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We review the development of the ellipsoidal vortex model within the field of geophysical fluid dynamics. This vortex model is
built on the classical potential theory of ellipsoids and applies to large-scale fluid flows, such as those found in the atmosphere and
oceans, where the dynamics are strongly affected by the Earth’s rotation. In this large-scale limit the governing equations reduce to
the quasi-geostrophic system, where all the dynamics depends on a single scalar field, the potential vorticity, which is a dynamical
marker for vortices. The solution of this system is achieved by the inversion of a Poisson equation, that in the case of an ellipsoidal
vortex can be solved exactly. From this ellipsoidal solution equilibria have been determined and their stability properties have been
studied. Many studies have shown that this ellipsoidal vortex model, while being conceptually simple, is an extremely powerful tool

in eliciting some of the fundamental characteristics of turbulent geophysical flows.

1. Introduction

In turbulent flow there exist structures whose collective inter-
actions are at the very heart of the dynamics of turbulence—
vortices. The vortex, a word signifying a type of swirling
or spinning fluid, has become a familiar concept in human
society, being associated with extreme and highly energetic
weather phenomena such as typhoons, tornados, and hurri-
canes. The relative infrequency of these most dramatic mani-
festations of vortices could lead one to think that the concept
of the vortex itself is limited only to these extreme events,
but, on the contrary, vortices are present in almost all fluid
phenomena, from the smallest scale flow of water in pipes
to the largest scales within the atmosphere and the oceans.
Both observations [1, 2] and numerical simulations [3-5]
have revealed the widespread appearance and dominance of
vortices in turbulent geophysical flows. The prolific nature of
vortices has led to their study becoming a field in its own
right as a means to better understand and resolve the great
unsolved problem of classical physics—turbulence.

While vorticity has a clear mathematical definition, being
defined as a vector field which is the curl of the velocity flow
field (w = V x u), the definition of a vortex itself is far more

elusive. This is due to the fact that a vortex does not have a par-
ticular shape. Ideas of tornadoes and hurricanes usually con-
jure up an image of circular or cylindrical type shapes for the
vortex, but real vortices are not constrained to these perfect
forms. However, when approaching them mathematically it
is useful to apply a shape that is amenable to simple mathe-
matical definition. One of the earliest incarnations of such an
approach was that of Kirchhoft [6], who studied an isolated
two-dimensional patch of uniform vorticity bounded within
an ellipse. He showed that this is an exact analytical solution
to the Euler equations which rotates with a constant angular
velocity. Further work by Love [7] showed that there existed
stable equilibria when this vortex is subjected to disturbances.

The extension of these early works to the three-
dimensional case of an ellipsoidal vortex had to wait almost
a century for the works of Zhmur and Pankratov [8, 9] and
Meacham [10] who extended this approach to the quasi-
geostrophic system [11], a set of equations relevant to large-
scale geophysical fluid dynamics. In fact, the ellipsoidal form
has a long history stretching back (at least) to the seminal
works of MacClaurin [12] and Laplace [13] on gravitating
bodies (see [14, 15] for a review of this subject). As the ellip-
soidal form has an exact and simple mathematical definition



that yet goes beyond the absolute symmetry of the sphere,
it is a powerful tool in determining shape, structure, and
orientation of “bodies” concerned in many different fields of
application (see [16] for a review of the many applications).
In the case of geophysical flows, it gives a means to determine
the characteristics of vortices (such as typical height-to-width
ratios, orientations, and rotation rates) that are the most
robust and hence the most likely to occur in real turbulent
flows.

Here we will review the recent history of the development
of the ellipsoidal vortex in quasi-geostrophic dynamics. The
beginning is in Section 2 where we give a brief overview of the
governing system of equations, the quasi-geostrophic model
[11]. Following this we review the ellipsoidal vortex model,
starting in Section 3 with the case of the isolated ellipsoid as
originally derived by Meacham [10]. In Section 4 we consider
the case of an ellipsoidal vortex immersed in a background
shear flow, following the matrix formulation approach of
McKiver and Dritschel [17]. In Section 5 we discuss the
results of studies of the equilibria and stability properties of
this vortex system and what insights they provide for the
full solution to the equations in turbulence simulations. In
Section 6 we discuss the generalization of the single vortex
ellipsoidal theory to the multiple vortex case, in particular
outlining the Hamiltonian method of Dritschel et al. [18].
Finally we conclude in Section 7, with an overview of the
consequences the ellipsoidal model has for the theory of
turbulence and discuss future avenues of research in this field.

