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Path tracking in wireless and mobile environments is a fundamental technology for ubiquitous location-based services (LBSs). In
particular, it is very challenging to develop highly accurate and cost-efficient tracking systems applied to the anonymous areas where
the floor plans are not available for security and privacy reasons. This paper proposes a novel path tracking approach for large Wi-
Fi areas based on the time-stamped unlabeled mobility map which is constructed from Smith-Waterman received signal strength
(RSS) measurement matching. Instead of conventional location fingerprinting, we construct mobility map with the technique of
dimension reduction from the rawmeasurement space into a low-dimensional embeddedmanifold.The feasibility of our proposed
approach is verified by the real-world experiments in the HKUST campus Wi-Fi networks, sMobileNet. The experimental results
prove that our approach is adaptive and capable of achieving an adequate precision level in path tracking.

1. Introduction

The recent decade has witnessed a growing interest in the
location-based applications and services for both indoor and
outdoor environments [1–4]. Since the Wi-Fi networks are
now widely available, the possibility of tracking people’s
motion paths by using the Wi-Fi received signal strength
(RSS) allows the ubiquitous context-awareness and several
potential innovative services [5]. For instance, if the shoppers’
paths are tracked by the retailers in a store, the sales informa-
tion and the related advertisements could be pushed in based
on the shoppers’ real-time locations [6]. As another example,
the hospitals can utilize the patients’ path information to
identify whether they are in an emergency situation and also
assign the closest doctors or nurses to see the patients, if
necessary [7].

A variety of wireless network techniques have been con-
sidered for location tracking in indoor or outdoor environ-
ments. Although the popular and widely used GPS can

provide accurate information for outdoor localization and
path navigation services, the positioning signals are generally
blocked in the indoor or underground scenarios [8, 9]. To
solve this problem, theWi-Fi network is chosen as the favorite
technique to achieve indoor localization and tracking due to
the popularity in public hotspots and low cost for the deploy-
ment in practice [10–13]. In themost recentWi-Fi localization
and tracking approaches, the site-survey measurement on
RSS fingerprints is required in the offline phase to construct
the RSS radio map associated with the target area [14–18].
However, the adaptation degradation problem occurs due to
the time consuming and labor intensive work on fingerprint
recording [19]. To solve this problem, Wang et al. in [20]
introduced a new idea of mapping the people’s motion paths
into a mobility map in which the location points (LPs) are
connected by transition relations. As discussed in [20], there
are three categories of LPs involved in people’s motion paths:
(i) personal common locations (PCLs) which many people
have spent a lot of time in, (ii) crucial locations (CLs) where
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multiple adjacent paths intersect, and (iii) ordinary locations
which are used to describe the transition relations between
neighboring LPs. Each LP is formed by merging the similar
measurements which are recorded from assisted GPS (A-
GPS),Wi-Fi, and cellular networks.However, the constructed
mobility map in [20] fails to consider the timestamp relations
of measurements. In our previous work [21], we found that,
for the calculation of measurement similarities, the times-
tamps and signal strengths are two sides of a coin. With this
idea, we performed spectral clustering on RSS shotgun reads
based on the combination of timestamps and signal strengths
and also refer to Kullback-Leibler divergence of RSS distribu-
tions in different LPs to conduct mobility map construction
[21]. The most significant problem to limit the practical use
for themobilitymap in [21] is the lowprecision and ambiguity
in PCL identification, which means that the PCLs cannot be
precisely and uniquely identified from the mobility map.

To overcome the disadvantages of the conventional
approaches, we propose the tracking solution based on the
time-stamped mobility map constructed from Wi-Fi RSS
measurement matching in this paper. This solution complies
with three basic prerequisites: (i) it can be applied to the large
anonymous Wi-Fi areas by using physically unlabeled high-
dimensional measurements; (ii) mobility map is constructed
from significant LPs which are involved in many people’s
motion paths; and (iii) people’smotion paths are tracked in an
adequate precision level. To meet these goals, we divide our
approach into the following fourmain steps: (i) measurement
quantization in a low-dimensional manifold which lies in the
raw RSS space, (ii) LP identification by Smith-Waterman
measurement matching [22], (iii) LP assembling into the
mobility map in a temporal logic manner [23], and (iv)
people’s motion path tracking in mobility map.

The rest of this paper is organized as follows. Section 2
gives an overview of some relevant tracking approaches
which have been used so far. In Section 3, we describe the
detailed steps involved in our proposed approach. Section 4
presents the experimental results and analysis. Finally, we
conclude this paper and provide some future directions in
Section 5.

2. Related Work

As the Wi-Fi technique becomes prevalent wireless solution
in public hotspots, there are a largely increasing number of
different approaches used to track people’s paths by usingWi-
Fi technique [24, 25]. In general, these approaches fall into
five main categories: proximity sensing, location fingerprint-
ing, pattern matching, time trilateration, and angle triangu-
lation.

2.1. Proximity Sensing. Theproximity sensing is recognized as
the simplest way to track people’s locations in a real-time
manner [26, 27]. The location calculation is done based on
the density of access points (APs) and granularity of divided
cells in target area. In most cases, the target is located at the
closest cell which it most probably belongs to. In [26], the
authors divided the target area into several disjoint cells and

fitted the Gaussian RSS distributions for the hearable base
stations from the recorded RSSs in each cell. Then, when
a localization request arrives, the Bayesian probabilistic
method is employed to locate the target into the cell which has
the highest confidence probability. Finally, the Markov chain
is used for path tracking. As another example of the proximity
sensing-based location tracking, the Herecast in [27] con-
ducted the Wi-Fi localization by using a database consisting
of theAPs’ service set identifiers (SSIDs) and the signal cover-
age range of each AP. For any location request, the area corre-
sponding to the coverage of the AP which has been detected
as the strongest AP, namely, the AP associated with the largest
RSS, is referred to as the receiver’s estimated location. Based
on this approach, it is extremely difficult to perform a finer
path tracking due to the imprecise localization results.

