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The Dirac Hamiltonian in the (2 + 1)-dimensional curved space-time has been studied with a metric for an expanding de Sitter
space-time which is two spheres.The spectrum and the exact solutions of the time dependent non-Hermitian and angle dependent
Hamiltonians are obtained in terms of the Jacobi and Romanovski polynomials. Hermitian equivalent of the Hamiltonian
obtained from the Dirac equation is discussed in the frame of pseudo-Hermiticity. Furthermore, pseudosupersymmetric quantum
mechanical techniques are expanded to a curved Dirac Hamiltonian and a partner curved Dirac Hamiltonian is generated. Using
𝜂-pseudo-Hermiticity, the intertwining operator connecting the non-Hermitian Hamiltonians to the Hermitian counterparts is
found. We have obtained a new metric tensor related to the new Hamiltonian.

1. Introduction

Two great achievements of the twentieth century, quantum
mechanics and general relativity, are very successful in their
own boundaries to describe the nature; however, they are
incompatible; for instance, they break down at extremely
tiny distance which is Planck scale. In modern physics, the
unified theory of gravitation and quantum mechanics which
plays a fundamental role with exactly solvable gravitational
field equations has always attracted considerable interest. On
the other hand, experimental studies have been performed
for the gravitational effects in quantum theory: earth’s rota-
tional effect on the phase of the neutron wave function [1],
experimental nanodiamond interferometry [2], and quantum
light in coupled interferometers [3]. In theoretical physics,
interesting work including mathematical aspects of the Dirac
Hamiltonians with their spectrum has been investigated such
as shifted energy levels of the hydrogen atom in a region of
curved space-time [4], modified supersymmetric harmonic
oscillator on a two-dimensional gravitational field [5], exact
solutions in a (2+1)-dimensional contracting and expanding
curved space-time [6], singularities in (2 + 1)-dimensional

space-time [7], and Hawking radiation of particles from a
black hole [8]. Curved Dirac systems have also dynamical
symmetries [9], considering that the (2 + 1) dimensions
𝑆𝐿(2, 𝑐) symmetries of theDiracHamiltonian have been stud-
ied [5]. In nonrelativistic domain, PT symmetric theories
which are examining the non-Hermitian Hamiltonians with
complex potentials and real eigenvalues have attracted much
interest [10]. Here,P andT are the parity and time-reversal
operators whose action on position wave functions 𝜓(𝑥) can
be shown by P𝜓(𝑥) = 𝜓(−𝑥) and T𝜓(𝑥) = 𝜓

∗(𝑥). More
general concept of theHermiticity is found as a generalization
of thePT symmetrywhich is called pseudo-Hermiticity [11–
13]. The real eigenvalues and corresponding eigenstates of a
non-Hermitian Hamiltonian are associated with a symmetry
such as the 𝜂-pseudo-Hermitian Hamiltonian. It is shown
that any inner product may be defined in terms of a metric
operator 𝜂. Moreover, hydrogen atom freely falling in a
curved space-time with the curvature effects on the spectrum
is investigated [4] and a general scalar product called the
Parker product is defined for the Dirac equation in a curved
background. It is also shown that if the time dependence
of the metric is not omitted, there occurs a violation of
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Hermiticity in theDiracHamiltonian [4].Then, in the light of
a weight operator in Parker scalar product, a non-Hermitian
Hamiltonian and its Hermiticity without omitting the time
dependency of the metric are discussed in [14].The problems
of nonuniqueness and Hermiticity of Hamiltonians using
the frame of pseudo-Hermitian Hamiltonian through the
stationary gravitational fields and self-conjugacy of Dirac
Hamiltonians with some examples are examined in [15, 16].

The low-dimensional systems such as (2 + 1) dimensions
may appear in the dynamics of charge carriers in graphene
and some carbon nanostructures [17]. Our fundamental
motivation for the Dirac equation in (2 + 1)-dimensional
gravity may be a toy model for such systems. On the other
hand, quantum mechanical effects of the gravitational field
can be detected using the Dirac equation and its predictions
in a curved space-time.These effects had been presaged by the
nonrelativistic Schrodinger equation in the ∼1/𝑟 potential but
some corrections and the precision can be performed by the
Dirac system in curved space-time. For instance, the energy
level of one electron atom is shifted when it is put into a
territory of curved space-time [4]. From this point of view,
we use a different space-time metric in this study in order
to see those effects. On the further side of these discussions,
generalization of the supersymmetric quantum mechanics,
that is, pseudosupersymmetric quantum mechanics and its
effects in curved spacetime, has not been involved in the
literature to our knowledge. Intertwining operators linking
non-Hermitian Dirac Hamiltonians and Hermitian coun-
terparts may give rise to more general Dirac Hamiltonian
chains. Accordingly we have examined the Dirac equation
in (2 + 1)-dimensional universe with an induced metric in
this paper. We have given the real spectrum of the non-
Hermitian Dirac Hamiltonian and corresponding solutions
of time dependent and angular parts. Moreover, we have
shown that a new non-Hermitian Dirac Hamiltonian in
curved space-time can be generated using the aspects of
pseudosupersymmetric quantum mechanics and this may
lead to another metric tensor which may be related to the
generated Hamiltonian. This paper is organized as follows:
Section 2 is devoted to the Dirac equation in (2 + 1) curved
space-time and separation of variables, Section 3 involves
the exact solutions, and pseudosupersymmetric quantum
mechanical applications are discussed in Section 4. Finally,
we conclude the paper in Section 5.