2. The Quasi-Geostrophic System

Here we summarize the quasi-geostrophic model (for a
detailed derivation see [19]). Quasi-geostrophic (hereafter
QG) theory is one of the simplest geophysical fluid dynamical
models that incorporates two crucial features underpinning
large-scale fluid dynamics: (1) the effect of the Earth’s rotation
and (2) the effects of strong density stratification (lighter
fluid lying on top of denser fluid). As a consequence of
these features certain terms in the full equations of motion
(Navier-Stokes equations) tend to dominate over others.
Strong rotation leads to what is termed “geostrophic balance,”
which is a balance between the horizontal pressure gradient
and the term associated with the Earth’s rotation (the Coriolis
term):

fRxu, = -2, (1)

Po

where f is the local vertical component of the planetary

rotation rate, k is a vertical unit vector, uy, is the horizontal
velocity field, p is pressure, and p,(z) is the basic-state
density distribution (p, is nearly constant in the oceans and
exponential, proportional to exp(-z/H) with H = 7km, in
the atmosphere). Strong stratification leads to “hydrostatic
balance;,” which is a balance between the vertical pressure
gradient and buoyancy:

op
_— = - 2
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where g is the acceleration due to gravity. The QG system,
which incorporates both hydrostatic and geostrophic bal-
ance at leading order, is obtained from the full “primitive”
equations by an asymptotic expansion in three small nondi-
mensional parameters: (1) the height-width aspect ratio of
characteristic motions H/L (constrained to be small due to
the shallow geometry in the oceans and atmosphere); (2) the
Rossby number R, = U/ fL; and (3) the Froude number
F. = U/NH, where U is a characteristic relative horizontal
fluid speed, L is the horizontal scale of the flow, H is the
average fluid depth, and N is the buoyancy frequency (the
oscillation frequency that a small fluid volume would exhibit
if it were displaced by a small vertical distance). The QG
model is obtained assuming that H/L < land F/ < R, < 1.
Also in this model we consider the limit of infinite Reynolds
number, Re = UL/v; that is, the effect of viscous dissipation,
v, is negligible (in the real atmosphere, Re ~ 10'°-10'%). As
done in many previous works, one can consider the constant-
coefficient (“oceanic”) system when f, N, and p, are all
constant. For an inviscid, adiabatic fluid, the QG equations
may be expressed in terms of the conservation of a single
material scalar, the “potential vorticity;” q(x, t); that is,
Dqg _9dq 09  0q

Dt~ ot TMax TV T 3)

The potential vorticity (hereafter PV) is proportional to
the component of vorticity perpendicular to stratification
surfaces (surfaces of constant density p,). Thus vortices are
identified as contiguous regions of PV. In the QG model, the
vertical velocity w = 0 to this order of approximation, so g
is advected in a layerwise manner. However the horizontal
velocity (u,v) depends on all three spatial coordinates, and
this is recovered from ¢ via the inversion of

Viy =g, (4)

for the stream function v, followed by the incompressibility
relations

oy oy

ay’ YT
Note that in this form the vertical coordinate z is rescaled
by the factor f/N. The three-dimensional distribution of
PV generates the velocity field through (4) and (5), which
carries the PV, conservatively, to the next instant of time.
While (4) is an isotropic relation between g and v, the
advection remains anisotropic as there is no vertical motion.
The QG equations are widely used in studies of atmospheric
and oceanic phenomena [20-23], in part because they are
far easier to deal with both theoretically and numerically
than the complete equations. But, also, the QG equations
capture many qualitative features of atmospheric and oceanic
dynamics.

