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Virtual interactomics represents a rapidly developing scientific area on the boundary line of bioinformatics and interactomics.
Protein-related virtual interactomics then comprises instrumental tools for prediction, simulation, and networking of the majority
of interactions important for structural and individual reproduction, differentiation, recognition, signaling, regulation, and
metabolic pathways of cells and organisms. Here, we describe the main areas of virtual protein interactomics, that is, structurally
based comparative analysis and prediction of functionally important interacting sites, mimotope-assisted and combined epitope
prediction, molecular (protein) docking studies, and investigation of protein interaction networks. Detailed information about
some interesting methodological approaches and online accessible programs or databases is displayed in our tables. Considerable
part of the text deals with the searches for common conserved or functionally convergent protein regions and subgraphs of
conserved interaction networks, new outstanding trends and clinically interesting results. In agreement with the presented data
and relationships, virtual interactomic tools improve our scientific knowledge, help us to formulate working hypotheses, and they

frequently also mediate variously important in silico simulations.

1. General Remarks

Many important findings in pharmacology, cell biology, and
pathobiology have been achieved with the aid of virtual
interactomics including computer-aided structural analysis,
prediction and in silico simulation of interacting sites, protein
complexes, and interaction networks. Virtual interactomics
has been developed in the last thirty years, and it is in fact
based on gradual bioinformatic processing of experimental
data. These data were usually obtained from individual
studies of interactions, and various large-scale experimental
methods such as the two-hybrid system, phage display library
studies reverse interactomics, SPOT arrays or microarray
studies, and extended sequence studies [1-7].

In addition to sequence data, three-dimensional (3D)
structures are ever more frequently required for interactomic
predictions. X-ray crystallography or nuclear magnetic res-
onance studies represent the most frequent sources of 3D

structures, whereas combination of electron microscopy of
molecular complexes with X-ray crystallography turns out
to be interesting for the same purpose [8—11]. Alternatively,
sophisticated 3D structure simulations such as homology
modeling or combination of cryoelectron microscopy den-
sities, and molecular dynamics appear to be also useful for
approximating conventional 3D input at least in some cases
[12-14]. In addition to 3D shape, solvent and surface accessi-
bilities (or more likely actual dynamic accessibility following
from accompanying interacting structures or proteolysis; cf.
[15, 16]) were considered to be important criteria for reeval-
uation of possible interaction sites. Many experimentally
investigated and predicted structural relationships were also
stored in interactomic databases to be selectively found,
processed and compared. Moreover, some interaction data
differently stored in multiple databases have been searched
with the aid of special data mining servers such as Dasmiweb
and PINA v2.0 ([17, 18]; see also Table 1).
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Virtual interactomic studies are mostly realized via
computer programs including numerous online accessible
tools. Three types of computer data processing are important
for online interactomic predictions on molecular level, that
is, (i) structure comparisons, (ii) molecular docking studies,
and (iii) reevaluation of current database data, and accessible
or proposed protein interaction networks. Similarly, three
types of interacting structures can be distinguished with
respect to their different molecular origin. This concerns (i)
conserved structures, (ii) randomly/quasi-randomly in vitro
generated or rapidly evolved structures (e.g., mimotopes
and disordered regions), and (iii) binding sites of antigen
receptors expressed in specific immune cell clones, which are
usually developed during the regular recombination process,
and later also at the time of immune response.

In contrast to reactomics, interactomics described here
deals exclusively with interactions, and thus concerns only
interactions of enzyme active sites but not their subsequent
reaction mechanism. Consequently, modeling of enzyme
reactions exceeds the topic of this review. In addition, since
we dealt here with protein interactomics, this paper also does
not contain information about interactions of DNA with
nonpeptide ligands.

2. Structural Similarities of
Interacting Sites

By using various structurally based programs, many pro-
tein interactions can be predicted based on the occur-
rence of phylogenetically conserved or convergently devel-
oped functionally important common structural features
(motifs, sequence patterns, consensi, constructs of conserved
domain sequences, supersecondary structures, supersec-
ondary motifs, 3D-arranged structural patterns and pock-
ets). However, diversification within protein families, and
superfamilies causes losses of interacting structures or dis-
ables their accessibility. On the other hand, new interactive
pairs frequently appear in cases of disordered protein
regions, that is, peptide segments naturally occurring in
multiple conformation variants [19-21]. The attendant
stability problems, as well as some additional problems with
molecular analysis, were diminished by the development
of databases enabling reevaluation of selected structural
relationships. The databases inform us about similar or
common structural features, frequent locations of binding
sites in related domains, solvent accessibility, and location
of investigated segments in 3D structures of proteins (see
Table 1).