2.2. Location Fingerprinting. The location fingerprinting has
beenmost widely used in current location tracking systems in
Wi-Fi environments [28–30].This approach requires the con-
structed radiomapof fingerprints. Each fingerprint is a vector
of RSS associated with its physical locations which are cali-
brated in the offline phase. In the online phase, the target or
the location server retrieves the radio map to estimate the
location which has the most similar fingerprint to each newly
recorded RSS measurement. The first representative RADAR
system [28] was designed based on the assumption that the
physically adjacent locations have the same fingerprints as in
signal space.The operation of RADAR system consists of two
phases.The radio map is first constructed in the offline phase
to be afterwards used for location estimation. In the online
phase, the target’s locations are tracked by using the nearest
neighbor(s) in signal space (or𝐾-nearest neighbor(s) (KNN)
algorithm). The Horus [30] and Nibble [29] are another two
prominent fingerprint-based location tracking systems. Both
the Horus and Nibble systems work based on the Bayesian
inference approach, while themajor difference between them
is about the way to depict the RSS distributions at reference
points (RPs). In Horus system, a Gaussian distribution curve
for each hearable AP is fitted from the recorded RSSs at each
RP, while the Nibble system uses a histogram to record the
frequencies of recorded RSSs at each RP. Moreover, from the
study of the problems about RSS correlation, variations of
RSSswith respect to the environmental changes, and relations
of RSSs and spatial characteristics, the Horus system is
featured with high accuracy and low computation cost com-
pared to the Nibble system.

2.3. Pattern Matching. Reference [31] proposed a new loca-
tion tracking system, LENSR, adopting the 𝐾-nearest neigh-
borhood vector mapping-aided topological counter propaga-
tion network. Fang and Lin in [32] studied the discriminant-
adaptive neural network (DANN) for location tracking in
Wi-Fi environment. Different from the conventional pattern
matching approaches, DANN extracts the low-dimensional
discriminative components for neural network training.
Other similar works on pattern matching-based location
tracking can be found in [33, 34]. The pattern matching
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approach addressed in [33] relies on the multilayer per-
ceptron architecture by one-step secant training. In [34],
the pattern matching approach with well training process is
proved to perform better localization accuracy than the con-
ventional nearest neighbor(s) and Bayesian inference appro-
aches. However, the major drawback of pattern training-
based location tracking system is that it should be conducted
by sufficient training before it works.

2.4. Trilateration and Triangulation. The basic idea of trilat-
eration and triangulation approaches comes from the time
of arrival (TOA) and angle of arrival (AOA) measurements.
To enable the localization in 2-dimensional areas, the signal
measurements from at least three and two APs should be
made for the TOA and AOA systems, respectively [35, 36]. In
TOA systems [35], the trilateration approach is conducted on
the distances between the APs and tracking target which are
calculated by the measured propagation time between them.
Moreover, the exact time synchronization is also required for
the measurement of propagation time. The main advantages
of AOA systems [36] are that there are as few as two APs
for the purpose of 2-dimensional localization;meanwhile, the
time synchronization between the APs and tracking target is
not required. However, the location precision could degrade
when the signal is blocked by the walls and infrastructures or
the target is located far away from the APs.

Since the TOA and AOA location systems involve signif-
icant changes on hardware devices and infrastructures which
make these two systems difficult to be widely applied in
practice, the RSS-based trilateration approach is more pre-
ferred by current work [37]. Different from the TOA sys-
tems, the distances between the APs and tracking target are
calculated by the RSS propagation models. In [37], Narzul-
laev compared three representative models used for Wi-Fi
RSS-based trilateration approach: (i) log-distance loss model
which assumes that the mean of RSSs approximately de-
creases logarithmically with the propagation distance, (ii)
multislope loss model which achieves a larger granularity of
the predicted locations and requires a shorter sample collec-
tion time, and (iii) multiwall loss model which carefully takes
the path loss caused by the walls and floors into account.

In all, applying the aforementioned location tracking
approaches into the large Wi-Fi environments could be a
challenging work by the reasons of the inaccurate localization
results in proximity sensing, laboring cost for fingerprint
calibration and training process in location fingerprinting
and pattern matching, respectively, and extra devices and
infrastructures required by trilateration and triangulation
approaches.Themain contribution of this paper is to develop
a better solution to track people’s motion path in large Wi-Fi
environments by using RSS-based time-stamped mobility
map without any fingerprint.

3. System Description

3.1. System Overview. Our proposed system consists of two
phases: offline training phase and online tracking phase, as
shown in Figure 1. The offline training phase is conducted

on the network side with a large amount of computation
resource, while the online tracking phase is conducted on the
source-weak client side.

In the offline training phase, we first record RSSmeasure-
ments to conduct measurement quantization. The quantized
RSS measurements are then used to identify the raw LPs by
performing the Smith-Waterman measurement matching.
Each LP corresponds to a significant location which is
involved inmany people’s motion paths. Finally, we do the LP
assembling to construct the mobility map corresponding to
the target area. In the online tracking phase, we first quantize
each new RSS measurement into a discrete level. Then, the
matching LP with respect to each new online fragment can
be determined based on the fine LP matching. Finally,
people’s motion paths are tracked by connecting every two
consecutive matching LPs along the shortest path in mobility
map. For the sake of convenience, a list of notations used in
this paper is given in Notation.

3.2. RSS Measurement Recording. In our system, the RSS
measurements are sporadically recorded by our planned vol-
unteers equipped withWi-Fi mobile receivers following their
routine activities in target area. A measurement is a vector of
RSSwhich consists of theRSS values fromall the hearableAPs
[38]. Each string of consecutive measurements is called a
fragment. As discussed in [28, 39], the measurements could
be similar if they are recorded at nearby locations. We define
the two fragments containing the common similar measure-
ments as a growing fragment pair in which each overlapped
piece of common similar measurements forms a raw LP to be
afterwards used for LP merging and splitting to construct the
time-stamped mobility map.

We set 𝑅ℓ = {𝜇ℓ
1
, . . . ,𝜇

ℓ

𝑁
ℓ} as the ℓth (ℓ = 1, . . . , 𝑁) frag-

ment where 𝑁 and 𝑁ℓ stand for the numbers of fragments
and measurement in 𝑅ℓ, respectively, and 𝜇ℓ

𝑖
is the 𝑖th (𝑖 =

1, . . . , 𝑁
ℓ
)measurement. If there are𝑀 hearable APs, we can

obtain 𝜇ℓ
𝑖
= (𝜇
ℓ

𝑖,1
, . . . , 𝜇

ℓ

𝑖,𝑀
), where 𝜇ℓ

𝑖,𝑗
(𝑗 = 1, . . . ,𝑀) is the

RSS value from AP 𝑗. In each growing fragment pair (i.e.,
{𝑅
𝑠
, 𝑅
𝑡
} (𝑠, 𝑡 ∈ {1, . . . , 𝑁})), the 𝑘th (𝑘 = 1, . . . , 𝑁

𝑠,𝑡
) LP is

denoted as 𝑃𝑘
𝑠,𝑡
. After all the LPs are obtained, the mobility

map we seek to construct is recognized as a graph 𝐺 =

(𝑉
𝑃
, 𝐸
𝑃
) inwhich𝑉

𝑃
and𝐸

𝑃
stand for the sets of LPs and time-

stamped transition relations between neighboring LPs, as
previously discussed in [21].