(5)

3. Potential Theory of an Isolated
Ellipsoidal Vortex

Now we consider the case of an isolated ellipsoidal vortex,
with uniform potential vorticity, as first considered in the



Advances in Mathematical Physics

works of Zhmur and Pankratov [8, 9] (see also [24]) and
independently by Meacham [10]. We will review the full
solution to the QG ellipsoid as derived by Meacham [10]. We
consider the ellipsoid of PV having semiaxes lengths a, b, and
¢, where a > b > c. Without loss of generality we assume the
vortex axes are aligned along the coordinate axis. Thus the
boundary of the ellipsoid is defined by the equation

[ 8]
8]
[

x° Yy oz
a_ + ﬁ + C—z =1. (6)
Inside the ellipsoid we have from (4)
Vzl/’i =9, 7)

where g is the uniform potential vorticity. A general solution
to this equation can be written as

Y, = % (fx2 + gy2 + hzz) +C;, (8)

where f, g, h, and C; are unknown coefficients to be
determined. Substituting this into (7) gives the condition

f+g+h=q 9)

Outside the ellipsoid the potential vorticity is zero and the
external potential satisfies

Vy, = 0. (10)

With such a problem the natural approach is to move from
Cartesian coordinates (x, y,z) to an ellipsoidal coordinate
system (A, y, v) using the relations [25]

2 (/\+a2) ([4+a2)<v+a2)) (112)
(@)@ -7

5 (/\+b2) (y+b2) (v+b2)
e

5 (/\+cz)(;4+c2) (1/+c2) (110)

I

where the variables A, g, and v represent the roots to the cubic
equation
2 32 2

=1, 12
a2+X+b2+X+c2+X 12)

where A > - > u > -b* > v > —a’. The A-surfaces

are ellipsoids, the p-surfaces are hyperboloids of one sheet,
and the v-surfaces are hyperboloids of two sheets [16]. The
largest root, A, is analogous to the radial variable in spherical
coordinates with each A representing a family of concentric
ellipsoids, with A = 0 being the value on the surface of the
original ellipsoid with semiaxes a, b, and c. The boundary
conditions on the surface of the ellipsoid are the continuity

of the normal and tangential velocity components, which can
be expressed in ellipsoidal coordinates as

l//i|,\:o = WelA:o > (13a)
av/i _ av/e
M 1o =3 /\:o' (13b)

Substituting (11a), (11b), and (11c) into the expression for the
internal field (8) we obtain

B f(/\+a2) [yv+a2(y+v)+a4]
v 2(a2 - ?) (@ - )

g(/\+b2) [yv+b2(y+v)+b4]
2(b? - c?) (b - a?)

(14)

]1(/\+62)[(4V+CZ(//£+1/)+C4] c
+C,.
2(c?—a?)(c*-1v?) '
A general solution for the external flow field can be written as
an expansion in ellipsoidal harmonics [16, 25, 26]

00 2m+1
$=> Y EPWEY () EY (), (15)
mo

where E;’? denote Lame functions of the first kind, while ng‘)
are Lame functions of the second kind defined by

()

_2m+1

EY (A
5 En M)

J o0 ds

0 [Eﬁf)(s+/\)]2 \/(s+}t+a2)(5+A+b2)(s+)t+c2)
(16)

The dependence on the coordinates y and » for the inner field

in (14) implies that the exterior solution needed in order to
match the interior solution at the boundary has the form

¢, = CoE (1) + CVED W E (1) B (v) -
17
P CPRY OB () B ),

where C,,, C;l), and ng) are unknown coeflicients and the
second-order Lame functions of the first kind are

EV (V) =A+d,, (18a)
EP (V) =LA +d,, (18b)
where
d, = % [(a2+b2+c2)
(19a)
+ Vat+ bt + et - b2 - 2a? - azbz] ,
1 2,42, 2
dz—g[(a +b +c)
(19b)

— Vat + b+t - b2 - Pa? - azbz] .



Substituting these Lame functions into the external field gives
us

v, = w [CVEY () + CPEP (V)]
+(u+9) [d,CVED () + dy,CPFY (V)] (20)

+CoEY (V) + diCVEY (L) + dCEY (V).