2. Dirac Equation

The generally covariant form of the Dirac equation is

𝑖𝛾
𝜇

(𝑥) (𝜕
𝜇
+ 𝑖𝑒𝐴

𝜇
− Γ
𝜇
(𝑥))Ψ (𝑥) = 𝑀Ψ (𝑥) , (1)

where 𝑀 is the mass and 𝑒 is the charge of the particle,
𝐴
𝜇
is the electromagnetic vector potential, Γ

𝜇
(𝑥) is the

spin connection, and 𝛾𝜇(𝑥) are the space-time dependent
matrices. The spin connection relation is defined by

Γ
𝜇
(𝑥) =

1

4
𝑔
𝜆𝜌
(𝑒
𝑎

],𝜇𝑒
𝜌

𝑎
− Γ
𝜌

]𝜇) 𝑆
𝜆]
, (2)

where Γ
𝜌

]𝜇 is the Christoffel symbol. In [18], the induced
metric which is the static form of the Euclidean de Sitter
space-time is given by

𝑑𝑠
2

= ℓ
2

𝑑𝜏
2

− ℓ
2sinh2𝜏𝑑𝜃2 − ℓ2sinh2𝜏sin2𝜃𝑑𝜙2, (3)

where 𝜏 ∈ [0,∞), 𝜙 ∈ [0, 2𝜋), and 𝜃 ∈ [0, 𝜋) and ℓ is the
radius of the universe. The vielbein matrix has become

𝑒
𝜇

𝑎
(𝑥) = (

1

ℓ
0 0

0
1

ℓ sinh 𝜏
0

0 0
1

ℓ sinh 𝜏 sin 𝜃

); (4)

here 𝜇 labels the general space-time coordinate and 𝑎 labels
the local Lorentz space-time. The vielbein field as the square
root of the metric tensor is written as

𝑔
𝜇]
= 𝑒
𝜇

𝑎
𝑒
]
𝑏
𝜂
𝑎𝑏

,

𝛾
𝜇

(𝑥) = 𝑒
𝜇

𝑎
(𝑥) 𝛾
𝑎

,
(5)

where 𝛾𝑎 are constant matrices. Additionally, one can write

𝑆
𝜆]
=
1

2
[𝛾
𝜆

(𝑥) , 𝛾
]
(𝑥)] . (6)

The fermions have only one spin polarization in (2 + 1)

dimensions; then, the Dirac matrices can be expressed in
terms of the Pauli spin matrices 𝛾𝑖 = (𝜎

3

, 𝑖𝜎
1

, 𝑖𝜎
2

) and they
satisfy the anticommutation relation which is

{𝜎
𝑖

, 𝜎
𝑗

} = 2𝜂
𝑖𝑗

𝐼
2×2

, (7)

where 𝜂𝑖𝑗 is the (2 + 1)-dimensional Minkowski space-time
metric and 𝐼

2×2
is the identity matrix. These matrices can be

chosen as 𝛾0
†

= −𝛾0, 𝛾𝑖
†

= 𝛾𝑖. If we use (4)–(7), we arrive at

Γ
0
= 0,

Γ
1
= −

1

2
cosh 𝜏𝛾0𝛾1,

Γ
2
= −

1

2
(cosh 𝜏 sin 𝜃𝛾0𝛾2 + cos 𝜃𝛾1𝛾2) .

(8)

Then, (1) becomes

(𝛾
0

(𝜕
𝜏
+ coth 𝜏) + 𝑖𝑀ℓ𝐸 +

𝛾1

sinh 𝜏
(𝜕
𝜃
+
1

2
cot 𝜃)

+
𝛾2

sinh 𝜏 sin 𝜃
𝜕
𝜙
+ 𝑖𝑒ℓ𝐴

1
(𝜏, 𝜃) 𝛾

1

)Ψ = 0.

