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A family of Enright’s second derivative formulas with trigonometric basis functions is derived using multistep collocation method.
The continuous schemes obtained are used to generate complementary methods. The stability properties of the methods are
discussed.Themethodswhich can be applied in predictor-corrector formare implemented in block formas simultaneous numerical
integrators over nonoverlapping intervals. Numerical results obtained using the proposed block form reveal that the new methods
are efficient and highly competitive with existing methods in the literature.

1. Introduction

Many real life processes in areas such as chemical kinetics,
biological sciences, circuit theory, economics, and reactions
in physical systems can be transformed into systems of
ordinary differential equations (ODE) which are generally
formulated as initial value problems (IVPs). Some classes of
IVPs are stiff and/or highly oscillatory as described by the
following model problem:

𝑦
󸀠
= 𝐴𝑦,

𝑦 (𝑎) = 𝑦0,

𝑥 ∈ [𝑎, 𝑏] ,

(1)

where 𝑦(𝑥) ∈ R𝑚 and 𝐴 is 𝑚 × 𝑚 real matrix with at
least one eigenvalue with a very negative real part and/or
very large imaginary part, respectively (see Fatunla [1]).Many
conventional methods cannot solve these types of problems
effectively.

Stiff systems have been solved by several authors includ-
ing Lambert [2, 3], Gear [4, 5], Hairer [6], and Hairer
and Wanner [7]. Different methods including the Backward
Differentiation Formula (BDF) have been used to solve stiff

systems. Second derivative methods with polynomial basis
functions were proposed to overcome the Dahlquist [8]
barrier theorem whereby the conventional linear multistep
method was modified by incorporating the second derivative
term in the derivation process in order to increase the order
of themethod, while preserving good stability properties (see
Gear [9], Gragg and Stetter [10], and Butcher [11]).

Many classical numerical methods including Runge-
Kutta methods, higher derivative multistep schemes, and
block methods have been constructed for solving oscillatory
initial value problems (see Butcher [11, 12], Brugnano and
Trigiante [13, 14], Ozawa [15], Nguyen et al. [16], Berghe and
van Daele [17], Vigo-Aguiar and Ramos [18], and Calvo et
al. [19]). Many methods for solving oscillatory IVPs require
knowledge of the system under consideration in advance.

Obrechkoff [20] proposed a general multiderivative
method for solving systems of ordinary differential equations.
Special cases of Obrechkoff method have been developed
by many others including Cash [21] and Enright [22]. The
methods by Enright [22] have order 𝑝 = 𝑘 + 2 for a 𝑘 step
method.

In this paper, we propose a numerical integration formula
which more effectively copes with stiff and/or oscillatory
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IVPs. We will construct a continuous form of the second
derivative multistep method (CSDMM) using a multistep
collocation technique such that Enright’s second derivative
methods (ESDM) will be recovered from the derived con-
tinuous methods. The aim of this paper is to derive a family
of Enright’s second derivative formulas with trigonometric
basis functions using multistep collocation method. Many
methods for solving IVPs are implemented in a step-by-step
fashion in which, on the partition 𝜋

𝑁
, an approximation is

obtained at 𝑥
𝑛+1 only after an approximation at 𝑥

𝑛
has been

computed, where 𝜋
𝑁
: 𝑎 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑛 < 𝑥𝑛+1 < ⋅ ⋅ ⋅ <

𝑥
𝑁
= 𝑏, 𝑥

𝑛+1 = 𝑥𝑛 + ℎ, 𝑛 = 1, . . . , 𝑁, ℎ = (𝑏 − 𝑎)/𝑁, ℎ is the
step size, 𝑁 is a positive integer, and 𝑛 is the grid index. We
implement ESDM in block form.

In Section 2, we present a derivation of the family of
Enright methods. Error analysis and stability are discussed in
Section 3. The implementation of the ESDM and numerical
examples to show the accuracy and efficiency of the ESDM
are given in Section 4. Finally, we conclude in Section 5.

2. Derivation of the Family of Methods

We consider the first-order differential equation

𝑦
󸀠
= 𝑓 (𝑥, 𝑦) ,

𝑦 (𝑎) = 𝑦0,

𝑥 ∈ [𝑎, 𝑏] ,

(2)

where 𝑓 is assumed to satisfy the conditions to guarantee the
existence of a unique solution of the initial-value problem.

2.1. CSDMM. In what follows, we state the CSDMM which
has the ability to produce the ESDM:

𝑈 (𝑥) = 𝛼
𝑛+𝑘−1 (𝑥) 𝑦𝑛+𝑘−1 + ℎ

𝑘

∑

𝑗=0
𝛽
𝑗
(𝑥) 𝑓
𝑛+𝑗

+ ℎ
2
𝛾
𝑛+𝑘
(𝑥) 𝑔
𝑛+𝑘
,

(3)

where 𝛼
𝑛+𝑘−1(𝑥), 𝛽𝑗(𝑥), and 𝛾𝑛+𝑘(𝑥) are continuous coeffi-

cients. We assume that 𝑦
𝑛+𝑗
= 𝑈(𝑥

𝑛+𝑗
) is the numerical

approximation to the analytical solution 𝑦(𝑥
𝑛+𝑗
), 𝑦󸀠
𝑛+𝑗
=

𝑈
󸀠
(𝑥
𝑛+𝑗
) is the numerical approximation to the analytical

solution 𝑦󸀠(𝑥
𝑛+𝑗
), 𝑓
𝑛+𝑗
= 𝑈
󸀠
(𝑥
𝑛+𝑗
) is an approximation

to 𝑦󸀠(𝑥
𝑛+𝑗
), and 𝑔

𝑛+𝑗
= 𝑈

󸀠󸀠
(𝑥
𝑛+𝑗
) is an approxima-

tion to 𝑦󸀠󸀠(𝑥
𝑛+𝑗
), where 𝑓

𝑛+𝑗
= 𝑓(𝑥

𝑛+𝑗
, 𝑦
𝑛+𝑗
), 𝑔
𝑛+𝑗
=

(𝑑𝑓(𝑥, 𝑦(𝑥))/𝑑𝑥)|
𝑥
𝑛+𝑗

𝑦
𝑛+𝑗

, 𝑗 = 0, 1, 2, . . . , 𝑘.

We now define the following vectors and matrix used in
the following theorem:

𝑉 = (𝑦
𝑛+𝑘−1, 𝑓𝑛, 𝑓𝑛+1, 𝑓𝑛+2, . . . , 𝑓𝑛+𝑘, 𝑔𝑛+𝑘)

𝑇

,

𝑃 (𝑥) = (𝑃1 (𝑥) , 𝑃2 (𝑥) , . . . , 𝑃𝑘+3 (𝑥))
𝑇

,

𝑊
(𝑘+3,𝑘+3)

=

(
(
(
(
(
(
(
(
(
(

(

𝑃1 (𝑥𝑛+𝑘−1) 𝑃2 (𝑥𝑛+𝑘−1) ⋅ ⋅ ⋅ 𝑃𝑘+3 (𝑥𝑛+𝑘−1)

𝑃
󸀠

1 (𝑥𝑛) 𝑃
󸀠

2 (𝑥𝑛) ⋅ ⋅ ⋅ 𝑃
󸀠

𝑘+3 (𝑥𝑛)

𝑃
󸀠

1 (𝑥𝑛+1) 𝑃
󸀠

2 (𝑥𝑛+1) ⋅ ⋅ ⋅ 𝑃
󸀠

𝑘+3 (𝑥𝑛+1)

𝑃
󸀠

1 (𝑥𝑛+2) 𝑃
󸀠

2 (𝑥𝑛+2) ⋅ ⋅ ⋅ 𝑃
󸀠

𝑘+3 (𝑥𝑛+2)

.

.

.
.
.
. d

.

.

.

𝑃
󸀠

1 (𝑥𝑛+𝑘) 𝑃
󸀠

2 (𝑥𝑛+𝑘) ⋅ ⋅ ⋅ 𝑃
󸀠

𝑘+3 (𝑥𝑛+𝑘)

𝑃
󸀠󸀠

1 (𝑥𝑛+𝑘) 𝑃
󸀠󸀠

2 (𝑥𝑛+𝑘) ⋅ ⋅ ⋅ 𝑃
󸀠󸀠

𝑘+3 (𝑥𝑛+𝑘)

)
)
)
)
)
)
)
)
)
)

)

,

(4)

where 𝑃
𝑖
(𝑥) = 𝑥

𝑖−1, 𝑖 = 1, 2, . . . , 𝑘 + 1, 𝑃
𝑘+2(𝑥) = sin𝑤𝑥, and

𝑃
𝑘+3(𝑥) = cos𝑤𝑥.