Substituting (14) and (20) into the boundary conditions
equations (13a) and (13b) provides 6 conditions, since there
are terms proportional to ¢v and p + v as well as the constant
terms. These 6 conditions along with the condition given by
(9) provide 7 equations in the 7 unknown coefficients and
so can be solved as was shown by Meacham [10]. Solving
these simultaneous equations we can write the interior stream
function as

(6 b 6 e ().

where &, &, and &, are constant coefficients given by

&, =x,Rp (bz, A, az) , (22a)
&, =x,Rp (cz,az,bz), (22b)
gc = KVRD (az’ bz’ Cz) > (22C)

where x, = qabc/3 is the vortex “strength” and Ry and R,
are elliptic integrals of the first and second kind, respectively,
defined as

1 (*® dt
Rp(x,y,2) = = ,
' 2 L VE+2) (t+y) (t +2) (23
3 (® d
Rp (%, y,2) = > J d (23b)

o e+ () e

This solution was originally determined by Laplace [13] for
the case of a gravitating ellipsoid of uniform mass [14]. The
exterior stream function is

b= 3 (6 + 5" +52) SR (7). @

where & = a> + A, f* = b* + A, and y* = ¢* + A and now we
have

Eoc - KvRD (ﬁz’ Vz’ “2) > (253.)
& =x,Rp (10", 7). (25b)
& = K,Rp (o, ,77) (250)

While the interior solution has quadratic dependence on
spatial coordinates, the exterior field has a more complicated
dependence, due to the coefficients being functions of the
variable A. However, the flow field that acts on the vortex itself
is the interior solution, and so one can compute the flow field
acting on the vortex itself from (5). This gives rise to a self-
induced velocity field that is linear in spatial coordinates.
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4. Evolution of a Vortex in a Background
Shear Flow

We now consider the case of an ellipsoidal vortex immersed
in a background shear flow. This background shear flow
idealizes the effects of other vortices and so is the first
step towards understanding interactions between vortices.
This case was first considered by Meacham et al. [27] for
a number of specific types of background flow and later
generalized by Meacham et al. [28] where it was recast within
a Hamiltonian framework. Hashimoto et al. [29] extended the
analytical solutions of Meacham [10] for the isolated vortex
by solving for exact equilibrium solutions for the case of the
ellipsoid in an external straining flow. McKiver and Dritschel
[17] introduced a reformulation of the system that greatly
simplified the equations to a simple 3 x 3 matrix problem.
In this section we review their derivation of this matrix
formulation. This approach is built on the simple fact that the
stream function for the ellipsoid has quadratic dependence
on spatial coordinates, and so the velocity field has a linear
dependence. Naturally any linear flow field imposed on the
ellipsoidal vortex, while possibly altering the size (a, b, and ¢)
and orientation of the vortex, preserves the ellipsoidal form.
Thus we consider a general velocity field of the form

u, (x,t) =S, (1) x, (26)

where S, is a 3 x 3 matrix. Within this flow, we place a
single ellipsoidal vortex at the origin and require only that its
velocity field has the same form as (26); that is, u, = S,x. The
total velocity field felt by the ellipsoid is

u = Sx, (27)

where § =S, + S, and this depends only on time t. We refer
to S as the flow matrix subsequently.
The ellipsoid is specified by its axis half lengths a > b >

¢ and the unit vectors a, B, and ¢ directed along these axes.
This geometric information may be encapsulated in a single
symmetric matrix A defined by

A = MDM', (28)

where the superscript T' denotes transpose, M is an orthonor-
mal rotation matrix (M~ = M?) defined by

M=(ab g, (29)

and D is a diagonal matrix whose terms are the inverse
squared semiaxes lengths:

= 00

Dzoéo. (30)
0 o L
C2

The equation describing the surface of the ellipsoid is conve-
niently written as

x Ax = 1. (31)
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By taking a time derivative of this equation and using dx/dt =
u(x,t) = S(t)x, as well as the implied relation dx’/dt =
x! ST (t), we obtain

x <AS+STA+ %‘)x:o. (32)

Since this must be true for all points x on the boundary of the
ellipsoid, it follows that

dA T
= (as+s'A), (33)
which is simply the equation for the evolution of A in an
arbitrary linear background flow. Note that A remains a
symmetric matrix for all time since AS +S” A is automatically
symmetric if A is.

