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In response to the increasingly stringent emission regulations and a demand for ever lower fuel consumption, diesel engines
have become complex systems. The exploitation of any leftover potential during transient operation is crucial. However, even
an experienced calibration engineer cannot conceive all the dynamic cross couplings between the many actuators. Therefore, a
highly iterative procedure is required to obtain a single engine calibration, which in turn causes a high demand for test-bench time.
Physics-based mathematical models and a dynamic optimisation are the tools to alleviate this dilemma. This paper presents the
methods required to implement such an approach. The optimisation-oriented modelling of diesel engines is summarised, and the
numerical methods required to solve the corresponding large-scale optimal control problems are presented. The resulting optimal
control input trajectories over long driving profiles are shown to provide enough information to allow conclusions to be drawn for
causal control strategies. Ways of utilising this data are illustrated, which indicate that a fully automated dynamic calibration of the
engine control unit is conceivable. An experimental validation demonstrates the meaningfulness of these results.Themeasurement
results show that the optimisation predicts the reduction of the fuel consumption and the cumulative pollutant emissions with a
relative error of around 10% on highly transient driving cycles.

1. Introduction

Optimal control of diesel engines becomes increasingly im-
portant. More stringent emission regulations [1, 2] require
the exploitation of the remaining potential of reducing the
emissions, not only in stationary operation but also especially
during transients [3, 4]. Simultaneously, the fuel consump-
tion has to be minimised for economic and environmental
reasons.

The classical approach to parameterise an engine control
unit (ECU) is to first derive stationary lookup maps. Subse-
quently, transient corrections are added to these static maps,
and heuristic feedforward parts are included. This approach,
which relies mainly on engineering experience, leads to a
highly iterative procedure when transient driving cycles need
to be considered. With the increasing complexity of mod-
ern engine systems, it becomes difficult for the calibration
engineer to conceive all the cross couplings between the
many actuators. A high demand for test-bench time results.

Furthermore, each new calibration of an engine requires
this manual procedure to be executed again. Particularly for
heavy-duty engines, which are usually employed in a variety
of applications, a fast and partially automated calibration
process is desirable.

Model-based approaches and mathematical optimisation
tools provide themeans for such an automation. For example,
during the calibration of the ECU, the static lookup maps
need to be optimised. This optimisation can be performed
directly on the engine [5], or mathematical models may be
used in place of the physical engine [6–8]. An overview
of modelling principles suitable for this approach can be
found in [9]. The information about the driving cycle to be
considered may be included by a weighting of the operating
range of the engine. This weighting matrix represents the
time during which the engine is operated at a certain engine
speed and load torque. Alternatively, a few relevant operating
points can be identified, and the optimisation is restricted
to those points [10, Chapter 7]. Identifying the parameters
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of a feedback controller can also be cast as an optimisation
problem. Again, the solution can be obtained directly on
the engine [11] or by a model-based approach [12]. Adaptive
methods aim to automatically improve the engine calibration
during normal operation [13].

Dynamics may be incorporated either online by model-
predictive control [14–16] or offline by an optimisation of the
control-trajectories over a representative driving profile. The
solution of such optimal control problems (OCPs), which
in the past were also obtained directly on the engine [17],
provides implications for well-suited control structures [18–
21]. The optimal control profiles with the corresponding
fuel consumption and pollutant emissions can be used as a
benchmark to disclose scenarios in which the performance
of the actual control system is suboptimal. An analysis of
these cases provides guidelines for the improvement of the
control structure, the feedforward control, and the reference-
trajectory generation. Another way of utilising the results
from optimal control is to use this data to train function
approximators such as artificial neural networks [22, 23].

In the literature referenced, it is stated that due to the
complexity of the system, OCPs for diesel engines can only be
solved over short time horizons of around 3 s to 10 s. Alterna-
tively, model simplifications such as a quasistationary treat-
ment are performed. However, to derive implications for a
suitable control structure or to train function approximators,
optimal solutions over long time horizons are required, based
on a detailed, fully dynamic engine model. Transient driving
cycles, which are used during the homologation procedure
and thus emulate a representative operation scenario of the
engine, are typically 20 to 30 minutes long.

This paper presents the means to calculate such optimal
solutions. The optimisation-oriented modelling of diesel
engines is summarised and extended to engineswith exhaust-
gas recirculation (EGR) in Section 2.2. Subsequently, the
problem formulation is detailed, and the numerical opti-
misation methods are described in Sections 2.3–2.6. The
presentation of the results is subdivided into three parts.
First, the performance of the numerical methods is analysed
in Section 3.1 and, subsequently, two case studies illustrate
how the results from the optimisation can be utilised in
Section 3.2. Finally, the experimental validation provided
in Section 3.3 demonstrates the meaningfulness and the
soundness of the approach.

A reader interested in the engineering aspects of the prob-
lem may focus on Sections 2–2.2, 2.6, and 3.2. Conversely, a
reader interested in the details of the optimisation method
and its performancemay concentrate on Sections 2.3–2.5 and
3.1.

Throughout the text, the derivative with respect to time
is denoted by 𝑥̇ = 𝑑𝑥/𝑑𝑡, whereas

∗

𝑥 designates a flow. Lower
and upper bounds are denoted by 𝑥 and 𝑥, and 𝑥 indicates a
reference value. Bold-face symbols such as x or X represent
vectors and matrices, respectively. The abbreviations and
symbols are summarised in the nomenclature section at the
end of the text, except for the specific notation used in
Sections 2.4 and 2.5.

Table 1: Main data of the engines used.

Engine A B
Displ. volume 𝑉

𝑑
(l) 8.7 3.0

Cylinders 𝑛cyl (—) 6 4
Bore/stroke (mm) 117/135 96/104
Compression ratio (—) 15.8 17.6
EGR — High pressure
Rated power (kW) 300 (1,650 rpm) 130 (2,900 rpm)
Max. torque (Nm) 1,720 (1,200 rpm) 420 (1,400 rpm)

2. Materials and Methods

This section introduces the engines used and presents all
methods required for the optimal control of diesel engines.
The numerical framework for optimal control as well as the
engine model is implemented in MATLAB 2013b (Math-
Works, Natick, MA, USA), running under 64bit Windows 8.
All computations are performed on a laptop computer with
an Intel Core i7-2760QM CPU running at a clock speed of
2.40GHz.

2.1. Engines. The relevant data of the two engines considered
here are provided in Table 1. Engine A is a heavy-duty engine
which is used in on-road and off-road applications. It does
not have an EGR system but relies on a selective catalytic-
reduction system (SCR) to reduce the engine-out NO

𝑥

emissions to the level imposed by the legislation. Engine B
is a light-duty engine that is used mainly in light commercial
vehicles. It has an EGR system but no SCR. Both engines are
equipped with a common-rail injection system and a diesel
particulate filter (DPF). The soot emissions are low enough
such that no active regeneration of the DPF is necessary.
The optimisation thus has to maintain a similar level of soot
emissions and should not produce large instantaneous soot
peaks.

2.2. Engine Modelling. During an optimisation, a vast num-
ber of model evaluations are performed. Either the model
function itself is evaluated, for example, during static calibra-
tion or when employing simultaneous methods for optimal
control [24], or a forward simulation of the model is used, for
example, for parametric studies or in the context of shooting
methods for optimal control [25, Sections 3.2–3.4].Therefore,
the model has to be simple to enable a fast execution. In
both cases described, partial derivatives need to be calculated
as well. If only standard mathematical operations are used,
automatic differentiation is applicable, which enables a fast
and accurate evaluation of partial derivatives [26, 27].

Besides being computationally efficient, models apt for
optimisation have to be smooth and quantitatively accurate,
capture all relevant qualitative trends, and provide plausible
extrapolation. These properties qualify the model itself or its
simulation as an “accurate and consistent function generator”
[25, Section 3.8]. As a fundamental requirement, the model
outputs have to be predicted using the control signals,
known parameters, and the ambient conditions only. Ideally,
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Figure 1: Structure of the engine model. The model for the engine
with EGR does include the grey signals, but not the dashed ones.

themodel can be identified using a small set ofmeasurements
in order not to cancel the reduction of test-bench time gained
by the application of model-based approaches. If the model
is able to predict the effects induced by influences that can
hardly be excited on the test bench, its value for parametric
studies is further enhanced.

Optimisation-orientedmodels are thus classified between
control-oriented and phenomenological models [28, 29].The
former only capture the trends relevant to control while being
as simple as to be implementable on the ECU. Due to the
presence of feedback control, the quantitative accuracy is of
minor importance, and the models have to be valid only in
a region around the setpoints of the controller. In contrast,
phenomenological models are used to perform predictive
parametric studies or to analyse specific effects. Since a high
execution speed is not critical, a single model evaluation
typically takes from a few seconds up to several hours [30].
Due to their complexity, such models often suffer from error
propagation [31, 32].

2.2.1. TheModel Used. An optimisation-oriented model for a
diesel engine without EGR is presented in [29, 33]. A classical
mean-value model for the air path is extended by thermal
models for the intake and the exhaust manifolds. Physics-
based setpoint-relative models are used for the combustion
efficiency, the in-cylinder processes, and the NO

𝑥
emissions.

However, since all setpointmaps are replaced by polynomials,
the model is smooth and apt for algorithmic differentiation.
The models for the fuel consumption and the NO

𝑥
emissions

capture the influence of the air-path state, the injection
pressure, and the injection timing, that is, the start of
injection (SOI).Themodelling errors are in the range of 0.6%
and 5%, respectively. For the soot emissions, the simplemodel
described in [34] is used. It captures the effects of the injection
pressure and the air-to-fuel ratio (AFR).

Figure 1 illustrates the general structure of the model.
Only the air path is modelled as a dynamic system, whereas
all phenomena occurring in the cylinders are assumed to be
instantaneous processes. The state variables x of the air path
are inputs to this static part of the model. The exhaust-gas
aftertreatment system (ATS) is included in the model only as
a flow restriction in the air path.The engine-out emissions are
limited directly in the optimisation problem.

