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This paper proposes a novel approach to decompose two-person interaction into a Positive Action and a Negative Action for more
efficient behavior recognition. A Positive Action plays the decisive role in a two-person exchange. Thus, interaction recognition
can be simplified to Positive Action-based recognition, focusing on an action representation of just one person. Recently, a new
depth sensor has become widely available, the Microsoft Kinect camera, which provides RGB-D data with 3D spatial information
for quantitative analysis. However, there are few publicly accessible test datasets using this camera, to assess two-person interaction
recognition approaches. Therefore, we created a new dataset with six types of complex human interactions (i.e., named K3HI),
including kicking, pointing, punching, pushing, exchanging an object, and shaking hands. Three types of features were extracted
for each Positive Action: joint, plane, and velocity features. We used continuous Hidden Markov Models (HMMs) to evaluate the
Positive Action-based interaction recognition method and the traditional two-person interaction recognition approach with our
test dataset. Experimental results showed that the proposed recognition technique is more accurate than the traditional method,
shortens the sample training time, and therefore achieves comprehensive superiority.

1. Introduction

Over the last few decades, human activity analysis has
undergone rapid development receiving increasing attention
in many fields, such as intelligent surveillance, human-
computer interaction, and elder care management [1, 2].
Human activity can be categorized according to complexity
as partial body action [3], simple action [4], interaction
activity [5, 6], or group activity [7]. Motivated by the activity
classes drawn from [5, 6], this paper focuses on two-person
interaction recognition of six complex interactions: kicking,
pointing, pushing, punching, exchanging an object, and
shaking hands.

Much research has been done on two-person interac-
tions [5–10] with respect to the kinds of complex action
relationships and human features necessary for recognition.
For example, [5] took into account whether one person’s
hand is above another’s shoulder or whether one person’s foot
is near another’s torso. Reference [6] used head-pose, arm-
pose, leg-pose, and overall body-pose estimation with both

people for recognition. However, these processes are complex
and time consuming and the recognition results might not
be as accurate as required for a particular application. This
paper proposes a new definition for interactions based on one
person’s behavior called Positive Action. In this method, one
person’s action plays the key role in an interaction; thus, two-
person interaction recognition can be simplified into Positive
Action recognition.This approach is simpler than traditional
methods, saves computing time, and improves recognition
results.

The recent proliferation of a cheap but effective depth
sensor, the Microsoft Kinect [11], has created more opportu-
nities for quantitative analysis of complex human activities.
As compared to the traditional video camera, Kinect has
the advantage of synchronous acquisition of color and depth
images; with the use of depth maps, 3D information about
a scene from a particular point of view is easily computed
under diverse conditions [12].This in turnwillmake behavior
detection easier in badly lit or dark places. For example,
Figure 1(a) represents a depth image captured by Kinect in
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Figure 1: RGB-D data captured by Kinect.

weak light, which clearly shows one person punching at
another; Figure 1(b) shows a color image of this interac-
tion synchronously captured with the depth image. With a
traditional camera, only RGB images as seen in Figure 1(b)
are collected, with limited value for surveillance and other
applications. Unfortunately, there are few publicly accessible
test datasets to assess two-person interaction recognition
approaches using the depth sensor. Thus, we created a new
dataset for two-person interaction. The first version of this
original dataset is available to download on the Internet at
http:// www.lmars.whu.edu.cn/prof web/zhuxinyan/DataSet
Publish/dataset.html.

The Microsoft Kinect sensor produces a new type of
data, RGB-D data, which is an improvement on RGB images
for human behavior recognition research. Therefore, many
researchers have collected their own data and some of them
are publicly accessible on the Internet [13–15]. In [16], Sung
et al. produced a dataset including a total of twelve unique
activities in five realistic domestic environments: office,
kitchen, bedroom, bathroom, and living room. The RGBD-
HuDaAct video database [17] collected in a lab environment
includes 12 categories of human daily activities: making a
phone call, mopping the floor, entering a room, and so forth.
The LIRIS human activity dataset contains (gray/RGB/depth)
videos showing people performing various activities taken
from daily life (discussing, making telephone calls, exchang-
ing an item, etc.); it includes information on not only the
action class but also the spatial and temporal positions of
objects in the video. However, these datasets only address
individual activities and not two-person interactions [18].