It proves convenient to rewrite (33) to evolve not A but
its inverse B = A™'. Using the fact that the product AB is the
identity matrix, it follows that

B _ _gdAg
=B(AS+S"A)B

giving us the evolution equation (as originally derived in [17])

dB
2 ~sB+BS%, (35)
dt
where
B =MD 'M’, (36)
at 0 0
D'=[0 ¥ 0. (37)
0 0 ¢

In order to determine the evolution of the ellipsoid it is
necessary to be able to calculate the semiaxes lengths, a, b,
and ¢, and the orientation vectors @, b, and € of the ellipsoid
from the matrix B. But (36), right multiplied by M, together
with (37) implies

Ba = a’a, (38a)
Bb = b°b, (38b)
B¢ = % (38¢)

Hence the semiaxes lengths and the orientation vectors of the
ellipsoid can be found directly from the B matrix by solving a
simple eigenvalue problem. Finally one must specify the flow
matrix S = S, + S,,. The self-induced part is derived from the
stream function solution to the inner potential problem, y,.
This solution can be written more generally for an arbitrarily
orientated ellipsoid as

1 3
v, = 5xTPVx - SKRe (a’,0%,¢), (39)

5
where
P, = MGM" (40)
and G is the diagonal matrix formed from the solution
coeflicients:
£ 0 0
G=|0¢& 0| (41)
00 &
From (5) it follows that
S, =LP, (42)
where L is defined as
0-10
L=(10 o). (43)
0 00

For the background flow matrix one can consider the
effect of a single distant vortex, of strength «;, centered at
x = X,. Let R = |X, — X,| be the distance between the
two vortices; then, to leading order in 1/R the vortices rotate
about each other at a rate

K %y

Q= S

(44)
At this order of approximation the vortices appear as points,
with no shape or internal structure. If we adopt a frame of
reference rotating with the z-axis passing through the joint
centre of the two vortices, so that their positions X, and X, are
fixed, and assuming the original vortex is located at the origin,
X, = 0, then in the vicinity of the origin the background
stream function takes the form (Taylor expanding)

3
Kk 1 i, |x|
Y, = —E + EXTPbX+ O( R , (45)

where notably the linear terms are absent and the matrix P,
is given by

R*-3X] -3X,Y, -3X,Z,
-3X,Y, R*-3Y} -3Y,7,
-3X,Z, -3Y,Z, R*-3Z;

Q00
-1 0 QO0].
0 0O

The corresponding velocity field is given by u, = S;x, where
as before the flow matrix is §; = LP,, leading to

Kp

(46)

3XY 3V -1+B 3YZ
S,=y| 1-B-3X* -3XY -3XZ |, (47)
0 0 0
where X = X, /R,
Kp
y = e (48)



hereinafter referred to as “the strain rate,” and

e (49)
Y Kp
is a parameter depending only on the ratio of the vortex
strengths. It can be simplified further by choosing either X
or Y to be zero, leaving only three nonzero components. For
example, if X =0,

1 3
0 §(1+3c0529)+ﬁ Esin20

1-B 0 o |- GO
0 0 0

Sy =y

where Z = sinf, Y = cosf, and the range of the angle
0 is restricted to [0°,90°] because of symmetry. This form
for the background flow matrix was originally considered by
Meacham et al. [27] but using a different notation.

The complete model now consists of the evolution equa-
tion (35) for the matrix B together with expressions (42) and
(50) for the flow matrices S, and S;,. Note that dB,;/dt = 0
in QG flow—this follows because there is no vertical velocity.
The element Bj; is the squared half-height of the vortex. Note
also that the determinant |B| = |[D™}| = (abc)* is proportional
to the squared vortex volume and is also invariant (because
QG flow is incompressible).