(9)
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It is noted that Ψ depends on (𝜏, 𝜃, 𝜙) with two components,
Ψ = (

𝜓1

𝜓2
). Thus, (9) turns into

(
𝜕

𝜕𝜏
+ coth 𝜏 + 𝑖𝑀ℓ)𝜓

1

+
𝑖

sinh 𝜏
(
𝜕

𝜕𝜃
+
cot 𝜃
2

−
𝑖

sin 𝜃
𝜕

𝜕𝜙
+ 𝑖𝑒𝐴

1
(𝜏, 𝜃))𝜓

2

= 0,

− (
𝜕

𝜕𝜏
+ coth 𝜏 − 𝑖𝑀ℓ)𝜓

2

+
𝑖

sinh 𝜏
(
𝜕

𝜕𝜃
+
cot 𝜃
2

+
𝑖

sin 𝜃
𝜕

𝜕𝜙
+ 𝑖𝑒𝐴

1
(𝜏, 𝜃))𝜓

1

= 0.

(10)

Applying the separation of variables process leads to

(
𝜕

𝜕𝜏
+ coth 𝜏 + 𝑖𝑀ℓ)𝑇

1
(𝜏) −

𝑖𝜔
2

sinh 𝜏
𝑇
2
(𝜏) = 0,

− (
𝜕

𝜕𝜏
+ coth 𝜏 − 𝑖𝑀ℓ)𝑇

2
(𝜏) +

𝑖𝜔
1

sinh 𝜏
𝑇
1
(𝜏) = 0,

(−
𝜕

𝜕𝜃
−
cot 𝜃
2

+
𝑖

sin 𝜃
𝜕

𝜕𝜙
− 𝑖𝑒𝐴

1
)𝑌
2
(𝜃, 𝜙)

= 𝜔
2
𝑌
1
(𝜃, 𝜙) ,

(
𝜕

𝜕𝜃
+
cot 𝜃
2

+
𝑖

sin 𝜃
𝜕

𝜕𝜙
+ 𝑖𝑒𝐴

1
)𝑌
1
(𝜃, 𝜙)

= 𝜔
1
𝑌
2
(𝜃, 𝜙) .

(11)

Here, 𝜓
1

= 𝑇
1
(𝜏)𝑌
1
(𝜃, 𝜙) and 𝜓

2
= 𝑇
2
(𝜏)𝑌
2
(𝜃, 𝜙) and

𝐴
𝜃
(𝜏, 𝜃) is chosen as 𝐴

𝜃
(𝜏, 𝜃) = sinh𝜏𝐴

1
(𝜃), and 𝜔

1,2
are the

separation constants. The angular part is defined as

(
𝑌
1
(𝜃, 𝜙)

𝑌
2
(𝜃, 𝜙)

) = 𝑒
𝑖𝑚𝜙

(
Θ
1
(𝜃)

Θ
2
(𝜃)

) ; (12)

then we have

(−
𝜕

𝜕𝜃
−
cot 𝜃
2

−
𝑚

sin 𝜃
− 𝑖𝑒𝐴

1
)Θ
2
= 𝜔Θ

1
,

(
𝜕

𝜕𝜃
+
cot 𝜃
2

−
𝑚

sin 𝜃
+ 𝑖𝑒𝐴

1
)Θ
1
= 𝜔Θ

2
.

(13)

We have used 𝜔
1
= 𝜔
2
= 𝜔. The first order angular and time

dependent equations give us

−
𝑑2Θ
1
(𝜃)

𝑑𝜃2
+ (−2𝑖𝑒𝐴

1
− cot 𝜃) 𝑑Θ1 (𝜃)

𝑑𝜃

+ ((𝑒𝐴
1
−
𝑖 cot 𝜃
2

)

2

− 𝑚 cot 𝜃 csc 𝜃

+ (𝑚
2

+
1

2
) csc2𝜃 − 𝑖𝑒𝜕𝐴1

𝜕𝜃
)Θ
1
(𝜃) (𝜃) = 𝜔

2

Θ
1
(𝜃) ,

−
𝑑2Θ
2
(𝜃)

𝑑𝜃2
+ (−2𝑖𝑒𝐴

𝜃
− cot 𝜃) 𝑑Θ2 (𝜃)

𝑑𝜃

+ ((𝑒𝐴
𝜃
−
𝑖 cot 𝜃
2

)

2

+ 𝑚 cot 𝜃 csc 𝜃

+ (𝑚
2

+
1

2
) csc2𝜃 − 𝑖𝑒𝜕𝐴1

𝜕𝜃
)Θ
2
(𝜃) (𝜃) = 𝜔

2

Θ
2
(𝜃) .

