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The study has investigated the almost disturbance decoupling problemof nonlinear uncertain control systems via the fuzzy feedback
linearization approach. The significant dedication of this paper is to organize a control algorithm such that the closed-loop system
is active for given initial condition and bounded tracking trajectory with the input-to-state stability and almost disturbance
decoupling performance. This study presents a feedback linearization controller for diving control of an unmanned underwater
vehicle. Unmanned underwater vehicle proposes difficult control subject due to its nonlinear dynamics, uncertain models, and
the existence of disturbances that are difficult to measure. In general, while investigating the diving dynamics of an unmanned
underwater vehicle, the pitch angle is always assumed to be small. This assumption is a strong restricting constraint in many
interesting practical applications and will be relaxed in this study.

1. Introduction

In the past three decades, the utilization of unmanned under-
water vehicle (UUV) has rapidly developed due to the appli-
cations of them to operate in deeper and riskier environments
where human divers cannot arrive as scientific inspection of
the deep sea, underwater cave exploration, oceanographic
mapping, exploitation of underwater resources, long range
survey, and marine warfare [1, 2].

Tracking controller design for diving behavior of an
UUV is difficult task in the investigation of appropriate
algorithms for motion and position control because the
UUVdynamics includes inherently hydrodynamics and iner-
tial nonlinearities, modeling uncertainties, disturbances of
varying drag forces, and the coupling problems between
degrees of freedom. So the controller for UUV should be
robust to suppress the uncertain effects from nonlinearity
and error of modeling and the interferences from compli-
cated external environment. Therefore, the traditional linear
control approach cannot resolve the UUV appropriately

after linearizing the UUV model for small range operation
[3].

The diving behavior of an unmanned underwater vehicle
has been approximated to a linear system [4–6] based on
two traditional assumptions, and furthermore the traditional
linear control schemes can be applied. One assumption is
that the pitch angle is close to zero in the diving plane for
maneuvering, and the other one is that the pitch motion
dynamics can be approximated as a linear equation by
using Taylor’s expansion [1]. However, these two assumptions
may create severe results in some practical applications due
to their large modeling inaccuracy [7]. In this study, we
directly solve the nonlinear dynamics of the depth motion
without any restricting condition on the pitch angle of the
UUV.

Recently, variable structure approach has been applied
to treat nonlinear control system. However, inherited chat-
tering effect may result in unmodeled high-frequency and
even force system to be instable for variable structure
approach structure. Adaptive backstepping approach has
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been an important tool for nonlinear strict-feedback systems
and pure-feedback systems [8]. However, if the pitch angle is
not close to zero, then the UUV’s diving dynamics equation
cannot be expressed in the strict-feedback formor someother
specific form investigated in [9].Therefore, it is challengeable
to apply the adaptive backstepping approach directly to the
depth control with large pitch angle. The output regulation
control [10] is applied to the control system in which the
output variables are assumed to be drived by an exosystem.
However, the desired regulation problemneeds to find out the
troublesome solution of partial-differential equation and the
problem of the transient tracking errors [11]. In general, the
nonlinear 𝐻∞ control has to address the arduous nonlinear
Hamilton-Jacobi equation [12]. Only for some specific control
systems we can obtain a closed-form solution. The internal-
model-principle approach, addressing a first-order partial-
differential equation of the center manifold [13], transfers the
tracking problem to nonlinear output regulation form. Only
for some particular control systems and desired trajectories,
the asymptotic solutions can be obtained [14].The𝐻∞ adap-
tive fuzzy control has been applied to systematically inves-
tigate some control systems [15]. Its shortcoming is that the
complicated parameter update law makes it be impractical.
During the past decade, the feedback linearization approach
has been the research direction for nonlinear systems [16, 17]
and has been utilized successfully to solve many practical
applications including theThree-Phase Photovoltaic Inverter
[18], ball and beam system [16], and holonomic constrained
robotic systems [19].

Fuzzy logic approach has been utilized tomany industrial
processes [20, 21]. Its designing structure is summarized as
follows. First express the original fuzzy system as the Takagi-
Sugeno model with fuzzy defined regions where the original
system is locally linearized. The desired control design of
resulting augmented system is organized by a combination of
linear controllers constructed for each separated local linear
part of the fuzzy model based on the parallel distributed
compensation technique [22, 23]. For the stability investiga-
tion of fuzzy system, many researches are addressed [24, 25].
The stability analysis of fuzzy system can be mainly focused
on Tanaka-Sugeno’s theorem. However, it is troublesome to
carry out the common positive definite matrix 𝑃 for linear
matrix inequality approach [26] even if 𝑃 is a second-order
model. To solve the shortcoming of calculating the model-
matrix 𝑃 for fuzzy logic approach, we will put forward a
new controller design to achieve the almost disturbance
decoupling property and the overall system is stabilized. Our
proposed designing process is summarized as follows. First,
a tracking control is constructed in order to achieve the
almost disturbance decoupling performance and the stability
of the closed-loop system response within a tunable global
final attractor via the feedback linearization method. Once
the tracking trajectories are steered to touch the global
final attractor with the given radius, the fuzzy logic control
instantly is added to achieve the desired convergence rate.
In order to demonstrate the interesting industrial applica-
tion, this study has favorably designed the almost distur-
bance decoupling controller for an unmanned underwater
vehicle.