5. Equilibria and Stability

Given the equations governing the evolution of an ellipsoidal
vortex in a background shear flow one can then determine
equilibrium vortices from (35), where they satisfy

SB+BST = 0. (51)

This was first exploited by Reinaud et al. [30] using an iterative
linear method to determine equilibria. These equilibria have
important consequences for vortex interactions. As a vortex
evolves over its lifetime it may come into close proximity
with other vortices. When this happens the strain exerted
on one vortex by the others increases, as the magnitude of
this strain scales with the inverse cube of the separation
distance between vortices (see (48)). At some “critical” value
of strain the vortex will begin to deform significantly and
will undergo a strong interaction. If the vortices are close
enough they may partially or fully coalesce or “merge” into
one, forming a larger vortex along with filamentary debris.
Often the onset of such strong interactions occurs at the
point beyond which equilibria can no longer exist for strains
greater than this critical value, or beyond which equilibria are
unstable to disturbances. Thus the stability analysis of a vortex
in equilibrium with a background shear is an important
indicator of when strong interactions may occur. Next we give
a brief summary of the findings of a number of studies on this
topic.

The stability of a freely rotating ellipsoid of potential
vorticity was first considered by Meacham [10] who found
instabilities over a large range of the parameter space char-
acterising the ellipsoid. However, a more recent study by
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Dritschel et al. [31] found that one of the unstable modes
Meacham encountered is in fact stable, and overall their
results indicate that the freely rotating ellipsoid is widely
stable.

Miyazaki et al. [32] studied the stability of a spheroid of
uniform PV tilted by some inclination angle from the vertical
axis. They found that highly prolate spheroids are unstable
if the inclination angle is large, while oblate spheroids are
unstable even if the inclination angle is very small. In both
cases the instability is nonellipsoidal; that is, it destroys the
ellipsoidal form of the vortex.

Hashimoto et al. [29] derived the equations for the linear
stability of an ellipsoid in a 2D strain field by expanding
the disturbing surface in Lame functions. Using these they
studied the cases of a pure strain field (when there is no
background rotation) and a simple shear flow (when the
strain rate is equal to the background rotation). They found
that, in a pure strain field, highly elongated ellipsoids are
unstable to modes whose order m is greater than 2, that is, to
nonellipsoidal modes. In a simple shear flow they found thata
highly elongated ellipsoid whose major axis is perpendicular
to the flow direction is unstable, whereas any ellipsoidal
vortex seems to be stable if the major axis is parallel to the
flow direction.

Meacham et al. [27] derived equations for the evolution
of an ellipsoid of uniform PV in a background flow with
both horizontal strain and vertical shear. They examined
the stability for some special background flows, either pure
horizontal strain or pure vertical shear (in the absence of
horizontal strain). A full linear stability analysis for the case
of a general linear background flow (50) was conducted by
McKiver and Dritschel [33]. They characterized the system
by four parameters: the height-to-width aspect ratio of the
vortex h/r, the strength ratio f3, the angle 0, and the strain
rate p. Over nearly the entire parameter space examined they
found that the ellipsoidal steady states are stable, and where
instability does occur the dominant modes encountered are
ellipsoidal. Thus the ellipsoidal vortex in a linear background
flow is a fairly robust model. They also found that for vortices
with aspect ratios greater than 0.8 the most unstable vortices
(i.e., the ones which destabilize at the smallest strain values
y) are found in the ranges 55° < 6 < 75° and 20° <
0 < 30°, for opposite- and like-signed vortices, respectively.
Because the strain is proportional to the inverse cube of
the separation distances between two vortices, this implies
that vortices which are vertically offset by these 0 values
destabilize from the greatest separation distances; that is, they
are least resilient. This agrees with the findings of Reinaud
and Dritschel [34] in which they examined the merger of
two identical uniform PV vortices which are offset both
horizontally and vertically and found that vortices which
are moderately offset in the vertical merge from a greater
separation distance than vortices that are not offset vertically.
In McKiver and Dritschel [33], for opposite-signed vortices,
they found that the most stable vortices have an aspect ratio
between 1.0 and 1.25, whereas for the like-signed vortices
the most stable vortices have an aspect ratio near 0.8. This
agrees with the findings in a study by Reinaud et al. [30] where
they performed simulations of a turbulent flow comprising
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hundreds of QG vortices in order to determine the typical
shape of vortices in QG turbulence. Remarkably their study
also found that typically vortices are slightly oblate having a
height-to-width aspect ratio of H/L = 0.8.