(14)

Hence, the time dependent equations are obtained as

𝑑
2

𝑇
1
(𝜏)

𝑑𝜏2
+ 3 coth 𝜏𝑑𝑇1 (𝜏)

𝑑𝜏
+ (𝑖ℓ𝑀 coth 𝜏

+ (𝜔
2

− 1) csc ℎ𝜏2 + ℓ2𝑀2 + 2coth 𝜏2) 𝑇
1
(𝜏) = 0,

𝑑2𝑇
2
(𝜏)

𝑑𝜏2
+ 3 coth 𝜏𝑑𝑇2 (𝜏)

𝑑𝜏
+ (−𝑖ℓ𝑀 coth 𝜏

+ (𝜔
2

− 1) csc ℎ𝜏2 + ℓ2𝑀2 + 2 coth 𝜏2) 𝑇
2
(𝜏) = 0.

(15)

3. Exact Solutions

Let us see the bound states and corresponding solutions of
the Dirac Hamiltonian.

3.1. Solutions of Angular Part. In order to obtain a
Schrödinger-like equation, we choose 𝐴

1
(𝜃) = 𝑖(cot𝜃/2𝑒)

and use in (14); then we get

𝑉
+
(𝜃) = −𝑚 cot 𝜃 csc 𝜃 + 𝑚2csc2𝜃,

𝑉
−
(𝜃) = 𝑚 cot 𝜃 csc 𝜃 + 𝑚2csc2𝜃,

(16)

where𝑉
1
and𝑉

2
are the functions of the Hamiltonians which

are

ℎ
+
Θ
1
= 𝜔
2

Θ
1
,

ℎ
−
Θ
2
= 𝜔
2

Θ
2
,

ℎ
±
= −

𝑑2

𝑑𝜃2
+ 𝑉
±
(𝜃) .

(17)
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The partner Hamiltonians can be factorized as

ℎ
−
= A†A,

ℎ
+
= AA†,

(18)

A =
𝑑

𝑑𝜃
+𝑊 (𝜃) ,

A† = −
𝑑

𝑑𝜃
+𝑊 (𝜃) .

(19)

In our case superpotential𝑊(𝜃) = 𝐵 csc 𝜃 − 𝐴 cot 𝜃, 𝐴, 𝐵 are
constants, and𝑉

±
(𝜃) = 𝑊(𝜃)

2

∓𝜕
𝜃
𝑊. It is known that (16) are

shape invariant potentials when 𝑚 → −𝑚 used in (16) can
be obtained. If the supersymmetry is unbroken, the ground
state of ℎ

+
has zero energy 𝜔

+,0
= 0. The energy eigenvalues

of the partner Hamiltonians are connected by operators in
(19). Thus, we have

𝜔
+,𝑛

= 𝜔
−,𝑛−1

, 𝑛 = 0, 1, . . . . (20)

The eigenfunctions are related by the operators as

Θ
−,𝑛−1

=
1

√𝜔+,𝑛
AΘ
+,𝑛
. (21)

In [19], the potential is type (𝑃𝐼) given below

𝑉
+
(𝜃) = −𝐴

2

+ (𝐴
2

+ 𝐵
2

− 𝐴) csc 𝜃2

− 𝐵 (2𝐴 − 1) csc 𝜃 cot 𝜃.
(22)

The solutions are given in [19] for (22) which are

𝜔
+,𝑛

= 𝜔
−,𝑛−1

= ±√(𝐴 + 𝑛)
2

− 𝐴2, (23)

Θ
+,𝑛

= Θ
−,𝑛

= 𝑁 (1 − cos 𝜃)(𝐴−𝐵)/2 (1 + cos 𝜃)(𝐴+𝐵)/2

⋅ 𝑃
(𝐴−𝐵−1/2;𝐴+𝐵+1/2)

𝑛
(cos 𝜃) ,

(24)

where𝑃(𝑏,𝑐)
𝑎

(𝑥) stand for the Jacobi polynomials. For our case,

𝐴 =
1 + 2𝑚

2
,

𝐵 =
1

2
.

(25)

The normalization constant𝑁 is given by

𝑁 =
2
𝑚+2

2𝑛 + 𝑚 + 2

Γ (𝑛 + 𝑚 + 3/2) Γ (𝑛 + 3/2)

𝑛!Γ (𝑛 + 𝑚 + 2)
. (26)

And the angular part solutions are

(
𝑌
1
(𝜃, 𝜙)

𝑌
2
(𝜃, 𝜙)

) = 𝑒
𝑖𝑚𝜙

(
Θ
−,𝑛−1

Θ
+,𝑛

) . (27)

3.2. Solutions of the Time Dependent Part. Using a mapping
that is

𝑇
1,2
(𝜏) = csc ℎ𝜏3/2𝑦

1,2
(𝜏) (28)

in (15), we get

−
𝑑2𝑦
1

𝑑𝜏2

+ (
1

4
− ℓ
2

𝑀
2

− 𝑖ℓ𝑀 coth 𝜏 − (𝜔2 + 1

4
) csc ℎ𝜏2)

⋅ 𝑦
1
(𝜏) = 0,

−
𝑑2𝑦
2

𝑑𝜏2

+ (
1

4
− ℓ
2

𝑀
2

+ 𝑖ℓ𝑀 coth 𝜏 − (𝜔2 + 1

4
) csc ℎ𝜏2)

⋅ 𝑦
2
(𝜏) = 0.