Several more-than-one-person datasets were created
using Kinect. In [19], the UTKinect-human detection dataset
was created: there are 98 frames with two people appearing in
the scene at different depths in a variety of poses, including
several simple interactions. In addition, [5] chose eight types
of two-person interactions to establish another two-person
dataset, including approaching, departing, pushing, kicking,
punching, exchanging objects, hugging, and shaking hands.
However, this latter dataset is not publicly available on the
Internet.

Depth imaging data produced by the Kinect sensor is
driving new single and daily activity recognition problem

research. For human activity or behavior representation, the
method in [16, 20] detected and recognized different activities
through body-pose features, hand position features, and
motion information, using the Kinect sensor. In [17], Ni et
al. proposed depth-extended feature representation methods
to obtain superior recognition performance based on RGBD-
HuDaAct datasets. Nowozin and Shatton [21] used skeletal
features: joint velocities, joint angles, and joint angle velocities
to reduce the latency in recognizing an action.

For human activity or behavior recognition, most efforts
use HMM-based approaches. Park and Aggarwal [6] used
HMMs for human motion recognition and combined it in a
hierarchical way using DBNs (Dynamic Bayesian Networks).
Vogler and Metaxas [22] presented parallel HMMs to recog-
nize American sign language based on magnet tracking data,
whileWilson andBobick [23] proposed parametricHMMs to
recognize human gestures. HMM-based recognition of more
complex sequences is addressed by [24–26].Themethod pro-
posed in [24] was able to recognize motion units with optical
flow data; in [25], Li proposed a landmark point trajectories-
based approach to recognize view-invariant human actions
and Chen et al. [26] presented a star skeleton model to
recognize a single action and a series of actions.

Presently, there is little human interaction research based
onMicrosoft Kinect data and few papers report on a complex
human activity dataset created to depict two-person interac-
tions [5]. This research concluded that activity recognition
represented by geometric relational features based on dis-
tance between all pairs of joints outperforms other feature
choices. Our proposed approach and test dataset extend this
research.

The contribution of this paper is twofold; we developed an
efficient approach based on Positive Action representation to
recognize two-person interactions and created a new dataset
based on the Kinect sensor to test and verify methods. The
rest of this paper is organized as follows. Section 2 shows our
interaction dataset; Section 3 details the Positive Action defi-
nition and feature extraction method; Section 4 presents the
Positive Action and the traditional interaction recognition
method via HMMs; Section 5 demonstrates experimental
results from two different approaches using our test dataset;
finally Section 6 concludes this paper and discusses future
work.

2. K3HI: Kinect-Based 3D Human
Interaction Dataset

We collected two-person interactions using a Microsoft
Kinect sensor. All videos were recorded in an indoor room
while 15 volunteers performed activities. Each pair of peo-
ple performed all types of interactions. The dataset has a
total of approximately 320 interactions organized into eight
categories. The first version of this dataset has been made
publicly available to the research community to encour-
age progress in human action studies based on this new
technology (http://www.lmars.whu.edu.cn/prof web/zhuxi-
nyan/DataSetPublish/dataset.html). Since approaching and
departing activities are simple, recognition accuracy for both
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interactions was almost 100% [5, 6]; therefore, we choose
other types of relatively complex two-person interactions for
recognition studies.

The most important data in our dataset is the spatial
information (3D coordinates) of the two persons’ skeletons.
In order to ensure the integrity and continuity of target
data, the original RGB images and depth information were
ignored when capturing data. An articulated skeleton for
each person was extracted using the OpenNI software [27]
and Natural Interaction (NITE) Middleware provided by
PrimeSense [28]. A skeleton was represented by the 3D
positions of 15 joints, including head, neck, left shoulder, right
shoulder, left elbow, right elbow, left hand, right hand, torso
center, left hip, right hip, left knee, right knee, left foot, and
right foot. However, when two persons overlapped, especially
in a hugging activity (e.g., see Figure 2), full body tracking of
interactions withNITEMiddlewaremight be inaccurate. Bad
and lost tracking will seriously affect interaction results, so
hugging was not considered in our dataset. At last, six types
of two-person interactions were captured, including kicking,
punching, pointing, pushing, exchanging an object, and
shaking hands. Figure 3 visualizes the collected interaction
data as represented in the form of skeletons with different
colors representing different actors.