2. Controller Design

2.1. Controller Design for Feedback Linearization Approach.
We will investigate the following nonlinear uncertain control
system with bounded time-varying noises:
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and ℎ(𝑋(𝑡)) ∈ R1 is a smooth function. The nominal system
of original system is then described as follows:

𝑋̇ (𝑡) = 𝑓 (𝑋 (𝑡)) + 𝑔 (𝑋 (𝑡)) 𝑢, (2a)

𝑦 (𝑡) = ℎ (𝑋 (𝑡)) . (2b)
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Definition 3 (see [30]). The tracking problem with almost
disturbance decoupling property is defined to be globally
solvable by the controller 𝑢 for the tracking-error system by
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Theorem 4. The tracking problem with almost disturbance
decoupling performance for system (1a)-(1b) is globally solvable
by the controller 𝑢 denoted by
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2
, with an convergence rate denoted by

1

2
(
𝑁
2

𝜔
2

−
𝑁
1

𝜔
2
𝑟2
) ≡

1

2
𝛼
∗

, (23d)

𝑁
1
≡
1

2
( sup
𝑡0≤𝜏≤𝑡

󵄩󵄩󵄩󵄩𝜃𝑑 (𝜏) + 𝜃𝑢 (𝜏)
󵄩󵄩󵄩󵄩)

2

. (23e)

Proof. Applying the coordinate transformation (5) results in

̇𝜉
1
(𝑡) = 𝜉

2
(𝑡) +

𝜕ℎ (𝑋)

𝜕𝑋

𝑝

∑

𝑖=1

𝑞
∗

𝑖
(𝜃
𝑖𝑑
+ 𝜃
𝑖𝑢
)

...

̇𝜉
𝑟−1

(𝑡) = 𝜉
𝑟
(𝑡)

+

𝜕𝐿
𝑟−2

𝑓
ℎ (𝑋 (𝑡))

𝜕𝑋

𝑝

∑

𝑖=1

𝑞
∗

𝑖
(𝜃
𝑖𝑑
+ 𝜃
𝑖𝑢
)

̇𝜉
𝑟
(𝑡) = 𝐿

𝑟

𝑓
ℎ (𝑋) + 𝐿

𝑔
𝐿
𝑟−1

𝑓
ℎ (𝑋) 𝑢

+

𝑝

∑

𝑖=1

𝜕𝐿
𝑟−1

𝑓
ℎ (𝑋 (𝑡))

𝜕𝑋
𝑞
∗

𝑖
(𝜃
𝑖𝑑
+ 𝜃
𝑖𝑢
)

̇𝜂
𝑘
(𝑡) = 𝐿

𝑓
Φ
𝑘
+

𝑝

∑

𝑖=1

𝜕Φ
𝑘
(𝑋)

𝜕𝑋
𝑞
∗

𝑖
(𝜃
𝑖𝑑
+ 𝜃
𝑖𝑢
) .

(24)

Since

𝑢
𝑐
(𝜉 (𝑡) , 𝜂 (𝑡)) ≡ 𝐿

𝑟

𝑓
ℎ (𝑋 (𝑡)) , (25)

𝑢
𝑑
(𝜉 (𝑡) , 𝜂 (𝑡)) ≡ 𝐿

𝑔
𝐿
𝑟−1

𝑓
ℎ (𝑋 (𝑡)) , (26)

𝑞
𝑘
(𝜉 (𝑡) , 𝜂 (𝑡)) = 𝐿

𝑓
Φ
𝑘
(𝑋) , 𝑘 = 𝑟 + 1, 𝑟 + 2, . . . , 𝑛; (27)

the state and ouput equations of system (1a)-(1b) can be
rewritten as follows:

̇𝜉
𝑖
(𝑡) = 𝜉

𝑖+1
(𝑡)

+

𝑝

∑

𝑖=1

𝜕

𝜕𝑋
𝐿
𝑖−1

𝑓
ℎ𝑞
∗

𝑖
(𝜃
𝑖𝑑
+ 𝜃
𝑖𝑢
) , 𝑖 = 1, 2, . . . , 𝑟 − 1,

̇𝜉
𝑟
(𝑡) = 𝑢

𝑐
(𝜉 (𝑡) , 𝜂 (𝑡))

+ 𝑢
𝑑
(𝜉 (𝑡) , 𝜂 (𝑡)) 𝑢

+

𝑝

∑

𝑖=1

𝜕

𝜕𝑋
𝐿
𝑟−1

𝑓
ℎ𝑞
∗

𝑖
(𝜃
𝑖𝑑
+ 𝜃
𝑖𝑢
) ,

̇𝜂
𝑘
(𝑡) = 𝑞

𝑘
(𝜉 (𝑡) , 𝜂 (𝑡))

+

𝑝

∑

𝑖=1

𝜕

𝜕𝑋
Φ
𝑘
(𝑋) 𝑞
∗

𝑖
(𝜃
𝑖𝑑
+ 𝜃
𝑖𝑢
) , 𝑘 = 𝑟 + 1, . . . , 𝑛,

𝑦 (𝑡) = 𝜉
1
(𝑡) .