(29)

Now that we have 𝑧 = 𝑖 coth(𝑖𝜏) (−∞ < 𝜏 < ∞) in the above
equations, we get

− (1 + 𝑧
2

)
𝑑2𝑦
𝑘

𝑑𝑧2
− 2𝑧

𝑑𝑦
𝑘

𝑑𝑧

+ (−
ℓ2𝑀2 − 1/4

1 + 𝑧2
+ 𝜔
2

+
1

4
+
ℓ𝑀𝜖𝑧

1 + 𝑧2
)𝑦
𝑘
(𝑧)

= 0,

(30)

where −∞ < 𝑧 < ∞ and we use a more compact form for
(29) and

𝜖 =
{

{

{

−1, 𝑘 = 1;

+1, 𝑘 = 2.
(31)

Then, if we put 𝑦
𝑘
(𝑧) = (1 + 𝑧2)

−1/4

𝑦
𝑘
(𝑧) into (30), we obtain

− (1 + 𝑧
2

)
𝑑2𝑦
𝑘

𝑑𝑧2
− 𝑧

𝑑𝑦
𝑘

𝑑𝑧

+ (−
ℓ2𝑀2

1 + 𝑧2
+ 𝜔
2

+
ℓ𝑀𝜖𝑧

1 + 𝑧2
)𝑦
𝑘
(𝑧) = 0.

(32)

If we give a polynomial solution which is given below

𝑦
𝑘
(𝑧) = (𝑧 + 𝑖)

−(1/2)(𝐴+𝑖𝐵)

(𝑧 − 𝑖)
−(1/2)(𝐴−𝑖𝐵)

𝑃 (𝑧) , (33)
where 𝑃(𝑧) is the unknown polynomial, and substituting (33)
into (32), we get

(1 + 𝑧
2

) 𝑃
󸀠󸀠

(𝑧) + (𝑧 (1 − 2𝐴) − 2𝐵) 𝑃
󸀠

(𝑧)

+ (𝐴
2

− 𝜔
2

) 𝑃 (𝑧) = 0.

(34)

Here𝐴, 𝐵 are constants and𝑃(𝑧) is the so-called Romanovski
polynomials [20–22] which are solutions of the differential
equation given by

(1 + 𝑥
2

)
𝑑2𝑅 (𝑥)

𝑑𝑥2
+ (2𝑏𝑥 + 𝑎)

𝑑𝑅 (𝑥)

𝑑𝑥

− ] (] − 1 + 2𝑏) 𝑅 (𝑥) = 0, −∞ < 𝑥 < ∞,

(35)



Advances in High Energy Physics 5

where ] is a quantum number ] = 0, 1, . . . and 𝑅(𝑥) =

𝑅
(𝑎,𝑏)

] (𝑥). Here, we note that the constants 𝐴, 𝐵 are given by

𝐴 =
1

16ℓ𝑀𝜖
(−8ℓ𝑀𝜖 + 4√2ℓ

2

𝑀
2√a
1
− 1 − 4ℓ2𝑀2

+ √2 (1 + a
1
)√a
1
− 1 − 4ℓ2𝑀2) ,

(36)

𝐵 = √
a
1
− 1

8
−
1

2
ℓ2𝑀2, (37)

a
1
= √(1 + 4ℓ2𝑀2)

2

+ 16ℓ2𝑀2, (38)

(𝑎, 𝑏) = (−2𝐵,
1

2
− 𝐴) . (39)

Then we have
𝑦
𝑘,] (𝑧)

= (𝑧 + 𝑖)
−(1/2)(𝐴+𝑖𝐵)

(𝑧 − 𝑖)
−(1/2)(𝐴−𝑖𝐵)

𝑅
(𝑎,𝑏)

] (𝑧) .
(40)

We may give the normalization integral as

∫
∞

−∞

(1 + 𝑧
2

)
𝑏−1

𝑒
𝑎 arctan 𝑧

𝑅
(𝑎,𝑏)

]󸀠
(𝑧) 𝑅
(𝑎,𝑏)

] (𝑧) 𝑑𝑧 = 𝛿
]󸀠
] . (41)

The solution of (32) gives

𝐴
2

− 𝜔
2

= −] (] − 1 + 2𝑏) (42)

and, from (42) and (23), one can also obtain

𝐴
2

+ (𝑚 +
1

2
)
2

− (𝑚 + 𝑛 +
1

2
)
2

+ ] (] − 1 + 2𝑏) = 0. (43)