3.3. Measurement Quantization. For the sake of applying
Smith-Waterman measurement matching technique to con-
struct mobility map, we need to quantize the RSS mea-
surements into different discrete levels based on the simi-
larities of RSS measurements. Specifically, we use Laplacian
embedding-based spectral clustering to quantize the RSS
measurements which have beenmerged into the same cluster
in the samequantization level.Thus, the number of clusters by
spectral clustering equals the number of quantization levels.
The detailed steps of measurement quantization process are
provided as follows.
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Figure 1: Architecture of the proposed system.
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Step 2. Considering the problem of mapping the raw mea-
surements into a 𝐾-dimensional (𝐾 < 𝑀) space, we can
represent the mapped measurements as a (∑𝑁

ℓ=1
𝑁
ℓ
) × 𝐾

matrix Ψ = [𝜇̂1
1
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𝑖
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the Laplacian embedding [40], we can obtain the optimal
objective function as
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Ψ

{
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{tr ((Ψ)𝑇 (D −W) Ψ)} ,

(1)

where “tr” denotes the trace operation, D = [𝐷ℓ,ℓ
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cussed in [21], the solution to the optimization problem in (1)

can be given by the𝐾 eigenvectors associated with the small-
est eigenvalues of the eigenvalue problem in (2):

minimize
𝐾

∑

𝛾=1

𝜆
𝛾

subject to L𝜇̂ℓ
𝑖
= 𝜆
𝛾
D𝜇̂ℓ
𝑖
,

𝑖 = 1, . . . , 𝑁
ℓ
; ℓ = 1, . . . , 𝑁; 𝛾 = 1, . . . , 𝐾.

(2)

Step 3. We perform 𝐾-means clustering on the mapped 𝐾-
dimensional vectors to obtain the Φ clusters, 𝐶

1
, . . . , 𝐶

Φ
,

where 𝐶
𝜔
denotes the 𝜔th (𝜔 = 1, . . . , Φ) cluster. Then, we

quantize the RSS measurements corresponding to the
mapped vectors in the same cluster into the same quantiza-
tion level.

3.4. Smith-Waterman Measurement Matching. The objective
of Smith-Waterman measurement matching is to identify the
raw LPs for the construction of mobility map associated with
the target area. To meet this goal, we adopt the Smith-
Waterman alignment approach to find the winning paths in
the scoring space for each growing fragment pair and then
perform measurement matching to identify the raw LPs. The
steps of the raw LP identification are as follows.

Step 1. In growing fragment pair {𝑅𝑠, 𝑅𝑡} (𝑅𝑠 = {𝜇𝑠
1
, . . . ,𝜇

𝑠

𝑁
𝑠},

𝑅
𝑡
= {𝜇
𝑡

1
, . . . ,𝜇

𝑡

𝑁
𝑡}), when 𝜇𝑠𝑝 (𝑝 ∈ {1, . . . , 𝑁

𝑠
}) and 𝜇𝑡

𝑞
(𝑞 ∈

{1, . . . , 𝑁
𝑡
}) are in the same quantization level, we set a pos-

itive matching score, 𝜑(𝜇𝑠
𝑝
,𝜇
𝑡

𝑞
), for the measurement pair

(𝜇
𝑠

𝑝
,𝜇
𝑡

𝑞
); otherwise, we set a negative mismatching score,
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𝜓(𝜇
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the relations of “matching score > 0 > missing score >
mismatching score.” Then, we can obtain the scoring space,
H
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Step 2. We select the measurement pair, (𝜇𝑠
𝑝
,𝜇
𝑡

𝑞
), which has

the highest score in scoring space as the first point on thewin-
ning path, such that (𝜇𝑠
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) = arg max𝑁
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𝑀
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𝑝
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𝑞
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𝑀
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measurement matching. In our experiments, we set 𝜂
𝑀
= 30.

Step 3. We compare the scores of three previous measure-
ment pairs, (𝜇𝑠

𝑝−1
,𝜇
𝑡

𝑞−1
), (𝜇𝑠
𝑝−1
,𝜇
𝑡

𝑞
), and (𝜇𝑠

𝑝
,𝜇
𝑡

𝑞−1
), and select

the pair which has the highest score among them as the sec-
ond point on the winning path. We repeat this process until
the selected pair has the score zero. At this point, the selected
pair with the score zero is defined as the last point on the
winning path.

Step 4. After the winning path in scoring space is obtained,
we identify the corresponding raw LP by merging the
matched measurement pairs. Based on the Smith-Waterman
alignment, the three measurement matching criteria are pro-
vided as follows.

(i) Criterion 1: measurements 𝜇𝑠
𝑝
and 𝜇𝑡

𝑞
are matched

when there is a diagonal jump from (𝜇
𝑠

𝑝−1
,𝜇
𝑡

𝑞−1
) to

(𝜇
𝑠

𝑝
,𝜇
𝑡

𝑞
) in scoring space.

(ii) Criterion 2: measurement 𝜇𝑠
𝑝
is not matched with any

measurement in fragment 𝑅𝑡 when there is a top-
down jump from (𝜇

𝑠

𝑝−1
,𝜇
𝑡

𝑞
) to (𝜇𝑠

𝑝
,𝜇
𝑡

𝑞
) in scoring

space.
(iii) Criterion 3: measurement 𝜇𝑡

𝑞
is not matched with any

measurement in fragment𝑅𝑠 when there is a left-right
jump from (𝜇𝑠

𝑝
,𝜇
𝑡

𝑞−1
) to (𝜇𝑠

𝑝
,𝜇
𝑡

𝑞
) in scoring space.

To identify the other raw LPs from the scoring space, we
continue to select the measurement pair which has the

highest score in the remaining measurement pairs which are
not involved in the previouswinning paths as the first point of
a new winning path. We follow Steps 3 and 4 until this new
winning path arrives at a measurement pair which has the
score zero or is involved in the previous winning paths. We
name this measurement pair as the last point on this new
winning path. For simplicity, we only focus on the situation
that only one raw LP exists in a scoring space (i.e.,𝑁

𝑠,𝑡
= 1 for

the growing fragment pair {𝑅𝑠, 𝑅𝑡}) since the situation ofmul-
tiple rawLPs can be avoided bymanually chopping each long-
length fragment into several shorter ones. The length of a
fragment is defined as the number of measurements con-
tained in this fragment.