(28)

Denote

V ≡ 𝑦
(𝑟)

𝑡
− 𝜎
−𝑟

𝑛
1
[𝐿
0

𝑓
ℎ (𝑋) − 𝑦

𝑡
]

− 𝜎
1−𝑟

𝑛
2
[𝐿
1

𝑓
ℎ (𝑋) − 𝑦

(1)

𝑡
]

− ⋅ ⋅ ⋅ − 𝜎
−1

𝑛
𝑟
[𝐿
𝑟−1

𝑓
ℎ (𝑋) − 𝑦

(𝑟−1)

𝑡
] .

(29)
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Utilizing (6), (9), (25), and (26) yields the controller as

𝑢 = 𝑢
−1

𝑑
[−𝑢
𝑐
+ V] . (30)

The dynamic equations of system (1a)-(1b) can be shown as
follows by substituting equation (30) into (2.35):

[
[
[
[
[
[
[

[

̇𝜉
1
(𝑡)

̇𝜉
2
(𝑡)

...
̇𝜉
𝑟−1

(𝑡)

̇𝜉
𝑟
(𝑡)

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 0 ⋅ ⋅ ⋅ 0

...
...

0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]

]

[
[
[
[
[
[

[

𝜉
1
(𝑡)

𝜉
2
(𝑡)

...
𝜉
𝑟−1

(𝑡)

𝜉
𝑟
(𝑡)

]
]
]
]
]
]

]

+

[
[
[
[
[
[

[

0

0

...
0

1

]
]
]
]
]
]

]

V

+

[
[
[
[
[
[
[
[
[
[
[
[
[

[

+

𝑝

∑

𝑖=1

𝜕

𝜕𝑋
ℎ𝑞
∗

𝑖
(𝜃
𝑖𝑑
+ 𝜃
𝑖𝑢
)

+

𝑝

∑

𝑖=1

𝜕

𝜕𝑋
𝐿
1

𝑓
ℎ𝑞
∗

𝑖
(𝜃
𝑖𝑑
+ 𝜃
𝑖𝑢
)

...

+

𝑝

∑

𝑖=1

𝜕

𝜕𝑋
𝐿
𝑟−1

𝑓
ℎ𝑞
∗

𝑖
(𝜃
𝑖𝑑
+ 𝜃
𝑖𝑢
)

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(31)

[
[
[
[
[
[

[

̇𝜂
𝑟+1

(𝑡)

̇𝜂
𝑟+2

(𝑡)

...
̇𝜂
𝑛−1

(𝑡)

̇𝜂
𝑛
(𝑡)

]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

𝑞
𝑟+1

(𝑡)

𝑞
𝑟+2

(𝑡)

...
𝑞
𝑛−1

(𝑡)

𝑞
𝑛
(𝑡)

]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑝

∑

𝑖=1

𝜕

𝜕𝑋
Φ
𝑟+1

𝑞
∗

𝑖
(𝜃
𝑖𝑑
+ 𝜃
𝑖𝑢
)

𝑝

∑

𝑖=1

𝜕

𝜕𝑋
Φ
𝑟+2

𝑞
∗

𝑖
(𝜃
𝑖𝑑
+ 𝜃
𝑖𝑢
)

...
𝑝

∑

𝑖=1

𝜕

𝜕𝑋
Φ
𝑛−1

𝑞
∗

𝑖
(𝜃
𝑖𝑑
+ 𝜃
𝑖𝑢
)

𝑝

∑

𝑖=1

𝜕

𝜕𝑋
Φ
𝑛
𝑞
∗

𝑖
(𝜃
𝑖𝑑
+ 𝜃
𝑖𝑢
)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(32)

𝑦 = [1 0 ⋅ ⋅ ⋅ 0 0]
𝑟×1

[
[
[
[
[
[

[

𝜉
1
(𝑡)

𝜉
2
(𝑡)

...
𝜉
𝑟−1

(𝑡)

𝜉
𝑟
(𝑡)

]
]
]
]
]
]

]𝑟×1

= 𝜉
1
(𝑡) . (33)

Combining equations (9), (11), (14), and (29) verifies the fact
that equations (31)–(33) can be rewritten into the following
equations:

̇𝜂 (𝑡) = 𝑞 (𝜉 (𝑡) , 𝜂 (𝑡)) + Φ
𝜂
(𝜃
𝑑
+ 𝜃
𝑢
)

≡ 𝑞
22
(𝜂 (𝑡) , 𝑒) + Φ

𝜂
(𝜃
𝑑
+ 𝜃
𝑢
) ,

(34a)