According to (36) and (43), one can express ℓ as ℓ] in terms
of quantum numbers. From (43), we get

𝐴 = ] ± √𝑛 + 2𝑚𝑛 + 𝑛2. (44)

If we compare (44) and (36), we have

𝑛
2

+ 2𝑚𝑛 + 𝑛 =
1

2
, (45)

] =
√2

16ℓ𝑀𝜖
√a
1
− 1 − 4ℓ2𝑀2 (a

1
+ 1 + 4ℓ

2

𝑀
2

) . (46)

Using (46) one can find ℓ which is a function of ].

4. Pseudosupersymmetry Framework

Following the fundamental aspects of pseudo-Hermitian
quantum mechanics may lead to an outline for under-
standing spectral aspects of the quantum system. In the
light of pseudo-Hermitian generalization of supersymmetric
quantum mechanics, one can construct an unknown non-
Hermitian Hamiltonian.

Definition 1. If H
±

are separable Hilbert spaces and an
operator 𝐿 : H

+
→ H

−
is defined and 𝜂

±
: 𝐻
±

→

𝐻
±
are linear operators which are generally Hermitian and

invertible, then, the pseudoadjoint of this operator 𝐿‡ :

𝐻
−
→ 𝐻
+
is equal to 𝐿‡ = 𝜂−1

+
𝐿†𝜂
−
.

Definition 2. Let 𝜂
±
= 𝜂 which belongs to H

±
= H. 𝐿 is a

pseudo-Hermitian operator if

𝐿
†

= 𝜂𝐿𝜂
−1

. (47)

Definition 3. 𝜂 is an invertible operator which satisfies
𝜂𝐻𝜂−1 = 𝐻†;𝐻 is called pseudo-HermitianHamiltonian [11–
13]. The 𝜂 representation of the Hamiltonian is

𝐻
𝜂
= 𝜂𝐻𝜂

−1

= 𝐻
†

𝜂
. (48)

It is noted that the wave function𝜓 is𝜓 = 𝜂𝜙 and satisfies
the wave equation given below

𝐻𝜙 = 𝑖
𝑑𝜙

𝑑𝑡
,

ℏ = 𝑐 = 1.

(49)

And the scalar product reads

⟨𝜉, 𝜙⟩
𝜌
= ⟨𝜁, 𝜓⟩ = ∫ 𝜉

†

𝜌𝜙 𝑑𝜏, 𝜌 = 𝜂
2

. (50)

In [16], the authors constructed unique and self-conjugate
Dirac Hamiltonians in gravitational fields using Schwinger
gauge. They used an initial Hamiltonian and showed that
the system of tetrad vectors remained the same in the 𝜂

representation. Then, 𝜂 is defined by [16]

𝜂 = (−g)1/4 (−g00)
1/4

, (51)

where g00 is the time component of the metric tensor and g =
det[𝑔
𝜇]]. Now following the pseudosupersymmetric aspects

of the system, 𝐻 is a linear and diagonalizable operator and
𝑄
𝑖
are linear operators (called supercharge operators), 𝑖, 𝑗 =

1, 2, . . . , 𝑁, and 𝜏 is a grading operator defining the unitary
involution

𝜏
†

𝜏 = 𝜏𝜏
†

= 𝜏
2

= 1. (52)

If 𝑁 = 1, we have only one supercharge operator 𝑄 which
satisfies the algebra [11–13]

𝑄
2

= (𝑄
‡

)
2

= 0,

{𝑄,𝑄
‡

} = 𝛿
𝑗

𝑖
𝐻.

(53)

According to the ordinary supersymmetric quantum
mechanics, two-component realization of the system is

𝜏 = (
1 0

0 −1
) ,

𝑄 = (
0 0

𝜂 0
) ,

𝐻 = (
𝐻
+

0

0 𝐻
−

) ,

𝜂 = (
𝜂
+

0

0 𝜂
−

) ,

(54)
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where 𝐻
+
= L
1
L
2
and 𝐻

−
= L
2
L
1
. In [23], an unknown

non-Hermitian operator 𝐻
+
is linked to the adjoint of its

pseudosupersymmetric partner Hamiltonian𝐻
−
; that is,

𝜂𝐻
+
= 𝐻
†

−
𝜂. (55)

It is noted that 𝐻
+
is diagonalizable system admitting a

complete biorthonormal system of eigenvectors. If 𝜂
1
, 𝜂
2
are

the intertwining operators such that

𝜂
1
𝐻
+
= 𝐻
−
𝜂
1
,

𝜂
2
𝐻
−
= 𝐻
†

−
𝜂
2
,

(56)

it can be seen that operator𝐻
+
is 𝜂 = 𝜂†𝜂

1
pseudo-Hermitian

and 𝐻
−
is (𝜂†
2
)
−1 pseudo-Hermitian, 𝜂 = 𝜂

2
𝜂
1
[23], where

supercharge operators satisfy𝑄‡ = 𝜂
−1

𝑄†𝜂 and we give 𝜂 and
𝐻̃ instead of 𝜂 and𝐻 in (54) as

𝜂 = (
𝜂 0

0 (𝜂†
2
)
−1
) ,

𝐻̃ = (
𝐻
+

0

0 𝐻†
−

) .