3.5. Mobility Map Construction. After all the raw LPs have
been identified, the next work is to assemble the raw LPs into
the mobility map in a temporal logic manner. As discussed
before, since the measurements in each raw LP are labeled by
timestamps, we can approximately represent each raw LP as
a time interval which starts at the last point and ends at the
first point on its corresponding winning path. Then, the raw
LP assembling process can be converted into a temporal rea-
soning problem, as introduced in [23]. The detailed steps are
described below.

Step 1. Based onAllen’s interval algebra (i.e., 13 temporal logic
relations: {=}, {m}, {mi}, {o}, {oi}, {s}, {si}, {f}, {fi}, {d}, {di}, {<},
and {>}) in [23], we can capture the temporal logic relations
between the raw LPs in each growing fragment pair. Specifi-
cally, when 𝑃𝑘

𝑠,𝑡
and 𝑃𝑘

󸀠

𝑠,𝑡
are two raw LPs for the growing frag-

ment pair {𝑅𝑠, 𝑅𝑡}, we obtain the following:

(i) if the last point in 𝑃𝑘
󸀠

𝑠,𝑡
is located in 𝑃𝑘

𝑠,𝑡
,

we have 𝑃𝑘
𝑠,𝑡
{m} 𝑃𝑘

󸀠

𝑠,𝑡
;
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(ii) if the last point in 𝑃𝑘
𝑠,𝑡

is located in 𝑃𝑘
󸀠

𝑠,𝑡
,

we have 𝑃𝑘
𝑠,𝑡
{mi} 𝑃𝑘

󸀠

𝑠,𝑡
;

(iii) if the last point in 𝑃𝑘
󸀠

𝑠,𝑡
is after the first point in 𝑃𝑘

𝑠,𝑡
,

we have 𝑃𝑘
𝑠,𝑡
{<} 𝑃
𝑘
󸀠

𝑠,𝑡
;

(iv) if the last point in 𝑃𝑘
𝑠,𝑡

is after the first point in 𝑃𝑘
󸀠

𝑠,𝑡
,

we have 𝑃𝑘
𝑠,𝑡
{>} 𝑃
𝑘
󸀠

𝑠,𝑡
.

(4)

In (4), when the timestamp of the last point in a raw LP is
larger than the timestamp of the first point of another raw LP,
we define “the last point is after the first point”; otherwise, we
define “the last point is before the first point.”

Step 2. The temporal logic relations between the raw LPs (i.e.,
𝑃
𝑘

𝑠,𝑡
) and their belonging growing fragment pair (i.e., {𝑅𝑠, 𝑅𝑡})

are given as follows:

(i) if the start point in 𝑅𝑠 (or 𝑅𝑡) is located in 𝑃𝑘
𝑠,𝑡

and the end point in 𝑅𝑠 (or 𝑅𝑡) is after the first

point in 𝑃𝑘
𝑠,𝑡
, we have 𝑃𝑘

𝑠,𝑡
{s} 𝑅𝑠 (or 𝑅𝑡) ;

(ii) if the start point in 𝑅𝑠 (or 𝑅𝑡) is before the last

point in 𝑃𝑘
𝑠,𝑡

and the end point in 𝑅𝑠 (or 𝑅𝑡) is after

the first point in 𝑃𝑘
𝑠,𝑡
, we have 𝑃𝑘

𝑠,𝑡
{d} 𝑅𝑠 (or 𝑅𝑡) ;

(iii) if the start point in 𝑅𝑠 (or 𝑅𝑡) is before the

last point in 𝑃𝑘
𝑠,𝑡

and the end point in 𝑅𝑠 (or 𝑅𝑡)

is located in 𝑃𝑘
𝑠,𝑡
, we have 𝑃𝑘

𝑠,𝑡
{f} 𝑅𝑠 (or 𝑅𝑡) ;

(iv) if both the start and end points in 𝑅𝑠 (or 𝑅𝑡) are

located in 𝑃𝑘
𝑠,𝑡
, we have 𝑃𝑘

𝑠,𝑡
{=} 𝑅
𝑠
(or 𝑅𝑡) ,

(5)

where the start and end points in 𝑅𝑠 (or 𝑅𝑡) are defined as
the measurements which have the smallest and largest times-
tamps in 𝑅𝑠 (or 𝑅𝑡), respectively.

Step 3. Since the mobility map we seek to construct is a con-
nected graph, the temporal logic relations of any two raw LPs
can be obtained by Allen’s interval algebra based on the time-
stamped transitions between the LPs and fragments. To
illustrate this result clearer, we use the transitivity table in [23]
to show the temporal logic relations between the different raw
LPs. Table 1 gives the possible temporal logic relations bet-
ween any two LPs (i.e., 𝑃𝑘

𝑠,𝑡
and 𝑃𝑘

󸀠

𝑡,𝑢
) belonging to the two

different growing fragment pairs (i.e., {𝑅𝑠, 𝑅𝑡} and {𝑅𝑡, 𝑅𝑢}).

We take the relations of 𝑃𝑘
𝑠,𝑡
{s}𝑅𝑡 and 𝑃𝑘

󸀠

𝑡,𝑢
{s}𝑅𝑡, for inst-

ance. Based on the transitivity table, there are three possible
temporal logic relations between 𝑃𝑘

𝑠,𝑡
and 𝑃𝑘

󸀠

𝑡,𝑢
(i.e., 𝑃𝑘

𝑠,𝑡
{s}𝑃𝑘

󸀠

𝑡,𝑢
,

𝑃
𝑘

𝑠,𝑡
{si}𝑃𝑘

󸀠

𝑡,𝑢
, and 𝑃𝑘

𝑠,𝑡
{=}𝑃
𝑘
󸀠

𝑡,𝑢
), such that

(i) if the first point in 𝑃𝑘
󸀠

𝑡,𝑢
is after the first point in 𝑃𝑘

𝑠,𝑡
,

we have 𝑃𝑘
𝑠,𝑡
{s} 𝑃𝑘

󸀠

𝑡,𝑢
;

(ii) if the first point in 𝑃𝑘
𝑠,𝑡

is after the first point in 𝑃𝑘
󸀠

𝑡,𝑢
,

we have 𝑃𝑘
𝑠,𝑡
{si} 𝑃𝑘

󸀠

𝑡,𝑢
;

(iii) if the first points in 𝑃𝑘
𝑠,𝑡

and 𝑃𝑘
󸀠

𝑡,𝑢
are the same,

we have 𝑃𝑘
𝑠,𝑡
{=} 𝑃
𝑘
󸀠

𝑡,𝑢
.