𝜎

⋅

𝑒 (𝑡) = 𝐴pvc𝑒 + Φ𝜉 (𝜃𝑑 + 𝜃𝑢) , (34b)

𝑦 (𝑡) = 𝜉
1
(𝑡) . (35)

Define 𝑉(𝑒, 𝜂) by a weighted sum of 𝑉
0
(𝜂) and 𝑉

1
(𝑒),

𝑉 (𝑒, 𝜂) ≡ 𝑉
1
(𝑒) + 𝜇𝑉

0
(𝜂) , (36)

as a composite Lyapunov function of the systems (34a) and
(34b) [31], where 𝑉

1
(𝑒) satisfies

𝑉
1
(𝑒) ≡ 𝜎𝛿𝑒

𝑇

𝑃pd𝑒, (37)

where 𝛿 and 𝜇 are adjusting positive real variables. Utilizing
(17)–(19), (21) and (23a), (23b), (23c), (23d), and (23e) yields
the derivative of 𝑉(𝑒, 𝜂) along the trajectories of (34a) and
(34b) as

𝑉̇
1
= 𝛿(𝜎 ̇𝑒)

𝑇

𝑃pd𝑒 + 𝛿𝑒
𝑇

𝑃pd (𝜎
̇𝑒)

= 𝛿{𝐴
𝑐
𝑒 + Φ
𝜉
(𝜃
𝑑
+ 𝜃
𝑢
)}
𝑇

𝑃pd𝑒

+ 𝛿𝑒
𝑇

𝑃pd {𝐴𝑐𝑒 + Φ𝜉 (𝜃𝑑 + 𝜃𝑢)}

= 𝛿 {𝑒
𝑇

(𝐴
𝑇

pvc𝑃pd + 𝑃pd𝐴pvc) 𝑒}

+ 𝛿 {2(𝜃
𝑑
+ 𝜃
𝑢
)
𝑇

Φ
𝑇

𝜉
𝑃pd𝑒}

≤ − 𝛿
󵄩󵄩󵄩󵄩󵄩

󳨀⇀
𝑒
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛿
󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
Φ
𝜉

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑃pd

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩

󳨀⇀
𝑒
󵄩󵄩󵄩󵄩󵄩

≤ − 𝛿
󵄩󵄩󵄩󵄩󵄩

󳨀⇀
𝑒
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛿
󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
Φ
𝜉

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑃pd

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩

󳨀⇀
𝑒
󵄩󵄩󵄩󵄩󵄩

≤ − 𝛿
󵄩󵄩󵄩󵄩󵄩

󳨀⇀
𝑒
󵄩󵄩󵄩󵄩󵄩

2

+ (2𝛿
󵄩󵄩󵄩󵄩󵄩
Φ
𝜉

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑃pd

󵄩󵄩󵄩󵄩󵄩
)
2 󵄩󵄩󵄩󵄩󵄩

󳨀⇀
𝑒
󵄩󵄩󵄩󵄩󵄩

2

+
1

4

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢)
󵄩󵄩󵄩󵄩

2

,

(38)

that is,

𝑉̇
1
≤ −

󵄩󵄩󵄩󵄩󵄩

󳨀⇀
𝑒
󵄩󵄩󵄩󵄩󵄩

2

[𝛿 − (2𝛿
󵄩󵄩󵄩󵄩󵄩
Φ
𝜉

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑃pd

󵄩󵄩󵄩󵄩󵄩
)
2

]

+
1

4

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢)
󵄩󵄩󵄩󵄩

2

𝜇𝑉̇
0
= 𝜇(

𝜕𝑉
0

𝜕𝜂
)

𝑇

̇𝜂 = 𝜇(
𝜕𝑉
0

𝜕𝜂
)

𝑇

× [𝑞
22
(𝜂, 𝑒) + Φ

𝜂
𝜃 − 𝑞
22
(𝜂, 0) + 𝑞

22
(𝜂, 0)]

≤ 𝜇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑉
0

𝜕𝜂

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑞22 (𝜂, 𝑒) − 𝑞22 (𝜂, 0)
󵄩󵄩󵄩󵄩

+ 𝜇(
𝜕𝑉
0

𝜕𝜂
)

𝑇

𝑞
22
(𝜂, 0) + 𝜇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑉
0

𝜕𝜂

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
Φ
𝜂

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢)
󵄩󵄩󵄩󵄩

≤ 𝜇𝑚
4
𝐿
𝑘

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩 ‖𝑒‖ − 𝜇𝑚3

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

+ 𝜇𝑚
4

󵄩󵄩󵄩󵄩󵄩
Φ
𝜂

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢)
󵄩󵄩󵄩󵄩

≤ (𝜇𝑚
4
𝐿
𝑘
)
2󵄩󵄩󵄩󵄩𝜂

󵄩󵄩󵄩󵄩

2

+
1

4
‖𝑒‖
2
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− 𝜇𝑚
3

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

+ (𝜇𝑚
4

󵄩󵄩󵄩󵄩󵄩
Φ
𝜂

󵄩󵄩󵄩󵄩󵄩
)
2󵄩󵄩󵄩󵄩𝜂

󵄩󵄩󵄩󵄩

2

+
1

4

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢)
󵄩󵄩󵄩󵄩

2

,

(39)

that is,

𝜇𝑉̇
0
≤
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

[−𝜇𝑚
3
+ (𝜇𝑚

4
𝐿
𝑘
)
2

+ (𝜇𝑚
4

󵄩󵄩󵄩󵄩󵄩
Φ
𝜂

󵄩󵄩󵄩󵄩󵄩
)
2

]

+
1

4
‖𝑒‖
2

+
1

4

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢)
󵄩󵄩󵄩󵄩

2

.