(57)

If 𝐻
±
(𝜏) are time dependent pseudo-Hermitian Hamiltoni-

ans, then we have

𝐻
†

−
= 𝜂
2
𝐻
−
𝜂
−1

2
+ 𝑖𝜂
−1

2

𝜕𝜂
2

𝜕𝜏
, (58)

𝐻
−
= 𝜂
1
𝐻
+
𝜂
−1

1
+ 𝑖𝜂
−1

1

𝜕𝜂
1

𝜕𝜏
, (59)

𝐻
+
= 𝜂
−1

𝐻
+

−
𝜂 − 𝑖𝜂

−1
𝜕𝜂

𝜕𝜏
. (60)

The adjoint of (60) may be put into (59); then one can obtain

𝜂
†

𝜂
1
𝐻
+
= 𝐻
†

+
𝜂
†

𝜂
1
+ 𝑖 (

𝜕𝜂†

𝜕𝜏
𝜂
1
−
𝜕𝜂
1

𝜕𝜏
𝜂
†

) . (61)

Using (1), let us introduce the Hamiltonian as

𝐻
−
= 𝑖𝑀ℓ𝛾

0

− 𝑖 coth 𝜏 − 𝑖
𝛾0𝛾1

sinh 𝜏
𝜕
𝜃
− 𝑖

𝛾0𝛾1

sinh 𝜏
cot 𝜃
2

− 𝑖
𝛾0𝛾2

sinh 𝜏 sin 𝜃
𝜕
𝜙
− 𝑖𝑒ℓ𝐴

1
(𝜏, 𝜃) 𝛾

0

𝛾
1

.

(62)

Thus, from (58) and (51), we get

𝐻
†

−
= 𝑖𝑀ℓ𝛾

0

− 𝑖
𝛾0𝛾1

sinh 𝜏
𝜕
𝜃
− 𝑖

𝛾0𝛾2

sinh 𝜏 sin 𝜃
𝜕
𝜙

− 𝑖𝑒ℓ𝐴
1
(𝜏, 𝜃) 𝛾

0

𝛾
1

,

(63)

and we note that

𝜂
2
= 𝑖ℓ
3/2 sinh 𝜏√sin 𝜃,

𝜂
−1

2

𝜕𝜂
2

𝜕𝜏
= coth 𝜏.

(64)

Let us introduce a form for the metric operator 𝜂
1
as

𝜂
1
= ℓ
2

(sinh 𝜏)𝑎1 (√sin 𝜃)
𝑎2

(√sin𝜙)
𝑎3

, (65)

where 𝑎
1
, 𝑎
2
, and 𝑎

3
are real numbers. We may give the

unknown Hamiltonian𝐻
+
as

𝐻
+
= 𝑖𝑀ℓ𝛾

0

− 𝑖
𝛾0𝛾1

sinh 𝜏
𝜕
𝜃
− 𝑖

𝛾0𝛾2

sinh 𝜏 sin 𝜃
𝜕
𝜙

− 𝑖𝑒ℓ𝐴
1
(𝜏, 𝜃) 𝛾

0

𝛾
1

+ 𝛾
0

𝛾
1

𝑓 [𝜏, 𝜃, 𝜙]

+ 𝛾
0

𝛾
2

𝑔 [𝜏, 𝜃, 𝜙] + 𝑈 (𝜏) .

(66)

Here 𝑓[𝜏, 𝜃, 𝜙], 𝑔[𝜏, 𝜃, 𝜙], 𝑈(𝜏) are the unknown functions.
Now, both (59) and (60) lead to the following expressions:

𝛾
0

𝛾
1

(
1

2
𝑖 cot 𝜃 csc ℎ𝜏 (1 + 𝑎

2
) + 𝑓 (𝜏, 𝜃, 𝜙)) = 0,

𝛾
0

𝛾
2

(
𝑖𝑎
3

2
cot𝜙 csc 𝜃 csc ℎ𝜏 + 𝑔 (𝜏, 𝜃, 𝜙)) = 0,

𝑈 (𝜏) + 𝑖 (𝑎
1
+ 1) coth 𝜏 = 0.