(6)

Finally, the block diagram for the LP assembling into a
mobility map is shown in Figure 2. We also take the relations
of 𝑃𝑘
𝑠,𝑡
{s}𝑅𝑡 and 𝑃𝑘

󸀠

𝑡,𝑢
{s}𝑅𝑡, for instance. Based on (6) and

Figure 2, (i) if the first points in 𝑃𝑘
𝑠,𝑡
and 𝑃𝑘

󸀠

𝑡,𝑢
are the same (i.e.,

𝑅
𝑃
(𝑃
𝑘

𝑠,𝑡
, 𝑃
𝑘
󸀠

𝑡,𝑢
) = {=}), we merge 𝑃𝑘

󸀠

𝑡,𝑢
into 𝑃𝑘

𝑠,𝑡
to form a new LP

consisting of all the measurement pairs in 𝑃𝑘
𝑠,𝑡

and 𝑃𝑘
󸀠

𝑡,𝑢
; (ii)

if the first point in 𝑃𝑘
󸀠

𝑡,𝑢
is after the first point in 𝑃𝑘

𝑠,𝑡
(i.e.,

𝑅
𝑃
(𝑃
𝑘

𝑠,𝑡
, 𝑃
𝑘
󸀠

𝑡,𝑢
) = {s}), we merge all the overlapped measure-

ment pairs in 𝑃𝑘
󸀠

𝑡,𝑢
into 𝑃𝑘

𝑠,𝑡
and then delete all the overlapped

measurement pairs in 𝑃𝑘
󸀠

𝑡,𝑢
; and (iii) if the first point in 𝑃𝑘

𝑠,𝑡
is

after the first point in 𝑃𝑘
󸀠

𝑡,𝑢
(i.e., 𝑅

𝑃
(𝑃
𝑘

𝑠,𝑡
, 𝑃
𝑘
󸀠

𝑡,𝑢
) = {si}), we merge

all the overlappedmeasurement pairs in𝑃𝑘
𝑠,𝑡
into𝑃𝑘

󸀠

𝑡,𝑢
and then

delete all the overlapped measurement pairs in 𝑃𝑘
𝑠,𝑡
.

3.6. Path Tracking in Mobility Map. There are two main steps
involved in path tracking: (i) coarse RSS quantization and (ii)
fine LP matching. The path tracking in mobility map is con-
ducted as follows.

Step 1 (coarse RSS quantization). As discussed in Section 3.2,
after the offline RSS measurement quantization, we can
obtain Φ clusters associated with the Φ quantization levels.
Then, for each new measurement, 𝜇New

𝜏
(𝜏 = 1, . . . , 𝑁

New
), in

the online fragment, 𝑅New = {𝜇New
1
, . . . ,𝜇

New
𝑁

New}, where 𝑁New

is the number of new measurements in 𝑅New, we calculate
the Euclidean distance between 𝜇New

𝜏
and the average mea-

surement in each cluster (i.e., Avg(𝐶
𝜔
) (𝜔 = 1, . . . , Φ)),

diff
𝑅
(𝜇

New
𝜏
,Avg(𝐶

𝜔
)), and then quantize the new measure-

ment in a discrete level of cluster 𝐶
𝜔̂
, such that

𝜔̂ = arg min
𝜔=1,...,Φ

{diff
𝑅
(𝜇

New
𝜏
,Avg (𝐶

𝜔
))} . (7)

Step 2 (fine LP matching). We select the fragment
which has the longest length in each LP as the labeling
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Table 1: Transitivity table for different growing fragment pairs.

𝑅
𝑝
(𝑃
𝑘

𝑠,𝑡
, 𝑃
𝑘
󸀠

𝑡,𝑢
) 𝑃

𝑘
󸀠

𝑡,𝑢
{s}𝑅𝑡 𝑃

𝑘
󸀠

𝑡,𝑢
{d}𝑅𝑡 𝑃

𝑘
󸀠

𝑡,𝑢
{f}𝑅𝑡 𝑃

𝑘
󸀠

𝑡,𝑢
{=}𝑅
𝑡

𝑃
𝑘

𝑠,𝑡
{s}𝑅𝑡 {s, si, =} {<, o,m, di, fi} {<, o,m} {s}

𝑃
𝑘

𝑠,𝑡
{d}𝑅𝑡 {>, oi,mi, d, f} No-info {<, o,m, d, s} {d}

𝑃
𝑘

𝑠,𝑡
{f}𝑅𝑡 {>, oi,mi} {>, oi,mi, di, si} {<, o,m, d, s} {f}

𝑃
𝑘

𝑠,𝑡
{=}𝑅𝑡 {si} {di} {fi} {=}

“No-info” means that all the temporal logic relations are applied.

Yes

h > NLP

No

Yes
Yes

Yes

No No No

Yes

No
h ← h + 1

Split LPg+h (or LPg ) into two 

LPg+h (larger)} (or VP  = VP ∪ 
{LPg (smaller), LPg (larger)})

and “LP g and LPg+h have shared
growing fragment (s)”

No

YesForm a new path between 
LPg and LPg+h: VP  = VP ∪ 

LP g+h; EP = EP ∪ (LPg, LPg+h)

G = G ∪ LPg+h

g ← g + 1

 g < NLPh = 1
Yes

No

Assembled mobility map

Mobility map initialization
G = LPg; g = 1; h = 1

Rp(LPg , LPg+h) = {=}

Rp (LPg , LPg+h) = or{<} {>}

Rp (LPg , LPg+h) =

{m} {mi}or

Rp(LPg , LPg+h) =

{d} {di}or

Rp(LPg , LPg+h) =

{o} {oi}or {s} oror
{si } { }{f} oror

Merge LPg+h into LPg to
form a new LPg :

LPg ← LPg+h

VP = VP ∪ LPg+h

(smaller),VP = VP ∪ {LPg+h

VP = VP ∪ LPg+h

Merge the overlapped
measurement pairs into LPg :

LPg ← LPg ∪ {LPg ∩ LPg+h}

Delete the overlapped
measurement pairs in LPg+h :

LPg+h ← LPg+h /{LPg ∩ LPg+h }

LPg ← LPg ∪ {LPg ∩ LPg+h}

(or LPg+h ← LPg+h ∪ {LPg ∩

LPg+h})