Remark 1. In the derivation of the ESDM, the bases 𝑃(𝑥) ≡
𝑃
𝑖
(𝑥)
𝑇 with𝑃

𝑖
(𝑥) = 𝑥

𝑖−1, 𝑖 = 1, 2, . . . , 𝑘+1,𝑃
𝑘+2(𝑥) = sin(𝑤𝑥),

and 𝑃
𝑘+3(𝑥) = cos(𝑤𝑥) are chosen because they are simple

to analyze. Other possible bases (see Nguyen et al. [16] and
Nguyen et al. [23]) include the following:

(1) {sin(𝑤𝑥), cos(𝑤𝑥), 𝑥sin(𝑤𝑥), 𝑥cos(𝑤𝑥), . . .,
𝑥
𝑛sin(𝑤𝑥), 𝑥𝑛cos(𝑤𝑥)};

(2) {sin𝑥, cos𝑥, . . . , sin(𝑛𝑤𝑥), cos(𝑛𝑤𝑥)};

(3) {sin(𝑤1𝑥), cos(𝑤1𝑥), . . . , sin(𝑤𝑛𝑥), cos(𝑤𝑛𝑥)};

(4) {𝑥, . . . , 𝑤𝑥𝑛} ∪ {sin(𝑤𝑥), cos(𝑤𝑥), . . . , sin(𝑚𝑤𝑥),
cos(𝑚𝑤𝑥)};

(5) {𝑥, . . . , 𝑥𝑛, exp(±𝑤𝑥), 𝑥exp(±𝑤𝑥), . . . , 𝑥𝑚exp(±𝑤𝑥)};

(6) {𝑥, . . . , 𝑤𝑥𝑛−1, 𝑤𝑥𝑛}.

Theorem2. Let𝑈(𝑥) satisfy𝑈(𝑥
𝑛+𝑗
) = 𝑦
𝑛+𝑗

,𝑈󸀠(𝑥
𝑛+𝑗
) = 𝑓
𝑛+𝑗

,
and 𝑈󸀠󸀠(𝑥

𝑛+𝑗
) = 𝑔
𝑛+𝑗

and let𝑊 be invertible; then method (3)
is equivalent to

𝑈 (𝑥) = 𝑉
𝑇
(𝑊
−1
)
𝑇

𝑃 (𝑥) . (5)

The proof of the above theorem can be found in Jator et al. [24].

Through interpolation of 𝑈(𝑥) at the point 𝑥
𝑛+𝑘−1, col-

location of 𝑈󸀠(𝑥) at the points 𝑥
𝑛+𝑗

, 𝑗 = 0, 1, 2, . . . , 𝑘, and
collocation of 𝑈󸀠󸀠(𝑥) at the point 𝑥

𝑛+𝑘
, we get the system

𝑈 (𝑥
𝑛+𝑘−1) = 𝑦𝑛+𝑘−1,

𝑈
󸀠
(𝑥
𝑛+𝑗
) = 𝑓
𝑛+𝑗
𝑗 = 0, 1, 2, . . . , 𝑘,

𝑈
󸀠󸀠
(𝑥
𝑛+𝑘
) = 𝑔
𝑛+𝑘
.

(6)
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To solve this system we require that method (3) be defined by
the assumed basis functions

𝛼
𝑛+𝑘−1 =

𝑘+3
∑

𝑖=0
𝛼
𝑖
𝑃
𝑖
(𝑥) ;

ℎ𝛽
𝑗
(𝑥) =

𝑘+3
∑

𝑖=0
ℎ𝛽
𝑖,𝑗
𝑃
𝑖
(𝑥) , 𝑗 = 0, 1, . . . , 𝑘;

ℎ
2
𝛾
𝑛+𝑘
=

𝑘+3
∑

𝑖=0
ℎ
2
𝛾
𝑖
𝑃
𝑖
(𝑥) ,

(7)

where the constants 𝛼
𝑖
, 𝛽
𝑖,𝑗
, and 𝛾

𝑖
are to be determined.

2.2. ESDM. The general second derivative formula for solv-
ing (2) using the 𝑘-step second derivative linear multistep
method is of the form

𝑘

∑

𝑗=0
𝛼
𝑗
𝑦
𝑛+𝑗
= ℎ

𝑘

∑

𝑗=0
𝛽
𝑗
𝑓
𝑛+𝑗
+ ℎ

2
𝑘

∑

𝑗=0
𝛾
𝑗
𝑔
𝑛+𝑗
, (8)

where𝑦
𝑛+𝑗
≈ 𝑦(𝑥

𝑛
+𝑗ℎ),𝑓

𝑛+𝑗
= 𝑓(𝑥

𝑛
+𝑗ℎ, 𝑦(𝑥

𝑛
+𝑗ℎ)) and𝑓

𝑗
=

𝑓(𝑥
𝑗
, 𝑦
𝑗
), 𝑔
𝑛+𝑗
= (𝑑𝑓(𝑥, 𝑦(𝑥))/𝑑𝑥)|

𝑥
𝑛+𝑗

𝑦
𝑛+𝑗

; 𝑥
𝑛
is a discrete point

at node 𝑛; and 𝛼
𝑗
, 𝛽
𝑗
, and 𝛾

𝑗
are parameters to be determined.

It is worth noting that Enright’smethod is a special case of (7).
We solve (6) to get the coefficients 𝛼

𝑖
, 𝛽
𝑖,𝑗
, and 𝛾

𝑖
in (7) which

are then used to obtain the continuous multistep method of
Enright in the form

𝑈 (𝑥) = 𝑦
𝑛+𝑘−1 + ℎ

𝑘

∑

𝑗=0
𝛽
𝑗
(𝑥) 𝑓
𝑛+𝑗
+ ℎ

2
𝛾
𝑛+𝑘
(𝑥) 𝑔
𝑛+𝑘
. (9)

Evaluating (9) at 𝑥 = 𝑥
𝑛+𝑘

and setting 𝑦
𝑛+𝑘
= 𝑈(𝑥

𝑛
+𝑘ℎ) yield

the following Enright’s second derivative multistep method:

𝑦
𝑛+𝑘
= 𝑦
𝑛+𝑘−1 + ℎ

𝑘

∑

𝑗=0
𝛽
𝑗
𝑓
𝑛+𝑗
+ ℎ

2
𝛾
𝑛+𝑘
𝑔
𝑛+𝑘
, (10)

whereas the (𝑘 − 1) complementary methods

𝑦
𝑛+𝑖
= 𝑦
𝑛+𝑘−1 + ℎ

𝑘

∑

𝑗=0
𝛽
𝑗,𝑖
𝑓
𝑛+𝑗
+ ℎ

2
𝛾
𝑛+𝑘,𝑖
𝑔
𝑛+𝑘 (11)

are obtained by evaluating (9) at 𝑥 = 𝑥
𝑛+𝑖

, 𝑖 = 0, 1, 2, . . . , 𝑘−2,
with 𝑘 ≥ 2.

We note that, in order to avoid the cancellations which
might occur when ℎ is small, the use of the power series
expansions of 𝛽

𝑗
, 𝛾
𝑛+𝑘

, 𝛽
𝑗,𝑖
, and 𝛾

𝑛+𝑘,𝑖
is preferable (see Simos

[25]).

Case 𝑘 = 1.This case has only the main method given by (10)
with the coefficients defined by

𝛽0 = −
csc (𝑢/2)2 (−𝑢 + sin 𝑢)

2𝑢

=
1
3
+
𝑢
2

90
+
𝑢
4

2520
+
𝑢
6

75600
+
𝑢
8

2395008

+
691𝑢10

54486432000
+𝑂 (ℎ

11
) ,

𝛽1 = −
csc (𝑢/2)2 (𝑢 cos 𝑢 − sin 𝑢)

2𝑢

=
2
3
−
𝑢
2

90
−
𝑢
4

2520
−
𝑢
6

75600
−
𝑢
8

2395008

−
691𝑢10

54486432000
+𝑂 (ℎ

11
) ,

𝛾
𝑛+1 =
−2 + 𝑢 cot (𝑢/2)
𝑢2

= −
1
6
−
𝑢
2

360
−
𝑢
4

15120
−
𝑢
6

604800
−
𝑢
8

23950080

−
691𝑢10

653837184000
+𝑂 (ℎ

11
) .

(12)

Case 𝑘 = 2. The coefficients of the main method (10) and the
complimentary method (11) are, respectively, defined by

𝛽0 =
ℎ csc (𝑢/2)2 (𝑢 cos (𝑢/2) − 2 sin (𝑢/2))2

4𝑢 (𝑢 cos 𝑢 − sin 𝑢)

= −
1
48
−
𝑢
2

360
−

13𝑢4

57600
−

89𝑢6

6048000
−

143203𝑢8

167650560000

−
126473𝑢10

2724321600000
+𝑂 (ℎ

11
) ,

𝛽1

=
csc (𝑢/2)2 (−2 − 3𝑢2 + (2 − 𝑢2) cos 2𝑢 + 4𝑢 sin 𝑢 + 2𝑢 sin 2𝑢)

8𝑢 (𝑢 cos 𝑢 − sin 𝑢)

=
5
12
+
𝑢
2

720
+

13𝑢4

50400
+

121𝑢6

6048000
+

52133𝑢8

41912640000

+
761473𝑢10

10897286400000
+𝑂 (ℎ

11
) ,

𝛽2

= −
ℎ csc (𝑢/2)2 (2 − (4 + 3𝑢2) cos 𝑢 + (2 + 𝑢2) cos 2𝑢 + 4𝑢 sin 𝑢)

8𝑢 (𝑢 cos 𝑢 − sin 𝑢)

=
29
48
+
𝑢
2

720
−

13𝑢4

403200
−
𝑢
6

189000
−

5939𝑢8

15240960000

−
255581𝑢10

10897286400000
+𝑂 (ℎ

11
) ,



4 Journal of Applied Mathematics

𝛾
𝑛+2 = −

(𝑢 cos (𝑢/2) − 2 sin (𝑢/2)) sin (𝑢/2)
𝑢 (𝑢 cos 𝑢 − sin 𝑢)

= −
1
8
−
𝑢
2

240
−

13𝑢4

67200
−

19𝑢6

2016000
−

12979𝑢8

27941760000

−
83437𝑢10

3632428800000
+𝑂 (ℎ

11
) ,

(13)
𝛽0,0

= −
csc (𝑢/2)2 (−2 − 𝑢2 + (4 + 3𝑢2) cos 𝑢 − 2 cos 2𝑢 − 2𝑢 sin 2𝑢)