(67)

Choosing specific values such as 𝑎
1
= 3/2, 𝑎

2
= 1, and 𝑎

3
= 1,

we obtain

𝐻
+
= 𝑖𝑀ℓ𝛾

0

− 𝑖
𝛾0𝛾1

sinh 𝜏
𝜕
𝜃
− 𝑖

𝛾0𝛾2

sinh 𝜏 sin 𝜃
𝜕
𝜙

− 𝑖𝑒ℓ𝐴
1
(𝜏, 𝜃) 𝛾

0

𝛾
1

− 𝑖𝛾
0

𝛾
1 cot 𝜃 csc ℎ𝜏

− 𝑖𝛾
0

𝛾
2 cot𝜙 csc 𝜃 csc ℎ𝜏 − 5𝑖

2
coth 𝜏.

(68)

And the metric operator is given by

𝜂
1
= ℓ
2

(sinh 𝜏)3/2√sin 𝜃√sin𝜙

= (−g
1
)
1/4

(−g00
1
)
1/4

.

(69)

This also shows that there may be a metric tensor for the
Hamiltonian (68) which is the partner of 𝐻

−
. We remind

the reader that the metric tensor and metric operator for the
system𝐻

−
are correspondingly given by

𝑔
𝜇] = (

ℓ2 0 0

0 −ℓ2sinh2𝜏 0

0 0 −ℓ2sinh2𝜏sin2𝜃

) ,

𝜂
2
= 𝑖ℓ
3/2 sinh 𝜏√sin 𝜃.

(70)

Hence, we may obtain (g
1
)
𝜇] that may be the partner metric

tensor of 𝑔
𝜇] as

(g
1
)
𝜇]

= (

−ℓ2 0 0 0

0 ℓ2sinh2𝜏 0 0

0 0 ℓ2sinh2𝜏sin2𝜃 0

0 0 0 ℓ2sinh2𝜏sin2𝜙

).
(71)
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Here, corresponding metric is

𝑑𝑠
2

= −ℓ
2

𝑑𝜏
2

+ ℓ
2sinh2𝜏𝑑𝜃2 + ℓ2sinh2𝜏sin2𝜃𝑑𝜙2

+ ℓ
2sinh2𝜏sin2𝜙𝑑𝜒2

(72)

and this is the metric of the four-dimensional world in
hyperspherical coordinates.

5. Conclusions

The Dirac operator is considered in a three-dimensional
gravity and decomposed into time dependent and angular
parts. After performing the separation of variables, the
angular Dirac equation is reduced to the Klein-Gordon-like
partner Hamiltonians possessing shape invariant trigono-
metric potentials whose real spectrum is given and solutions
of the spinor wave functions are written in terms of the
Jacobi polynomials. Thus, we have examined the de Sitter
space-time metric solutions of the Dirac equation where
the Hamiltonian becomes a non-Hermitian one because of
this time dependency of the metric. On the other hand, the
time dependent part of the Dirac system (29) has a time
dependent potential function whose form is similar to the
complex Eckart potential in the literature [24]. However,
the function csc ℎ2𝜏 has a wrong sign in our case because
we have used an appropriate mapping to obtain a soluble
hypergeometric differential equation and we have obtained
the solutions in terms of the Romanovski polynomials.
According to the theory of non-Hermitian Hamiltonians in
quantum physics, a subclass of non-Hermitian operators is
the pseudo-Hermitian operators which satisfy the 𝜂 inner
product. Accordingly, pseudo-Hermiticity is fulfilled by a
weight operatorwhichwas shown by Parker earlier and, using
the initial Hamiltonian that becomes a pseudo-Hermitian
Hamiltonian in the view of a time dependent metric, we have
obtained real spectrumand a condition on quantumnumbers
at the end of the exact solutions. The radius of the universe
is given by ℓ and we have seen that this radius depends
on ] quantum number. Because two partner Hamiltonians
are pseudo-Hermitian, we have found the metric operator
𝜂
1
that links 𝐻

±
. We have also seen that another metric

tensor for the partner Hamiltonian 𝐻
+
may be obtained

using pseudosupersymmetry. Moreover, we have shown that
a new (3 + 1)-dimensional Hamiltonian𝐻

+
can be obtained

by means of the pseudosupersymmetric procedure which
means that one can expand (2 + 1) Dirac system to (3 + 1)

dimensions. In our case, the metric operators 𝜂
1
and 𝜂

2
are

not differential operators. We have used an ansatze for the 𝜂
1

metric operator, however, if there is a symmetry in curved
Dirac systems which gives metric operator without giving
an ansatze that can be searched in future works. This study
also aims to attract the interest of both the readers of non-
Hermitian Hamiltonian systems and the quantum gravity to
the area which is an intersection of those theories.
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