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The focus of this paper is on illustrating how to extend the second author’s gradient theory of elasticity to shells.Three formulations
are presented based on the implicit gradient elasticity constitutive relation (1 −𝑙
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1. Introduction

Many unexpected applications were found due to superior
thermochemomechanical and optoelectromagnetic material
properties noted at the nanoscale. Nanoscale structures, such
as nanobeams, nanoplates, andnanoshells, were used inmany
MEMS and NEMS applications. Therefore, understanding
the static and dynamic behaviour of them is important for
reliable design of micro- and nanodevices.

Experimental studies are generally difficult at the nano-
scale due to resolution limitation of available nanoprobes.
Molecular dynamics (MD) experiments were therefore nor-
mally employed to understand nanoscale behavior. Unfortu-
nately, MD studies are limited to small number of atoms and
short time intervals. Continuummodels were then proposed
as an alternative solution method.

For mechanical behaviour modelling of nanostructures,
the classical continuum mechanics models are not adequate
because these models only contain bulk material properties
and cannot capture inhomogeneously evolving microstruc-
tures and related size effects. To simulate nanostructures, a
number of continuum theories have been used to predict
the influence of nanoscale effects, such as couple stress and

Cosserat theories, nonlocal elasticity, and gradient elasticity.
The gradient theory is an extension of classical theory to
include additional higher-order spatial derivatives of strain
and/or stress, as well as (internal) acceleration. It has been
shown to be a powerful alternative tool for dealing with
nanostructures without resorting to expensive MD compu-
tations.

The use of gradient elasticity to simulate the mechanical
behaviour of materials and structures is not a novel idea—
in fact, it has been advocated more than a century and
a half ago; however, the scope has varied widely over the
years. Pioneer work was done by Cauchy in 1850s [1, 2].
Cauchy suggested the use of higher-order spatial derivatives
in the continuum equations describing elastic properties in
order to approximate the behaviour of discrete lattice models
with more accuracy, whereby the size of the elementary
volume appeared as an additional constitutive parameter.
As a followup of Cauchy’s initial work on the subject, one
may consider Cosserat’s theory developed half a century later
(early 1900s) [3]. Mindlin’s [4, 5] strain gradient theory of
elasticity involving five extra phenomenological constants
should be mentioned, as reference to it is being made by
researchers today. In modern times, Eringen [6–9] derived
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a simple stress-gradient elasticity model from his earlier inte-
gral nonlocal theory, but interest in this work has remained
largely dormant till the late 1990s. In early 1990s, Aifantis
[10] proposed a robust strain gradient theory of elasticity,
which has led to notably straightforward finite element
implementations.This has been generalized inAifantis [11, 12]
to include both strain and stress gradients, thus incorporating
the effects of both Eringen’s and Aifantis’ ingredients of
gradient theories. For details, the reader should consult the
articles listed in the first six references provided in the
bibliography, as well as in Eringen’s book [9] also listed there.
In the last reference, an initial effort by the first author
to apply gradient theory to nanoshells and nanoplates is
outlined.

The key issue of formulations of gradient shell theory is
how to fit the new gradient constitution equation into the
general framework of shell theory. In this short paper, we will
restrict ourselves only on that issue.

2. Linear Shell Theories Formulation [13]

The most common shell theories are those based on linear
elasticity concepts. Linear shell theories predict adequately
stresses and deformations for shells exhibiting small elastic
deformations; that is, deformations for which it is assumed
that the equilibrium equation conditions for deformed shell
surfaces are the same as if they were not deformed, and
Hooke’s law applies. For the purpose of analysis, a shellmay be
considered as a three-dimensional body, and the methods of
the theory of linear elasticity may then be applied. However, a
calculation based on thesemethods will generally be very dif-
ficult and complicated. In the theory of shells, an alternative
simplified method is therefore employed. According to this
method and adapting some hypotheses, the 3D problem of
shell equilibriumand strainingmay be reduced to the analysis
of its middle surface only; that is, the given shell, as discussed
earlier as a thin plate, may be regarded as some 2D body.
In the development of thin shell theories, simplification is
accomplished by reducing the shell problems to the study of
deformations of the middle surface.