(40)

Therefore,

𝑉̇ = 𝑉̇
1
+ 𝜇𝑉̇
0

≤ −
󵄩󵄩󵄩󵄩󵄩

󳨀⇀
𝑒
󵄩󵄩󵄩󵄩󵄩

2

[𝛿 − (2𝛿
󵄩󵄩󵄩󵄩󵄩
Φ
𝜉

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑃pd

󵄩󵄩󵄩󵄩󵄩
)
2

−
1

4
]

−
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

[𝜇𝑚
3
− (𝜇𝑚

4
𝐿
𝑘
)
2

− (𝜇𝑚
4

󵄩󵄩󵄩󵄩󵄩
Φ
𝜂

󵄩󵄩󵄩󵄩󵄩
)
2

]

+
1

2

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢)
󵄩󵄩󵄩󵄩

2

≤ − 𝑚
11

󵄩󵄩󵄩󵄩󵄩

󳨀⇀
𝑒
󵄩󵄩󵄩󵄩󵄩

2

− 𝑚
22

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

+
1

2

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢)
󵄩󵄩󵄩󵄩

2

≤ − 𝑁
2
(‖𝑒‖
2

+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

) +
1

2

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢)
󵄩󵄩󵄩󵄩

2

≡ − 𝑁
2

󵄩󵄩󵄩󵄩𝑦total
󵄩󵄩󵄩󵄩

2

+
1

2

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢)
󵄩󵄩󵄩󵄩

2

,

(41)

where
󵄩󵄩󵄩󵄩𝑦total

󵄩󵄩󵄩󵄩

2

≡ ‖𝑒‖
2

+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

. (42)

Applying ([29], Theorem 5.2) and (41) implies the input-to-
state stability property for the overall system. Furthermore, it
is easy to obtain the following inequality:

𝜔
1
(‖𝑒‖
2

+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩) ≤ 𝑉 ≤ 𝜔

2
(‖𝑒‖
2

+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

) , (43)

that is,

𝜔
1

󵄩󵄩󵄩󵄩𝑦total
󵄩󵄩󵄩󵄩

2

≤ 𝑉 ≤ 𝜔
2

󵄩󵄩󵄩󵄩𝑦total
󵄩󵄩󵄩󵄩

2

, (44)

where 𝜔
1
≡ min{𝜎𝛿𝜆min, 𝑘1} and 𝜔

2
≡ min{𝜎𝛿𝜆max, 𝜇𝑘2}.

Applying (41) and (44) gives

𝑉̇ ≤ −
𝑁
2

𝜔
2

𝑉 +
1

2

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢)
󵄩󵄩󵄩󵄩

2

≤ −
𝑁
2

𝜔
2

𝑉 +
1

2
( sup
𝑡0≤𝜏≤𝑡

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢) (𝜏)
󵄩󵄩󵄩󵄩)

2

.

(45)

Hence,

𝑉 (𝑡) ≤ 𝑉 (𝑡
0
) 𝑒
−(𝑁2/𝜔2)(𝑡−𝑡0) +

𝜔
2

2𝑁
2

( sup
𝑡0≤𝜏≤𝑡

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢) (𝜏)
󵄩󵄩󵄩󵄩)

2

,

(46)

which implies

󵄨󵄨󵄨󵄨𝑒1 (𝑡)
󵄨󵄨󵄨󵄨 ≤

√
𝑉 (𝑡
0
)

𝜎𝛿𝜆min
𝑒
−(𝑁2/2𝜔2)(𝑡−𝑡0)

+ √
𝜔
2

2𝑁
2
𝜎𝛿𝜆min

( sup
𝑡0≤𝜏≤𝑡

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢) (𝜏)
󵄩󵄩󵄩󵄩) ,

(47)

so that the almost disturbance decoupling property (20b) is
achieved. Utilizing (41) yields

𝑉̇ ≤ −𝑁
2
(‖𝑒‖
2

+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

) +
1

2

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢)
󵄩󵄩󵄩󵄩

2 (48)

which easily implies

∫

𝑡

𝑡0

(𝑦 (𝜏) − 𝑦
𝑑
(𝜏))
2

𝑑𝜏

≤
𝑉 (𝑡
0
)

𝑁
2

+
1

2𝑁
2

∫

𝑡

𝑡0

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝜃𝑢) (𝜏)
󵄩󵄩󵄩󵄩

2

𝑑𝜏,

(49)

so that the almost disturbance decoupling property (20c)
is satisfied and then the tracking problem with almost
disturbance decoupling property is globally solved. Finally,
we will exploit the fact that the ball 𝐵

