𝛼

]𝜇
)
Regularized

− (𝑇
𝛼

𝜇]
)
Regularized

] ,

(𝑆
𝛼

𝜇]
)
Regularized

=
1

2
[(𝐾
𝛼

𝜇]
)
Regularized

+ 𝛿𝜇
𝛼
(𝑇
𝛽

𝛽]
)
Regularized

− 𝛿]
𝛼
(𝑇
𝛽

𝛽𝜇

)
Regularized

] .

(23)

Equation (23) shows that the torsion tensor (and all tensors
constructed from it) is invariant under LLT. Using (23) in the
field equations of 𝑓(𝑇), one can easily see that the first, third,
and fourth terms of the field equations (8) will be invariant
under LLT, but the second term, 𝜕

𝜌
(ℎℎ
𝑎

𝛼

𝑆
𝛼

𝜌]
), which depends

on the derivative, must take the following form:

(𝜕
𝜌
[ℎℎ
𝑎

𝛼

𝑆
𝛼

𝜌]
])

Regularized

= 𝜕
𝜌
(ℎℎ
𝑎

𝛼

𝑆
𝛼

𝜌]
) − ℎ (Λ

𝑎

𝑏
(𝑥))
,𝜌
(ℎ
𝑏

𝛼

) 𝑆
𝛼

𝜌]
.

(24)
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Using (23) and (24) the invariance field equations of 𝑓(𝑇)
gravitational theory under LLT take the form:

(𝑆
𝜇

𝜌]
)
Regularized

(𝑇
,𝜌
)
Regularized

𝑓 (𝑇)
𝑇𝑇

+ [ℎ−1ℎ
𝑎

𝜇
(𝜕
𝜌
[ℎℎ
𝑎

𝛼

𝑆
𝛼

𝜌]
])

Regularized

− (𝑇
𝛼

𝜆𝜇
)
Regularized

(𝑆
𝛼

]𝜆
)
Regularized

]𝑓 (𝑇)
𝑇

+
1

4
𝛿]
𝜇
𝑓 (𝑇) = 4𝜋T]

𝜇
,

(25)

where (𝑇)Regularized = (𝑇
𝛼

𝜇]𝑆𝛼
𝜇]
)Regularized.

Let us check if (25) when applied to the tetrad field (9)
will indeed remove the effect of the inertia which appears in
the LLT (14). Calculating the necessary components of the
modified field equations (25) we get a vanishing quantity of
the left hand side. This means that the tetrad field (9) is a
solution to the 𝑓(𝑇) field equations (25) which is invariant
under LLT. (The details of calculations of the nonvanishing
components of the necessary quantities of the modified field
equations (25) are given in the Appendix.)

5. Discussion and Conclusion

In this paper we have addressed the problem of the invariance
of the field equations of 𝑓(𝑇) gravitational theory under LLT.
We first used a “general tetrad field” which contained five
unknown functions in 𝑟. This tetrad field has been studied
[45] and a special solution has been obtained.This solution is
characterized by the fact that its scalar torsion vanishes.

We rewrite this tetrad field, “general tetrad field,” into two
matrices. The first matrix represents a tetrad field containing
four unknown functions in 𝑟. This tetrad field has been
studied before in [43] and it has been shown that it represents
an exact solution within the framework of 𝑓(𝑇) gravitational
theories. The second matrix represents a LLT that satisfies

(Λ
𝑖

𝑗) 𝜂
𝑗𝑘

(Λ𝑘
𝑚
) = 𝜂
𝑖𝑚

(26)

and contains an arbitrary𝐻(𝑟).
We have applied the field equations of 𝑓(𝑇) which are

not invariant under LLT to the general tetrad field. We
have obtained a set of nonlinear differential equations which
depend on the 𝐻(𝑟). Therefore, we have regularized the
field equations of 𝑓(𝑇) gravitational theory such that it has
become invariant under LLT. Then, we have applied these
invariant field equations to the generalized tetrad field. We
have shown that this general tetrad field is an exact solution
to the regularized field equations of𝑓(𝑇) gravitational theory.

Theproblemof the noninvariance of the field equations of
𝑓(𝑇) under LLT is not a trivial task to tackle.Themain reason
for this is the following: we have the following known relation
between the Ricci scalar tensor and the scalar torsion [35]:

𝑅 = −𝑇 − 2∇𝜇𝑇𝜌
𝜇𝜌

= 𝑇 −
2

ℎ
𝜕𝜇 (ℎ𝑇𝜌

𝜇𝜌
) . (27)

Last term in the right hand side of (27) is a total divergence
term which has no effect on the field equations of TEGR;

that is, L(ℎ𝑎
𝜇
) = ∫ 𝑑4𝑥ℎ[(1/16𝜋)𝑇]; from this fact comes

the well-known name of teleparallel equivalent of general
relativity. However, this term, divergence term, is the main
reason that makes the field equations of 𝑓(𝑇) noninvariance
under LLT. Let us explain this for some specific form of 𝑓(𝑇).
If