During the last twenty years, conventional sequence-
based search for conserved structures frequently combined
different evaluations of sequence similarities. The corre-
sponding protocols usually combined double sequence, and
multiple sequence comparisons like BLASTP, PSI-BLAST,
RPS-BLAST, Clustal W and MUSCLE [22, 23]. In addition,
highly selective PHI-BLAST or PSI-BLAST searches with
specifically restricted representative query sequences such
as consensi (and also sequence patterns) made it possible
to locate the corresponding potentially interacting sites
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in extended sequence sets [23-26]. Except for current
conserved sequences, extremely variable but still defined
structures such as heptad repeats were investigated for
purposes of molecular topology [27, 28]. These repeats can
be written as an alphabet with generalized characters rep-
resenting aa groups instead of individual aa (hydrophobic,
charged, polar, etc.). Together with usual (motif-related
sequence block derived) patterns an important part of
heptad repeats can be searched in database sequences and
partially reevaluated by means of PROSITE programs [29—
32]. Apart from regions with highly conserved sequences,
additional conserved structures were found when combining
evaluation of primary and secondary structures [33], PSI-
BLAST and secondary structure [34], or when using fold
recognition [34, 35]. The compared sequence queries were
moreover evaluated on the sophisticated widely used FFAS03
server (about 250 references) providing the third genera-
tion of the profile-profile alignment and fold-recognition
algorithm mediated by program FFAS (fold, and function
assignment system; [36, 37]; Table 1). The sensitivity FFAS-
related profile-profile comparison is now widely recognized
and many Web servers implementing such algorithms
are available, for example, HHPRED, COMPASS, COMA,
PHYRE, GenThreader, FORTE and webPRC [37]. More
recent multiple sequence alignment program BCL:Align
includes also combined evaluation of structural similarities
[38] (for applications, see, e.g., [39, 40]). The corresponding
scoring function is a weighted sum of scores derived based
on (i) the traditional PAM, and BLOSUM scoring matrices,
(ii) position-specific scoring matrices by PSI-BLAST, (iii)
secondary structure predicted by a variety of methods, (iv)
chemical properties, and (v) gap penalties. Monte Carlo
algorithm was then used to determine necessary optimized
weights in cases of sequence alignment and fold recognition.

Input of 3D coordinates or their transformed represen-
tations was necessary for other structural studies predicting
also functional interaction sites. The corresponding research
yielded two servers with different 3D-BLAST programs
enabling us to compare folds and fold families [41, 42] (for
details see also Table 1). Alternative structural comparison
substituting 3D relationships was performed when searching
for the maximum contact map overlaps [43]. The extended
contact map comparison appeared very early [44]. Contact
map is in fact determined by the matrix of distances between
individual amino acids, contact threshold and specification
of contact types [45, 46]. This map can be visualized
by CMView software [46]. Similarly to sequence motifs,
conserved patterns of 3D peptide arrangements (CP-3D-A)
were considered as an additional type of structure-function
motifs. These structures were recorded by sequence inde-
pendent 3D-templates and can be searched on Evolutionary
Trace Annotation server [47, 48]. Frequent functionally
important CP-3D-A occurred, for instance, in active sites of
proteins containing porphyrin rings including members of
cytochrome P450 superfamily [49]. Another recent interest-
ing approach consisted in generalized motif search in large
alphabet (cumulative occurrence of several alphabets in this
case) inputs including simultaneously evaluation of DNA
sequence, protein sequence and supersecondary structure
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motifs [50]. According to the authors, large alphabets are
important in cases when structures share little similarity at
primary level.