(or LPg ← LPg\{LPg ∩ LPg+h })

LPg+h ← LPg+h\{LPg ∩ LPg+h }

new LPs containing the
measurement pairs with the

timestamps smaller and
larger than the timestamps of

the pairs in LPg (or LPg+h):

LPg+h(smaller) and

LPg+h(larger) ← LPg+h

(or LPg(smaller) and
LPg(larger) ← LPg

fi

Figure 2: Block diagram for the LP assembling into a mobility map.

fragment. The labeling fragment in 𝐶
𝜔

is denoted as
𝑅
ℓ

𝜔
= {𝜇
ℓ

1
, . . . ,𝜇

ℓ

𝑁
ℓ

𝜔

}, where 𝑁ℓ
𝜔
is the number of measure-

ments contained in 𝑅ℓ
𝜔
. When the labeling fragment 𝑅ℓ

𝜔
∗

satisfies the relation of

(𝜔
∗
, 𝜏
∗
)

= arg max
𝜔=1,...,Φ;𝜏=1,...,𝑁

New
{ max
𝜐=1,...,𝑁

ℓ

𝜔

{𝐻 (𝜇
ℓ

𝜐
,𝜇

New
𝜏
)}} ,

(8)

we set 𝐶
𝜔
∗ as the matching LP. After that, all the new mea-

surements before 𝜇New
𝜏
∗ (or the new measurements with IDs

not larger than 𝜏∗) are deleted to form a new online fragment
(i.e., 𝑅New ← 𝑅

New
\ {𝜇

New
𝜏
󸀠 (𝜏
󸀠
≤ 𝜏
∗
)}) and then continue to

search for the next matching LP. We repeat this process until

Table 2: Time cost for spectral clustering.

Number of measurements Time cost (second)

Test 1 Test 2 Test 3

100 0.36 0.42 0.41

200 2.25 2.16 2.22

300 7.83 8.28 8.06

400 20.63 20.75 20.62

500 46.49 46.56 46.88

600 111.46 110.02 110.34
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Table 3: Fragment representation by amino acids.

Fragment IDs Representation

𝑅
1 (with the length of 191)

HHHKKKKKKKIKKKKKKKKKKKKHHHHKKHHHHHHKKIILLIILLDDLL
IIKKIIIILLLLDDIIKKIIIIIIIKKKKKHHHHHKKIIDYSLDDLDDLDLILLLIID

DSSSSLLLLIISSDDLLLLDDYYYYSSYYYYCCYYYYCCCCYYSSCCYYY
YLLYYCCCCYYYYYYDDDDSSYYSSDDSSLLYYY

𝑅
2 (with the length of 195)

RRAAGGVVQQQQQQPPWWFFWWQQVVPPFFFFEEFFEEEEEEEEEEEEE
EEEFFFFEEEEEEEEFFFFWWWWWWPPPPQQQQQQVNNGGGGRAANAN
NNTTTTTTTTTTTMMMMMMMMMMMMMMMHHHHHHKKIILLDDSSSS
SSLICCCCCCCSCCCCCCCCCSCCYYYYCCYYCCYYSSLLDDLLDDDDDD

LS

𝑅
3 (with the length of 85) AARRGGQQQQPPQQPPWWWWPPQQQQWWFFFFFFEEEEEEEEEEEEEEE

EEEEEFFFFEEEEEEFFEEEEFFWWWWWWPPPPQQQ

𝑅
4 (with the length of 106)

GGRGGVQQPPQPPPWWWFEEEEFEFFWWPPPPWWPPPQPPPPPPPPPPPPP
PPPAAANNAARRAAAAAAAAAARRRRGGGGGGAAAAAAARRRAANNN

NNNNNNNN

𝑅
5 (with the length of 80) RRGVVVQQQQPPPPPWFFFWWVQPWWQWWQQVVGGRRRRRRRAAAA

AAAAAAAAAAAAAAAAAAAANNAAAAAAAAAAAA

there is no new measurement which remains in the online
fragment or the score for the newly formed fragment is lower
than the threshold, 𝜀

𝑆
. In our experiments, we set 𝜀

𝑆
= 10.

After all the matching LPs are obtained, we track the people’s
motion paths by connecting every two consecutive matching
LPs along the shortest path inmobilitymap.The shortest path
is defined as the path which passes by the smallest number of
LPs.

Some of the raw RSS fragments recorded may be very
long. When the number of RSS measurements in a fragment
is too long, the computation problem may arise for the pro-
cess of LP assembling into a mobility map, while the main
computation cost is involved in the offline training phase. In
the online tracking phase, when the user sends a location
query with its new RSS fragment, our system retrieves the
cluster centers and returns the quantization level as well as
the highest score in scoring space. The LP corresponding to
the highest score is selected as the matching LP. At this point,
the calculation complexity when our system tracks hundreds
and thousands of people walking around in the target area
forms an interesting work in future. To clearly show the com-
putation cost required in offline training phase, we take the
spectral clustering, for example. By using theMATLAB 7.10.0
(R2010a) underWINDOWSXP system, Table 2 compares the
time cost for spectral clustering in different numbers of
measurements conditions. All the computations are run on a
PCwith Intel Core i3-2120CPU. In Table 2, we can find that as
the number of measurements increases, the time cost for
spectral clustering will also increase.

4. Experimental Results and Analysis

In this section, we will evaluate the performance of mobility
map construction and motion path tracking based on the
actual RSS fragments (of dimensions 650) recorded on five
representative paths in HKUST campus. The five fragments
are recorded on path 1, 𝑅1 = (𝑅11, 𝑅12), which is from North

Bus Stop to Library and with the length of 191; path 2, 𝑅2 =
(𝑅
21
, 𝑅
22
, 𝑅
23
, 𝑅
24
), which is from Lab 2149 to Library and

with the length of 195; path 3, 𝑅3 = (𝑅31, 𝑅32), which is from
Lab 2149 toCoffee Shop andwith the length of 85; path 4,𝑅4 =
(𝑅
41
, 𝑅
42
), which is from Lab 2149 to Office 2514 and with the

length of 106; and path 5, 𝑅5 = (𝑅51, 𝑅52), which is from Lab
2149 to LT-J theater and with the length of 80 [41]. Each path
consists of several physically adjacent traces.We take the frag-
ment recorded on path 1 (i.e., 𝑅1), for instance. 𝑅1 contains
two consecutive segments, 𝑅11 and 𝑅12, which are recorded
on trace 1 (between North Bus Stop and Atrium) and trace 2
(between Atrium and Library), respectively. The traces
labeled by superscript “∗” (i.e., trace 2, trace 6, and trace 7) are
the LPs to be assembled in our testing. The notation “→ ”
indicates the path direction. A summary of these fragments
and the corresponding traces is shown in Figure 3.