𝑟
is a global attractor

of system (1a)-(1b). Applying (41) and (23e) gives

𝑉̇ ≤ −𝑁
2
(
󵄩󵄩󵄩󵄩𝑦total

󵄩󵄩󵄩󵄩

2

) + 𝑁
1
. (50)

For ‖𝑦total‖ > 𝑟, we get 𝑉̇ < 0. Hence, any ball denoted as

𝐵
𝑟
≡ {[

𝑒

𝜂
] : ‖𝑒‖

2

+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

≤ 𝑟} (51)

is a global final attractor of the systems (1a)-(1b). Further-
more, for 𝑦total ∉ 𝐵𝑟, we have

𝑉̇

𝑉
≤
−𝑁
2

𝜔
2

+
𝑁
1

𝜔
2

󵄩󵄩󵄩󵄩𝑦total
󵄩󵄩󵄩󵄩

2
≤
−𝑁
2

𝜔
2

+
𝑁
1

𝜔
2
𝑟2

≡ −𝛼
∗

. (52)

Utilizing the comparison theorem [32] gives

𝑉 (𝑦total (𝑡)) ≤ 𝑉 (𝑦total (𝑡0)) exp [−𝛼
∗

(𝑡 − 𝑡
0
)] . (53)

Therefore,

𝜔
1

󵄩󵄩󵄩󵄩𝑦total
󵄩󵄩󵄩󵄩

2

≤ 𝑉 (𝑦total (𝑡))

≤ 𝜔
2

󵄩󵄩󵄩󵄩𝑦total (𝑡0)
󵄩󵄩󵄩󵄩

2 exp [−𝛼∗ (𝑡 − 𝑡
0
)] .

(54)

Consequently, we get

󵄩󵄩󵄩󵄩𝑦total
󵄩󵄩󵄩󵄩 ≤ √

𝜔
2

𝜔
1

󵄩󵄩󵄩󵄩𝑦total (𝑡0)
󵄩󵄩󵄩󵄩 exp [−

1

2
𝛼
∗

(𝑡 − 𝑡
0
)] ; (55)

that is, the convergence rate toward the ball 𝐵
𝑟
is equal to

𝛼
∗

/2.
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Table 1: Rule base table of fuzzy control.

𝑢fuzzy 𝑒(𝑡)

NB NM NS ZE PS PM PB
NB PB PB PB PB PM PS ZE
NM PB PB PB PM PS ZE NS
NS PB PB PM PS ZE NS NM

̇𝑒(𝑡) ZE PB PM PS ZE NS NM NB
PS PM PS ZE NS NM NB NB
PM PS ZE NS NM NB NB NB
PB ZE NS NM NB NB NB NB

2.2. Controller Design for Fuzzy Control Approach. After
applying feedback linearization controller as a guarantee of
uniform ultimate bounded stability, the fuzzy controller can
be significantly utilized to obtain the better convergence rate
of tracking error dynamics. The block diagram of the fuzzy
controller is given in Figure 1. In general, the tracking error
𝑒(𝑡) and its time derivative ̇𝑒(𝑡) are applied as the input
fuzzy variables of the IF-THEN control rules and the output
variable is the control 𝑢fuzzy.

For the sake of simplification, the membership functions
of the linguistic terms for 𝑒(𝑡), ̇𝑒(𝑡), and 𝑢fuzzy are all expressed
to be the triangular functions. We denote seven linguistic
terms for each fuzzy variable as shown in Figure 2: PB
(positive big), PM (positive medium), PS (positive small), ZE
(zero), NS (negative small), NM (negative medium) and NB
(negative big).

Rule base table of fuzzy control 𝑢fuzzy is shown in Table 1.
The rule base is constructed by the Macvicar-Whelan rule
base [33] for general servo control systems. The Mamdani
method [34] is utilized for fuzzy inference. The defuzzifica-
tion of the output set membership value is constructed by the
centroid approach. Therefore, we can integrate the feedback
linearization control and fuzzy control to build the controller
as follows:

𝑢
𝑓𝑒+𝑓𝑢

≡ 𝑢feedback𝑢𝑠 (𝑡) + 𝑢fuzzy𝑢𝑠 (𝑡 − 𝑡1)

= [𝐿
𝑔
𝐿
𝑟−1

𝑓
ℎ (𝑋 (𝑡))]

−1

× {−𝐿
𝑟

𝑓
ℎ (𝑋) + 𝑦

(𝑟)

𝑡
− 𝜎
−𝑟

𝑛
1
[𝐿
0

𝑓
ℎ (𝑋) − 𝑦

𝑡
]

− 𝜎
1−𝑟

𝑛
2
[𝐿
1

𝑓
ℎ (𝑋) − 𝑦

(1)

𝑡
]

− ⋅ ⋅ ⋅ − 𝜎
−1

𝑛
𝑟
[𝐿
𝑟−1

𝑓
ℎ (𝑋) − 𝑦

(𝑟−1)

𝑡
]} 𝑢
𝑠
(𝑡)

+ 𝑢fuzzy𝑢𝑠 (𝑡 − 𝑡1) ,

(56)

where 𝑢
𝑠
is the unit step function and 𝑡

1
is the time that the

tracking error dynamics touch the final global attractor ball
𝐵
𝑟
.