Similarly to multiple sequence alignment, various forms
of multiple structural alignments (MSTA) have been gen-
erated. Older attempts at MSTA were based on secondary
structural alignment [51-53]. On the other hand, recent
MSTA approaches determined common spatial (3D) struc-
tures. These approaches include new strategies employing
“molecular sieving” of protein structures, minimization of an
energy function over the low-dimensional space of the rela-
tive rotations, and translations of the molecules, geometric
hashing and contact-window-derived motif library [54-58].

In spite of the increasing possibility of database reeval-
uation, some structurally based programs predicting inter-
acting sites became at least relatively autonomous. A
large number of specific and relatively autonomous pro-
grams concerned the prediction of epitopes (for details
see Section 3). Similarly, various possibilities of prediction
of phosphorylation sites were frequently investigated (two
examples in Table 1), since phosphorylation reactions rep-
resent an important signaling and regulatory network in
cell biology and pathobiology. The interest followed also
from the extended building of databases related to phos-
phorylation sites, which brought many interesting insights.
For instance, in accordance with the linear motif atlas
for phosphorylation-dependent signaling, tyrosine kinases
mutated in cancer exhibited lower specificity than their non-
oncogenic relatives [59]. Similarly, collection and motif-
based prediction of phosphorylation sites in human virus
proteins suggested a substantial role for human kinases in
regulation/mediation of viral protein functions [60]. In con-
trast to programs predicting specific types of interacting sites,
SeSAW represents an example of general online accessible
program allowing prediction of possible functionally impor-
tant structures [61] (see also Table 1). The corresponding
balance between different combined structural evaluations
concerned, among others, data present in position specific
scoring matrix (PSSM), template-derived PSSM and tem-
plate functional annotations.

3. Mimotope and Epitope Interactions

Epitopes are defined as the structures responsible for inter-
action of antigens with binding sites of antigen receptors.
On the other hand, mimotopes belong to artificially pre-
pared peptides, which interact with natural templates (most
likely proteins), and thus mimic other peptides or organic
compounds in their functionally important interactions.
Mimotope development is based on synthetic peptide or
phage display libraries, whereas natural development of
specific cell clones is necessary for epitope recognition by
specific antigen receptors. This means that both epitopes
and mimotopes can sometimes considerably differ from the
usual conserved structures mentioned above. In spite of the
described difference, a unifying point between mimotopes
and epitopes exists, because mimotopes were originally
defined as peptides mimicking epitopes [72], forming thus

only a subset of the later current mimotope repertoire.
In addition to this historical linkage, rapidly developing
(diverging) structures such as molecular mimicry enabling
parasitic attack and adaptation of pathogenic viruses and
bacteria, disordered regions of proteins, and protein loops
appear to be good candidates for extended investigation of
mimotope similarities (cf. [21, 73—75]) and mimotope based
prediction (see below).

Mimotopes were originally derived in studies with a
phage display library. This phage technology was discovered
in the eighties [76]. The corresponding boom in the nineties
then comprised novel random, partially randomized or gene-
fragment-derived oligopeptide libraries able to functionally
mimic epitopes, autoepitopes, short peptide ligands, protein
kinase or proteinase substrates, as well as peptides mimicking
organic substances such as biotin when interacting with
steptavidin [77-85]. Mimotope similarities were frequently
defined using sequence patterns, whereas additional types
of nonsequence structural similarities were also described
(see, e.g., [81, 83]). More recent biotechnological research of
mimotopes yielded potential peptide drugs [86-89], peptide
vaccines [90-92], and peptides suitable for specific (mostly
nanoparticle mediated) drug delivery to tumor cells, brain,
atherosclerotic plaques, and other therapeutically important
sites of human or animal organisms [93-97]. In spite of
this considerable progress, virtual interactomic tools are
not still able to compare or predict organic drugs based
on their effective spatial similarity with functionally active
mimotopes.