3. Positive Action Representation

3.1. Positive Action Definition. Most existing work about
human interactions focuses on two people, considering what
kind of action relationship they have and what kind of
features should be chosen to best represent an interaction
[5, 6, 10–12]. Interactions can be classified into two groups:
the first group indicates that one person acts first and the
other person gives a responsive action, for example, kicking,
pointing, punching, pushing, and so forth; the second group
of interactions represents both people performing an almost
identical synchronous action, for example, exchanging an
object, shaking hands, and so forth. We propose that an
interaction can be decomposed into a Positive Action and
a Negative Action. For interactions in the first group, the
person who acts first, resulting in the other person’s reaction,
performs a Positive Action. In the second group, since both
people’s behavior is similar and synchronized, we simply
define the action, which moves with greater position changes
in the first few frames, as the Positive Action. In all cases, a
Negative Action is defined as a reciprocal action correspond-
ing to a Positive Action in a two-person interaction.

After a Positive Action is identified, complex interac-
tion recognition becomes relatively easy. Figures 4(a)–4(f)
represent the original two-person interactions which were
tested in [6], while Figures 4(a)–4(f) show the simplified
results that the complex interactions are reduced into Positive
Action-based representations. It can be seen that Positive
Actions are discriminated with each other; therefore, only
one person’s features are taken into account and traditional
interaction recognition can be transformed into Positive
Action recognition.

(a) Bad tracking

(b) Lost tracking

Figure 2: Bad tracking and lost tracking for a hugging activity. (a)
and (b) show the key process in hugging for two different pairs; the
last two images in (a) represent bad tracking of human bodies, and
(b) represents lost tracking of bodies.

3.2. Positive Action Extraction. Next, we obtained the Positive
Actions in our dataset by means of mathematical analysis,
especially for interactions in the first group as defined
in Section 3.1. The window size for each interaction was
approximately 25 frames. We only kept the first ten frames—
since the action changes in the first few frames are enough
to distinguish Positive Action and Negative Action. The
extraction process for Positive Action is divided into the
following three procedures.

(1) Aligning the Sequence. For an interaction activity, there are
always time or frame length variances when capturing the
data. Before discerning a Positive Action, we first select the
interactions of the same class to align the sequences. Then,
the Dynamic Time Warping (DTW) model is used to align
the sequences of the same activity class as mentioned in [29].
For each class, we selected a standard interaction sequence
suitable for representation of the interaction process. We
computed separately theminimal DTWdistance between the
remaining interaction sequences and the standard interaction
sequence in the same class to find the optimal alignment.

In theDTWprocess, we express the feature vectors of two
different sequences (in the same interaction class) as two time
series (or frame series) 𝑆(1)
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𝑇
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Accordingly, the costs between two series will be lower
if they are similar, meaning that if two sequences are well
aligned, the minimal DTW distance will be defined as
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(a) Kicking (b) Punching

(c) Pointing (d) Pushing

(e) Exchanging an object (f) Shaking hands

Figure 3: Skeleton visualization of interactions in our dataset. Three key poses were selected to represent the process of each interaction:
(a) kicking, (b) punching, (c) pointing, (d) pushing, (e) exchanging an object, and (f) shaking hands.
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It is known that there are two persons’ 3D joint positions

in an activity sequence, represented as
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𝑡
1
and time 𝑡

2
. Then, we placed the Euclidean distance into

formula (4) to obtain the minimal DTW distance, finding
the optimal alignment between variable length interaction
sequences.

(2) Computing Key Joint Position Changes. We selected eight
joints as key joints, which represent changes in the body’s

motion; these joints include the left and right elbow, left and
right hand, left and right knee, and left and right foot.