8𝑢 (𝑢 cos 𝑢 − sin 𝑢)

= −
17
48
−
𝑢
2

72
−

251𝑢4

403200
−

169𝑢6

6048000
−

213203𝑢8

167650560000

−
161023𝑢10

2724321600000
+𝑂 (ℎ

11
) ,

𝛽1,0

=
csc (𝑢/2)2 (2 + 𝑢2 + (−2 + 3𝑢2) cos 2𝑢 + 4𝑢 sin 𝑢 − 6𝑢 sin 2𝑢)

(8𝑢 (𝑢 cos 𝑢 − sin 𝑢))

= −
11
12
+
17𝑢2

720
+

53𝑢4

50400
+

281𝑢6

6048000
+

87133𝑢8

41912640000

+
1037873𝑢10

10897286400000
+𝑂 (ℎ

11
) ,

𝛽2,0 = −
csc (𝑢/2)2 (4 + (−4 + 𝑢2) cos 𝑢 + 𝑢2 cos 2𝑢 − 2𝑢 sin 2𝑢)

8𝑢 (𝑢 cos 𝑢 − sin 𝑢)

=
13
48
−
7𝑢2

720
−

173𝑢4

403200
−
𝑢
6

54000
−

135329𝑢8

167650560000

−
393781𝑢10

10897286400000
+𝑂 (ℎ

11
) ,

𝛾
𝑛+2,0 = −

(𝑢 cos (𝑢/2) − 2 sin (𝑢/2)) sin (𝑢/2)
𝑢 (𝑢 cos 𝑢 − sin 𝑢)

= −
1
8
−
𝑢
2

240
−

13𝑢4

67200
−

19𝑢6

2016000
−

12979𝑢8

27941760000

−
83437𝑢10

3632428800000
+𝑂 (ℎ

11
) .

(14)

Case 𝑘 = 3. The coefficients of the main method (10) and the
complimentary methods (11) are, respectively, defined by

𝛽0 =
(csc (𝑢/4)4 (−42 − 5𝑢2 − 8 (−6 + 𝑢2) cos 𝑢 + (−6 + 𝑢2) cos 2𝑢 + 32𝑢 sin 𝑢 − 4𝑢 sin 2𝑢))

(96𝑢 (𝑢 + 2𝑢 cos 𝑢 − 3 sin 𝑢))

=
7

1080
+

163𝑢2

151200
+

1529𝑢4

13608000
+

1203457𝑢6

125737920000
+

5143273𝑢8

7005398400000
+

364730953𝑢10

6865290432000000
+𝑂 (ℎ

11
) ,

𝛽1 = −
(csc (𝑢/4)4 (−102 − 16𝑢2 − 3 (−34 + 7𝑢2) cos 𝑢 + 6 cos 2𝑢 − 6 cos 3𝑢 + 𝑢2 cos 3𝑢 + 88𝑢 sin 𝑢 − 2𝑢 sin 2𝑢 − 4𝑢 sin 3𝑢))

(96𝑢 (𝑢 + 2𝑢 cos 𝑢 − 3 sin 𝑢))

= −
1
20
−
11𝑢2

8400
−

173𝑢4

756000
−

153049𝑢6

6985440000
−

4786027𝑢8

2724321600000
−

422813𝑢10

3259872000000
+𝑂 (ℎ

11
) ,

𝛽2 =
(csc (𝑢/4)4 (−30 − 23𝑢2 − 24 cos 𝑢 + (78 − 21𝑢2) cos 2𝑢 − 24 cos 3𝑢 + 8𝑢2 cos 3𝑢 + 34𝑢 sin 𝑢 + 52𝑢 sin 2𝑢 − 22𝑢 sin 3𝑢))

(96𝑢 (𝑢 + 2𝑢 cos 𝑢 − 3 sin 𝑢))

=
19
40
−
𝑢
2

224
−

29𝑢4

302400
+

4187𝑢6

2794176000
+

41551𝑢8

99066240000
+

6204403𝑢10

152562009600000
+𝑂 (ℎ

11
) ,

𝛽3 = −
(csc (𝑢/4)4 (30 − (78 + 23𝑢2) cos 𝑢 + 2 (33 + 8𝑢2) cos 2𝑢 − 18 cos 3𝑢 − 5𝑢2 cos 3𝑢 + 68𝑢 sin 𝑢 − 22𝑢 sin 2𝑢))

(96𝑢 (𝑢 + 2𝑢 cos 𝑢 − 3 sin 𝑢))

=
307
540
+

71𝑢2

15120
+

289𝑢4

1360800
+

12391𝑢6

1143072000
+

2957783𝑢8

4903778880000
+

24651509𝑢10

686529043200000
+𝑂 (ℎ

11
) ,

𝛾
𝑛+3 =

csc (𝑢/2) (7𝑢 cos (𝑢/2) + 5𝑢 cos (3𝑢/2) + 12 (sin (𝑢/2) − sin (3𝑢/2)))
12𝑢 (𝑢 + 2𝑢 cos 𝑢 − 3 sin 𝑢)

= −
19
180
−

97𝑢2

25200
−

491𝑢4

2268000
−

285163𝑢6

20956320000
−

7286749𝑢8

8172964800000
−

67916227𝑢10

1144215072000000
+𝑂 (ℎ

11
) ,

(15)

𝛽0,0 =
csc (𝑢/2)4 (−12 + 2𝑢2 + (9 − 4𝑢2) cos 𝑢 + 2 (6 + 7𝑢2) cos (2𝑢) − 9 cos (3𝑢) + 34𝑢 sin 𝑢 − 20𝑢 sin (2𝑢) − 6𝑢 sin (3𝑢))

(48𝑢 (𝑢 + 2𝑢 cos 𝑢 − 3 sin 𝑢))

= −
43
135
−
43𝑢2

4725
−

193𝑢4

850500
−

2561𝑢6

1964655000
+

1107763𝑢8

3064861800000
+

8005337𝑢10

214540326000000
+𝑂 (ℎ

11
) ,

𝛽1,0

=
− (csc (𝑢/2)4 (−15 − 4𝑢2 + 3 (4 + 5𝑢2) cos 𝑢 + 15 cos (2𝑢) − 12 cos (3𝑢) + 7𝑢2 cos (3𝑢) − 5𝑢 sin 𝑢 + 13𝑢 sin (2𝑢) − 19𝑢 sin (3𝑢)))

(24𝑢 (𝑢 + 2𝑢 cos 𝑢 − 3 sin 𝑢))
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= −
7
5
+
29𝑢2

1050
+

139𝑢4

189000
+

3683𝑢6

436590000
−

516289𝑢8

681080400000
−

473779𝑢10

5297292000000
+𝑂 (ℎ

11
) ,

𝛽2,0

=
csc (𝑢/2)4 (−12 + 2𝑢2 + 15 cos 𝑢 + 6 (2 + 5𝑢2) cos (2𝑢) − 15 cos (3𝑢) + 4𝑢2 cos (3𝑢) + 44𝑢 sin 𝑢 − 28𝑢 sin (2𝑢) − 20𝑢 sin (3𝑢))

(48𝑢 (𝑢 + 2𝑢 cos 𝑢 − 3 sin 𝑢))

= −
1
5
−
𝑢
2

35
−

17𝑢4

18900
−

961𝑢6

43659000
−

1367𝑢8

6191640000
+

104537𝑢10

4767562800000
+𝑂 (ℎ

11
) ,

𝛽3,0 =
− (csc (𝑢/2)4 (3 + 𝑢2 cos 𝑢 + (−3 + 4𝑢2) cos (2𝑢) + 𝑢2 cos (3𝑢) − 𝑢 sin 𝑢 − 𝑢 sin (2𝑢) − 3𝑢 sin (3𝑢)))

(24𝑢 (𝑢 + 2𝑢 cos 𝑢 − 3 sin 𝑢))

= −
11
135
+
19𝑢2

1890
+

19𝑢4

48600
+

1063𝑢6

71442000
+

756881𝑢8

1225944720000
+

2591419𝑢10

85816130400000
+𝑂 (ℎ

11
) ,

𝛾
𝑛+3,0 = −

2 cot (𝑢/2) (2𝑢 + 𝑢 cos 𝑢 − 3 sin 𝑢)
3𝑢 (𝑢 + 2𝑢 cos 𝑢 − 3 sin 𝑢)

=
2
45
−
𝑢
2

1575
−

31𝑢4

283500
−

5927𝑢6

654885000
−

95237𝑢8

145945800000
−

3218641𝑢10

71513442000000
+𝑂 (ℎ

11
) ,

(16)

𝛽0,1 =
csc (𝑢/2)4 (−30 − 𝑢2 + 8 (6 + 𝑢2) cos 𝑢 + (−18 + 5𝑢2) cos (2𝑢) + 16𝑢 sin 𝑢 − 20𝑢 sin (2𝑢))

(96𝑢 (𝑢 + 2𝑢 cos 𝑢 − 3 sin 𝑢))

=
23
1080
+

467𝑢2

151200
+

3841𝑢4

13608000
+

2702753𝑢6

125737920000
+

74202119𝑢8

49037788800000
+

707967737𝑢10

6865290432000000
+𝑂 (ℎ

11
) ,

𝛽1,1 =
− (csc (𝑢/2)4 (−54 − 8𝑢2 + (96 + 39𝑢2) cos 𝑢 − 42 cos (2𝑢) + 5𝑢2 cos (3𝑢) − 4𝑢 sin 𝑢 − 22𝑢 sin (2𝑢) − 8𝑢 sin (3𝑢)))