Database registration and authentication of mimotopes
have been performed for more than ten years [98-100].
Special programs comparing primary structures of epitopes
were simultaneously developed (programs FINDMAP, and
EPIMAP [101, 102]). Some of them employed also multiple-
sequence alignment evaluation (program MIMOP [103]).
Similarly, coexisting peptide databases were established to
process the accumulated information. These databases (i)
recognized sequence subsets classified after in vitro evolution
of phage display libraries, (ii) offered many integrating
programs, and (iii) made it possible to find all mimotope
sets that have the 3D structure of a target-template complex
(databases ASPD, RELIC and MimoDB [98, 99, 104, 105]). In
addition, novel mimotope-assisted computer-aided epitope
prediction was discovered. This prediction came from both
the 3D structure of an interacting partner and sequences
of similarly interacting mimotopes, and has also concerned
some interacting partners different from specific antigen
receptors and antigens (programs PepSurf, Pep-3D-Search,
and MimoPro [106-108]). Based on this approach, improved
specificity, and extended the repertoire of predicted epitopes
or other interacting partners were achieved. Further progress
in programming then resulted in accelerated computation
in spite of more complicated, and precise strategies of data
processing. In addition, pattern recognition algorithm was
developed, which can effectively be employed to screen a
mixture of antibodies, and define the breadth of epitopes
recognized by polyserum directed against specific proteins
[109]. This possibility appears to be interesting with respect
to future vaccine design.



The recent status of epitope prediction is still far from
resolved due to insufficient extent of the datasets, and still
requires continuous improvement of database organization
[110, 111]. In such state, mimotope-assisted epitope predic-
tion mentioned above and combined approaches represent
a certain improvement in the quality of epitope prediction.
Online accessible combined approaches of B-cell epitope
prediction mostly evaluate 3D structures together with
solvent accessibility (programs CEP, ElliPro, PEPOP and
3D alternative of Epitopia [112-115]; Table 2). Similarly
to many other combined approaches, combined restriction
diminishes the number of false positivities but simultane-
ously can cause increased number of false negativities. For
instance, the widely used requirement of solvent accessibility
mentioned above would in fact eliminate at least part of
conserved autoepitopes, which contain hydrophobic patterns
(cf. [116-118]). To diminish losses following from employed
combinations or effects of too strict (sure) thresholds, a
metaserver was developed that sums up the results from
six epitope-predicting servers [119]. In addition, some new
types of online accessible prediction of linear epitopes
appeared to complete the preceding results [120, 121].

An interesting input simplification has been achieved
with a novel web server CBTOBE. This server uses learning of
support vector machines based on physicochemical profiles,
and makes it possible to predict conformation epitopes based
on a sole sequence input [122]. A recent private alternative
of CBTOBE was based on older evaluation of secondary
structure and solvent accessibility (server COBEpro [123])
further complemented by evolutionary information and
machine-learning-derived evaluation [124].

Combined predictions of epitopes presented to T-cell
receptors have integrated class I MHC (major histocom-
patibility complex) peptide binding affinity, TAP transport
efficiency and prediction of proteasome cleavage (programs
EpiJen, NetCTL-1.2, FRED [125-128]). Nevertheless, inde-
pendent simulations of peptide-binding affinity of various
MHC molecules have been also proposed [129] as well
as the corresponding neural network-based learning [130].
Both combined, and sole approaches then represent starting
steps for further reevaluation with respect to T-cell receptor
interactions, for example, using learning of support vector
machines, and strict kernels based on 531 physicochemical
properties (POPISK [131]). Important information about
existing T-cell, and B-cell epitopes can be also obtained from
the Immune Epitope Database (IEDB [132, 133]). Among
others, EpitopeViewer of the 3D structural subcomponent
of IEDB (IEDB-3D) allows the user to visualize, render and
analyze the structure, and save structural and contact views
as high-quality pictures for publication [133].

Since production of various vaccines, and detection
kits with mononoclonal antibodies requires high efficiency
of preparations, special searches for conserved epitopes
have been developed for this purpose. Though the mean-
ing of crucial term “conserved epitope” exceeds pri-
mary structure relationships, the repertoires of the corre-
sponding structures appear to be sometimes considerably
limited. In fact, structural or regulatory adaptations of
pathogenic microogranisms and viruses cause less stability of
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immunologically important, and promising promiscuous
(cytotoxic or helper) T-cell epitopes broadly cross-reacting
with different MHC antigens, different frequencies of T-
cell epitopes specific usually only for certain unique MHC
molecule, as well as losses of immunogenicity or even
absence of immune response. In addition to current
evaluation, drug effects (cf. effects in docking studies
described below) and accompanying structural variability
(e.g., enzyme polymorphisms or special pathogenetical
effects) have to be considered with respect to possible peptide
epitope modifications, possible bias, or improvement of
therapeutical design. It is a question whether conserved
spatial structures following from multiple structural align-
ments mentioned above can be also interesting for prediction
of conserved conformation of B-cell epitopes. The second
part of Table 2 contains some web servers interesting with
respect to prediction of conserved epitopes, whereas selected
examples related to AIDS research follow.