First of all, based on the raw measurement space consist-
ing of 657 measurements with dimensions of 650 in Figure 4,
we can calculate the similarity of any two measurements in
Figure 5. The large similarity values (in range of [0, 1]) repre-
sent that the correspondingmeasurement pairs are extremely
similar. Moreover, the largest similarity value (or value 1) can
be achieved by the similarity between any measurement and
itself as expected.

As discussed in Section 3.2, the optimization problem in
(1) can be converted into the generalized eigenvalue problem
in (2). Figure 6 shows the three eigenvectors (of dimensions
657) associated with the 𝐾 = 3 smallest eigenvalues. Since
the first eigenvector is a constant vector with the eigenvalue
zero, we only use the second and third eigenvectors associated
with the eigenvalues 0.91 and 0.94, respectively, as the basis of
the mapped two-dimensional space. Then, we obtain the 20
clusters (or quantization levels) in the mapped two-dimen-
sional space in Figure 7. For the Smith-Waterman measure-
ment matching, the 20 quantization levels can be recognized
as the 20 amino acids. We denote the 20 amino acids as
follows: Cys (C), Ser (S), Thr (T), Pro (P), Ala (A), Gly (G),
Asn (N), Asp (D), Glu (E), Gln (Q), His (H), Arg (R), Lys (K),
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Table 4: Scores for the four most similar traces.

Trace IDs
New fragment IDs

TP 1 TP 2 TP 3
Raw new
fragment

1st new
fragment

Raw new
fragment

1st new
fragment

Raw new
fragment

1st new
fragment

2nd new
fragment

Trace 1 61 22 19.33 19.33 / / /
Trace 2 45.33 45.33 66.67 28 12 12 /
Trace 3 / / / / 13.67 13.67 13.67
Trace 4 / / / / / / 61.67
Trace 5 7 / / / 24 21 21
Trace 6 13.33 13.33 38 38 / / /
Trace 7 / 6.67 18.67 18.67 22 22 8.33
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Table 5: Path tracking in mobility map.

Actual motion paths Tracking paths and new online fragments
TP 1
(Trace 1→Trace 2)

Tracking path: Trace 1→Trace 2
(i) Raw new fragment with the length of 191
(measurement IDs from 1 to 191)
(ii) The 1st newly formed fragment with the length of 87
(measurement IDs from 105 to 191)

TP 2
(Trace 2→Trace 3→Trace 6→Trace 7)

Tracking path: Trace 2→Trace 6
(i) Raw new fragment with the length of 195
(measurement IDs from 1 to 195)
(ii) The 1st newly formed fragment with the length of 142
(measurement IDs from 54 to 195)

TP 3
(Trace 5→Trace 7→Trace 7→Trace 4)

Tracking path: Trace 5→Trace 7→Trace 4
(i) Raw new fragment with the length of 186
(measurement IDs from 1 to 186)
(ii) The 1st newly formed fragment with the length of 148
(measurement IDs from 39 to 186)
(iii) The 2nd newly formed fragment with the length of 77
(measurement IDs from 110 to 186)
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Figure 11: LP matching for the new online fragment recorded on TP 1.
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Figure 12: LP matching for the new online fragment recorded on TP 2.

Met (M), Ile (I), Leu (L), Val (V), Phe (F), Tyr (Y), and Trp
(W) [42]. After that, each RSS fragment can be represented
by a string of amino acids, as shown in Table 3.

Second, after the rawmeasurements are quantized into 20
discrete levels, we will calculate the winning paths from the
scoring space for each growing fragment pair. By setting 𝜂

𝑀
=

30, we can obtain four winning paths from the four growing
fragment pairs {𝑅1, 𝑅2}, {𝑅2, 𝑅3}, {𝑅3, 𝑅4}, and {𝑅3, 𝑅5} in
Figure 8. The matching score, missing score, and mismatch-
ing score are determined by PAM250 mutation matrix [42].
In Figure 9, themobilitymap associatedwith the target area is
constructed by LP assembling. From Figures 3 and 9, the
mobilitymap constructed by LP assembling is extremely sim-
ilar to the trajectory of the people’s actual motion. Then, the
LP assembling is proved to performwell in layout description
for the anonymous areas where the floor plans are not
available.

Finally, to verify the efficiency of the mobility map con-
structed by LP assembling further, we use three paths for the
testing of path tracking: (i) TP 1 = Trace 1→Trace 2 which is
the same as path 1, (ii) TP 2 = Trace 2→Trace 3→Trace 6→
Trace 7 which is in the opposite direction of path 2, and (iii)
TP 3 = Trace 5→Trace 7→Trace 7→Trace 4 which is a
combined path frompaths 4 and 5.Theprevious two traces on

TP 3 are in the opposite direction of path 5, while the follow-
ing two traces are the same as path 4. In coarse RSS quantiza-
tion step,we quantize the new fragments recorded onTP 1, TP
2, andTP 3 (with the lengths of𝑁New

= 191, 195, and 186) into
Φ = 20 discrete levels, as shown in Figure 10.

Then, after the new fragment recorded on each path has
been quantized, we conduct the fine LP matching to identify
the matching LPs in mobility map.Without loss of generality,
all the traces in mobility map (i.e., Traces 1–7) are considered
for LPmatching in our experiments.Then, the traces with the
corresponding labeling fragments which satisfy the relations
in (8) are selected as the matching LPs. The results of LP
matching for the new online fragments recorded on TP 1, TP
2, and TP 3 are shown in Figures 11, 12, and 13, respectively.

In Figure 11(a), we find that the highest score, 61, is
captured at the position (74, 104) in scoring space for the raw
new fragment and the labeling fragment on Trace 1. Thus, we
delete all the new measurements with the IDs not larger than
𝜏
∗
= 104 from the raw new fragment to obtain the 1st newly

formed fragment (with themeasurement IDs from 105 to 191).
As can be seen from Figure 11(b), Trace 2 with the highest
score, 45.33, to the 1st newly formed fragment is selected as
the second matching LP. Since the scores for any traces to the
2nd newly formed fragment are lower than 𝜀

𝑆
, we construct
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Figure 13: LP matching for the new online fragment recorded on TP 3.

the people’s motion path inmobilitymap as Trace 1→Trace 2
which is the same as the actual motion path, TP 1.