(96𝑢 (𝑢 + 2𝑢 cos 𝑢 − 3 sin 𝑢))

= −
9
20
−
59𝑢2

8400
−

517𝑢4

756000
−

371321𝑢6

6985440000
−

10263683𝑢8

2724321600000
−

32697403𝑢10

127135008000000
+𝑂 (ℎ

11
) ,

𝛽2,1 =
csc (𝑢/2)4 (54 + 5𝑢2 − 48 cos 𝑢 + (−6 + 39𝑢2) cos (2𝑢) − 8𝑢2 cos (3𝑢) + 50𝑢 sin 𝑢 − 76𝑢 sin (2𝑢) + 10𝑢 sin (3𝑢))

(96𝑢 (𝑢 + 2𝑢 cos 𝑢 − 3 sin 𝑢))

= −
29
40
+
𝑢
2

3360
+

59𝑢4

302400
+

53563𝑢6

2794176000
+

1581469𝑢8

1089728640000
+

1395817𝑢10

13869273600000
+𝑂 (ℎ

11
) ,

𝛽3,1 =
− (csc (𝑢/2)4 (78 + (−96 + 5𝑢2) cos 𝑢 + 2 (9 + 4𝑢2) cos (2𝑢) − 𝑢2 cos (3𝑢) − 20𝑢 sin 𝑢 − 2𝑢 sin (2𝑢)))

(96𝑢 (𝑢 + 2𝑢 cos 𝑢 − 3 sin 𝑢))

=
83
540
+
11𝑢2

3024
+

281𝑢4

1360800
+

14279𝑢6

1143072000
+

3937807𝑢8

4903778880000
+

36676261𝑢10

686529043200000
+𝑂 (ℎ

11
) ,

𝛾
𝑛+3,1 =

csc (𝑢/2) (−13𝑢 cos (𝑢/2) + 𝑢 cos ((3𝑢) /2) + 24 sin (𝑢/2))
12𝑢 (𝑢 + 2𝑢 cos 𝑢 − 3 sin 𝑢)

= −
11
180
−
113𝑢2

25200
−

739𝑢4

2268000
−

474827𝑢6

20956320000
−

12620021𝑢8

8172964800000
−

119414483𝑢10

1144215072000000
+𝑂 (ℎ

11
) .

(17)

Case 𝑘 = 4. The coefficients of the main method (10) and the
complimentary methods (11) are, respectively, defined by

𝛽0 =
(𝑁
𝛽0)

(384𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

= −
17
5760
−

251𝑢2

483840
−

2003𝑢4

33868800

−
354659𝑢6

62589542400
−

51104113𝑢8

102521670451200

−
600902219𝑢10

14353033863168000
+𝑂 (ℎ

11
) ,

𝛽1 =
(𝑁
𝛽1)

(384𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))
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=
1
45
+

29𝑢2

30240
+

181𝑢4

1058400
+

70811𝑢6

3911846400

+
2645263𝑢8

1601901100800
+

9724577𝑢10

69004970496000
+𝑂 (ℎ

11
) ,

𝛽2 =
(𝑁
𝛽2)

(192𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

= −
41
480
+
11𝑢2

5760
−

169𝑢4

2822400
−

70207𝑢6

5215795200

−
12382199𝑢8

8543472537600
−

14328617𝑢10

108735105024000
+𝑂 (ℎ

11
) ,

𝛽3 =
(𝑁
𝛽3)

(384𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

=
47
90
−
241𝑢2

30240
−

187𝑢4

529200
−

72019𝑢6

3911846400

−
3489379𝑢8

3203802201600
−

64028929𝑢10

897064616448000

+𝑂 (ℎ
11
) ,

𝛽4 =
(𝑁
𝛽4)

(384𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

=
3133
5760
+
2719𝑢2

483840
+

10207𝑢4

33868800
+

1216471𝑢6

62589542400

+
142053797𝑢8

102521670451200
+

1494030511𝑢10

14353033863168000

+𝑂 (ℎ
11
) ,

𝛾
𝑛+4 =

(𝑁
𝛾
𝑛+4)

2𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢))

= −
3
32
−
3𝑢2

896
−

37𝑢4

188160
−

529𝑢6

38635520

−
195109𝑢8

189854945280
−

6348281𝑢10

79739077017600

+𝑂 (ℎ
11
)

(18)

with 𝑁
𝛽
𝑖
, 𝑖 = 0, 1, . . . , 4, and 𝑁

𝛾
𝑛+4 defined in part

A of Appendix 1 of the supplementary material
(see Supplementary Material available online at
http://dx.doi.org/10.1155/2015/343295). Consider

𝛽0,0 =
𝑁
𝛽0,0

(128𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

= −
201
640
−
23𝑢2

2560
−

1019𝑢4

3763200
−

20569𝑢6

2318131200

−
1712483𝑢8

3797098905600
−

6213083𝑢10

177197948928000

+𝑂 (ℎ
11
) ,

𝛽1,0 =
𝑁
𝛽1,0

(128𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

= −
7
5
+
39𝑢2

1120
+

359𝑢4

352800
+

4481𝑢6

144883200

+
260119𝑢8

177989011200
+

34002959𝑢10

299021538816000

+𝑂 (ℎ
11
) ,

𝛽2,0 =
𝑁
𝛽2,0

(64𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

= −
99
160
−
219𝑢2

4480
−

417𝑢4

313600
−

6317𝑢6

193177600

−
40941𝑢8

35158323200
−

12088171𝑢10

132898461696000

+𝑂 (ℎ
11
) ,

𝛽3,0 =
𝑁
𝛽3,0

(128𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

= −
9
10
+
29𝑢2

1120
+

29𝑢4

58800
−

809𝑢6

144883200

−
151769𝑢8

118659340800
−

3275539𝑢10

33224615424000

+𝑂 (ℎ
11
) ,

𝛽4,0 =
𝑁
𝛽4,0

(128𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

=
149
640
−

51𝑢2

17920
+

1013𝑢4

11289600
+

37621𝑢6

2318131200

+
16324541𝑢8

11391296716800
+

530557669𝑢10

4784344621056000

+𝑂 (ℎ
11
) ,

𝛾
𝑛+4,0 =

𝑁
𝛾
𝑛+4,0

2𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢))

= −
3
32
−
3𝑢2

896
−

37𝑢4

188160
−

529𝑢6

38635520

−
195109𝑢8

189854945280
−

6348281𝑢10

79739077017600

+𝑂 (ℎ
11
)

(19)
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with 𝑁
𝛽
𝑖,0
, 𝑖 = 0, 1, . . . , 4, and 𝑁

𝛾
𝑛+4,0

defined in part B of
Appendix 1 of the supplementary material. Consider

𝛽0,1 =
𝑁
𝛽0,1

(48𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

=
1
90
+
𝑢
2

756
+
𝑢
4

10800
+
𝑢
6

199584

+
691𝑢8

2971987200
+
𝑢
10

102643200
+𝑂 (ℎ

11
) ,

𝛽1,1 =
𝑁
𝛽1,1

(48𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

= −
17
45
−
𝑢
2

189
−
𝑢
4

2700
−
𝑢
6

49896
−

691𝑢8

742996800

−
𝑢
10

25660800
+𝑂 (ℎ

11
) ,

𝛽2,1 =
𝑁
𝛽2,1

(24𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

= −
19
15
+
𝑢
2

126
+
𝑢
4

1800
+
𝑢
6

33264
+

691𝑢8

495331200

+
𝑢
10

17107200
+𝑂 (ℎ

11
) ,

𝛽3,1 =
𝑁
𝛽3,1

(48𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

= −
17
45
−
𝑢
2

189
−
𝑢
4

2700
−
𝑢
6

49896
−

691𝑢8

742996800

−
𝑢
10

25660800
+𝑂 (ℎ

11
) ,

𝛽4,1 =
𝑁
𝛽4,1

(48𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

=
1
90
+
𝑢
2

756
+
𝑢
4

10800
+
𝑢
6

199584

+
691𝑢8

2971987200
+
𝑢
10

102643200
+𝑂 (ℎ

11
) ,

𝛾
𝑛+4,1 = 0

(20)

with 𝑁
𝛽
𝑖,1
, 𝑖 = 0, 1, . . . , 4, defined in part C of Appendix 1 of

the supplementary material. Consider

𝛽0,2 =
𝑁
𝛽0,2

(384𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

= −
11
1920
−

169𝑢2

161280
−

12281𝑢4

101606400

−
2158889𝑢6

187768627200
−

7853429𝑢8

7886282342400

−
272561573𝑢10

3312238583808000
+𝑂 (ℎ

11
) ,

𝛽1,2 =
𝑁
𝛽1,2

(384𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

=
7
135
+

31𝑢2

10080
+

3701𝑢4

9525600
+

1346483𝑢6

35206617600

+
16159921𝑢8

4805703302400
+

752918951𝑢10

2691193849344000

+𝑂 (ℎ
11
) ,

𝛽2,2 =
𝑁
𝛽2,2

(192𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

= −
83
160
−

17𝑢2

13440
−

841𝑢4

2822400
−

534077𝑢6

15647385600

−
9061597𝑢8

2847824179200
−

974213257𝑢10

3588258465792000

+𝑂 (ℎ
11
) ,

𝛽3,2 =
𝑁
𝛽3,2

(384𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

= −
19
30
−

59𝑢2

10080
−

589𝑢4

1587600
−

278329𝑢6

11735539200

−
5135051𝑢8

3203802201600
−

28211849𝑢10

244653986304000

+𝑂 (ℎ
11
) ,

𝛽4,2 =
𝑁
𝛽4,2

(384𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢)))

=
1831
17280
+

821𝑢2

161280
+

122327𝑢4

304819200

+
17519503𝑢6

563305881600
+

743666159𝑢8

307565011353600

+
8152441741𝑢10

43059101589504000
+𝑂 (ℎ

11
) ,

𝛾
𝑛+4,2 =

𝑁
𝛾
𝑛+4,2

2𝑢 (6𝑢 cos (2𝑢) + 16 sin 𝑢 − 11 sin (2𝑢))

= −
11
288
−
3𝑢2

896
−

1447𝑢4

5080320
−

218147𝑢6

9388431360

−
9544999𝑢8

5126083522560
−

11813881𝑢10

79739077017600

+𝑂 (ℎ
11
)

(21)
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with 𝑁
𝛽
𝑖,2
, 𝑖 = 0, 1, . . . , 4, and 𝑁

𝛾
𝑛+4,2

defined in part D of
Appendix 1 of the supplementary material.