6. Multiple Ellipsoidal Vortices

While the single vortex case provides great insight into vortex
behaviour, in order to understand some of the dynamics that
precipitate strong interactions and vortex mergers, one must
consider a multivortex scenario. There are a number of works
that have generalized the single ellipsoidal vortex solution to
a multivortex scenario [35-38]. However, because of the form
of the external stream function (24) generated by a vortex, in
general it can induce nonellipsoidal disturbances on external
vortices. This means that assumptions must be made in order
to retain the ellipsoidal form. Here we will briefly summarize
an accurate approach introduced by Dritschel et al. [18]. This
approach, referred to as ELM, represents vortices as PV ellip-
soids and filters higher-order nonellipsoidal deformations
simply by preserving only the linear part of the exterior field.
Following the matrix formulation in Section 4 each vortex
can be specified by the value of its potential vorticity, g;, the
symmetric matrix B;, and the location of the center of the
vortex X; = (X;,Y;, Z;), in terms of which the surface of each
ellipsoid can be written as

x-X,)" B (x-X,) =1, (52)

where i = 1,...,N, where N is the number of vortices. If
we consider that the velocity field for a particular ellipsoid
(g:>X;,B;) has a linear dependence on spatial coordinates,
that is,

w, (x,t) =U; (t)+S; () (x - X;), (53)

where U;(f) is an arbitrary velocity field and S;(¢) is the
flow matrix, then this velocity field is the most general form
which exactly preserves the ellipsoidal form of the vortex.
The governing equation for ELM [18] is a finite Hamiltonian
system where the equations of motion for the ith ellipsoid are

dx; 1_0H
E = —;i a—)(i, (543)
B B, +BST, (54b)
dt
10_ oH
S, = -——Lo,
! k; OB, (540)

where «; is the vortex strength, H is the Hamiltonian of
the system defined as the total energy of the system divided
by 47, and the flow matrix is decomposed into two parts,
S; = 8/ + 87, the self-induced part S} and the part induced
by all other ellipsoids S?. For efficiency of the method
this background flow field is modelled for each ellipsoid
as a finite sum of singular point vortices. The position
and strength of the singularities are obtained such that
the approximate stream function induced by them matches

FIGURE 1: The time evolution of two like-signed vortices solved
using contour dynamics solution of the full QG equations (a) and
using the ellipsoidal model (b). The side view is from an angle of 60
degrees. Figures courtesy of http://www-vortex.mcs.st-and.ac.uk/~
dgd/ELM/.

exactly the function at a given order of accuracy in 1/R,
R being the distance from X; to the point of evaluation.
Dritschel et al. [18] find that high accuracy (O(1/R7)) can
typically be achieved by using 7 point singularities for each
ellipsoid. Comparisons of the ELM with full numerical
simulations (Figure 1) of the QG vortices show remarkable
agreement (see http://www-vortex.mcs.st-and.ac.uk/~dgd/
ELM/ to see more comparisons).

The steady states for the case of a two-vortex ELM system
were first analyzed by Reinaud and Dritschel [39]. In this
case, the parameters considered were the volume ratios (p =
V,/V,), the vertical offsets (Az), and height-to-width aspect
ratios (h/r). As with the single vortex case, the method to
determine equilibria involves the solution of

$B,+BS/ =0, (55)

in the rotating reference frame where dX;/dt = 0. A family
of equilibria for a given set of parameters (py,, Az, h/r) are
found for different horizontal distances between the vortices,
0, where 0 is defined as the horizontal gap between the two
innermost edges of the ellipsoids; specifically

& = [X) = Xo| = \(Byy), = y(By1),. (56)

Below a critical value of § the equilibria become unstable
inducing strong interactions that may lead to merger of
the two vortices. Analyzing the stability of these equilibria
Reinaud and Dritschel [39] discovered a “tilt” instability
that results in the merger of prolate vortices from greater
separation distances than seen in previous symmetric merger
cases (i.e., no vertical offset). This tilt instability is the first
instability able to precipitate the merger of prolate vortices.
The merger of corotating vortices was also studied in detail
by Li et al. [37] where they introduced a new set of nearly
canonical variables to solve the multivortex system. The case
of two counterrotating ellipsoidal vortices having the same
size was considered by Miyazaki et al. [40]. They found that



in general the vortex pair propagate as a stable dipole, except
for certain tall vortices; when initially placed within a critical
distance, they begin to tilt and eventually destabilize.