The first more complex prediction of HIV epitopes was
based on sequence conservativeness, secondary structure,
solvent accessibility, hydrophilicity and flexibility [134].
The study pointed to an unfavorably frequent occurrence
of changes in secondary structures predicted as antigenic.
Certain progress in the research of conserved HIV-1 epitopes
was achieved when assessing their possible interactions with
MHC antigens. This comprised peptide prediction based on
EpiMatrix score [135], construction of the peptide property
model from a training dataset [136, 137] and combined T-
cell epitope evaluation mentioned above [126, 127]. Lately,
phylogenetic hidden Markov models allowed to predict HIV-
1-related T-cell epitopes based on contiguous aa positions
that evolve under immune pressure dependent among others
on host HLA alleles [138]. In a recent paper, structure-
function analysis based on a specifically devised mathe-
matical model revealed that protection from neutralization
(shielding of neutralization-sensitive domains) is enforced
by intersubunit contact between the variable loops 1 and 2
(gp120 V1V2) of HIV-1, and domains of neighboring gp120
subunits in the trimer encompassing the V3 loop [139].

4. Protein Docking

Molecular docking is a method, which predicts the preferred
reciprocal orientation of two molecules when they bound
to each other to form a stable complex [147]. In case of
simulated protein interactions, the authors currently speak
about protein docking rather than about molecular docking,
since molecular docking represents a term comprising
also nucleic acid interactions with nonpeptide molecules.
Formerly, molecular docking simulated “lock-and-key” type
of protein interactions. Its original variants appeared in the
eighties and reassumed interpretations of older molecular
graphics [148-152]. These approaches were restricted by
complementarity demands or simplified requirements for
energy minimization. Lately, “hand-in-glove” analogy was
found to be more appropriate for molecular docking than the
“lock-and-key” one [153]. In addition to this conventional
model, three new models have been recently developed for
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docking studies of protein-protein interactions [154], that
is, (i) conformer selection model, using a novel ensem-
ble docking algorithm, (ii) induced fit model, employing
energy-gradient-based backbone minimization, and (iii)
combined conformer selection/induced fit model. Physics-
based molecular mechanics allowed the development of
the force fields, which enabled the assessment of rela-
tive binding strength [155]. Alternative knowledge-based
approaches were evolved to derive a statistical potential
for interactions from a large database of protein-ligand
complexes [156]. Affinity evaluation, statistical methods
and combined procedures represent frequent alternatives of
evaluation in recent protein docking approaches (Table 3).
In addition to usual full 3D models simulating molecular
complexes, contact docking was also proposed. This docking
is based on contact map representations of molecules
(cf. chapter 3). According to the authors contact docking
appears feasible, and is able to complement other com-
putational methods for the prediction of protein-protein
interactions [157].

The number of molecules whose interactions can be
scanned by current protein docking depends usually on
the complexity of evaluated interactions and manner of
simulation. For instance, interaction of 142 drugs inhibiting
Poly-(ADP-ribose)-polymerase was tested in a large-scale
virtual docking screening together with 300000 added
organic compounds with the aid of the program Lead Finder
[158], whereas only 176 protein-protein interactions were
analyzed by efficient program ZDOCK during extended
simulation [159]. In addition to current output, some
docking studies even verified the results of simulation using
in silico experiments. For instance, aa involvement in enzyme
interactions was proved with simulated mutation (program
SYBYL 6.7 and Internal Coordinate Mechanics method [160,
161]) whereas other authors compared separate simulated
effects of inhibitors and substrates (program BioDock [162]).