2.3. Block Specification and Implementation of the Methods.
We consider a general procedure for the block implementa-
tion of the methods in matrix form (see Fatunla [26]). First
we define the following vectors:

𝑌
𝜇+1 = [𝑦𝑛+1, 𝑦𝑛+2, 𝑦𝑛+3, . . . , 𝑦𝑛+𝑘]

𝑇

,

𝑌
𝜇
= [𝑦
𝑛−𝑘+1, 𝑦𝑛−𝑘+2, 𝑦𝑛−𝑘+3, . . . , 𝑦𝑛]

𝑇

,

𝐹
𝜇+1 = [𝑓𝑛+1, 𝑓𝑛+2, 𝑓𝑛+3, . . . , 𝑓𝑛+𝑘]

𝑇

,

𝐹
𝜇
= [𝑓
𝑛−𝑘+1, 𝑓𝑛−𝑘+2, 𝑓𝑛−𝑘+3, . . . , 𝑓𝑛]

𝑇

,

𝐺
𝜇+1 = [𝑔𝑛+1, 𝑔𝑛+2, 𝑔𝑛+3, . . . , 𝑔𝑛+𝑘]

𝑇

,

(22)

where 𝑦
𝑛+𝑗
= 𝑦(𝑥

𝑛
+ 𝑗ℎ), 𝑓

𝑛+𝑗
= 𝑓(𝑥

𝑛
+ 𝑗ℎ, 𝑦(𝑥

𝑛
+ 𝑗ℎ)), and

𝑔
𝑛+𝑗
= (𝑑𝑓(𝑥, 𝑦(𝑥))/𝑑𝑥)|

𝑥
𝑛+𝑗

𝑦
𝑛+𝑗

. The integration on the entire
block will be compactly written as

𝐴1𝑌𝜇+1 = 𝐴0𝑌𝜇 + ℎ𝐵0𝐹𝜇 + ℎ𝐵1𝐹𝜇+1 + ℎ
2
𝐶1𝐺𝜇+1,

𝜇 = 0, 1, . . . ,
(23)

which forms a nonlinear equation because of the implicit
nature, and hence we employ the Newton iteration for the
evaluation of the approximate solutions. We use Newton’s
approach for the implementation of implicit schemes to get
the following solution of the block:

𝑌
(𝑖+1)
𝜇+1 = 𝑌

(𝑖)

𝜇+1 −(𝐴1 − ℎ𝐵1
𝜕𝐹
𝜇+1

𝜕𝑌
− ℎ

2
𝐶1
𝜕𝐺
𝜇+1

𝜕𝑌
)

−1

⋅ (𝐴1𝑌𝜇+1

−𝐴0𝑌𝜇 − ℎ𝐵0𝐹𝜇 − ℎ𝐵1𝐹𝜇+1 − ℎ
2
𝐶1𝐺𝜇+1) .

(24)

The 𝑘 × 𝑘 matrices 𝐴0, 𝐴1, 𝐵0, 𝐵1, and 𝐶1 are defined as
follows.

Case 𝑘 = 2. Consider

𝐴0 = (
0 −1
0 0
) ,

𝐴1 = (
−1 0
−1 1
) ,

𝐵0 = (
0 𝛽0,0
0 𝛽0
) ,

𝐵1 = (
𝛽1,0 𝛽2,0

𝛽1 𝛽2
) ,

𝐶1 = (
0 𝛾
𝑛+2,0

0 𝛾
𝑛+2
)

(25)

with 𝛽
𝑖
, 𝛽
𝑖,𝑗
, 𝛾
𝑛+𝑘

, 𝛾
𝑛+𝑘,𝑗

, 𝑗 = 0, 𝑖 = 1, 2, defined in methods
(13) and (14).

Case 𝑘 = 3. Consider

𝐴0 = (

0 0 0

0 0 −1

0 0 0

),

𝐴1 = (

1 −1 0

0 −1 0

0 −1 1

),

𝐵0 = (

0 0 𝛽0,1

0 0 𝛽0,0
0 0 𝛽0

),

𝐵1 = (

𝛽1,1 𝛽2,1 𝛽3,1

𝛽1,0 𝛽2,0 𝛽3,0

𝛽1 𝛽2 𝛽3

),

𝐶1 = (

0 0 𝛾
𝑛+3,1

0 0 𝛾
𝑛+3,0

0 0 𝛾
𝑛+3

),

(26)

with 𝛽
𝑖
, 𝛽
𝑖,𝑗
, 𝛾
𝑛+𝑘

, 𝛾
𝑛+𝑘,𝑗

, 𝑗 = 0, 1, 𝑖 = 1, 2, 3, defined in
methods (15), (16), and (17).

Case 𝑘 = 4. Consider

𝐴0 =(

0 0 0 0

0 0 0 0

0 0 0 −1

0 0 0 0

),

𝐴1 =(

1 0 −1 0

0 1 −1 0

0 0 −1 0

0 0 −1 1

),

𝐵0 =(

(

0 0 0 𝛽0,1

0 0 0 𝛽0,2

0 0 0 𝛽0,0
0 0 0 𝛽0

)

)

,
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𝐵1 =(

𝛽1,1 𝛽2,1 𝛽3,1 𝛽4,1

𝛽1,2 𝛽2,2 𝛽3,2 𝛽4,2

𝛽1,0 𝛽2,0 𝛽3,0 𝛽4,0

𝛽1 𝛽2 𝛽3 𝛽4

),

𝐶1 =(

0 0 0 𝛾
𝑛+4,1

0 0 0 𝛾
𝑛+4,2

0 0 0 𝛾
𝑛+4,0

0 0 0 𝛾
𝑛+4

)

(27)

with𝛽
𝑖
,𝛽
𝑖,𝑗
, 𝛾
𝑛+𝑘

, 𝛾
𝑛+𝑘,𝑗

, 𝑖 = 1, 2, . . . , 𝑘 and 𝑗 = 0, 1, 2, . . . , 𝑘−2,
defined in methods (18) through (21).

3. Error Analysis and Stability

3.1. Local Truncation Error (LTE). Suppose that method (10)
is associated with a linear difference operator:

𝐿 [𝑦 (𝑥
𝑛
: ℎ)] = [

[

𝑦 (𝑥 + 𝑘ℎ) − 𝑦 (𝑥 + (𝑘 − 1) ℎ)

− ℎ

𝑘

∑

𝑗=0
𝛽
𝑗
𝑦
󸀠
(𝑥 + 𝑗ℎ) − ℎ

2
𝛾
𝑛+𝑘
𝑦
󸀠󸀠

(𝑥 + 𝑘ℎ)]

]

,

(28)

where 𝑦(𝑥) is an arbitrary smooth function.Then 𝐿[𝑦(𝑥
𝑛
; ℎ)]

is called the local truncation error at 𝑥
𝑛+𝑘

if 𝑦 represents a
solution of the IVP (2). By a Taylor series expansion of 𝑦(𝑥 +
𝑗ℎ), 𝑦󸀠(𝑥 + 𝑗ℎ), and 𝑦󸀠󸀠(𝑥 + 𝑗ℎ), 𝑗 = 0, 1, 2, . . . , 𝑘, we have

𝐿 [𝑦 (𝑥
𝑛
; ℎ)] = 𝐶0𝑦 (𝑥) +𝐶1ℎ𝑦

󸀠

(𝑥) +𝐶2
ℎ
2

2!
𝑦
󸀠󸀠

(𝑥)

+ ⋅ ⋅ ⋅ + 𝐶
𝑞

ℎ
𝑞

𝑞!
𝑦
(𝑞)

(𝑥) + ⋅ ⋅ ⋅ ,

(29)

where 𝐶0 = ∑
𝑘

𝑗=0 𝛼𝑗, 𝐶1 = 1 −∑
𝑘

𝑗=0 𝛽𝑗, and 𝐶2 = (1/2!)(−(𝑘 −
1)2 + 𝑘2) − ∑𝑘

𝑗=0 𝑗𝛽𝑗 − 𝛾𝑛+𝑘, . . . , 𝐶𝑞 = (1/𝑞!)(−(𝑘 − 1)
2
+ 𝑘
𝑞
) −

(1/(𝑞 − 1)!) ∑𝑘
𝑗=0 𝑗
𝑞−1
𝛽
𝑗
− (1/(𝑞 − 2)!)𝑘𝑞−2𝛾

𝑛+𝑘
.