𝑓 (𝑅) = 𝑅 + 𝑅2

≡ [−𝑇 − 2∇𝜇𝑇𝜌
𝜇𝜌

] + [−𝑇 − 2∇𝜇𝑇𝜌
𝜇𝜌

]
2

= −𝑇 − 2∇𝜇𝑇𝜌
𝜇𝜌

+ 𝑇2 + 4 [∇𝜇𝑇𝜌
𝜇𝜌

]
2

+ 4𝑇∇𝜇𝑇𝜌
𝜇𝜌

,

(28)

last term in the right hand side of (28) is not a total derivative
term. This term is responsible to make the quadratic form of
𝑓(𝑇)not invariant under LLT. Same discussion can be applied
to the general formof𝑓(𝑅) and𝑓(𝑇)which shows in general a
difference between the 𝑓(𝑅) and 𝑓(𝑇) gravitational theories
that makes the field equation of 𝑓(𝑅) to be of fourth order
and invariant under LLT while 𝑓(𝑇) is of second order and
not invariant under LLT. Here in this study we tackle the
problem of the invariance of the field equations of𝑓(𝑇) under
LLT for specific symmetry, spherical symmetry. Although
the method achieved in this study can be done for any
symmetry, however, we do not have the general local Lorentz
transformation that has axial symmetry or homogenous and
isotropic. This will be study elsewhere.

Appendix

Calculations of the Nonvanishing Components
of the Necessary Quantities of the Modified
Field Equations (25)

The nonvanishing components of (Λ
𝑎

𝑏(𝑥))
,𝜌
are as follows:

(Λ0
0,𝑟

) =
𝐻(Λ0

1,𝑟
)

𝐿 sin 𝜃 cos𝜙
=

𝐻 (Λ0
1,𝜃

)

𝐿 cos 𝜃 cos𝜙

= −
𝐻 (Λ0

1,𝜙
)

𝐿 sin 𝜃 sin𝜙
=

𝐻(Λ0
2,𝑟

)

𝐿 sin 𝜃 sin𝜙

= −
𝐻 (Λ0

2,𝜃
)

𝐿 cos 𝜃 sin𝜙
=

𝐻 (Λ0
2,𝜙

)

𝐿 sin 𝜃 cos𝜙

=
𝐻(Λ0

3,𝑟
)

𝐿 cos 𝜃
= −

𝐻 (Λ0
3,𝜃

)

𝐿 sin 𝜃

= −
𝐻(Λ1

0,𝑟
)

𝐿 sin 𝜃 cos𝜙
= −

𝐻 (Λ1
0,𝜃

)

𝐿 cos 𝜃 cos𝜙

=
𝐻 (Λ1

0,𝜙
)

𝐿 sin 𝜃 sin𝜙
= −

(Λ1
1,𝑟

)

sin2𝜃cos2𝜙
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= −
(Λ1
2,𝑟

)

sin2𝜃 cos𝜙 sin𝜙
= −

𝐻(Λ2
0,𝑟

)

𝐿 sin 𝜃 sin𝜙

= −
𝐻 (Λ2

0,2
)

𝐿 cos 𝜃 sin𝜙
= −

𝐻 (Λ2
0,𝜙

)

𝐿 sin 𝜃 cos𝜙

= −
(Λ2
3,𝑟

)

sin 𝜃 cos 𝜃 sin𝜙
= −

(Λ2
1,𝑟

)

sin2𝜃 cos𝜙 sin𝜙

= −
(Λ3
1,𝑟

)

sin 𝜃 cos 𝜃 cos𝜙
= −

(Λ1
3,𝑟

)

sin 𝜃 cos 𝜃 cos𝜙

= −
(Λ3
2,𝑟

)

sin 𝜃 cos 𝜃 sin𝜙
= −

(Λ3
3,𝑟

)

cos2𝜃

= −
𝐻(Λ3

0,𝑟
)

𝐿 cos 𝜃
= −

𝐻 (Λ3
0,𝜃

)

𝐿 sin 𝜃
=

𝐻𝐻

𝐿
,

(Λ1
1,𝜃

) = −cot𝜃cot𝜙 (Λ1
1,𝜙

) = −cot𝜃cot𝜙 (Λ2
2,𝜙

)

= cot𝜙 (Λ1
2,𝜃

) = cot𝜙 (Λ2
1,𝜃

)

= 2sec2𝜙cos2𝜙cot𝜃 (Λ1
2,𝜙

)

= 2sec2𝜙cos2𝜙cot𝜃 (Λ2
1,𝜙

)

= tan 2𝜃 cos𝜙 (Λ1
3,𝜃

)