2.2.2. Extension to EGR. Several submodels need to be added
or adapted for an engine with EGR. The dynamics in the
intake manifold comprise balances for the mass, the energy,

and the burnt-gas fraction. The corresponding differential
equations read

𝑑𝑝IM
𝑑𝑡

=

𝑅𝜅

𝑉IM
(

∗

𝑚CP𝜗IC +
∗

𝑚EGR𝜗EGR −
∗

𝑚cyl𝜗IM) , (1a)

𝑑𝜗IM
𝑑𝑡

=

𝑅𝜗IM
𝑝IM𝑉IM𝑐V

[𝑐

𝑝
(

∗

𝑚CP𝜗IC +
∗

𝑚EGR𝜗EGR −
∗

𝑚cyl𝜗IM)

− 𝑐V𝜗IM (

∗

𝑚CP +
∗

𝑚EGR −
∗

𝑚cyl)] ,

(1b)

𝑑𝑥BG,IM

𝑑𝑡

=

𝑅𝜗IM
𝑝IM𝑉IM

(

∗

𝑚EGR (𝑥BG,EM − 𝑥BG,IM)

− 𝑥BG,IM
∗

𝑚CP) .

(1c)

The burnt-gas fraction in the exhaust gas is

𝑥BG,EM =

𝑥BG,IM ⋅

∗

𝑚cyl + (1 + 𝜎

0
) ⋅

∗

𝑚fuel
∗

𝑚cyl +
∗

𝑚fuel

, (2)

where 𝜎
0
≈ 14.5 is the stoichiometric AFR.

The mass-flow through the EGR valve is modelled by a
simplified flow function for compressible fluids [1, Section
2.3.5]:

∗

𝑚EGR = 𝐴EGR ⋅
𝑝EM

√𝑅 ⋅ 𝜗EM
⋅ Ψ (

𝑝EM
𝑝IM

) , (3a)

Ψ (Π) =
√

2

𝑘

Π
⋅ Π

⋅ (1 −

1

𝑘

Π
⋅ Π

),
(3b)

𝐴EGR = 𝑘EGR,1 ⋅ 𝑢EGR + 𝑘EGR,2 ⋅ 𝑢
𝑘EGR,𝑒
EGR .

(3c)

The factor 𝑘
Π

≈ 1.04 accounts for flow phenomena that
change the effective pressure ratio over the EGR valve. The
model for the EGR cooler has the same structure as the
intercooler model presented in [33].

An exhaust flap (EF) is installed directly after the turbine.
Its purpose is to choke the flow of exhaust gas such that the
pressure in the exhaust manifold increases.This higher back-
pressure enables higher EGRmass-flows.The EF is modelled
by a factor that reduces the effective opening area of the ATS:

𝑥EF = 1 − 𝑘EF,1 ⋅ 𝑢
𝑘EF,2
EF .

(4)

Due to the lower oxygen concentration when EGR is
applied, the combustion efficiency is slightly reduced. The
factor

𝜂

𝜉O
2

= 1 − 𝑎

𝜉O
2

(𝑁eng, 𝑚fcc) ⋅
󵄩

󵄩

󵄩

󵄩

󵄩

𝜉O
2

−

̂

𝜉O
2

󵄩

󵄩

󵄩

󵄩

󵄩

𝑏
𝜉O
2 (5a)

is appended as an additional multiplicative efficiency reduc-
tion. The reference oxygen mass-fraction before the com-
bustion, ̂𝜉O

2

, as well as the exponential factor 𝑏
𝜉O
2

are scalar
parameters. The efficiency reduction is a function of the
engine operating point:

𝑎

𝜉O
2

= 𝑎

0
+ 𝑎

1
⋅ 𝑁eng + 𝑎

2
⋅ 𝑚fcc. (5b)
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The ignition-delay model also has a multiplicative struc-
ture. The additional correction factor

𝜏

𝜉O
2

= 1 − 𝑘lin ⋅ (𝜉O
2

−

̂

𝜉O
2

)

− 𝑘quad (𝑁eng, 𝑚fcc) ⋅ (𝜉O
2

−

̂

𝜉O
2

)

2

(6a)

is introduced, where the coefficient of the second-order term
is again a function of the engine operating point:

𝑘quad = 𝑘quad,0 + 𝑘quad,1 ⋅ 𝑁eng + 𝑘quad,2 ⋅ 𝑚fcc

+ 𝑘quad,3 ⋅ 𝑁
2

eng + 𝑘quad,4 ⋅ 𝑚
2

fcc + 𝑘quad,5 ⋅ 𝑁eng ⋅ 𝑚fcc.

(6b)

TheNO
𝑥
model inherently accounts for the change of the

temperature and of the composition of the intake air by the
EGR. However, since the combustion speed is changed by the
reduced oxygen availability, a smaller region in the cylinder
reaches a temperature that is sufficiently high for thermal
NO
𝑥
formation. This effect is found to depend on the engine

speed and therefore the factor

𝑥O
2

= 𝜉

𝑘O
2

⋅𝑁eng
O
2

(7)

is applied to the formation volume in the original NO
𝑥
model

[29].The effect of the EGR, which reduces the NO
𝑥
emissions

by a factor of up to 18, is predicted by the model with an
average magnitude of the relative error of 8%.

The simple soot model that is suitable for engine A does
not yield plausible results for engine B with EGR. Therefore,
no model for the soot emissions is used. In the OCP, the
corresponding limit is replaced by a lower bound on the AFR.

2.3. Numerical Optimal Control. A general formulation of an
OCP reads

min
x(⋅),u(⋅)

∫

𝑇

0

𝐿 (x (𝑡) , u (𝑡) ,𝜋 (𝑡)) 𝑑𝑡 (8a)

s.t. ẋ (𝑡) − f (x (𝑡) , u (𝑡) ,𝜋 (𝑡)) = 0, 𝑡 ∈ [0, 𝑇] ,

(8b)

∫

𝑇

0

g (x (𝑡) , u (𝑡) ,𝜋 (𝑡)) 𝑑𝑡 − ĝ ≤ 0,
(8c)

c (x (𝑡) , u (𝑡) ,𝜋 (𝑡)) ≤ 0, 𝑡 ∈ [0, 𝑇] , (8d)

x (𝑡) ≤ x (𝑡) ≤ x (𝑡) , 𝑡 ∈ [0, 𝑇] , (8e)

u (𝑡) ≤ u (𝑡) ≤ u (𝑡) , 𝑡 ∈ [0, 𝑇] . (8f)

The goal is to find trajectories for the state variables x(𝑡) and
the control inputs u(𝑡) that minimise the integral cost (8a)
while satisfying the dynamics of the system (8b), the integral
inequality constraints (8c), and the time-variable path con-
straints (8d). (The integral cost 𝐿 is called a Lagrange term.
Every differentiable end cost, also called a Mayer term, can
be replaced by an equivalent Lagrange term.The latter is to be
preferred from a numerical point of view [25, Section 4.9].)

The simple bounds (8e) and (8f) represent the actuator
ranges, mechanical limits, and fixed initial or end conditions.
The system has 𝑛

𝑥
state variables, that is, x, f , x, x ∈ R𝑛𝑥 , and

there are 𝑛
𝑢
control inputs to the system,u,u, u ∈ R𝑛𝑢 . Several

time-variable parameters 𝜋 ∈ R𝑛𝜋 may be present. Finally,
there are 𝑛

𝑔
integral constraints and 𝑛

𝑐
path constraints, that

is, g, ĝ ∈ R𝑛𝑔 , and c ∈ R𝑛𝑐 , respectively.
Themost common approaches to tackle continuous-time

OCPs are outlined in Figure 2. The top level is inspired by
[35]. Partial overviews are provided in [36–38], and [39]
presents a brief historical outline. Solving the Hamilton-
Jacobi-Bellman equation, which is a partial differential equa-
tion subject to the model equations, is practicable only for a
system with few state variables and control inputs. Similar to
its discrete-time equivalent, dynamic programming, it suffers
from the curse of dimensionality for larger systems. Likewise,
the indirect approach can hardly be applied to large and
complex problems. If the first-order optimality conditions
can be derived analytically, still a two-point boundary-
value problem (BVP) needs to be solved. The dynamics of
the costate variables however are ill-conditioned, and it is
impossible to derive a good initial guess for the general case.

Directmethods start by discretising the full OCP.Afinite-
dimensional, constrained nonlinear optimisation problem
results. This type of problem is termed nonlinear program
(NLP). Due to the performance and the robustness of
current NLP solvers, this approach is a means to an efficient
numerical solution of large-scale, complex OCPs.

Within direct methods, two main approaches exist. The
sequential approach, also called single shooting, discretises
only the control inputs, and a forward simulation is used
to evaluate the model. Although this method is simple
to implement, the resulting NLP is highly nonlinear and
sensitive [25, Sections 3.3 and 3.4], which limits the length
of the time horizon. Furthermore, consistent derivatives have
to be available for the solution of the NLP [25, Section
3.8], which requires the use of custom ODE solvers. Finally,
instabilities of the model can lead to a failure of the ODE
solver and thus a premature termination of the optimisation.

The alternative to the sequential approach is to discretise
the state trajectories along with the control inputs. The entire
continous-time problem is “transcribed” into a large but
extremely sparse NLP, which fully includes the discretised
state trajectories. No forward simulation is performed, and
the model ODEs are only satisfied after the solution of the
NLP.This simultaneous optimisation and simulation resolves
the problems encountered by the sequential approach. One
drawback is that the accuracy of the solution of the ODEs
is coupled to the discretisation of the control inputs. An
iterative mesh refinement may be necessary to obtain a suffi-
ciently accurate solution. A recent overview of simultaneous
approaches is provided in [24, 40], while [41] unveils the
beginnings of these methods.