Method (10) is said to be of order 𝑝 if 𝐶0 = 𝐶1 = ⋅ ⋅ ⋅ =
𝐶
𝑝
= 0, 𝐶

𝑝+1 ̸= 0 (see [3]).

Theorem 3. The 𝑘-step method (10) ESDM has a local trunca-
tion error (LTE) of

𝐶
𝑘+3ℎ
𝑘+3
(𝑤

2
𝑦
(𝑘+1)
(𝑥
𝑛
) + 𝑦
(𝑘+3)
(𝑥
𝑛
)) +𝑂 (ℎ

𝑘+4
) . (30)

Proof. We consider a Taylor series expansion of 𝑦
𝑛+𝑗
, 𝑦(𝑥 +

𝑗ℎ), 𝑦
󸀠

𝑛+𝑗
, 𝑦
󸀠
(𝑥 + 𝑗ℎ), 𝑦

󸀠󸀠

𝑛+𝑗
, 𝑦
󸀠󸀠
(𝑥 + 𝑗ℎ) and assume that

𝑦(𝑥
𝑛+𝑗
) = 𝑦

𝑛+𝑗
, 𝑦󸀠(𝑥

𝑛+𝑗
) = 𝑓

𝑛+𝑗
, 𝑦󸀠󸀠(𝑥

𝑛+𝑘
) = 𝑔

𝑛+𝑘
. Then by

Table 1: The local truncation error for various cases.

Case (𝑘) Method Order (𝑝) Error constant (𝐶
𝑝+1)

1 (12) 3 1/7

2 (13) 4 7/1440
(14) 4 23/1440

3
(15) 5 17/7200
(16) 5 −2/225
(17) 5 11/2400

4

(18) 6 41/30240
(19) 6 11/1120
(20) 6 −1/756
(21) 6 19/10080

substituting these into method (10) and simplifying we get
that

LTE = 𝑦 (𝑥
𝑛+𝑘
) − 𝑦
𝑛+𝑘

= 𝐶
𝑘+3ℎ
𝑘+3
(𝑤

2
𝑦
(𝑘+1)
(𝑥
𝑛
) + 𝑦
(𝑘+3)
(𝑥
𝑛
))

+𝑂 (ℎ
𝑘+4
) ,

(31)

where the values of 𝐶
𝑘+3 are given in Table 1.

Define the local truncation error of (23) as follows:

𝐿 [𝑍 (𝑥) ; ℎ]

= Z
𝜇+1 − [𝐴Z𝜇 + ℎ𝐵F𝜇 + ℎ𝐷F𝜇+1 + ℎ

2
𝐶G
𝜇+1] ,

(32)

where

Z
𝜇+1 = [𝑦 (𝑥𝑛+1) , 𝑦 (𝑥𝑛+2) , 𝑦 (𝑥𝑛+3) , . . . , 𝑦 (𝑥𝑛+𝑘)]

𝑇

,

Z
𝜇
= [𝑦 (𝑥

𝑛−𝑘+1) , 𝑦 (𝑥𝑛−𝑘+2) , 𝑦 (𝑥𝑛−𝑘+3) , . . . , 𝑦 (𝑥𝑛)]
𝑇

,

F
𝜇+1 = [𝑓 (𝑥𝑛+1) , 𝑓 (𝑥𝑛+2) , 𝑓 (𝑥𝑛+3) , . . . , 𝑓 (𝑥𝑛+𝑘)]

𝑇

,

F
𝜇
= [𝑓 (𝑥

𝑛−𝑘+1) , 𝑓 (𝑥𝑛−𝑘+2) , 𝑓 (𝑥𝑛−𝑘+3) , . . . ,

𝑓 (𝑥
𝑛
)]
𝑇

,

G
𝜇+1 = [𝑔 (𝑥𝑛+1) , 𝑔 (𝑥𝑛+2) , 𝑔 (𝑥𝑛+3) , . . . , 𝑔 (𝑥𝑛+𝑘)]

𝑇

,

𝐿 [𝑍 (𝑥) ; ℎ] = (𝐿1 [𝑍 (𝑥) ; ℎ] , 𝐿2 [𝑍 (𝑥) ; ℎ] ,

𝐿3 [𝑍 (𝑥) ; ℎ] , . . . , 𝐿𝑘 [𝑍 (𝑥) ; ℎ])
𝑇

(33)

a linear difference operator. Assuming that𝑍(𝑥) is sufficiently
differentiable, we can expand the terms in (23) as a Taylor
series about𝑥 to obtain the expression for the local truncation
error

𝐿 [𝑍 (𝑥) ; ℎ] = 𝐶0𝑍 (𝑥) +𝐶1ℎ𝑍
󸀠

(𝑥) + ⋅ ⋅ ⋅

+ 𝐶
𝑞
ℎ
𝑞
𝑍
𝑞

(𝑥) + ⋅ ⋅ ⋅ ,

(34)

where 𝐶
𝑞
= (𝐶1,𝑞, 𝐶2,𝑞, . . . , 𝐶𝑘,𝑞)

𝑇, 𝑞 = 0, 1, . . ., are constant
coefficients (see Ehigie et al. [27]).
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Definition 4. The block method (23) has algebraic order 𝑝 ≥
1, provided there exists a constant 𝐶

𝑝+1 ̸= 0 such that the
local truncation error 𝐸

𝜇
satisfies ‖𝐸

𝜇
‖ = 𝐶
𝑝+1ℎ
𝑝+1
+𝑂(ℎ

𝑝+2
),

where ‖ ⋅ ‖ is the maximum norm.

Remark 5. (i) The local truncation error constants (𝐶
𝑝+1) of

the block method (23) are presented in Table 1. (ii) From the
local truncation error constant computation, it follows that
the order (𝑝) of the method (23) is 𝑝 = 𝑘 + 2.

3.2. Stability

Definition 6. The block method (23) is zero-stable, provided
the roots of the first characteristic polynomial have modulus
less than or equal to one and those of modulus one are simple
(see [2]).

Remark 7. Observe that, from the first characteristic polyno-
mial 𝜌

𝑘
(𝑅) of the block method (23) specified by 𝜌

𝑘
(𝑅) =

det[∑1
𝑖=0 𝐴 𝑖𝑅

𝑖
] = 0, we obtain −𝑅𝑘−1(1 + 𝑅) = 0. Thus the

roots𝑅
𝑗
, 𝑗 = 1, 2, . . . , 𝑘 of 𝜌

𝑘
(𝑅) satisfy |𝑅

𝑗
| ≤ 1, 𝑗 = 1, 2, . . . , 𝑘

and, for those roots with |𝑅
𝑗
| = 1, the roots are simple.

Definition 8. The block method (23) is consistent if it has
order 𝑝 > 1 (see [26]).

Remark 9. The blockmethod (23) is consistent as it has order
𝑝 > 1 and zero-stable; hence it is convergent since zero-
stability + consistency = convergence.

Proposition 10. The block method (23) applied to the test
equations 𝑦󸀠 = 𝜆𝑦 and 𝑦󸀠󸀠 = 𝜆2𝑦 yields

𝑌
𝜇+1 = 𝑀(𝑞; 𝑢) 𝑌𝜇,

𝑀 (𝑞; 𝑢) = (𝐴1 − 𝑞𝐵1 − 𝑞
2
𝐶1)
−1
(𝐴0 + 𝑞𝐵0) ,

𝑞 = 𝜆ℎ
2
, 𝑢 = 𝑤ℎ.

(35)

Proof. We begin by applying (23) to the test equations 𝑦󸀠 =
𝜆𝑦 and 𝑦󸀠󸀠 = 𝜆2𝑦 which are expressed as 𝑓(𝑥, 𝑦) = 𝜆𝑦 and
𝑔(𝑥, 𝑦) = 𝜆

2
𝑦, respectively; letting 𝑞 = ℎ𝜆 and 𝑢 = 𝑤ℎ, we

obtain a linear equation which is used to solve for 𝑌
𝜇+1 with

(23) as a consequence.

Remark 11. The rational function𝑀(𝑞; 𝑢) is called the stabil-
ity function which determines the stability of the method.

Definition 12. A region of stability is a region in the 𝑞-𝑢 plane,
in which |𝑀(𝑞; 𝑢)| ≤ 1.

Corollary 13. Method (23) has𝑀(𝑞; 𝑢) specified in Appendix
2 of the supplementary material.

Remark 14. In the 𝑞-𝑢 plane the ESDM (23) is stable for 𝑞 ≤ 0,
and 𝑢 ∈ [−2𝜋, 2𝜋], since |𝑀(𝑞; 𝑢)| ≤ 1, 𝑞 ≤ 0.

Remark 15. Figures 1, 3, 5, and 7 are plots of the stability
region of 𝑀(𝑞; 𝑢) for case 𝑘 = 1, 2, . . . , 4, respectively. We
note from these figures that the stability region of 𝑀(𝑞; 𝑢)
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Figure 1: 𝑘 = 1.
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Poles and zeros for k = 1

Figure 2: 𝑘 = 1:𝑀(𝑞; 𝑢) has zeros (◻) and no poles (+) in C−.

for 𝑘 = 1, 2, . . . , 4 includes the entire left side of the complex
plane. Figures 2, 4, 6, and 8 show the respective zeros and
poles of𝑀(𝑞; 𝑢).