3. Unmanned Underwater Vehicle

The coordinate system of an unmanned underwater vehicle
with one propeller, two stern planes, and two rudders is

shown in Figure 3. The six degree-of-freedom nonlinear
dynamics of the UUV control system can be described as
follows [5]:

𝑀(]) ]̇ + 𝐶
𝐷
(]) ] + 𝐷 (]) ] + 𝑔 (𝜂) + 𝑑 = 𝜏,

̇𝜂 = 𝐽 (𝜂) ,

(57)

where 𝜂 = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓]
𝑇 denotes the position

and orientation vector in earth-fixed reference frame, ] =

[𝑢 V 𝑤 𝑝 𝑞 𝑟]
𝑇 denotes the velocity and angular rate

vector in vehicle (body)-fixed reference frame, 𝑀(]) ∈ 𝑅
6×6

denotes the inertia matrix including rigid-body mass and
added mass, 𝐶

𝐷
(]) ∈ 𝑅

6×6 denotes the matrix of Coriolis,
centripetal term, 𝐷(]) ∈ 𝑅

6×6 denotes the damping matrix,
𝑔(𝜂) ∈ 𝑅

6 denotes the gravitational forces and moments
vector, 𝑑 denotes the exogenous disturbance term, 𝜏 is the
torque input vector, and 𝐽(𝜂) denotes the transformation
matrix [5]. The UUV is considered to be longitudinal and
bilateral symmetry and it is reasonable to make the assump-
tion that the origin of the body-fixed coordinate is located at
the center of gravity, and the terms in 𝑔(𝜂) ∈ 𝑅

6 is all zero.
For the dynamics of the diving plane, we can assume that the
roll and yaw angular velocities are close to zeros based on
appropriately adjusting the RPMof propeller and the rudder’s
angles. For the discussion of the horizontal moving dynamics
in this study, the forward velocity is kept constant 𝑢

0
by

properly adjusting the rev of the thrusters. Under the above
assumptions, the heave dynamics of UUV can be described
as

𝑧̇ = −𝑢 sin 𝜃 + V cos 𝜃 sin𝜙 + 𝜔 cos 𝜃 cos𝜙 ≈ −𝑢
0
sin 𝜃.

(58)

The roll angle 𝜙 is nearly constant, since 𝑝 ≈ 0. Without
any loss of generality, we can assume 𝜙 = 0 and the pitch
dynamics can be expressed as

̇𝜃 = 𝑞 cos𝜙 − 𝑟 sin𝜙 ≈ 𝑞 cos𝜙 ≈ 𝑞. (59)

Consequently, the diving dynamics of UUV can be certain
modified as followed [5–7]:

𝑧̇ = −𝑢
0
sin 𝜃, (60a)

̇𝜃 = 𝑞, (60b)

𝑚
𝑞
̇𝑞 = Φ
𝑇

Θ + 𝐹
𝑞
𝑢
2

0
𝛿
𝑞
+ 𝑑
𝑞
, (60c)

where

Φ = [𝑞 𝑢̇ 𝑢 𝑢
2

𝜔𝑞 𝑟𝑞 cos𝜙 sinΨ]𝑇, (60d)

Θ = [𝜃
1
𝜃
2
𝜃
3
𝜃
4
𝜃
5
𝜃
6
𝜃
7
]
𝑇

, (60e)

and𝑚
𝑞
denotes the inertia term including the addedmass, 𝐹

𝑞

denotes the fin moment coefficient, and 𝛿
𝑞
denotes the stern

plane angle as depicted in Figure 4.
Substituting all the physical values 𝑚

𝑞
= 3.495, 𝐹

𝑞
=

6.51, 𝑢
0
= 1.54, and selecting 𝑥

1
≡ 𝑧, 𝑥

2
≡ 𝜃, 𝑥

3
≡ 𝑞,



8 Mathematical Problems in Engineering

Differentiator

Tracking
signal

𝑦𝑑

Output
𝑦

Fuzzifier Inference
engine Defuzzifier 𝑢fuzzy

Rule base

𝑒+

−

Figure 1: Block diagram of fuzzy logic controller.

−1 −0.5 0 0.5 1

PBPS

ZE

NSNB PMNM

−0.2 0.2
(a) 𝑒(𝑡)

−1 −0.5 0 0.5 1

PBPS

ZE

NSNB PMNM

−0.2 0.2
(b) ̇𝑒(𝑡)

−1 −0.5 0 0.5 1

PBPS

ZE

NSNB PMNM

−0.2 0.2
(c) 𝑢fuzzy

Figure 2: Plots of membership functions for (a) 𝑒(𝑡), (b) ̇𝑒(𝑡), and
(c) 𝑢fuzzy.