The position changes of the joints were described by cal-
culating the distances between neighboring frames, defined
as follows:

𝐷
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where𝐷𝑗
(𝑖,𝑖+1)

is the Euclideandistance of a key joint 𝑗between
frame 𝑖 and 𝑖 + 1; 𝑃(𝑗;𝑥,𝑦,𝑧)

𝑖
indicates the position of joint 𝑗 at

frame 𝑖 and (𝑥, 𝑦, 𝑧) are the 3D coordinates.

(3) Identifying Positive Action. For actions in the first group
which is defined in Section 3.1, it is tougher to extract Positive
Action than it is in the second group. According to the
benchmark in [30], human reaction time is around 0.2-0.3 s.
Our collected data is 15 frames per second. When reaction
time is converted into frames, it consists of 3-4 frames.
This means that in the first group of interactions when a
Positive Action starts, about 3-4 frames later, a corresponding
Negative Action occurs.

In our Positive Action definition, because the joint posi-
tions in the first two adjacent frames change and conform
to the benchmark, we can compare the maximum position
changes of both persons’ key joints between initial 𝑖th and
(𝑖 + 3)th frame of a sequence. The value of 𝑖 for the standard
interaction sequence mentioned in procedure (1) is one. For
the other sequences after DTW processing, 𝑖 will be different
value. This is expressed as follows:

Positive Action=argmax (max (𝐷(𝑝1;𝑗)
(𝑖,𝑖+3)

) ,max (𝐷(𝑝2;𝑗)
(𝑖,𝑖+3)

)) ,

(6)

where max(𝐷(𝑝1;𝑗)
(𝑖,𝑖+3)

) and max(𝐷(𝑝2;𝑗)
(𝑖,𝑖+3)

) indicate the maximum
position changes of joints for person one and person two
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in an interaction; max(𝐷
1
, 𝐷
2
) indicates that if 𝐷

1
> 𝐷
2
,

𝐷
1
will represent the Positive Action and 𝐷

2
will represent

the Negative Action; otherwise, 𝐷
2
will be the Positive

Action. Figure 6 shows the processing results for Positive
Actions, ignoring the Negative Actions. Each action has
its own distinct characteristics, including easily confused
interactions, such as exchanging an object and shaking hands.

Positive Action extraction is much easier in the second
group as compared with the first group. According to the
definition of Positive Action for group two, we also use (6);
therefore, the person with themaximum𝐷

(𝑝;𝑗)

(𝑖,𝑖+3)
performs the

Positive Action.
In order to verify the method which is used to extract

Positive Action, we selected the “kicking” action from the
first group of interactions and “shaking hands” from the
second group and calculated the position changes using
(5) for the first 10 frames. Figure 5 shows the results: from
Figure 5(a), it can be seen that as person one’s right foot
and right knee positions change from the first frame to the
third frame, person two’s left and right elbows as well as left
and right hands positions also change in the fourth frame.
These changes suggest that when person one starts to kick,
person two’s upper limbs react milliseconds later so that the
first person’s motion belongs to the Positive Action. However,
Figure 5(b) does not show any connection between the two
behaviors, except that both of their right hands and elbows
move in a synchronized fashion. In general, experimental
results support our Positive Action extraction method.

The visualization of Positive Actions is shown in Figure 6.
Table 1 represents the extraction results for Positive Action
with andwithoutDTW for the first group, illustrating that the
extraction results for Positive Action have greater accuracy
after DTW preprocessing.

3.3. Feature Extraction. After Positive Actions are extracted,
we utilize several body-pose features for motion-capture data
representation and evaluate these features using our test
dataset. One of the biggest challenges when using skeleton
joints as a feature is that semantically similar motions may
not necessarily be numerically similar [31]. To overcome this,
[32] used relational body-pose features as introduced in [31],
describing geometric relations between specific joints in a
single pose or a short sequence of poses. Relational pose
features were used to recognize daily-life activities performed
by a single actor in a random forest framework; the features
included joint, plane, and velocity features.
(i) Joint Features
Joint Distance. Let 𝑝

𝑗,𝑡
∈ R3 be the 3D location of joint 𝑗 in a

Positive Action at time 𝑡 ∈ 𝑇. The joint distance feature 𝐹JoiDis
is defined as the Euclidean distance between two joints at time
𝑡 and is represented as
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where 𝑗
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are any two joints of a single person (𝑗

1
̸= 𝑗
2
).