2.3.1. Direct Collocation. Collocation methods are a family of
integration schemes often used for the direct transcription
of OCPs [42–47]. In contrast to other Runge-Kutta schemes,
they represent the state trajectories on each integration inter-
val as polynomials and thus provide a continuous solution.
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Hamilton-Jacobi-Bellman equation
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Indirect methods
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− Hamiltonian dynamics ill-conditioned
− Initialisation of the BVP difficult
− First-order optim. cond. “by hand”
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+ Flexible
+ Efficient (sparsity)
+ Robust (with respect to 

Control parameterisation
“Sequential approach” → ODE always feasible
+ Simple to implement
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− ODE solver has to provide consistent sensitivities

Single shooting
Only discretised

control inputs in NLP

Multiple shooting
Small intervals
→ Initial state of each interval in NLP
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Apply discretisation scheme to ODE
→ All discretised control inputs and state vars. in NLP

Local
Low order, fine grid

+ Arbitrary mesh and order (local refinement)
+ Sparsity

Direct collocation
Families of implicit Runge-Kutta schemes that represent state trajectory by polynomial → continuous solution

Global: pseudospectral methods
One single interval, extremely high order

+ Accuracy of integration
− Grid prescribed, poor approximation of nonsmoothness

Pseudospectral patching
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Hermite-Simpson
Lobatto, 3rd order

Crank-Nicholson
Lobatto, 2nd order

Euler backward
Radau, 1st order

Control and state parameterisation
“Simultaneous approach” → ODE satisfied only after optim.
+ Many degrees of freedom during optimisation
+ Sparsity | + Can handle unstable systems
− Same discretisation of control inputs and state variables

initialisation)

Figure 2: Overview of the most prominent methods for the numerical solution of optimal control problems.

The method chosen here is the family of Radau col-
location schemes [48]. It provides stiff accuracy and stiff
decay (or L-stability) [48], [49, Section 3.5]. L-stable schemes
approximate the true solution of a stiff system when the
discretisation is refined. Furthermore, the integral and the
differential formulations of Radau collocation are equivalent
[47]. This property is necessary to construct a consistent
transcription of the OCP at hand.

Historically, two different branches of direct collocation
methods evolved, which is indicated in Figure 2. On the
one hand, low-order methods originated from the forward
simulation of ODEs. A step-size adaptation is used to
compensate for the low order. On the other hand, pseu-
dospectral methods originally evolved in the context of partial
differential equations within fluid dynamics. In their purest
form, these methods do not subdivide the time horizon into
intervals but represent the state variables as single high-
order polynomials. The order of these polynomials may
be increased to achieve a higher accuracy. In the context
of direct collocation, these two branches can be cast in a
unified framework that allows for an arbitrary order on each
collocation interval. Nowadays, approaches that selectively
refine the step size and the collocation order represent the
state of the art [50, 51].

2.3.2. Nonlinear Programming. Before the equations for
direct collocation and the structure of the resulting NLP are
derived, the fundamentals of solving NLPs are summarised.

This outline enables the interpretation of the performance
of different solvers on the problem at hand. Neither com-
pleteness is claimed nor a proper mathematical foundation
is followed. Several textbooks on the subject are available, for
example, [52, 53].

An NLP is formulated as

min
𝜔

𝐹 (𝜔) (9a)

s.t. g (𝜔) = 0, g ∈ R
𝑛
𝑔

, (9b)

h (𝜔) ≤ 0, h ∈ R
𝑛
ℎ

. (9c)

By the introduction of the Lagrangian function

L (𝜔,𝜆
𝑔
,𝜆
ℎ
) := 𝐹 (𝜔) + 𝜆

𝑇

𝑔
g (𝜔) + 𝜆𝑇

ℎ
h (𝜔) , (10)

the first-order necessary conditions for the NLP (9a)–(9c),
also known as the Karush-Kuhn-Tucker (KKT) conditions,
become

∇

𝜔
L (𝜔
∗

,𝜆
∗

𝑔
,𝜆
∗

ℎ
) = 0, (11a)

∇

𝜆
𝑔

L (𝜔
∗

,𝜆
∗

𝑔
,𝜆
∗

ℎ
) = g (𝜔∗) = 0, (11b)

∇

𝜆
ℎ

L (𝜔
∗

,𝜆
∗

𝑔
,𝜆
∗

ℎ
) = h (𝜔∗) ≤ 0, (11c)
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𝜆
∗

ℎ
≥ 0, (11d)

𝜆

∗

ℎ,𝑖
⋅ ℎ

𝑖
(𝜔
∗

) = 0, 𝑖 = 1, . . . , 𝑛

ℎ
. (11e)

The matrix of the first partial derivatives of all constraints
is called the Jacobian. The second-order sufficient condi-
tions require the Hessian of the Lagrangian, ∇2

𝜔
L(𝜔,𝜆

𝑔
,𝜆
ℎ
),

projected on the null-space of the Jacobian, to be positive
definite. This projection is termed the “reduced Hessian.”

Equality-constrained problems can be solved by applying
Newton’s method to the nonlinear KKT conditions. After
some rearrangements, one obtains the KKT system

(

∇𝐹 (𝜔
𝑘
)

g (𝜔
𝑘
)

) + [

∇

2

𝜔
L (𝜔
𝑘
,𝜆
𝑔,𝑘
) ∇g (𝜔

𝑘
)

∇g(𝜔
𝑘
)

𝑇

0

] ⋅ (

𝜔 − 𝜔
𝑘

𝜆
𝑔

) = 0,

(12)

which is solved during each Newton iteration 𝑘. The solution
of the quadratic program (QP)

min
p

1

2

p𝑇∇2
𝜔
L (𝜔
𝑘
,𝜆
𝑔,𝑘
) p + ∇𝐹(𝜔

𝑘
)

𝑇p (13a)

s.t. ∇g(𝜔
𝑘
)

𝑇p + g (𝜔
𝑘
) = 0,

(13b)

with p = 𝜔 − 𝜔
𝑘
, is equivalent to the solution of (12).

Applying Newton’s method to the KKT conditions thus can
be interpreted as sequential quadratic programming (SQP).

To ensure progress from remote starting points, two
different globalisation strategies are used. The line search
approach first defines a direction and searches along this
direction until an acceptable step length is found. The most
popular search direction is the Newton direction defined by
(12) or (13a) and (13b). In contrast, the trust-region approach
defines a region, for example, a ball, around the current
point in which a model for 𝐹—usually also a quadratic
approximation—is assumed to be reliable. The trust-region
radius is adjusted by assessing the model accuracy observed
over the last step. In proximity of the solution, both
approaches reduce to the standard Newton iteration on the
KKT conditions, which exhibits quadratic convergence.

Quasi-Newton Approximations. In the KKT system (12) or
the QP (13a) and (13b), the exact Hessian of the Lagrangian
can be replaced by a quasi-Newton (QN) approximation.This
substitution is possible since the current Lagrangemultipliers
𝜆
𝑔,𝑘

only occur implicitly in the Hessian itself. The basic idea
is to utilise the curvature information obtained along theNLP
iterations to construct an approximation of the exact Hessian.
The most prominent method is the limited-memory BFGS
update [54], named after its discoverers C. G. Broyden, R.
Fletcher, D. Goldfarb, andD. F. Shanno.This update preserves
the positive definiteness of a usually diagonal initialisation.

Inequality Constraints. To solve inequality-constrained (IC)
problems, two fundamentally different approaches are used
nowadays. On the one hand, the idea of SQP can be extended
to the IC case. These methods model (9a)–(9c) as an IC QP

at each iteration. The search direction p
𝑘
for a line search is

thus the solution of the QP

min
p

1

2

p𝑇∇2
𝜔
L (𝜔
𝑘
,𝜆
𝑔,𝑘
,𝜆
ℎ,𝑘
) p + ∇𝐹(𝜔

𝑘
)

𝑇p (14a)

s.t. ∇g(𝜔
𝑘
)

𝑇p + g (𝜔
𝑘
) = 0,

(14b)

∇h(𝜔
𝑘
)

𝑇p + h (𝜔
𝑘
) ≤ 0.

(14c)

On the other hand, interior-point (IP) methods penalise the
violation of the ICs by a logarithmic barrier function. The
problem

min
𝜔

𝐹 (𝜔) − 𝜏

𝑛
ℎ

∑

𝑖=1

log (−ℎ
𝑖
) (15a)

s.t. g (𝜔) = 0, (15b)

is solved, while the barrier parameter 𝜏 is decreased itera-
tively. The solution for one value is used to initialise the next
iteration.

Both approaches to handle IC problems exhibit some
advantages but also suffer from specific drawbacks.Themain
difference is that, within an SQP method, the structure of
the QP approximation changes from iteration to iteration,
whereas for IP methods, this structure is invariant. As a
consequence, an IP method can afford to derive a good fac-
torisation of the KKT system once to ensure a fast calculation
of the Newton steps. Direct solvers for large, sparse linear
systems are readily available. In contrast, an SQP method
relies on a QP solver that detects the set of active ICs for the
current QP approximation by itself. This solver thus has to
deal with a constantly changing problem structure, which is
usually handled by updates of the initial factorisation.

This difference is closely related to the two basic
approaches to solve the KKT system. On the one hand, the
full-matrix approach relies on a direct, symmetric indefinite
factorisation of the KKT matrix. In this context, various
software packages are available, for example, MA27/57/97
[55], MUMPS [56], or PARDISO [57]. On the other hand,
the decomposition approach calculates and updates the null-
space basis matrix. However, for large sparse problems, the
reduced Hessian is much denser than the Hessian itself.
Since dense linear algebra has to be applied to the reduced
system, this approach is only computationally efficient when
the number of the degrees of freedom is small.

The most important points concerning the advantages
and the drawbacks of the SQP and IPmethods are stated next
[58].

(i) It is difficult to implement an exact-Newton SQP
method. The main pitfalls are the nonconvexity of
the QP subproblems when the exact Hessian is used
and that SQP methods often rely on custom-tailored
linear algebra. The latter limits the flexibility of those
algorithms to adopt the latest developments in soft-
ware and hardware technology.

(ii) IP methods are most efficient when relying on the
exact second derivatives. Furthermore, they usually
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converge in fewer inner iterations, even for very large
problems, and may utilize the latest “off-the-shelf ”
linear algebra software.

(iii) Applying IP solvers to the QPs in an SQP framework
had limited success because they are hard to warm-
start [25, Section 4.13]. In short, an IP solver, which
follows a central path and approaches the constraint
surface orthogonally, faces sensitivity problems when
forced to step onto the solution path perpendicularly.

NLP Solvers Used. The following list characterises the NLP
solvers used here.