In addition to current molecular docking simulations
(Table 3), certain docking studies analyzed modulation
effects of additional molecules on the evaluated interac-
tion [163-165]. Homology modeling followed by extensive
molecular dynamics simulation was used to identify nonpep-
tidic small organic compounds (among 150 000 compounds)
that bind to a human leukocyte antigen HLA-DRI1301,
and block the presentation of myelin basic protein peptide
(aa positions 152-165) to T-cells. This peptide represents
one of the epitopes critical for multiple sclerosis. In silico
selection resulted in a set of 106 small molecules, two
lead compounds were confirmed to specifically block IL-2
secretion by DR1301-restricted T-cells in a dose-dependent
and reversible manner [163].

Pockets opening to protein surface represents potential
sites for ligand binding or protein-protein interactions that
were indeed identified in some cases [166—168]. Conse-
quently, an algorithm BDOCK facilitating pocket-based
prediction of protein binding site was proposed to improve
protein docking [169], and moreover new algorithms pre-
dicting pockets are still proposed [170]. Many pockets were
only transiently present on simulated surfaces of investigated
proteins (e.g., Bcl-xl, interleukin 2, MDM2), and were all

opened only 2.5 picosecond when using model intervals
corresponding to ten nanosecond range [171].

Some docking studies comprised phylogenic aspects
of protein interactions. It was observed that except for
antibody-antigen complexes [172], the surface density of
conserved residue positions at the interface regions of
interacting protein surfaces is high. The corresponding
combination of the residue conservation information with
a widely used shape complementarity algorithm improved
the ability of protein docking to predict the native structure
of protein-protein complexes. Efficient comparative docking
consists in selection based on conservation in terms of
chain positions and primary structure in the first step,
and the following high-throughput structure-based docking
evaluation [173] (see also Table 3). Recent combined strategy
including multiple sequence alignment and fold recognition
analysis has been proposed to perform more precise docking,
and predict also protein function [174].

Bioinspired algorithms were also applied to molecu-
lar docking simulations including neural networks, evolu-
tionary computing and swarm intelligence [175]. Though
neural networks participated in some older evaluations
working in conventional programs of molecular docking
[176-179], their independent scoring functions for docking
have appeared lately [180, 181]. An extreme neural net-
work approach required only sequence input to perform a
docking-like procedure [182]. Predictions followed from a
trained model that simulated binding or nonbinding stages.

5. Protein Interaction Networks

Protein interaction networks (PINs) are usually repre-
sented by graphs. Nodes of these graphs denote interacting
molecules, whereas each edge linking two nodes indicates
the corresponding interaction. The prevailing part of PIN is
usually constituted by protein-protein interaction network
(P-PIN). In addition to P-PIN, we can observe a record
of protein interactions with (i) nonpeptidic hormones or
mediators and drugs, (ii) processed, targeted, and functional
complexes forming RNA, and (iii) recombining, hyper-
mutating, repairing, replicating, twisting/untwisting, and
transcribed DNA. These nonpeptidic compounds represent
in fact inputs, outputs, interaction-stabilizing agents, or
relay batons of P-PIN. In cases of DNA, and RNA, some
papers appeared dealing with special protein-RNA, and
protein-DNA interaction networks [205-208]. Protein-DNA
networks moreover combined both the protein-centric and
the DNA-centric points of view [205].

Like in other related networks, clusters are recognized
in P-PIN. Two main types of P-PIN-related clusters can
be distinguished, that is, protein complexes and functional
modules [209, 210]. Protein complexes are groups of proteins
that interact with each other at the same time and place,
forming a single multimolecular machine (e.g., metabolic
multienzyme complexes). Functional modules consist of
proteins that participate in a particular cellular process
while binding to each other at a different time and place
(e.g., multiple signaling cascades are functional modules
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sometimes including also protein complexes). An important
type of functional modules, that is, responsive functional
modules (RFMs), includes protein interactions activated
under specific conditions. These REMs appear to be interest-
ing with respect to prediction of potential biomarkers [211].