Joint Motion. Similar to the joint distance feature, the joint
motion feature 𝐹JoiMot is defined as the Euclidean distance

Table 1: Accuracy of Positive Action extraction.

1st kind of interaction Kicking Pointing Pushing Punching
Accuracy (without DTW) 93.9% 95.8% 92.3% 90%
Accuracy (with DTW) 98.6% 99.2% 98.5% 97.7%
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(ii) Plane Features
Plane Feature. 𝐹Plane captures the geometric relationship
between a plane and a joint; 𝐹Plane helps to express whether
the left hand lies in front of the plane spanned by the right
shoulder, left shoulder, or torso. It is defined as
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Euclidean distance from joint 𝑗 to the plane.

Normal Plane Feature. 𝐹NorPlane is similar to a plane feature; it
helps to determine if and how far the joint “hand” is raised
above the “shoulder”; 𝐹NorPlane is defined as follows:
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where 𝑗
1

is the joint as in a plane feature and
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represents different joints.

(iii) Velocity Features
Velocity Feature. 𝐹Vel captures the velocity of one joint along
a direction generated by two other joints at time 𝑡. 𝐹Vel is
defined as
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where 𝑗
1
, 𝑗
2
, and 𝑗

3
are different joints.

Normal Velocity Feature. 𝐹NorVel is similar to a normal plane
feature; it captures the velocity of one joint along the direction
of the normal vector of the plane generated by three other
joints at time 𝑡. 𝐹NorVel is defined as
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where
∧

𝑛 ⟨⋅⟩ is the unit normal vector of the plane represented
by ⟨⋅⟩ when 𝑗

1
, 𝑗
2
, 𝑗
3
, and 𝑗

4
are different joints.

4. Positive Action Recognition via HMM

Hidden Markov Models (HMMs) are widely used for mod-
eling time series data. Formally, a HMM can be described
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(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Figure 4: A comparison between interactions and Positive Actions. (a)–(f) show the original interaction data in [6] and (a)–(f) are the
Positive Actions of one person described in this paper.

as a 5-tuple Ω = (Φ, Σ, 𝜋, 𝛿, 𝜆), where Φ are the hidden
variables and 𝛿 are the transitions probabilities among states;
these probabilities, as well as the starting probabilities 𝜋,
are discrete. Every observation state has a set of possible
emissions Σ and discrete/continuous probabilities 𝜆 for these
emissions. A Gaussian Mixture Model (GMM) is used to
represent the observation states for each hidden variable and
to compute their probabilities [33]. GMM density is defined
as the weighted sum of Gaussian densities.

In the training process, HMM parameters are initialized:
we manually decided the observation states’ number 𝑁 and
hidden states’ number 𝑀; then we divided equally the data
sequence into 𝑁 parts and clustered each part using 𝐾-
means to establish the GMM. After the HMM parameters
are known, the Baum-Welch algorithm, also known as the
Forward-Backward algorithm, was used to reevaluate the
HMM parameters and to compute the output probability of
observation sequence𝑂𝑥

𝑖
(indicating the 𝑖th sample sequence

of action 𝑥). Finally, the sequence probabilities are summed
up and HMM parameters are confirmed until we get the
maximum value 𝑃(𝑂 | Ω) = ∑𝑃(𝑂

𝑥

𝑖
| Ω
𝑖
). After training,

we have six HMMs for each type of action.
During the recognition process, given the data sequence

of unknown action 𝑋, the feature vectors are extracted for
each frame. Using the Viterbi algorithm, the likelihood 𝑃

𝑖
=

𝑃(𝑂
𝑥

𝑖
| Ω
𝑖
) of observation sequence 𝑂

𝑋

𝑖
is generated. We

repeated this procedure based on the six HMMs generated
in training process and produced the probabilities 𝑝

𝑖
(1 ≤

𝑖 ≤ 6). Thus, by comparing the values 𝑝
𝑖
, we obtained

the maximum likelihood 𝑝max, which represents the type of
interaction.