SNOPT 7.2 [59], a proprietary solver implementing an
SQP algorithm based on a decomposition approach
(LU factorisation) and a line-search globalisation. It
cannot use exact second derivatives but relies on a
BFGS update.
IPOPT 3.11.0 [60], an open-source solver implement-
ing a primal-dual IP method using a line-search
globalisation. As linear solver, MUMPS [56] with
METIS preordering [61] is used. IPOPT provides a
BFGS update but can also exploit the exact second
derivatives.
WORHP 1.2-2533 [62]. This solver tackles the QPs
within an SQP framework by an IP solver that can be
efficiently warm-started. A line-search globalisation
and various partitioned BFGS updates are imple-
mented. The default linear solver MA97 is used.
WORHP is free for academic use.
KNITRO 8.0 [63], a proprietary solver that pro-
vides three algorithms, namely, an SQP trust-region
method and two IP methods. The latter rely either
on a direct solver and a line search or on a pro-
jected conjugate-gradient (CG)method to solve trust-
region subproblems. Exact and QN methods are
implemented.

2.3.3. Direct Collocation of Optimal Control Problems. Radau
collocation represents the state 𝑥(𝑡) of the scalar ODE 𝑥̇ =

𝑓(𝑥) on the interval [𝑡
0
, 𝑡

𝑓
] as a polynomial, say of degree

𝑠. The time derivative of this polynomial is then equated to
the values of 𝑓 at 𝑠 collocation points 𝑡

0
< 𝜏

1
< 𝜏

2
⋅ ⋅ ⋅ <

𝜏

𝑁
= 𝑡

𝑓
. The left boundary 𝜏

0
= 𝑡

0
is a noncollocated point.

The notation 𝑥

𝑗
:= 𝑥(𝜏

𝑗
) is adopted. The resulting system of

equations reads

(

𝑥̇

1

𝑥̇

2

...
𝑥̇

𝑠

) ≈ [d
0
,

̃D]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=:D
⋅(

𝑥

0

𝑥

1

𝑥

2

...
𝑥

𝑠

)

!

= (

𝑓(𝑥

1
)

𝑓 (𝑥

2
)

...
𝑓 (𝑥

𝑠
)

) . (16)

Each of these 𝑠 equations (index 𝑖) is a sum of linear terms
and one nonlinear term:

𝑑

0,𝑖
⋅ 𝑥

0
+

𝑠

∑

𝑗=1

̃

𝐷

𝑖𝑗
⋅ 𝑥

𝑗
− 𝑓 (𝑥

𝑖
) = 0. (17)

The collocation nodes are defined as the roots of Legendre
polynomials and have to be computed numerically [64,
Section 2.3]. Lagrange interpolation by barycentric weights
is used to calculate the differentiation matrix D along with
the vector of quadrature weightsw [65]. Here, the step length
ℎ = 𝑡

𝑓
− 𝑡

0
is assumed to be included in D and w. The latter

is used to approximate the definite integral of a function 𝑔(𝑡)
as ∫𝑡𝑓
𝑡
0

𝑔(𝑡)𝑑𝑡 ≈ ∑

𝑠

𝑗=1
𝑤

𝑗
𝑔(𝜏

𝑗
).

The collocation naturally extends to a system of ODEs;
that is, ẋ = f(x). To simplify the notation, the state variables
are assumed to be stacked in a row vector; that is, x, f ∈ R1×𝑛𝑥 .
Equation (16) becomes a matrix equation in R𝑠×𝑛𝑥 :

D ⋅ [

x
0

X] = F (X) , (18)

where the rows of X and F correspond to one collocation
point each. In turn, the columns of X and F represent one
state variable and its corresponding right-hand side at all
collocation points.

When the OCP (8a)–(8f) is transcribed, all functions
and integrals have to be discretised consistently. Here, 𝑘 =

1, . . . , 𝑚 integration intervals [𝑡
𝑘−1

, 𝑡

𝑘
] are used with 0 =

𝑡

0
< 𝑡

1
⋅ ⋅ ⋅ < 𝑡

𝑚
= 𝑇. The collocation order 𝑠

𝑘
can be

different for each interval. Summing up the collocation points
throughout all integration intervals results in a total of 𝑀 =

𝑙(𝑚, 𝑠

𝑚
) discretisation points. The “linear index” 𝑙 thereby

corresponds to collocation node 𝑖 in interval 𝑘:

𝑙 := 𝑙 (𝑘, 𝑖) = 𝑖 +

𝑘−1

∑

𝛼=1

𝑠

𝛼
. (19)

The following NLP results:

minx
⋅
,u
⋅

𝑀

∑

𝑙=1

𝑊

𝑙
⋅ 𝐿 (x
𝑙
, u
𝑙
) (20a)

s.t. D(𝑘) ⋅ [
[

X(𝑘−1)
𝑠
𝑘−1
,⋅

X(𝑘)
]

]

− F (X(𝑘),U(𝑘)) = 0, 𝑘 = 1, . . . , 𝑚,

(20b)

𝑀

∑

𝑙=1

𝑊

𝑙
⋅ g (x
𝑙
, u
𝑙
) − ĝ ≤ 0, (20c)

c (x
𝑙
, u
𝑙
) ≤ 0, 𝑙 = 1, . . . ,𝑀. (20d)

The simple bounds (8e) and (8f) are imposed at each discre-
tisation point and are not restated here. The vector of the
“global” quadrature weights W results from stacking the
vectors of the quadrature weights w(𝑘) of each interval 𝑘 after
removing the first element, which is zero.

The Lagrangian of the NLP (20a)–(20d) is the sum of the
objective (20a) and all constraints (20b), (20c), and (20d),
which are weighted by the Lagrangemultipliers𝜆. To simplify
the notation, the Lagrange multipliers are grouped according
to the problem structure. The 𝑛

𝑥
⋅ 𝑠

𝑘
multipliers for the

discretised dynamic constraints on each integration interval
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Figure 3: Sparsity structure of the Jacobian of the NLP resulting
from the transcription of a continuous-time OCP by Radau colloca-
tion. Four collocation intervals are used, all with collocation order
1 except for the third interval which is of order 4. Characteristically
for Radau collocation, the zeroth point only contributes linearly to
the first dynamic constraint of the first interval.The variables at each
discretisation point are ordered as (u𝑇

𝑙
, x𝑇
𝑙
)

𝑇.

𝑘 are denoted by 𝜆(𝑘)
𝑑
, the 𝑛

𝑔
multipliers for the integral

inequalities are stacked in 𝜆
𝑔
, and the 𝑛

𝑐
multipliers for the

path constraints at each discretisation point 𝑙 are gathered in
the vector 𝜆

𝑐,𝑙
.

The Lagrangian can be separated in the primal variables
𝜔
𝑙
= 𝜔
(𝑘)

𝑖
:= (x(𝑘)

𝑖
, u(𝑘)
𝑖
). The element Lagrangian L

(𝑘)

𝑖
at

collocation node 𝑙 reads

L
(𝑘)

𝑖
= 𝑊

𝑙
⋅ 𝐿 (𝜔
𝑙
)

+ x(𝑘)
𝑖

⋅ (

𝑁
𝑘

∑

𝑗=1

̃

𝐷

(𝑘)

𝑗𝑖
𝜆
(𝑘)

𝑑,𝑗
+ 𝛿

(𝑘)

𝑖

𝑁
𝑘+1

∑

𝑗=1

𝑑

(𝑘+1)

0,𝑗
𝜆
(𝑘+1)

𝑑,𝑗
)

− f (𝜔(𝑘)
𝑖
)𝜆
(𝑘)

𝑑,𝑖
+𝑊

𝑙
⋅ 𝜆
𝑇

𝑔
g (𝜔
𝑙
) + 𝜆
𝑇

𝑐,𝑙
c (𝜔
𝑙
) .

(21)

The Lagrangian of the full NLP is obtained by summing these
element Lagrangians. The Hessian of the Lagrangian thus is
a perfect block-diagonal matrix with uniformly sized square
blocks of size (𝑛

𝑢
+ 𝑛

𝑥
).

Similarly, the Jacobian of the objective function and the
constraints exhibits a sparse structure. Figure 3 provides an
example. Exploiting the fact that only the derivatives of the
model functions at each discretisation point are required to
construct all derivative information of the NLP is crucial for
an efficient solution [66]. In fact, the least number of model
evaluations possible and thus a perfect sparsity exploitation
are achieved by this procedure. Shared-memory parallel
computing can be applied to further speed up the model
evaluations, and a sparse matrix format has to be used in
order not to be restricted by memory limitations for large
problems.

The KKT system (12) is constructed from the Hessian of
the Lagrangian and the Jacobian of the constraints.Therefore,
it is very sparse in the case of direct collocation, and direct
solvers are able to efficiently solve this linear system of
equations.

2.4. Mesh Refinement. The idea of an iterative mesh refine-
ment is to first solve a coarse approximation of the
continuous-time OCP. This solution is used to identify
regions where the discretisation needs refinement. Step-size
refinement for relatively low-order collocation is considered
here, and, consistently, the error is estimated by the local
truncation error. For Radau collocation, a more detailed
analysis of the convergence of the transcribed problem
towards the continuous one is provided in [46].

The truncation error 𝜏 is of order 𝑠 + 1:

x = x(1) + 𝜏(1), (22a)

𝜏
(1)

= c ⋅ ℎ𝑠+1. (22b)
Here, x denotes the state at the end of the interval, that
is, x := x(𝑡

𝑘
+ ℎ), and x(𝑝) is its approximation using 𝑝

integration steps.The factors c depend on themodel function
f and therefore are not constant. However, over the time
horizon of one integration step, assuming a constant value
of c is reasonable. (Another common assumption is that the
solution has a “memory” and thus 𝑐

𝑖,𝑘+1
/𝑐

𝑖,𝑘
≈ 𝑐

𝑖,𝑘
/𝑐

𝑖,𝑘−1
. In

step-size control for ODE solvers, the two models may be
combined [48].)