7. Conclusions

Here we reviewed the recent history of the theory of ellip-
soidal vortices in the field of geophysical fluid dynamics. The
strength and utility of this model is that it provides analytical
vortex solutions whose equilibria and stability can easily
be determined. Remarkably this simple model can provide
insights into the dynamics seen in the full solutions of the
governing equations in complicated turbulence simulations.
This is clearly seen even for the single vortex in a background
shear flow where the most stable aspect ratio of ~0.8 [33] is
the ratio statistically most seen in complex QG turbulence
simulations [30].

An interesting recent study by Koshel et al. [41] modified
the ellipsoidal model, adding diffusion, in order to study
how passive scalar transport through the vortex boundary
is affected by both advection and diffusion. They showed
that adding disturbances to the vortex can boost the rate
of transport of the tracer out of the vortex relative to the
undisturbed case and discuss the potential of this model as a
means to determine diffusivity values in the real ocean. This
study is one example of the potential applications that the
ellipsoidal model can have for studying processes in the ocean
and atmosphere, where it has the advantage of an analytical
solution for the flow field.

The application of the ellipsoidal vortex model discussed
in this review has only been for the quasi-geostrophic equa-
tions, which applies to large-scale dynamics when the Rossby
number is small. However the QG equations are only the
first order in a hierarchy of the so-called “balanced” models
(i.e., based on geostrophic and hydrostatic balance) that
capture the underlining effects of rotation and stratification.
A very recent numerical study by Tsang and Dritschel [42]
looked at the evolution of an ellipsoidal vortex for more
general dynamics beyond the QG limit. They found that these
ellipsoidal vortices again are very robust structures, being to a
large extent quasi-equilibria over long time integrations. This
prompted McKiver and Dritschel [43] to revisit the potential
problem for an isolated ellipsoid using equations at the next
order to the QG theory (so-called QG+1). In this higher-order
model, one encounters three Poisson equations as the velocity
field is now defined in terms of a vector potential instead of
a scalar stream function as in the QG case. They showed that
an analytical solution can be found to this QG+1 system of
equations analogous to the QG case. This is a powerful exten-
sion of the ellipsoidal theory in geophysical fluid dynamics
having the potential to capture many features not seen in the
QG limit. For one thing in the QG+1 model there is a vertical
velocity unlike the QG model. Another limitation of the QG
model is that there is complete symmetry between cyclonic
and anticyclonic vortices, whereas in reality the Earth rotates
in one direction giving rise to an asymmetry in the behaviour
of cyclones and anticyclones. The next order to QG picks up
this asymmetry and so is much more applicable to a wider
range of geophysical flows. Potential future studies of these
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higher-order solutions could determine equilibria and their
stability properties providing insights into turbulence beyond
the large-scale approximation. Also the development of a
multiellipsoidal vortex theory beyond QG would have huge
benefits in understanding more realistic turbulence phenom-
ena. The exterior field in QG+1 is much more complicated
than the QG case and so the projection of this onto a linear
flow field that preserves ellipsoidal form will filter more of the
dynamics. However, even understanding the limits of such a
model would be extremely revealing.

The application of the ellipsoidal form to geophysical
vortex dynamics has only a short history, beginning with
the works of Zhmur and Pankratov [8, 9] and independently
Meacham [10]. Despite this relatively short period, it already
has yielded many insights into vortex interactions in geophys-
ical flows. These vortex interactions are crucial as they are a
huge driving force within the atmospheric and the oceanic
circulation. There is still great potential for this subject to
reveal more about the complex dynamics within geophysical
turbulence.
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