Much attention has been paid to the identification of
small conserved subgraphs, particularly those occurring
significantly often within the biological networks. These
conserved subgraphs were referred to as network motifs or
simply as motifs (similarly to primary structure motifs),
and were considered as basic building blocks of complex
networks including P-PIN [212, 213]. Ancestral pathways or
functional modules including conserved interactions were
derived when comparing P-PIN of phylogenetically distant
species such as human, Saccharomyces cerevisiae, Drosophila
melanogaster and Caenorhabditis elegans, and various bac-
terial species [214, 215]. Proteins necessary for proteasome
function, transcription, RNA processing and translation
were frequent in conserved subgraphs of compared Eukary-
ota, whereas DNA repair proteins prevailed in conserved
prokaryotic subgraphs. Incorporation of literature-curated
and evolutionarily conserved interactions also allowed to
develop an interaction network for 54 proteins providing a
tool for understanding Purkinje cell degeneration [216]. This
result made it possible to find experimentally 770 mostly
novel protein-protein interactions using a stringent yeast
two-hybrid screen.

Recent integrative approaches combined at least tran-
scriptional data with P-PIN analyses, and at most five lay-
ers including phenotype association with single-nucleotide
polymorphism, disease-tissue, drug-tissue and drug-gene
relationships, in addition to the topical P-PIN record [217]
(see also Table 4). Two-layer comparison of disease-related
mRNA expression, and human P-PIN was for instance used
together with hierarchical clustering of networks to elucidate
human disease similarities. The results led to a hypothesis
considering common usage of some drugs in the diseases,
which exhibited close relationship with respect to given
clustering [218]. More extended analysis of gene expression
overlays with protein-protein interaction, transcriptional-
regulatory and signaling networks identified distinct driver-
networks for each of the three common clinical breast cancer
subtypes, that is, oestrogen receptor positive, human epider-
mal growth factor receptor 2 positive and triple receptor-
negative breast cancers [219]. Integrative online accessible
tools reevaluating P-PIN relationships were developed to
predict candidate genes critical for the occurrence of different
diseases (cf. network-based disease gene prioritization; [220,
221]).

The majority of proteins reciprocally interact via one
or two interactions. This number substantially increases
to tens, hundreds and more, when considering multi-
interactive proteins denoted in PIN as hubs [222]. In
agreement with the sense of the term, hubs are the principal
agents in the interaction network and affect its function
and stability [223]. Hubs were enriched in kinase and
adaptor proteins including those interacting with frequently
disordered phosphorylated protein regions [224, 225]. Sim-
ilarly, many pathogenetically important proteins belonged
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to hubs, for example, the widely known tumor suppressor
P53, alpha-synuclein involved in Parkinson disease and small
multifunctional core protein necessary for orchestration of
viral progeny in Flaviviridae [226, 227]. In principle, two
types of hubs were distinguished, that is, static “party hubs”
and dynamic “date hubs.” Party hubs are markedly more
phylogenetically conserved, and their expression is highly
correlated with their interacting partners in contrast to less
conserved date hubs more frequently containing disordered
regions and participating in cell signaling [228-230]. Hubs
with two or more domains are more likely to connect
distinct functional modules than single-domain hubs [224].
In addition to studies of biochemically interesting hubs,
docking procedures (mediated by program ClusPro [231])
were recently employed together with comparative modeling
to construct P-PIN [232], whereas domain-domain, domain-
motif and motif-motif interactions were distinguished in
some other P-PIN [233].

Extended P-PIN research yielded many tools allowing P-
PIN-based prediction of protein complex formation [234—
237], identification of hubs and multifunctional proteins
(238, 239], identification of functional modules [240-242],
network-based disease gene prioritization [217, 221, 243], as
well as network building (244, 245], cross-species querying
[246] or comparison [234, 237]. Some of these approaches
as well as several examples of P-PIN-related databases are
described in Table 4. The instrumental progress in PIN
research also led to an increased number of the correspond-
ing methodological reviews, for example, [247-250].

6. Accuracy as an Important Parameter

A detailed evaluation of accuracy of all the above approaches
would require a separate review. The obstacles consist first
of all in presence of complementary information in articles
inaccessible for biologists and on web pages. Such state
complicates mining of accuracy data first of all in the
case, when server-related papers represent only the final
step of author’s efforts. Accuracy evaluation or even the
corresponding references are also rarely present in the papers
concerning new online databases. In addition, some authors
also use other criterions related to accuracy to evaluate
the corresponding performance value, whereas only some
of such evaluations are widely known as valid accuracy
substitution, for example, AUC (area under the ROC curve)
discussed below.