By subdivision of the interval into 𝑝 equal steps, a more
accurate approximation of the exact solution is obtained:

x = x(𝑝) + 𝜏(𝑝), (23a)

𝜏
(𝑝)

= 𝑝 ⋅ c ⋅ ( ℎ
𝑝

)

𝑠+1

=

c ⋅ ℎ𝑠+1

𝑝

𝑠

=

𝜏
(1)

𝑝

𝑠

.
(23b)

By equating the exact solution x in (22a) and (23a), with
𝑝 = 2, an estimate for the absolute and the relative truncation
error of the original approximation is obtained:

𝜏
(1)

≈

x(2) − x(1)

1 − 2

−𝑠

, 𝜏

(1)

𝑖
=

𝜏

(1)

𝑖

𝑥

(1)

𝑖

, for 𝑖 = 1, . . . , 𝑛

𝑥
. (24)

For the refined approximation, the estimate

𝜏

(𝑝)

𝑖
≈

𝜏

(𝑝)

𝑖

𝑥

(1)

𝑖

≈

1

𝑝

𝑠

⋅

𝜏

(1)

𝑖

𝑥

(1)

𝑖

=

𝜏

(1)

𝑖

𝑝

𝑠

(25)

results. The magnitude of this relative error has to be smaller
than the desired relative tolerance 𝜀rel. Solving for 𝑝 yields the
state-variable individual step refinement

𝑝

𝑖
=

[

[

[

[

𝑘 ⋅ (

󵄨

󵄨

󵄨

󵄨

󵄨

𝜏

(1)

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝜀rel
)

1/𝑠

]

]

]

]

. (26)

The “safetymargin” 𝑘 ensures that the desired tolerance ismet
on the new grid. The final step refinement is chosen as the
maximum among all 𝑝

𝑖
.

In the context of optimal control, a value of 𝑘 < 1

may be convenient. Since again an OCP is solved on the
new grid, the control inputs may change. Thus, the exact
solution of theODEs as well as the error of the approximation
changes. Due to this changing nature of the problem, it
may be advantageous to refine the grid in multiple cautious
iterations instead of trying to enforce the desired accuracy by
a single refinement step.
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2.5. Regularisation. In continuous-time OCPs, singular arcs
are defined as time intervals over which the Hamiltonian
becomes affine in at least one control input. (TheHamiltonian
is the continuous-time equivalent of the Lagrangian. It can be
shown that the KKT conditions of the transcribed problem
are equivalent to the continuous first-order necessary condi-
tions for optimality [45, 67].) On singular arcs, the optimal
solution thus is not defined by the first-order optimality
conditions, and the second-order sufficient conditions are
not strictly satisfied since the second derivatives are zero.
In indirect methods, a workaround is to consider time
derivatives of the Hamiltonian of increasing order until the
singular control input appears explicitly [68].

The presence of singular arcs introduces problems when a
directmethod is chosen to numerically solve theOCP.A good
overview is provided in [69, Section 4.5]. Loosely spoken,
the better the continuous problem is approximated, the more
exactly the singular nature of the problem is revealed. Thus,
a fine discretisation of the problem may lead to unwanted
effects. Namely, spurious oscillations can be observed along
singular arcs. This behaviour is intensified whenever the
solution follows trajectory constraints.

In [69, Section 4.5], a method based on the “piecewise
derivative variation of the control” is proposed to regularise
the transcribed singular OCPs.Thereby, the square of the dif-
ference in the slope of each control input in two neighbouring
intervals, that is, the local curvature, is added to the objective
as a penalty term.The regularisation term for a scalar control
input 𝑢 is

𝐿 reg (𝑢⋅) := 𝑐

𝑀
⋅

̇Var2
𝑡
𝑁

(𝑢

⋅
) = 𝑐

𝑀
⋅

1

2

𝑀−1

∑

𝑙=3

󵄨

󵄨

󵄨

󵄨

𝑠

𝑙+1
− 𝑠

𝑙

󵄨

󵄨

󵄨

󵄨

2

, (27)

where 𝑠
𝑙
= (𝑢

𝑙
− 𝑢

𝑙−1
)/(𝑡

𝑙
− 𝑡

𝑙−1
) is its slope in interval 𝑙.

The summation starts at 𝑙 = 3 since the first point is not
a collocation point in Radau methods and thus the control
input at this point does not have a meaning and is usually
excluded from the NLP. The factor 𝑐

𝑀
is chosen as

𝑐

𝑀
:=

𝑐reg

(𝑀 − 3) (𝑀 − 1)

2
. (28)

The term (𝑀 − 3) accounts for the number of summation
terms, whereas (𝑀 − 1)

2 is an approximation of the average
step size of the discretisation grid. This formulation scales
the regularisation term according to the resolution of the
transcription, such that the influence of the user-specified
parameter 𝑐reg is invariant with respect to a mesh refinement.

The solution of the regularised problem converges to
the solution of the original problem for an increasingly fine
resolution. It is further shown in the original literature that
𝑐

𝑀
goes to zero fast enough as 𝑀 → ∞ such as to ensure

that the regularisation term stays bounded.

2.6. Optimal Control of Diesel Engines. The OCP of diesel
engines can be cast in the form of the general OCP (8a)–(8f).
The objective is to minimise the cumulative fuel consump-
tion; that is, 𝐿 =

∗

𝑚fuel in (8a). The dynamic constraints (8b)
represent the air-path model. The control inputs comprise

the air-path actuators, the fuel injected per cylinder and
combustion cycle, as well as the signals that control the
combustion, namely, the start of injection (SOI) and the
injection pressure delivered by the common-rail system. The
engine speed, its time derivative, and the desired load torque
are introduced as time-variable parameters. Therefore, in
the most general case, the vectors of the state variables, the
control inputs, and the time-variable parameters read

x =

(

(

(

(

(

(

(

(

(

(

𝑝IM
𝑝EM
𝜔TC
𝑝

1

𝑝

4

𝜗IM
𝑥BG,IM
𝜗EMC
𝜗IMC

)

)

)

)

)

)

)

)

)

)

, u =

(

(

(

𝑢VGT
𝑢EGR
𝑢EF
𝑚fcc
𝜑SOI
𝑝rail

)

)

)

,

𝜋 = (

𝑁eng
̇

𝑁eng
̂

𝑇load

).

(29)

The fuel mass-flow is simply
∗

𝑚fuel = 𝑚fcc ⋅ 𝑁eng/120 ⋅ 𝑛cyl.
The cumulative pollutant emissions are limited by the integral
inequality constraints (8c); that is, g = (

∗

𝑚NO
𝑥

,

∗

𝑚soot)
𝑇.

The absolute limits ĝ are calculated from the desired brake-
specific values by multiplication with the integral of the
nonnegative segments of the engine power𝑃eng = 𝑁eng ⋅𝜋/30⋅

̂

𝑇load.The desired load torque is imposed as a lower bound by
a path constraint; that is, ̂𝑇load(𝑡) − 𝑇load(𝑡) ≤ 0 for all 𝑡. The
rationale for this formulation and a detailed description are
provided in [70].

The simple bounds (8e) and (8f) represent various
constraints. First, the physical actuator ranges need to be
respected. The fuel mass is limited from below by zero and
from above by the maximum injection quantity allowed for
the engine at hand. Second, mechanical limits are imposed
on several state variables such as the maximum turbocharger
speed and maximum pressures and temperatures in the
intake and exhaust manifolds. Finally, some of the control
inputs are limited to a region in which the model is known
to deliver plausible results. However, these limits are found
not to be active at the optimal solution.

To initialise the OCP, a feedforward simulation of the
model is performed. The control signals recorded during a
test-bench run using a preseries ECU calibration are used.
This initialisation is crucial in order not to obtain an infeasible
QP in the first NLP iteration.

2.6.1. Engines with and without EGR. For engine A, which
does not have an EGR system, the four state variables from
𝑝

1
to 𝑥BG,IM, as well as the two control inputs 𝑢EGR and 𝑢EF,

are not present in the model. Conversely, the full state and
control vectors presented in (29) are required to represent
the air path of engine B. However, since no satisfactory soot



10 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200 1400 1600 1800
0

1000

2000

Time (s)

583671

0

1000

2000

Time (s)
49 55

1 6

654 670 690 708

3

900 920 940 958

5

1629 1650 1670 1690 1710 1730 1746

Tload (Nm)
Neng (rpm)

353 375 400 425 450 475 500 525 550 575 600 625 648
0

1000

2000

Time (s)

2
4

Figure 4: The full WHTC (top), with the individual test cases used in this paper indicated by the shaded areas. The test cycles are shown in
the middle and bottom plots, scaled for engine A. Here, the shaded areas indicate drag phases. Test cycles 2 and 4 are contained within cycle
7. The detailed plot of test cycle 8, scaled for engine B, is provided in the left-hand plot in Figure 11.

model could be derived for this engine, the integral constraint
for this emission species is not included in the problem
formulation. To account for themost prominent influence on
the soot emissions, the AFR is limited by the additional path
constraint 𝜆AFR,min − 𝜆AFR(𝑡) ≤ 0 for all 𝑡.

The rail pressure defines a tradeoff between the soot emis-
sions and the NO

𝑥
emissions. If the rail pressure is too low,

the combustion is slow and incomplete, which causes high
soot emissions. Conversely, this slow and cool combustion
leads to less thermal NO

𝑥
formation. The negative effect of

a low rail pressure on the combustion efficiency is almost
outweighed by the reduced power consumption of the high-
pressure pump of the common-rail system. Thus, if the soot
emissions are not modelled and limited, there is no tradeoff
for the rail pressure and the optimisation would always set
it to its lower bound. For this reason, the rail pressure is
excluded as a control input to themodel for engine B. Instead,
the values defined by the calibration map are used.

Dynamic Loops. For the engine with EGR, the optimisation
terminates prematurely for all problem instances tested.
Either theQP subproblemof some outer iteration is infeasible
or the algorithm just diverges. The reason is the additional
dynamic loop introduced by the EGR system. It interacts with
the dynamic loop of the turbocharger and thus introduces a
high degree of nonlinearity to the dynamic system. A similar
observation is reported in [71], and the authors propose to
break the loops and to apply a homotopy to close them again.

For the problem at hand, a more straightforward solution
is implemented. The control inputs and the state variables
are restricted to a small “stability region” around the initial
trajectories. After solving this problem, the resulting trajec-
tories are used as the new initial guess, and the stability
region is relocated around these trajectories. This procedure
is repeated until the solution lies entirely inside the current
stability region. An SQPmethod is able to efficiently solve this
sequence of related problems; see Section 3.1.2.