= −2cos2𝜙csc𝜙 (Λ1
3,𝜙

)

= 2cot2𝜙cot𝜃 (Λ2
2,𝑟

)

= cot2𝜙 (Λ2
2,𝜃

) = tan 2𝜃cos2𝜙csc𝜙 (Λ2
3,𝜃

)

= 2 cos𝜙 (Λ2
3,𝜙

) = tan 2𝜃 cos𝜙 (Λ3
1,𝜃

)

= −2cos2𝜙csc𝜙 (Λ3
1,𝜙

)

= 2 tan 2𝜃cos2𝜙csc𝜙 (Λ3
2,𝜃

)

= 2 cos𝜙 (Λ3
2,𝜙

) = −cos2𝜙 (Λ3
3,𝜃

)

= − sin 2𝜃cos2𝜙 (𝐿 − 1) .

(A.1)

The nonvanishing components of the nonsymmetric affine
connection (Γ

𝜇

]𝜌)Regularized are as follows:

(Γ
0

01
)
Regularized

= −
(𝑟 − 2𝑀)

𝑟
Γ
0

11
=

1

𝑟2
(Γ
0

22
)
Regularized

=
1

𝑟2sin2𝜃
(Γ
0

33
)
Regularized

=
𝑀

𝑟 (𝑟 − 2𝑀)
.

(Γ
1

01
)
Regularized

= − (Γ
2

02
)
Regularized

= − (Γ
3

03
)
Regularized

= − (Γ
3

03
)
Regularized

=

(𝑟 − 2𝑀) (Γ
1

11
)
Regularized

𝑟

=

(Γ
1

22
)
Regularized

𝑟2 (𝑟 − 𝑀)

=

𝑀(Γ
1

33
)
Regularized

𝑟2sin2𝜃 (𝑟 − 𝑀)
= −

𝑀

𝑟2
,

(Γ
2

12
)
Regularized

= (Γ
3

13
)
Regularized

=
𝑟 − 𝑀

𝑟 (𝑟 − 2𝑀)
,

(Γ
2

21
)
Regularized

= (Γ
3

31
)
Regularized

=
1

𝑟
,

(Γ
2

33
)
Regularized

= − sin 𝜃 cos 𝜃,

(Γ
3

23
)
Regularized

= (Γ
3

32
)
Regularized

= cot𝜃.

(A.2)

The nonvanishing components of the torsion (𝑇
𝜇

]𝜌)Regularized
are as follows:

(𝑇
1

10
)
Regularized

= − (𝑇
1

01
)
Regularized

= − (𝑇
2

20
)
Regularized

= (𝑇
2

02
)
Regularized

= − (𝑇
3
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)
Regularized

= (𝑇
3

03
)
Regularized
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𝑀

𝑟2
,

(𝑇
0

01
)
Regularized
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0

10
)
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(𝑇
2
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)
Regularized
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2
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)
Regularized

= (𝑇
3

13
)
Regularized

= − (𝑇
3

31
)
Regularized

= −
𝑀

𝑟 (𝑟 − 2𝑀)
.

(A.3)

The nonvanishing components of 𝑆
𝛼

𝜌] are as follows:

(𝑆
0

01

)
Regularized

= − (𝑆
0

10

)
Regularized

= −
𝑀

𝑟2
,

(𝑆
1

10

)
Regularized

= − (𝑆
1

10

)
Regularized

= −
𝑀

𝑟 (𝑟 − 2𝑀)
.

(A.4)
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The nonvanishing components of 𝜕
𝜆
[ℎℎ
𝑎

𝛼

𝑆
𝛼

𝜌]
] = 𝑁

𝑎

𝜌]
,𝜆
are

as follows:

𝑁
0

01

,𝜃
= −𝑁
0

10

,𝜃
= 𝑀(𝐿 − 𝐻) cos 𝜃,

𝑁
1

10

,𝜃
= −𝑁
1

01

,𝜃
= cot𝜙𝑁

2

10

,𝜃
= −cot𝜙𝑁

2

01

,𝜃

= 𝑀(𝐿 + 1 − 𝐻) sin 𝜃 cos 𝜃 cos𝜙,

𝑁
3

10

,𝜃
= −𝑁
3

01

,𝜃
= 𝑀(𝐿 − tan2𝜃 − 𝐻) cos2𝜃,

𝑁
1

10

,𝜙
= −𝑁
1

01

,𝜙
= − tan𝜙𝑁

2

10

,𝜙
= tan𝜙𝑁

2

01

,𝜙

= −𝑀sin2𝜃 sin𝜙.

(A.5)

Using (A.3) in (24) we get vanishing components of
(𝜕
𝜌
[ℎℎ
𝑎

𝛼

𝑆
𝛼

𝜌]
])Regularized().
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