𝑂 Body-fixed

Earth-fixed
𝑥

𝑦

𝑧

𝑥󳰀

𝑦󳰀
𝑧󳰀

𝑢 (surge)

𝑟 (yaw)
� (sway)

𝑝 (roll)

𝑤 (heave)
𝑞 (pitch)

𝜃
𝜓

𝜙

Figure 3: The unmanned underwater vehicle.

𝑥

𝑧

𝛿𝑞

𝑢

𝑢𝐹

Figure 4: The stern plane angle of attack.

𝜃
1
= 1, 𝜃

7
= 1 into (60a), (60b), (60c), (60d), and (60e), the

state equation can be rewritten as follows:

𝑥̇
1
= −1.54 sin𝑥

2
, (61a)

𝑥̇
2
= 𝑥
3
, (61b)

𝑥̇
3
=

1

3.495
𝑥
3
+

1

3.495
sin𝑥
2
+ 15.5126𝑢 + 𝑑

𝑞
, (61c)

where 𝑑
𝑟

= 0.5 sin 𝑡 is assumed to be the disturbance
item. For a given desired trajectory 𝑦

𝑡
= sin 0.1𝑡, the main

objective of this study is to construct a nonlinear feedback
linearization controller for UUV system (61a), (61b), and
(61c) with tracking performance by applying Theorem 4. Let
us arbitrarily choose 𝑛

1
= 1.5, 𝑛

2
= 1.5, 𝑛

3
= 1.5 such that

𝐴pvc =
[

[

0 1 0

0 0 1

−1.5 −1.5 −1.5

]

]

(62)

is Hurwitze and the positive definite matrix

𝑃pd =
[

[

3.5 2.5 0.25

2.5 4.75 1.5

0.25 1.5 1

]

]

. (63)

TheUUV system is a system of relative degree three. It can be
verified that the related conditions ofTheorem 4 are satisfied
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Figure 5: The tracking error dynamic 𝑥
1
− sin 0.1𝑡 driven by 𝑢 for

(61a), (61b), and (61c).

with 𝜎 = 0.1, 𝑚
11

= 1.75, 𝑟 = 0.4, 𝑁
1
= 0.125, and 𝑁

2
=

1.75. From (56), we obtain the desired tracking controller

𝑢 = [𝐿
𝑔
𝐿
2

𝑓
ℎ (𝑋 (𝑡))]

−1

× {−𝐿
3

𝑓
ℎ (𝑋) + 𝑦

(3)

𝑡
− 𝜎
−3

𝑛
1
[ℎ (𝑋) − 𝑦

𝑡
]

− 𝜎
−2

𝑛
2
[𝐿
1

𝑓
ℎ (𝑋) − 𝑦

(1)

𝑡
]

−𝜎
−1

𝑛
3
[𝐿
2

𝑓
ℎ (𝑋) − 𝑦

(2)

𝑡
]} 𝑢
𝑠
(𝑡)

+ 𝑢fuzzy𝑢𝑠 (𝑡 − 𝑡1) ,

(64a)

𝐿
𝑔
𝐿
2

𝑓
ℎ (𝑋) = −23.889 cos𝑥

2
, (64b)

𝐿
3

𝑓
ℎ (𝑋) = 1.54𝑥

2

3
sin𝑥
2

− 1.54 cos𝑥
2
(

𝑘
1

3.495
𝑥
3
+

𝑘
7

3.495
sin𝑥
2
) ,

(64c)

𝑦
(3)

𝑑
= −0.001 cos 0.1𝑡,

𝑦
(2)

𝑑
= −0.01 sin 0.1𝑡,

𝑦
(1)

𝑑
= 0.1 cos 0.1𝑡,

(64d)

𝐿
1

𝑓
ℎ (𝑋) = −1.54 sin𝑥

2
(64e)

𝐿
2

𝑓
ℎ (𝑋) = −1.54𝑥

3
cos𝑥
2
. (64f)

Hence, the tracking controller will steer the state variable 𝑥
1

to track the desired trajectory 𝑦
𝑡
(𝑡) = ℎ(𝑋) = sin 0.1𝑡 in

view of Theorem 4. The tracking errors driven by 𝑢 for UUV
system (61a), (61b), and (61c) is depicted in Figure 5.

4. Conclusion

In this paper, we have proposed a fuzzy feedback control
design which globally solves the almost disturbance decou-
pling problem based on the fuzzy feedback linearization
approach for trajectory tracking using a rudder of a UUV.
The investigation of input-output feedback linearization of
nonlinear uncertain control systems by diffeomorphism has
been proposedwithout eliminating the nonlinear terms in the
UUV model, and so severe model errors will not be taken
into the developing process. Moreover, this study proposes
a control algorithm for diving dynamics of UUV without
restricting constraint on the small pitch angle in the diving
plane. Simulation results exploit the fact that our proposed
design is favorably applied to input-output linearization
problem and achieves the desired almost disturbance decou-
pling performance and better convergence rate of the closed-
loop system.
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