2.6.2. Driving Cycle and Test Cases. Various segments of
the World-Harmonized Transient Cycle (WHTC) [72] are
used as test cases. This driving profile prescribes the engine
speed and the load torque over time. (For passenger cars
and light commercial vehicles, a trajectory for the vehicle
speed is usually prescribed. From this speed profile, an
operating-point trajectory for the engine can be calculated by
means of a vehicle emulation [73].) Figure 4 displays the full
WHTC as well as the segments used here. Since the profile
demands values for the engine speed and the load torque
at each second only, shape-preserving cubic splines are used
for the interpolation. Compared to a linear interpolation,
this method smoothes the operating-point trajectory, which
improves the numerical properties of the resulting OCP.

The shaded areas in the middle and bottom plots of
Figure 4 indicate drag phases. During these intervals, the
injection is cut off and the engine ismotored at the prescribed
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Table 2: Performance of the NLP solvers on test cycle 1, number of outer iterations, and overall time required for the solution (in brackets).
For the discretisation with order 5∗, a piecewise-constant control was imposed by additional linear constraints.This variant imitates multiple
shooting by resolving the state variables finer than the control inputs. The last row is the pure pseudospectral method. Symbols used are ℎ
(length of collocation intervals), 𝑠 (collocation order), 𝑛NLP (number of NLP variables), 𝑛DOF (degrees of freedom in the NLP), and QN/EN
(quasi/exact Newton method). For WORHP, only the exact Newton method is shown. For the IP method using a direct solver in KNITRO
(KN-IPDIR), only the QN method could solve the problem, which is shown here. The IP-CG method always performed worse and thus is
not shown. An accuracy of 10−6 is requested with respect to optimality and feasibility. If this accuracy was not achieved within 200 iterations,
the optimisation was terminated, which is indicated by italic script. Bold script indicates the fastest solution for each case.

ℎ 𝑠 𝑐reg 𝑛NLP 𝑛DOF SNOPT IPOPT, QN IPOPT, EN WORHP KN-SQP, QN KN-SQP, EN KN-IPDIR
0.25 1 0 225 61 20 (3.5) 39 (6.4) 13 (4.5) 18 (6.7) 66 (11.3) 58 (29.6) 54 (7.8)
0.25 3 10 657 190 69 (15.2) 40 (9.9) 15 (9.8) 18 (11.9) 151 (49.0) 65 (64.9) 70 (19.3)
0.25 5∗ 0 1,089 60 23 (7.1) 30 (10.7) 15 (14.3) 21 (23.2) 136 (82.2) 112 (167.5) 137 (86.8)
3.00 15 1 279 78 42 (6.8) 62 (10.2) 12 (4.8) 21 (8.5) 200 (43.8) 200 (107.1) 144 (32.3)
6.00 30 0 279 80 154 (27.0) 82 (21.9) 28 (10.7) 27 (13.7) 200 (45.9) 200 (118.2) 200 (45.9)

speed. The individual test cases are characterised in the
following list.

(1) Short, simple cycle used for first tests of the algorithms
and for illustration purposes.

(2) Short segment with a singular arc. The effect of the
regularisation is illustrated on this cycle.

(3) Longer, realistic driving profile, but without drag
phases.

(4) Longer, realistic driving profile with many drag
phases. The presence of motored phases renders the
OCPmore inhomogeneous and thus more difficult to
be solved. Together with cycle 3, this test cycle is used
to assess the convergence properties of the various
algorithms.

(5) Long test cycle which is easy to be solved since almost
no transients occur. The cycle is periodic; that is, it
ends at the same operating point as it starts with.
By a repetition of the cycle, large-scale OCPs can be
constructed that retain the complexity of the single
cycle.

(6) Longer, realistic cycle that is used for the experimental
validation.

(7) Long, realistic cycle that is used for the experimental
validation as well as for the identification of a causal
control structure in Section 3.2.1.

(8) A single load step at almost constant engine speed
used for the parametric study in Section 3.2.2.

3. Results and Discussion

The results are subdivided into three sections. The first one
analyses crucial numerical aspects and states the conclusions
that can be drawn from these tests.The second part covers the
engineering aspect by presenting various ways of utilising the
optimal solutions.The last section describes the experimental
validation of the methodology, which indicates that all
findings presented in this paper accurately transfer to the real
engine.

3.1. Numerical Aspects. First, the results from all tests per-
formed are presented. Based on these data, conclusions are
drawn on what discretisation approach is suitable for the
problem at hand andwhich numericalmethods are preferable
to solve the resulting NLPs.

3.1.1. Test Results. All NLP solvers introduced in Section 2.3.2
are tested for their convergence behaviour and their compu-
tational performance when applied to problems of varying
complexity and size. Moreover, the basic effects of mesh
refinement and regularisation are analysed.

Convergence Behaviour. Table 2 summarises the performance
of all NLP solvers on the short, simple test cycle 1. Dif-
ferent discretisation approaches are tested, from first-order
collocation to the pseudospectral method.The regularisation
parameter 𝑐reg is chosen for each case individually such that
a smooth solution results. For the solver WORHP, only the
exact Newton method is applied. None of the partitioned
BFGS updates yields satisfactory results for the problem at
hand.

Table 3 provides the same data for the more realistic test
cycles 3 and 4. All methods implemented in KNITRO were
not able to solve any of the problem instances to the required
tolerance within 200 outer iterations. Therefore, this data is
not shown. Similarly, IPOPT is most efficient with respect
to the number of iterations and the solution time when the
exact second derivatives are provided.TheQNvariant did not
converge within 200 iterations for any of the tests on cycle 4.

The first and second partial derivatives of the model
functions, from which the KKT matrix of the NLP is
constructed, are calculated by forward finite differences
(FFD). The convergence behaviour of the NLP solvers is
not improved when more accurate derivatives are calculated
by algorithmic differentiation (AD). Even the exact Newton
methods require the same number of iterations when using
AD instead of FFD. Therefore, AD is advantageous only if
an implementation is available that is faster than FFD. All
implementations of AD for Matlab tested, namely, ADiMat
[74], ADMAT2.0 (Cayuga Research,Waterloo, ON, Canada),
INTLAB V6 [75], and the open-source implementation [76],
are found to be at least a factor of 1.6 slower than FFD when
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Table 3: Performance of the NLP solvers on test cycles 3 (top) and 4 (bottom). Only the exact Newton methods are shown for IPOPT and
WORHP. The regularisation is chosen individually for all discretisation variants such that smooth control-input trajectories are obtained.

ℎ 𝑠 𝑐reg 𝑛NLP 𝑛DOF SNOPT IPOPT WORHP
0.25 1 0 2,097 666 35 (29.9) 16 (26.4) 24 (54.5)
0.40 3 20 3,924 1,256 37 (114.8) 19 (61.1) 24 (108.1)
0.25 5∗ 10 10,449 669 24 (114.5) 17 (153.6) 33 (338.9)
3.00 15 10 2,574 822 51 (120.8) 18 (39.0) 28 (69.7)
9.60 47 30 2,547 810 179 (554.6) 200 (544.4) 26 (92.7)
58.0 282 30 2,547 791 200 (5,495.5) 26 (448.2) 24 (433.7)
0.25 1 0 2,205 450 45 (29.7) 28 (46.7) 37 (117.4)
0.40 3 500 4,113 1,199 114 (311.5) 29 (89.0) 49 (196.5)
0.25 5∗ 30 10,989 617 66 (386.1) 76 (680.2) 33 (405.8)
3.00 15 200 2,709 790 197 (331.8) 25a (65.2) 41 (104.5)
10.1 50 200 2,709 768 200 (659.9) 36 (92.3) 58 (204.2)
61.0 300 300 2,709 797 200 (6,219.3) 30a (2,493.7) 30 (781.6)
aA segmentation error crashed the optimisation at that iteration.

the first and second partial derivatives of themodel functions
are calculated.

Large-Scale Performance. Test cycle 5 is repeated multiple
times to construct a problem of increasing size that retains
the same complexity. Therefore, the performance of the NLP
solvers when applied to large problems can be assessed
independently of their general convergence behaviour. First-
order collocation on a uniform grid with a step size of 0.25 s is
used, and the cycle is repeated 1 to 6 times. NLPs with around
4,000 to 25,000 variables result.

The main observations are summarised next. All solvers
require a similar number of iterations to solve the differently
sized problems. Even the QN methods perform well for the
large-scale problems. Therefore, their poor performance on
the more difficult test cases is not induced by the size of
the problem to be solved, but rather by its complexity and
nonlinearity.

The number of model evaluations per iteration is pro-
portional to the number of discretisation points and thus to
the size of the NLP. Therefore, the time required to solve
the KKT system or to perform updates of a decomposi-
tion directly defines the computational performance of the
solvers for large-scale problems. The time required for the
(re)factorisations and for the dense algebra on the reduced
problem in SNOPT grows with a power of about 2.5 with
respect to the problem size. All other solvers work on the
full but sparse KKT system and exhibit an approximately
linear runtime. The proportionality factor between runtime
and problem size differs by a factor of 3 from the QNmethod
of IPOPT (fastest) to the exact Newton method in WORHP
(slowest). In WORHP, the linear solver has to recalculate or
update the indefinite factorisation of the KKT system at the
beginning of each outer iteration.

For the full-matrix approaches just described, the fraction
of the overall solution time required for the model eval-
uations, which are performed in parallel on four cores, is
between 40% (KNITRO) and 70% (IPOPT). For SNOPT, this
fraction is below 1% for large problems.
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Figure 5: Mesh refinement on test cycle 1. First-order collocation
is used, and the initial step size is 0.25 s. Two refinements are
performed with 𝑘 = 0.5 and 𝑘 = 1, respectively.

Mesh Refinement. Figure 5 illustrates the effect of the mesh
refinement on test cycle 1. First-order collocation is used,
and a relative tolerance of 5 ⋅ 10

−3 is requested for the
ODE solution. This accuracy is achieved by a uniform
discretisation with a step size of 0.1 s. WORHP requires 21
iterations and 13.8 s for the solution of the resulting NLP.

When mesh refinement is applied, an initial step size
of 0.25 s is used and two refinements are performed. The
three solution runs of the coarse initial problem and the two
refined problems require 17, 6, and 5 iterations and a total
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Normalised signals are shown for reasons of confidentiality. A
higher value of 𝜑SOI indicates an earlier injection.

of 11.0 s. After the second refinement, the desired accuracy is
achieved, and the problem is discretised into 45 intervals only,
as compared to the 60 intervals of the uniform discretisation.