3.3. Implementation. The ESDM (10) is implemented in the
spirit ofNgwane et al. in [28, 29] to solve (2)without requiring
starting values and predictors. For instance, if we let 𝑛 = 0
in (10), then 𝑦1, 𝑦2, . . . , 𝑦𝑘 are obtained on the subinterval
[𝑥0, 𝑥𝑘], as 𝑦0 is known from the IVP. If 𝑛 = 1, then
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Figure 3: 𝑘 = 2.
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Figure 4: 𝑘 = 2:𝑀(𝑞; 𝑢) has zeros (◻) and no poles (+) in C−.

𝑦
𝑘+1, 𝑦𝑘+2, . . . , 𝑦2𝑘 are obtained on the subinterval [𝑥

𝑘
, 𝑥2𝑘],

as 𝑦
𝑘
is known from the previous computation and so on,

until we reach the final subinterval [𝑥
𝑁−1, 𝑥𝑁]. Note that,

for linear problems, we solve (2) directly using the feature
Solve[] in Mathematica 8.0, while for nonlinear problems we
use Newton’s method enhanced by the feature FindRoot[].

4. Numerical Illustration

In this section we consider some standard problems: stiff,
oscillatory, linear, and nonlinear systems that appear in
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Figure 5: 𝑘 = 3.
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Figure 6: 𝑘 = 3:𝑀(𝑞; 𝑢) has zeros (◻) and poles (+) in C−.

the literature to experimentally illustrate the accuracy and
efficiency of the ESDM (10) which is implemented in block
form. The ESDM for 𝑘 = 1, 2, 3, and 4 as early stated are
denoted by EM1, EM2, EM3, and EM4, respectively. Our
numerical examples test this family of methods. We include
examples of second-order IVPs and it would be pertinent to
mention here that there are methods specifically designed
for this type of problems. In this paper, all the numerical
experiments are carried out with fixed ℎ and 𝜔, assuming
that 𝜔 is known. This allows us to compute the coefficients
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Figure 7: 𝑘 = 4.
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Figure 8: 𝑘 = 4:𝑀(𝑞; 𝑢) has zeros (◻) and poles (+) in C−.

of the ESDM once for all integration. Some of the methods
of orders 4 and 6 in the literature have been compared
to EM2 and EM4, respectively. We find the approximate
solution on the partition 𝜋

𝑁
, and we give the errors at the

endpoints calculated as Error = 𝑦
𝑁
− 𝑦(𝑥

𝑁
). We denote

the Max|𝑦
𝑁
− 𝑦(𝑥

𝑁
)| by Err, the number of steps by 𝑁, and

the number of function evaluations by NFEs. We will write
an error of the form Err = 𝑞 × 10−𝑟 as 𝑞(−𝑟).

EM2
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Figure 9: Efficiency curves for Example 16.

Example 16. We consider the following inhomogeneous IVP
by Simos [25]:

𝑦
󸀠󸀠
= − 100𝑦+ 99 sin (𝑥) ,

𝑦 (0) = 1,

𝑦
󸀠

(0) = 11,

𝑥 ∈ [0, 1000] ,

(36)

where the analytic solution is given by 𝑦(𝑥) = cos(10𝑥) +
sin(10𝑥) + sin(𝑥).

EM2 is fourth-order and hence comparable to the expo-
nentially fitted method by Simos [25] which is also of fourth-
order. PC1 and PC2 denote the predictor-corrector mode for
𝑘 = 1 and 𝑘 = 2, respectively.The efficiency curves in Figure 9
show the computational efficiency of the twomethods (Simos
and EM2) by considering the NFEs over𝑁 integration steps
for each method. Hence for this example, EM2 performs
better than Simos.We see from Table 2 that ESDM is efficient
for each case.

Example 17. We consider the nonlinear Duffing equation
which was also solved by Ixaru and Vanden Berghe [30]:

𝑦
󸀠󸀠
+𝑦+𝑦

3
= 𝐵 cos (Ω𝑥) ,

𝑦 (0) = 𝐶0,

𝑦
󸀠

(0) = 0,

𝑥 ∈ [0, 300] .

(37)

The analytic solution is given by 𝑦(𝑥) = 𝐶1cos(Ω𝑥) +
𝐶2cos(3Ω𝑥) + 𝐶3cos(5Ω𝑥) + 𝐶4cos(7Ω𝑥), where Ω = 1.01,
𝐵 = 0.002, 𝐶0 = 0.200426728069, 𝐶1 = 0.200179477536,
𝐶2 = 0.246946143 × 10−3, 𝐶3 = 0.304016 × 10−6, 𝐶4 =
0.374 × 10−9, and 𝜔 = 1.01.

We compare the errors produced by our EM2 with the
fourth-order methods by Ixaru and Vanden Berghe [30].
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Table 2: Results with 𝜔 = 10, for Example 16.

𝑁

ESDM Simos [25]
EM1
Err

EM2
Err

EM3
Err

EM4
Err

PC1
Err

PC2
Err

Simos
Err

1000 1.2 (−4) 3.9 (−3) 2.1 (−3) 5.8 (−1) 5.11 4.24 1.4 (−1)
2000 3.7 (−2) 7.7 (−3) 3.9 (−5) 1.7 (−4) 2.49 8.42 3.5 (−2)
4000 4.9 (−4) 2.3 (−3) 2.3 (−4) 8.4 (−5) 2.76 (−2) 1.835 (1) 1.1 (−3)
8000 2.3 (−5) 3.9 (−5) 1.9 (−6) 3.4 (−7) 2.83 (−2) 3.75 (1) 8.4 (−5)
16000 6.8 (−6) 1.4 (−6) 3.4 (−8) 2.1 (−10) 4.33 (−3) 7.47 (1) 5.5 (−6)
32000 1.0 (−6) 5.3 (−8) 2.6 (−12) 3.1 (−11) 3.79 (−4) 1.51 (2) 3.5 (−7)

Table 3: Results with 𝜔 = 1.01, for Example 17.

𝑁

ESDM Ixaru and Vanden Berghe [30]
EM1
Err

EM2
Err

EM3
Err

EM4
Err

Simos
Err

Ixaru and
Vanden Err

300 1.1 (−4) 2.8 (−4) 4.7 (−1) 5.7 (−4) 1.7 (−3) 1.1 (−3)
600 1.8 (−5) 2.3 (−5) 1.9 (−5) 4.5 (−6) 1.9 (−4) 5.4 (−5)
1200 2.7 (−6) 1.3 (−6) 3.3 (−7) 2.9 (−7) 1.4 (−5) 1.9 (−6)
2000 6.2 (−7) 1.6 (−7) 1.6 (−8) 1.2 (−8) — —
2400 13.7 (−7) 5.8 (−8) 1.1 (−8) 3.9 (−9) 8.7 (−7) 6.2 (−8)
3000 1.9 (−7) 1.2 (−8) 3.9 (−9) 1.1 (−9) — —
4800 4.8 (−8) 7.8 (−10) 4.0 (−10) 4.1 (−11) — —

We see from Table 3 that the results produced by ESDM on
Example 17 are very good. In fact, EM2 produces results that
are better than Simos’ method used in [30], as it produces
better error magnitude while using less number of steps and
fewer number of function evaluations. This example once
more shows us that the ESDM produces good results and in
particular EM2 is very competitive to the method used by
Ixaru and Vanden Berghe [30].

Example 18 (a nearly sinusoidal problem). We consider the
following IVP on the range 0 ≤ 𝑡 ≤ 10 (see the study by
Nguyen et al. [16]):

𝑦
󸀠

1 = − 2𝑦1 +𝑦2 + sin (𝑡) ,

𝑦1 (0) = 2,

𝑦
󸀠

2 = − (𝛽+ 2) 𝑦1 + (𝛽+ 1) 𝑦2 + sin (𝑡) − cos (𝑡) ,

𝑦2 (0) = 3.

(38)

We choose 𝛽 = −3 and 𝛽 = −1000 in order to illustrate the
phenomenon of stiffness. Given the initial conditions 𝑦1(0) =
2 and 𝑦2(0) = 3, the exact solution is 𝛽-independent and is
given by

Exact: 𝑦1 (𝑡) = 2 exp (−𝑡) + sin (𝑡) ,

𝑦2 (𝑡) = 2 exp (−𝑡) + cos (𝑡) .
(39)

We choose this example to demonstrate the performance
of ESDM on stiff problems. We compute the solutions to
Example 18 with 𝛽 = −3, −1000. We compare EM4 of order

six to the method by Nguyen et al. [16] which is also of order
six. For both 𝛽 = −3 and 𝛽 = −1000, EM4 clearly obtains
better absolute errors compared to Nguyen et al. [16]. This
efficiency is achieved using fewer number of steps and less
number of function evaluations than Nguyen et al. [16].

Example 19. Consider the given two-body problem which
was solved by Ozawa [15]:

𝑦
󸀠󸀠

1 = −
𝑦1
𝑟3
,

𝑦
󸀠󸀠

2 = −
𝑦2
𝑟3
,

𝑟 = √𝑦21 + 𝑦
2
2 ,

𝑦1 (0) = 1− 𝑒,

𝑦
󸀠

1 (0) = 0,

𝑦2 (0) = 0,

𝑦
󸀠

2 (0) = √
1 + 𝑒
1 − 𝑒
,

𝑥 ∈ [0, 50𝜋] , 𝜔 = 1,

(40)

where 𝑒, 0 ≤ 𝑒 < 1, is an eccentricity. The exact solution of
this problem is 𝑦1(𝑥) = cos(𝑘) − 𝑒, 𝑦2(𝑥) = √1 − 𝑒2 sin(𝑘),
where 𝑘 is the solution of Kepler’s equation 𝑘 = 𝑥 + 𝑒 sin(𝑘).