5. Experimental Results

We selected the features extracted from among the Positive
Actions identified in Section 3.2 to recognize interactions and
used the features extracted from original interaction data as
in [5]. Then, we compared and evaluated the recognition
results from both approaches. The process for feature extrac-
tion and action recognition is illustrated in Figure 7.

In the Positive Action-based interaction approach, fea-
tures as described in Section 3.3 were classified into three
groups: joint features, plane features, and velocity features. In
our experiments, we recognized six kinds of Positive Actions
for each feature and mixed the features. There are fifteen
joints (including 3D coordinates) for each action. Thus, the
dimension of 𝐹JoiDis is 𝐶

2

15
= 105 for each frame and

the 𝐹JoiMot was 𝐶
2

5
× 𝐶
2

𝑇
(𝑇 is the total number of frames

for each interaction). Considering the larger dimensions of
both plane and velocity features, we selected key joints to
characterize the features. For plane features, the relationship
between the four limbs and main body is critical; therefore,
the plane was spanned from seven joints (“head,” “neck,”
“left shoulder,” “right shoulder,” “torso,” “left hip,” and “right
hip”) and eight joints for the target joint. In this way, we
created a lower dimension 𝐶

3

7
× 8 for each frame. However,

the feature dimensions were larger than the training sample
number; thus, Principal Component Analysis (PCA) was
used to reduce the dimensions.

To classify interactions, evaluation is done with a 4 fold
cross-validation: 3 folds are used for training and 1 for testing.
Based on the fact that the 3 state HMM performs much
better than the 4- and 5 state HMMs in our experiments, we
trained a 3 state, continuous HMMwith GMM. As expected,
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(b) The second group of interaction: shaking hands

Figure 5: Key joints position changes in two groups of interactions during the first 10 frames. (a) shows the first group of interaction with
“kicking” as an example; (b) shows the second group and takes “shaking hands” as an example.

the transition probabilities and the observation probabilities
turned out to be different for different actions. After training,
the HMM parameters are known while the Viterbi algorithm
was used to find the maximum likelihood category. Table
2 shows the experimental results for each kind of feature
representation.

For the traditional two-person relationship-based inter-
action recognition method (called the old approach in the
rest of this paper), three kinds of features referring to [5] were
also extracted based on the original captured data (see Figure
3). The training and recognition process was identical with
the Positive Action-based (new) method. Figure 8 shows the
recognition results in a confusion matrix: (a)–(c) represents
the Positive Action-based approach and (d)–(f) for the values

Table 2: Interactions recognition results via Positive Action-based
representation.

Features Average accuracy

Raw position 45.2%

Joint distance 76.1%

Joint motion 75.6%

Plane 63.2%

Normal plane 65.3%

Velocity 44.2%

Normal velocity 41.2%
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(a) Kicking (b) Punching

(c) Pointing (d) Pushing

(e) Exchanging an object (f) Shaking hands

Figure 6: Skeletons visualization of Positive Actions. The red skeletons show only Positive Actions in two-person interactions. These are
considered as the interaction representation and Negative Actions are ignored in the recognition process.
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· · ·
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Feature
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Hidden Markov Model

State
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Time t
Gaussian mixture model

v: Feature vector
q: Hidden symbol
b: Observed symbol

Figure 7: Flow of the interaction recognition system.

generated by the old approach. The confusion matrix also
compares different kinds of features for recognition: joint
features include the joint motion and joint distance features;
plane features include the plane and normal plane features;
velocity features include the velocity and normal velocity
features. The average recognition accuracy for each kind of
feature from (a) to (c) is 78.67%, 66.83%, and 55.67%; the
average accuracy from (d) to (f) is 70.00%, 61.67%, and
48.67%. Therefore, joint features-based recognition results
are better than plane and velocity features, suggesting that
geometric relational features based on the distance between
joints outperform other feature choices, verifying the con-
clusions found in [5]. Furthermore, in both the old and new
approaches, there exists some confusion between “pointing”

and “punching” and between “exchanging an object” and
“shaking hands.” Our results show that these actions are
similar, leading to lower recognition accuracy.