When this procedure is applied to test cycle 7, the solution
time is reduced from 2609 to 1015 s (or from around 43 to
17 minutes). IPOPT requires 3234 s to solve the uniformly
discretised test cycle 7. However, in contrast to the SQP
method implemented in WORHP, IPOPT is not able to
exploit the good initialisation of the refined problems. In
fact, the solution of the initial and the first refined problems
requires the same time as the one-off solution of the uni-
formly discretised problem.

Regularisation. Figure 6 shows the optimal trajectories of the
control inputs when a second-order collocation on a uniform
grid with 0.2 s step size is applied to test cycle 2. As to be
expected, oscillations occur mainly in the region where the
trajectory constraint for the rail pressure is active. The fuel
consumption and the pollutant emissions predicted by the
optimisation are checked by an accurate forward simulation,
which yields the same results. For a finer discretisation, faster
oscillations result. Also when only the state variables are
resolved more accurately, the oscillations persist.

Consequently, an oscillatory solution actually is optimal.
Possibly, the gas-exchange losses are slightly reduced by the
oscillations of the pressure in the exhaust manifold induced

by the oscillations of the VGT. At the same time, the intake
pressure is hardly affected due to the slow dynamics of the
turbocharger. Therefore, the air mass-flow remains the same
and the soot emissions do not increase.

Since a fast oscillating actuation of the mechanical actu-
ators is not sustainable, regularisation has to be applied. As
Figure 6 shows, the regularisation does not change the gen-
eral shape of the solution. In particular, the solution is identi-
cal in the nonsingular regions. Furthermore, the loss in fuel
efficiency when requiring a smooth solution is negligible.

3.1.2. Discussion. On the simple test case 1, all discretisa-
tions and all methods to solve the resulting NLPs seem to
work reasonably well. However, especially the QN methods
converge faster for a local discretisation than for the pseu-
dospectral approach. The trust-region method implemented
in KNITRO always gets stuck at a small trust radius and thus
converges only slowly towards the optimum. The line-search
globalisation thus seems to be preferable for the problem at
hand.

When more meaningful driving profiles such as test
cycles 3 and 4 are considered, the QN methods become less
efficient also for local discretisation schemes. Surprisingly,
SNOPT still manages to solve most problem instances in less
than 200 iterations. As the complexity and the problem size
increase, the SQPmethod implemented inWORHP becomes
more reliable and consistent than the IP method of IPOPT.

The pseudospectral approach yields a denser NLP as
indicated in Figure 3. Although theHessian of the Lagrangian
is still block diagonal, the Jacobian of the constraints does not
retain a near-diagonal shape. The decomposition performed
by SNOPT as well as the direct linear solvers of the full-
matrix approaches become disproportionally slow when the
collocation order is increased but the problem size is not
changed.

Combined with the effectiveness of a step-size refine-
ment, local discretisation schemes seem to be preferable for
the problem at hand. A local discretisation enables a finer
resolution of the problem only where necessary, and an SQP
solver is able to exploit the good initialisation of the refined
problem. Conversely, the pseudospectral method can only
increase the order of the collocation polynomial and thus
always refines the approximation of the problem over the full
time horizon.

Summarising these findings, a full-matrix approach for
the solution of the KKT system utilising a direct linear solver
should be combinedwith an exactNewton SQPmethod and a
line-search globalisation. (The effect of the choice of themerit
function or a filter was analysed, too. No unique trend could
be observed that favours one approach. The problem at hand
thus seems not to be susceptible to the Maratos effect [53,
Section 15.5].) WORHP implements such a method, and in
fact this solver is found to perform well on all test cases, as
well as to adapt to large problems best. A relatively low-order
collocation scheme and an iterative step-size refinement
combine well with this type of NLP solver. Only for small
problems arising, for example, in receding horizon control,
a decomposition approach and a QN method such as those
implemented in SNOPT prove to be more efficient.
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3.2. Engineering Aspects. Two ways of utilising the results
from optimal control are proposed. On the one hand, the
optimal solution may be used to identify all maps and
even the control parameters of an entire feedback-control
structure. On the other hand, control strategies for transient
operation can be derived from parametric studies. The latter
is illustrated by a case study in which the NO

𝑥
emissions of

the engine with EGR have to be reduced over a load increase.
Another option is the repeated solution of a receding-

horizon OCP online on the ECU. However, in contrast to
model-predictive feedback control, where linear models may
be used that are valid only around the referencemaps [16], the
full nonlinear model would have to be considered. Despite
the application of custom-tailored algorithms, already the
simpler optimisation problems encountered within model-
predictive control are difficult to be solved in realtime due
to the limited computational power and memory provided
by the ECU [77]. Therefore, an online optimisation is not a
feasible option at this time.

3.2.1. Model-Based Engine Calibration. Throughout this sec-
tion, engine A is considered. From the solution of the OCP
over a sufficiently long time horizon such as test case 7,
implications for the control structure can be derived [34].
The optimal trajectories of the control inputs defining the
combustion, that is, the SOI and the rail pressure, can be
represented accurately by static maps over the engine oper-
ating range. The same finding applies to the boost pressure.
Although these quantitiesmight be chosen freely over time by
the optimisation, values that can be scheduled over the engine
speed and the injected fuel mass result. If a quasistationary
representation of the air path is used, a static feedforward
map for the VGT position is obtained from the solution of
the corresponding OCP.

Two applications of these findings are presented here.
First, the maps for the combustion-related control inputs can
be derived for different emission levels. The maps for the
SOI and the rail pressure for three different NO

𝑥
levels are

shown in Figure 7. These maps can be parameterised by the
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−
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Figure 8: Structure of the boost-pressure controller.

requested emission level. On the ECU, the maps could be
shifted adaptively, depending on the current performance of
the ATS or according to the current driving situation.

The second application is the implementation of a feed-
back controller for the boost pressure based on the maps for
the boost pressure and the static optimal VGT position. The
former serves as reference to be tracked by the controller, and
the latter is used as feedforward control signal. Figure 8 shows
the structure of the control system. During drag phases, a
pure feedforward control is applied. The map for the VGT
position during motored operation is spanned by the engine
speed and its derivative and is identified using the optimal
data from the last 2 seconds of each drag phase [70]. Along
with this controller defining the VGT position, the maps
presented in Figure 7 are used for the SOI and the rail
pressure.

The PI controller for the VGT position is implemented as

𝑢VGT,FB = 𝑘

𝑝
⋅ 𝑒

𝑝IM
(𝑡) +

𝑘

𝑖

10

⋅ ∫

𝑡

0

𝑒

𝑝IM
(𝜏) 𝑑𝜏,

(30)

with 𝑒
𝑝IM

= 10

−4

⋅(𝑝IM−𝑝IM,ref).The scaling factors are used to
provide a similarmagnitude of the two controller parameters.
A classical anti-reset windup scheme [78] is applied to handle
actuator saturation and the purely feedforward operation
during drag phases.

The optimal values for the two PI parameters, which
are not scheduled over any quantity, may be obtained auto-
matically. Here, a brute-force approach is proposed. The
parameters are varied on a reasonable grid, and a forward
simulation of the model is performed for all combinations.
Figure 9 displays the results. The NO

𝑥
emissions are rather

insensitive with respect to the choice of the PI parameters.
Similarly, the soot emissions increase rapidly only if a too
slow feedback controller is used. In this case, the boost-
pressure buildup lags behind during load increases, resulting
in low AFRs. An aggressive controller yields the lowest fuel
consumption. However, the control signal overshoots and
oscillates for this parameter set. Therefore, the parameter set
which yields the closest representation of the optimal control-
input trajectory is chosen.

The performances of the reference controller currently
implemented, the optimal solution, and the fully causal con-
trol system derived from the optimal solution are illustrated
in Figure 10.The causal controller is able to closely reproduce
the optimal solution. Note that this causal control system
is identified by a fully automated procedure requiring only
the stationary measurement data for the identification of the
engine model as input.
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Figure 9: Selection of the parameter values for the PI controller.
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the values that result in the closest possible approximation of the
optimal control-input trajectory.

3.2.2. Optimal Transient 𝑁𝑂

𝑥
-Reduction Strategy. Several

control inputs that define a tradeoff between the fuel con-
sumption and the NO

𝑥
emissions are present on engine

B. The EGR valve controls the flow of exhaust gas into
the intake manifold. The burnt gas in the intake mixture
is inert and reduces the temperature of the combustion
zones in the cylinders, which in turn reduces the thermal
NO
𝑥
formation. Conversely, the combustion becomes less

efficient. The exhaust flap (EF) can be closed to increase the
pressure difference over the EGR valve. A higher EGR mass-
flow results, and also higher gas-exchange losses have to be
overcome. Finally, a retardation of the injection yields a less
efficient combustion and less NO

𝑥
emissions.

Particularly during transient operation, it is difficult to
derive a control strategy that reduces the NO

𝑥
emissions to

a desired level while maintaining the lowest possible fuel
consumption. For a load increase, the additional constraint
of a lower limit on the AFR has to be honoured in order
not to produce large peaks of soot emissions. It is shown
how optimal control can be used to derive a general control
strategy. The single load step of test case 8 is considered; see
the left-hand plot of Figure 11.

The following procedure is applied. First, optimal trajec-
tories for the VGT and the SOI are derived while keeping
the EGR valve closed and the EF fully open. This solution
is used as reference for a successive reduction of the NO

𝑥

emissions. For each desired level of the NO
𝑥
emissions,

the minimum fuel consumption is calculated by solving
the corresponding OCP, with all four control inputs as free
variables. Each resulting pair of cumulative NO

𝑥
emissions

and fuel consumption is plotted in the right-hand plot of

Figure 11. The resulting line defines the optimal tradeoff, that
is, the Pareto front, between the NO

𝑥
emissions and the fuel

consumption for the load step under consideration.
Figure 12 shows the corresponding control-input trajec-

tories. The following control strategy can be derived. The
optimisation does not close the EF at any point. Therefore,
this is the least efficient way to reduce the NO

𝑥
emissions

and should be avoided. During the load increase, the VGT
as well as the EGR valve needs to be closed such that the
AFR stays above the lower limit, which is chosen at 1.4
here. A feedforward part based on the gradient of the torque
demand could be derived from the solution of the OCP.
Finally, the higher NO

𝑥
emissions during the load step can

be compensated by a transient shift of the SOI and a higher
EGR rate during the stationary operation before and after the
step.