Table 5 contains the results obtained using the ESDM for
𝑘 = 1, 2, 3, 4. These results are compared with the explicit
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singly diagonally implicit Runge-Kutta (ESDIRK) and the
functionally fitted ESDIRK (FESDIRK) methods given in
Ozawa [15]. In terms of accuracy, Table 5 clearly shows that
ESDM performs better than those in Ozawa [15].

4.1. A Predictor-Corrector Mode Implementation of ESDM.
We can implement our ESDM in a predictor-corrector (PC)
mode.The predictor for 𝑘 = 1, 2, 3, 4 is given below while the
corrector for each case is given by the main method (10). PC1
and PC2 denote the PC mode for 𝑘 = 1 and 2, respectively:

𝑘 = 1:

𝑦
𝑛+1 = 𝑦𝑛 +

ℎ sin 𝑢
𝑢
𝑓
𝑛
+
2ℎ2 sin (𝑢/2)2

𝑢2
𝑔
𝑛
, (41)

𝑘 = 2:

𝑦
𝑛+2 = 𝑦𝑛+1 −

ℎ csc (𝑢/2)2 (−𝑢 + sin 𝑢)
2𝑢

𝑓
𝑛

+
ℎ csc (𝑢/2)2 (−𝑢 cos 𝑢 + sin 𝑢)

2𝑢
𝑓
𝑛+1

+
ℎ
2
(1 − 3 cos (𝑢/2)2 + 𝑢 cot (𝑢/2) + sin (𝑢/2)2)

𝑢2

⋅ 𝑔
𝑛+1,

(42)

𝑘 = 3, 4:

𝑦
𝑛+𝑘
= 𝑦
𝑛+(𝑘−1) + ℎ

𝑘−1
∑

𝑖=0
𝛽
𝑖
𝑓
𝑛+𝑖
+ ℎ

2
𝛾
𝑛+𝑘−1𝑔𝑛+𝑘−1. (43)

The coefficients 𝛽
𝑖
, 𝑖 = 0, 1, . . . , 𝑘 − 1, and 𝛾

𝑛+𝑘−1 for 𝑘 =
3 are given below while those for 𝑘 = 4 are given in
Appendix 3 of the supplementary material. We observe that
the PC implementation performs poorly relative to the block
implementation; see Table 2. Consider

𝛽0 = −
(csc (𝑢/2)2 (2 − 3𝑢2 − 2 cos 𝑢 + (−2 + 𝑢2) cos 𝑢 + 2cos (2𝑢) + 4𝑢 sin 𝑢))

(8𝑢 (𝑢 cos 𝑢 − sin 𝑢))
;

𝛽1 =
(csc (𝑢/2)2 (2 − 5𝑢2 − 2 cos 𝑢 + (−2 + 𝑢2) cos (2𝑢) + 2 cos (3𝑢) + 4𝑢 sin 𝑢 + 2𝑢 sin (2𝑢)))

(8𝑢 (𝑢 cos 𝑢 − sin 𝑢))
;

𝛽2 = −
(csc (𝑢/2)2 ((2 − 5𝑢2) cos 𝑢 + (−2 + 3𝑢2) cos (2𝑢) + 2 (− cos (2𝑢) + cos (3𝑢) + 2𝑢 sin 𝑢)))

(8𝑢 (𝑢 cos 𝑢 − sin 𝑢))
;

𝛾
𝑛+2 =
(csc (𝑢/2)2 (−2 + 6 cos 𝑢 − 6 cos (2𝑢) + 2 cos (3𝑢) − 6𝑢 sin 𝑢 + 3𝑢 sin (2𝑢)))

(8𝑢 (𝑢 cos 𝑢 − sin 𝑢))
.

(44)

4.2. Estimating the Frequency. Though we are mainly inter-
ested in problems where 𝜔 is taken as the exact frequency
of the analytical solution and 𝜔 is known in advance,
it is important to note that the exact frequency may be
unknown for some problems. A preliminary testing indicates
that a good estimate of the frequency can be obtained by
demanding that the LTE in Theorem 3 equals zero and
solving for the frequency. That is, solve for 𝜔 given that
𝐶
𝑘+3ℎ
𝑘+3
(𝜔

2
𝑦
(𝑘+1)
(𝑥
𝑛
) + 𝑦

(𝑘+3)
(𝑥
𝑛
)) = 0, where 𝑦(𝑗), 𝑗 =

𝑘 + 1, 𝑘 + 3, denotes derivatives. We used this procedure to
estimate 𝜔 for the problem given in Example 16 and obtained
𝜔 ≈ ±9.999996, which approximately gives the known
frequency 𝜔 = 10. Hence, this procedure is interesting and
will be seriously considered in our future research.

If a problem has multiple frequencies, then 𝜔 is approxi-
matively calculated so that it is an indicative frequency (see
Nguyen et al. [16]). We note that estimating the frequency
when it is unknown as well as finding the frequency for
problems for which the frequency varies over time is very
challenging. This challenge and the choice of the frequency
in trigonometrically fitted methods have grown in interest.
Existing references on how to estimate the frequency and the

choice of the frequency include Vanden Berghe et al. [31] and
Ramos and Vigo-Aguiar [32].

5. Conclusion

In this paper, we have proposed a family of Enright methods
using trigonometric bases for solving stiff and oscillatory
IVPs. The ESDM is zero-stable and produced good results
on stiff IVPs. This method has the advantages of being self-
starting and having good accuracy properties. ESDM has
order (𝑘+2) similar to that in Enright [22].We have presented
representative numerical examples that are linear, nonlinear,
stiff, and highly oscillatory. The need that the frequency
be known in advance might be a shortcoming, yet these
examples show that the ESDM is not only promising butmore
accurate and efficient than those in Nguyen et al. [16], Simos
[25], Ixaru and Vanden Berghe [30], and Ozawa [15]. Details
of the numerical results are displayed in Tables 2, 3, 4, and
5, and the efficiency curves are presented in Figures 9, 10, 11,
12, and 13. Our future research will incorporate a technique
for accurately estimating the frequency as suggested in
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Figure 10: Efficiency curves for Example 17.
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Figure 11: Efficiency curves for Example 18 with 𝛽 = −3.
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Figure 12: Efficiency curves for Example 18 with 𝛽 = −1000.

Table 4: Results with 𝜔 = 1, for Example 18.

ESDM Nguyen et al. [16]
For 𝛽 = −3 we have

EM1 EM2 EM3 EM4 Nguyen
𝑁 6 6 6 6 —
Err 6.6 (−5) 3.8 (−5) 7.1 (−5) 1.2 (−4) —
𝑁 10 10 10 10 10
Err 1.9 (−5) 1.3 (−6) 4.1 (−6) 8.1 (−7) 5.4 (−6)
𝑁 27 27 27 27 19
Err 1.2 (−6) 8.2 (−8) 3.1 (−8) 4.3 (−9) 8.3 (−8)
𝑁 32 32 32 32 23
Err 7.1 (−7) 6.3 (−8) 1.3 (−8) 1.9 (−9) 4.5 (−4)

For 𝛽 = −1000 we have
EM1 EM2 EM3 EM4 Nguyen

𝑁 6 6 6 6 13
Err 6.6 (−5) 3.8 (−5) 7.1 (−5) 1.3 (−5) 1.0 (−6)
𝑁 16 16 16 16 16
Err 5.3 (−6) 6.2 (−7) 1.8 (−7) 2.5 (−8) 1.6 (−7)
𝑁 20 20 24 24 21
Err 2.8 (−6) 3.2 (−7) 5.3 (−8) 6.5 (−9) 7.0 (−8)
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EM2

Figure 13: Efficiency curves for Example 19.

Section 4.2 as well as implementing the method in a variable
step mode.
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Table 5: Results with 𝜔 = 1, 𝑒 = 0.005, for Example 19.

ESDM FESDIRK ESDIRK
EM1 EM2 EM3 EM4 EM5 FESDIRK4 (3) ESDIRK4 (3)

𝑁 300 600 600 600 1200 381 884
Err 2.4 (−3) 3.0 (−4) 1.2 (−4) 2.6 (−1) 1.2 (−7) 1.4 (−3) 9.4 (−3)
𝑁 600 1200 1200 1200 2000 680 1573
Err 1.8 (−3) 9.8 (−6) 4.5 (−6) 4.6 (−7) 2.4 (−9) 1.7 (−4) 6.2 (−4)
𝑁 1200 2000 2000 2000 2400 1207 2796
Err 2.8 (−4) 7.5 (−7) 4.0 (−7) 1.3 (−8) 1.1 (−9) 1.8 (−5) 4.4 (−5)
𝑁 2000 3200 3200 3200 3200 2144 4970
Err 6.2 (−5) 7.3 (−8) 3.9 (−8) 4.9 (−10) 1.6 (−10) 1.9 (−6) 3.4 (−6)
𝑁 4000 4800 4800 4800 4800 3806 8833
Err 7.8 (−6) 9.6 (−9) 5.2 (−9) 2.9 (−11) 9.2 (−12) 1.9 (−7) 2.8 (−7)
𝑁 8000 8000 8000 8000 8000 6762 15706
Err 9.7 (−7) 7.5 (−10) 4.0 (−10) 8.8 (−13) 3.6 (−13) 2.0 (−8) 2.5 (−8)
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