Most importantly, the average accuracy for interaction
recognition based on Positive Action representation, as
proposed in this paper, is 7% greater than two-person
relationship-based approaches, especially since geometric
relational feature-based recognition is almost 10% greater.
There are several reasons for these results. First, a two-
person feature representation ismore complex than a Positive
Action-based representation, creating unstable factors. For
example, the “pointing” interaction in normal plane features:
the Positive Action-based method only judges whether one
person’s “hand” position is higher than its’ own “shoulder”;
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Figure 8: Confusion matrix for different features for two approaches. (a)–(c) are the recognition results based on Positive Action
representation; (d)–(f) are the results based on old one referred to [5].

however, the old approach as in [5] must judge the spatial
relationship for both persons’ shoulders, which will lead
to more conditions for recognition; therefore, the Positive
Action-based approach needs less training samples than
the old approach to get more or less the same recognition
accuracy. Second, for the same kind of feature, the Positive
Action-based representation method has fewer dimensions
than the old approach. The old approach therefore is more
sensitive during dimension reduction in the training process;
thus, its recognition accuracy will be lower.

To verify the generalizability of our proposed method,
we tested the dataset against two more classifiers, including
Support Vector Machines (SVMs) and Multiple Instance
Learning (MIL). The test features were represented by the

combination of joint distance and joint motion.The results in
Table 3 suggest that MIL has better performance than SVMs
while the Positive Action-based method is much better than
the two-person based method. Therefore, different classifier
supports the conclusion that our new method is effective.

In addition to a comparison of the interaction recognition
accuracy for both approaches, we also compared time costs
and evaluated the training time to arrive at optimal HMM
parameters (see Figure 9). The average training time for
three kinds of features based on Positive Action represen-
tation is 42.47MS (millisecond), 79.52MS, and 67.88MS,
while for the old approach referring to [5], the average
training time is 63.27MS, 199.6958MS and 156.3827MS.
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Figure 9: Average time cost for training samples. It is the old and
newmethods that are evaluated according to three kinds of features:
joint, plane, and velocity features.

The Positive Action-based representation method consumes
less time than the old approach.

In summary, Positive Action-based representation for
two-person interaction recognition outperforms the old
approach; not only is its recognition accuracy better, but
also the time cost for training is less. So, the new method
transforms a relatively complex two-person interaction into
a simpler Positive Action, making the recognition procedure
more cost effective while maintaining or even improving
recognition quality. Therefore, the new proposed approach is
efficient for interaction recognition.

6. Conclusion

This paper presented a novel approach to recognize relatively
complex human interactions: different from many existing
interaction recognition methods, we focused our research
on single actions which are useful when distinguishing
differences between types of interactions. Two-person inter-
action recognition is transformed into Positive Action-based
recognition.

The key contributions of this paper are as follows: (1)
we investigated the reciprocal relationships in two-person
interaction and proposed a new definition for single person’s
behavior called Positive Action; (2) two-person interactions
were recognized based on Positive Action representation
via continuous HMMs; (3) a new test interaction dataset
based on Microsoft Kinect camera was created and it is
publicly available; our experimental results demonstrate that
the proposed method outperforms old approaches based on
two-person relationships.

In the future, we plan to find more volunteers to capture
more data and extend our interaction dataset to include

Table 3: The performance on more classifiers.

Classifier Positive Action Two persons
SVMs 81.67% 76.67%
MIL 83.33% 78.33%

additional interaction categories. More importantly, owing
to the limitations of human tracking software, such as the
NITE Middleware or the Windows SDK for Kinect, there
occasionally are some inaccurate tracking results. Therefore,
we need to find a better way to track human actions, further
improving the recognition accuracy.
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