By extending this case study to a more representative,
longer time horizon, sufficient information could be collected
to derive an overall controller calibration as presented for
engine A in Section 3.2.1.

3.3. Experimental Validation. In order to validate the results
from the dynamic optimisation on the engine test bench,
three critical points have to be resolved. First, the control
signals have to be transmitted to the ECU and the test-
bench brake synchronously and sufficiently fast. A master
process writes all signals to a shared memory section of
the automation system at a frequency of 100Hz. Using the
iLinkRT protocol developed by AVL (AVL List GmbH, Graz,
Austria) and ETAS (ETAS GmbH, Stuttgart, Germany), the
control signals are transferred to an ETAS ES910.3 proto-
typing and interface module at the same frequency. This
module immediately transfers the updated values to the
ECU using the ETK interface (ETAS). Simultaneously, an
additional process transfers the desired engine speed from the
sharedmemory section to the controller (SPARCbyHORIBA
Ltd., Kyoto, Japan) of the test-bench dynamometer (HORIBA
HD 700 LC). To this end, the proprietary OpenSIM CAN
message protocol by HORIBA is used, which ensures a time-
synchronous transfer at 100Hz. These CAN messages, as
well as all relevant signals of the ECU, are recorded at their
natural sampling rate by INCA (ETAS), which runs on a host
computer.

The secondproblemconsists in obtainingmeaningful and
comparable results. When the engine is operated using the
ECU, limits such as an operating-point dependent AFR limit
are respected. Furthermore, a feedback controller is used to
follow the desired load torque, resulting in deviations of up to
3%.Therefore, the engine does not exactly produce the torque
desired by the driving cycle. In addition, the optimal solution
has to provide the same braking torque during drag phases
that results from the current control strategy implemented
on the ECU. For these reasons, the effective torque delivered
by the engine during a normal run is prescribed during the
optimisation. Note that this different torque demand causes
the change in the predicted fuel savings as compared to
the values provided in the description of Figure 10. During
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and the optimal fuel-NO

𝑥
tradeoff for engine B over this cycle (b).

the validation run, the optimised control inputs are pre-
scribed directly, and no bounds are applied.

Finally, the ECU does not inject exactly the amount of
fuel demanded by the corresponding control signal. In fact,
the injector maps are identified for a narrow operating region

and the ECU estimation becomes increasingly inaccurate for
larger deviations of the combustion-related control inputs
from the current calibration. Contrarily, the model is iden-
tified using data recorded by an accurate external fuel scale.
Therefore, the torque produced by the engine deviates from
the desired one by up to 7%. To resolve this mismatch, a
correction is applied after the first validation run. The fuel
injection is updated according to a Willans approximation
[1, Section 2.5.1]. The net torque is modelled as a time-
variable, affine function of the fuel mass:

𝑇load (𝑡) = 𝜂

𝑊
(𝑡) ⋅ 𝑚fcc (𝑡)

− 𝑇

0
(𝑁eng (𝑡) , 𝑝EM (𝑡) − 𝑝IM (𝑡)) .

(31)

The loss torque 𝑇

0
is the sum of the friction, the inertia,

and the gas-exchange work. The former two contributions
are estimated using the corresponding submodels of the
engine model, whereas the latter is estimated from the
pressure difference over the engine measured during the first
validation run.
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shown. Normalised signals are shown for reasons of confidentiality.
A higher value of 𝜑SOI indicates an earlier injection.

Themodel is identified using the fuel mass prescribed for
the first run, 𝑚fcc, and the resulting torque 𝑇load. Therefore,
the updated fuel injection is calculated by

𝑚fcc,NEW (𝑡) = 𝑚fcc (𝑡) ⋅
̂

𝑇load (𝑡) − 𝑇

0
(𝑡)

𝑇load (𝑡) − 𝑇

0
(𝑡)

.
(32)

After the correction, the deviation of the torque produced by
the engine from the desired load torque hardly ever exceeds
1%.

3.3.1. Results. For each of the two test cycles 6 and 7, two
OCPs were solved. The first one required the emissions to
remain at the level of the current engine calibration (I).
The second one allowed a prescribed increase of the NO

𝑥

emissions (II). This increase is larger for test cycle 6 since for
cycle 7 already high brake-specific (BS) NO

𝑥
emissions result

from the current calibration. By performing this variation,
not only the quantitative accuracy of the model is assessed,

Table 4: Results of the experimental validation.The changes relative
to the values measured for the current engine calibration are shown.

Test cycle/OCP 6/I 6/II 7/I 7/II
Fuel

Predicted −1.28% −2.85% −1.52% −2.49%
Measured −0.85% −2.39% −1.42% −2.50%

NO
𝑥

Predicted 0% 25% 0% 10%
Measured −1.05% 21.27% −3.64% 8.31%

but also its ability to reproduce the tradeoff between fuel
savings and NO

𝑥
emissions is evaluated.

For test cycle 6, the measurement is repeated 5 times
for each set of control inputs to assess the reproducibility
of the measurement. The maximum deviation of any of the
5 measurements from the average of all of them is used as
a measure. For the BS fuel consumption, this deviation is
0.09%, and for the cumulative BS NO

𝑥
emissions, the figure

is 0.64%. Based on this high reproducibility, the longer test
cycle 7 was only measured once for each set of control-input
trajectories.

Table 4 summarises the results from the experimental
validation. On test cycle 6, the prediction overestimates the
fuel savings but manages to predict the NO

𝑥
emissions

accurately. An interesting quantity is the factor that describes
by how much the NO

𝑥
emissions increase for a desired

reduction of the fuel consumption:

𝑘ntf = −

Δ𝑚NO
𝑥

𝑚NO
𝑥
,ref

⋅

𝑚fuel,ref

Δ𝑚fuel
. (33)

As can be extracted from the data in Table 4, the model
predicts a factor of 15.9 when comparing cases I and II. The
measured factor is 14.5.

On test cycle 7, the fuel savings are predicted accurately
by the model. However, the increase of the NO

𝑥
emissions is

underestimated.This shift of themodel accuracy is due to the
fact that the engine is operated in different operating regions
on the two cycles. Cycle 6 comprises high-power operating
points to the largest extent, whereas cycle 7 prescribes a low-
power profile. For cycle 7, the predicted and the measured
values of the NO

𝑥
-to-fuel factor 𝑘ntf are 10.3 and 11.1, respec-

tively.
Figure 13 shows the opacity of the exhaust gas measured

for the reference and the two optimal solutions. As predicted
by the model, the overall level remains the same and thus no
active regeneration of the DPF becomes necessary. Further-
more, most instantaneous peaks are even slightly reduced.

4. Conclusion

A self-contained set of tools and numerical methods for
the efficient solution of optimal control problems for diesel
engines are presented. This framework enables the calcula-
tion of optimal trajectories of the control inputs over long
driving profiles. These solutions provide sufficient informa-
tion to derive complete dynamic engine calibrations. This
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fully automated model-based approach is illustrated for an
engine without EGR. For an engine with EGR, it is shown
how optimal control can be utilised to develop a control
strategy that provides an optimal transient fuel-NO

𝑥
tradeoff.

An experimental validation indicates that these findings
accurately transfer to the real engines.

Further work should focus on a more detailed model for
the soot emissions and on the analysis of the singular arcs
occurring in the optimal solutions.The time-resolved control
inputs could be replaced by the parameters of a prescribed
control structure in the OCP. The simultaneous nature of
the solution process would be preserved, but an optimal
controller calibration could be obtained directly. From an
engineering point of view, the exhaust-gas aftertreatment
system should be included in the model to optimise the
interaction between this system and the engine.

Nomenclature

Abbreviations and Indices

AD: Algorithmic differentiation
AFR: Air-to-fuel ratio
ATS: Aftertreatment system
BG: Burnt gas
BS: Brake-specific
BVP: Boundary-value problem
CG: Conjugate gradient
CP: Compressor
cyl: Cylinder
DPF: Diesel particulate filter
ECU: Engine control unit
EF: Exhaust flap
EGR: Exhaust-gas recirculation
EM(C): Exhaust manifold (casing)
eng: Engine
FB, FF: Feedback, feedforward
fcc: Fuel per cylinder and cycle
FFD: Forward finite differences
IC: Intercooler, inequality-constrained
IM(C): Intake manifold (casing)

IP: Interior point
KKT: Karush-Kuhn-Tucker
lin: linear
NLP: Nonlinear program (or programming)
ntf: NO

𝑥
-to-fuel

OCP: Optimal control problem
ODE: Ordinary differential equation
opt: Optimal
QN: Quasi-Newton
QP: Quadratic program (or programming)
quad: Quadratic
ref: Reference
SCR: Selective catalytic-reduction system
SOI: Start of injection
SQP: Sequential quadratic programming
TC: Turbocharger
VGT: Variable-geometry turbine
WHTC: World-Harmonized Transient Cycle.

Latin Symbols

𝐴: Area
𝑎, 𝑏: Generic model parameters
𝑐: Specific heat, path constraint
D: Differentiation matrix
𝑒: Control error
𝑓: Dynamic model function
𝐹: Objective of a generic NLP
𝑔: Integrand of a cumulative constraint
ℎ: Step size, inequality constraint of a generic NLP
𝑘: Generic model parameter
𝐿,L: Integrand of the objective, Lagrangian
𝑀: Total number of collocation points
𝑚: Mass, number of collocation intervals
𝑛: Number
𝑁: Rotational speed (rpm)
𝑝: Pressure, QP step
𝑅: Gas constant
𝑠: Order of the collocation polynomial
𝑇: Torque, time interval
𝑡: Time
𝑢: Control input
𝑉: Volume
𝑤,𝑊: Quadrature weights
𝑥: State variable, fraction.

Greek Symbols

𝜂: Efficiency
𝜆: Lagrange multiplier, AFR
𝜉: Mass fraction
Π: Pressure ratio
𝜋: Time-varying parameter
𝜏: Barrier parameter, collocation points
𝜑: Crank angle
Ψ: Flow function
𝜔: Rotational speed (rad/s), generic NLP variable.
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