In spite of the obstacles, we can mention several examples
of high accuracy concerning the above approaches. Excellent
accuracy values higher then 0.90 were found in the cases
of Conserved Domain Database (or its RPS BLAST server;
[257]; Table 1) and older 3D-BLAST variant under a broad
range of conditions (Table 1), whereas similarly interesting
AUC values (higher than 0.90) were mostly found also in
the cases of recent 3D BLAST variant (Table 1), and the
selected strategy of SVM- and machine-learning-based epi-
tope prediction known as CBTOBE (chapter 3; [122]). The
same accuracy levels were rarely achieved in certain subsets
when employing ADAN, KinasePhos 2.0 (Table 1), ElliPro,
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RANKPEP (Table2), SVM and machine-learning-based
epitope prediction improved by evolutionary information
BEOracle (chapter 3; [124]) and docking tool HADDOCK
(chapter 4; [178]). Similarly, restricted subset-related AUC
values of 0.90 and 0.93 indicated a good predicting ability
when using docking-like Partner-aware prediction (chapter
4; [182]), and combined evaluation based on Glide X and
molecular mechanics (Table 3) to simulate interactions of 25
antibodies and P-glycoprotein, respectively. Frequent subset
accuracies of higher values than the gold standard value
of 0.80 were observed during runs of programs Phos3D,
KinasePhos 2.0 (Table 1), ElliPro (Table2) and CBTOBE
mentioned above (chapter 3; [122]), and two docking tools
Glide XP and Gold (Table 2; [258]). Comparable AUC values
then concerned RANKPEP (Table 2), BEOracle mentioned
above (chapter 3; [124]) and network-based disease gene
prioritization called DADA (chapter 5; [236]). The low
occurrence of P-PIN in our overview of accuracy evaluation
followed from the fact that the performance of P-PIN was
alternatively evaluated with the aid of precision or recall.
An interesting approach—Lead Finder—was developed to
improve the accuracy of protein-ligand docking, binding
energy estimation and virtual screening. High enrichment
factors were obtained for almost all of the targets and seven
different docking programs resulting in an excellent average
AUC value of 0.92 [258].

7. Tendencies, Improvements, and Interplays

In summary, virtual interactomics represents a highly
sophisticated, and relatively autonomous subarea of both
interactomics and bioinformatics. Its development can be
characterized by several independent and integrative tenden-
cies. The independent tendencies include (i) more rapid and
precise molecular modeling of protein complexes (including
quantum mechanic methods and rapid pharmacological
screening based on docking), (ii) more complex evaluation
of structural similarities (e.g., large alphabets and combined
prediction of functional sites), (iii) extensive assembly of
large-scale PIN and assembly of PIN or PIN subgraphs with
dynamical properties, and (iv) restriction of conserved PIN
subgraphs and clinically interesting responsive functional
modules. The integrative tendencies then comprise (i)
establishment of structurally functionally, and purposefully
oriented databases and associated data mining servers,
(ii) questions concerning phylogenic relationships between
structural differences in PIN subgraphs, and the differences
in protein structures of subgraph forming molecules, (iii)
PIN prediction and revision/reevaluation of empirically pro-
posed PIN using comparative molecular modeling, docking
and bio-inspired algorithms, (iv) comparative differential
multilayer network approaches including clinical treatment
cases, and (v) attempts to construct global networks within
a single cell, and hopefully, within the system of different
reciprocally communicating cell types (e.g., immune sys-
tem). Since interactomics simplifies reactomic simulations,
it can also markedly and rapidly complete reactomic results,
for example, in prediction of enzyme-inhibitor effects and

Molecular Biology International

specificity of protein kinase interactions mentioned above. In
the end, we also dealt here with accuracy, which represents an
important parameter of tool choice together with reasonable
tool accessibility, and possibilities to test several alternatives
before prediction, simulation and network analysis or to
use two or several independent methods. In conclusion,
many interesting and important interplays occur inside the
virtual interactomic area as well as in its boundary lines and
performance evaluation.

Abbreviations

3D: Three-dimensional

aa: Amino acid residues in protein sequence
PIN: Protein interaction network(s)

P-PIN: Protein-protein interaction network(s).
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