Figures 12 and 13 show the scoring spaces for the new
online fragments recorded onTP 2 andTP 3, respectively, and
labeling fragments on the four most similar traces. The four
traces which have the highest scores to the new online frag-
ments are defined as the four most similar traces. The scores
for the four most similar traces with respect to the new frag-
ments are shown in Table 4.

Table 5 gives the new online fragments and the corre-
sponding tracking paths which are connected by the match-
ing LPs in mobility map. Therefore, our constructed time-
stamped mobility map performs well in people’s motion

path tracking, especially for the motion paths which are in
the same direction of the raw paths used for mobility map
construction. For instance, on TPs 1 and 3, Trace 1→Trace 2
and Trace 7→Trace 4 which are in the same direction of the
raw paths 1 and 4 are precisely tracked in mobility map in
Figures 11 and 13.

5. Conclusions

In this paper, we introduced a novel Wi-Fi RSS measurement
matching approach to construct a fine-granularity mobility
map for layout description in anonymous areas without loca-
tion fingerprinting. In our system framework, we first adopt
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Smith-Waterman alignment approach to obtain the signifi-
cant LPs frommeasurementmatching in scoring space.Then,
Allen’s interval algebra is used to conduct LP assembling into
a time-stamped mobility map in temporal logic manner. Our
extensive mathematical analysis and experimental results
show that our approach can deal with the problems of mob-
ility map construction from sporadically recorded high-
dimensional Wi-Fi RSS measurements and people’s motion
path tracking in arbitrary directions. We will continue to
investigate the integration of time-stamped RSS measure-
ments and motion sensors for the sake of constructing a
highly precisemobilitymap. For instance, the relations of LPs
can be described by not only the timestamps, but also the
angle and speed measured by the off-the-shelf smartphones.

Notation

𝑅
ℓ
(ℓ = 1, . . . ,N): ℓth fragment
𝜇
ℓ

𝑖
(𝑖 = 1, . . . , 𝑁

ℓ
): 𝑖th measurement in 𝑅ℓ

𝜇
ℓ

𝑖,𝑗
(𝑗 = 1, . . . ,𝑀): RSS value from the 𝑗th AP in

𝜇
ℓ

𝑖

{𝑅
𝑠
, 𝑅
𝑡
} (𝑠, 𝑡 ∈ {1, . . . ,

𝑁}):
Growing fragment pair, 𝑅𝑠
and 𝑅𝑡

𝑃
𝑘

𝑠,𝑡
(𝑘 = 1, . . . , 𝑁

𝑠,𝑡
): 𝑖th LP in {𝑅𝑠, 𝑅𝑡}

𝐺: Mobility map
𝑉
𝑃
: Set of LPs

𝐸
𝑃
: Set of time-stamped

transition relations between
neighboring LPs

𝑊
ℓ,ℓ
󸀠

𝑖,𝑖
󸀠 : Similarity of 𝜇ℓ

𝑖
and 𝜇ℓ

󸀠

𝑖
󸀠

diff
𝑅
(𝜇
ℓ

𝑖
,𝜇
ℓ
󸀠

𝑖
󸀠 ): Normalized Euclidean

distance of RSS between 𝜇ℓ
𝑖

and 𝜇ℓ
󸀠

𝑖
󸀠

Ψ: Matrix of the mapped
measurements

𝜇̂
ℓ

𝑖
: Mapped vector of 𝜇ℓ

𝑖

𝑟
ℓ

𝛾,𝑖
(𝛾 = 1, . . . , 𝐾): 𝛾th mapped value in 𝜇̂ℓ

𝑖

𝜆
𝛾
: 𝛾th eigenvalue value

𝐶
𝜔
(𝜔 = 1, . . . , Φ): 𝜔th cluster

𝜑(𝜇
𝑠

𝑝
,𝜇
𝑡

𝑞
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𝑝
and 𝜇𝑡

𝑞

𝜓(𝜇
𝑠

𝑝
,𝜇
𝑡

𝑞
): Negative mismatching score

between 𝜇𝑠
𝑝
and 𝜇𝑡

𝑞

𝜙
𝑤
(𝜇
𝑠

𝑝
, −): Negative missing score when

there is no measurement in 𝑅𝑡
to be matched with 𝜇𝑠

𝑝

𝜙
𝑤
(−,𝜇
𝑡

𝑞
): Negative missing score when

there is no measurement in 𝑅𝑠
to be matched with 𝜇𝑡

𝑞
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: Scoring space with respect to

{𝑅
𝑠
, 𝑅
𝑡
}
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𝑠

𝑝
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𝑡

𝑞
): Score between 𝜇𝑠

𝑝
and 𝜇𝑡

𝑞

𝑅
New: New online fragment
𝜇
New
𝜏

(𝜏 = 1, . . . ,

𝑁
New
):

𝜏th newmeasurement in 𝑅New

Avg(𝐶
𝜔
) (𝜔 = 1, . . . ,

Φ):
Average measurement in 𝐶

𝜔

diff
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𝜏
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𝑘
)): Euclidean distance between
𝜇
New
𝜏
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𝜔
)

𝑅
ℓ

𝜔
: Labeling fragment in 𝐶

𝜔

𝑁: Number of fragments
𝑁
ℓ: Number of measurements in

𝑅
ℓ

𝑀: Number of hearable APs
𝑁
𝑠,𝑡
: Number of LPs with respect

to {𝑅𝑠, 𝑅𝑡}
𝐾: Number of dimensions of the

mapping space
Φ: Number of clusters/number

of quantization levels
𝑁LP: Number of LPs after

Smith-Waterman
measurement matching

𝑁
New: Number of new

measurements in 𝑅New

𝑁
ℓ

𝜔
: Number of measurements

contained in 𝑅ℓ
𝜔

𝜂
𝑀
: Threshold for measurement

matching
𝜀
𝑆
: Threshold for the score of the

newly formed fragment
𝑅
𝑃
= (LP

𝑔
, LP
ℎ
) (𝑔,

ℎ = 1, . . . , 𝑁LP):
Temporal logic relation
between the LPs LP

𝑔
and LP

ℎ

{=}, {m}, {mi}, {o}, {oi},
{s}, {si}, {f}, {fi}, {d},
{di}, {<}, and {>}:

13 temporal logic relations in
Allen’s interval algebra

Superscript “T”: Transpose operation
“tr”: Trace operation.
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