Shell theories of varying degrees of accuracy were
derived, depending on the degree to which the elasticity
equations were simplified. The approximations necessary for
the development of an adequate theory of shells have been
the subject of considerable discussions among investigators
in the field. We present below a brief outline of elastic shell
theories in an historical context.

Love [14] was the first investigator to present a successful
approximation shell theory based on classical linear elasticity.
To simplify the strain-displacement relationships and, conse-
quently, the constitutive relations, Love applied, to the shell
theory, the Kirchhoff hypotheses developed originally for the
plate bending theory, together with the small deflection and
thinness of the shell assumptions. This set of assumptions is
commonly called the Kirchhoff-Love assumptions. The Love
theory of thin elastic shells is also referred to as the first-
order approximation shell theory. In spite of its popularity
and common character, Love’s theory was not free from

some deficiencies, including its inconsistent treatment of
small terms, where some were retained and others were
rejected, although they were of the same order. This meant
that, for certain shells, Love’s differential operator matrix on
the displacements, in the equations of equilibrium, became
unsymmetric. Obviously, this violated Betti’s theorem of
reciprocity. Love’s theory [14] also contained some other
inconsistencies. The need for a mathematically rigorous
two-dimensional set of the shell equations employing the
Kirchhoff-Love assumptions led to different versions of the
first order approximation theories.

The middle surface of the shell is determined by the
parametric representation r = r(𝜃1, 𝜃2). The covariant base
vectors of the middle surface are defined by a

𝛼
= r
,𝛼
, the

comma notation being used to denotes partial derivative with
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which can be expressed in the following manner in terms of
the metric tensor { 𝜆
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The displacement vector k(𝜃1, 𝜃2) is resolved in the direc-
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the strain tensor in terms of the displacement components.
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vector in terms of the displacements. The bending tensor 𝜅
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which along with
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are the three equations of compatibility for shells.
The distributed surface load𝑝 is resolved in the directions

of the base vectors a
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; that is, p =
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are tensors, the types and orders of which are given by the
positions and the numbers of indices.The quantities𝑁𝛼𝛽,𝑄𝛼,
and 𝑀𝛼𝛽 are referred to as the complete contact forces and
couples. Hence, the six scalar equations of equilibrium of the
shell are as follows:𝑁𝛼𝛽

|𝛼
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𝜆
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consisting of a homogeneous and isotropic elastic material,
the constitutive equations for the effective contact equations
have the form

𝑁
𝛼𝛽

=
𝐸ℎ
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𝜆𝜇
,

𝑀
𝛼𝛽

=
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𝜆𝜇
.

(3)

The specific strain energy of the shell is given by

𝑒 =
1

2
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𝛼𝛽

𝜀
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+ 𝑀
𝛼𝛽

𝜅
𝛼𝛽

] . (4)

3. Gradient Theory of Elasticity

The implicit version of gradient elasticity, which combines
both Eringen’s stress-gradient and Aifantis’ stable strain-
gradient theory, can be summarized by the following gradient
constitutive equation (1 − 𝑙2

𝑑
∇2)𝜎
𝑖𝑗

= 𝐶
𝑖𝑗𝑘𝑙

(1 − 𝑙2
𝑠
∇2)𝜀
𝑘𝑙
.

The stress gradient internal length may be set, under certain
circumstances, equal to the internal length scale for dynamics
(𝑙
𝜎

≈ 𝑙
𝑑
). The strain gradient internal length is identified

with the internal length scale for statics (𝑙
𝜀
≈ 𝑙
𝑠
). The symbol

𝜎
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denotes the stress tensor and the symbol 𝜀

𝑘𝑙
denotes

the strain tensor, while 𝐶
𝑖𝑗𝑘𝑙

is the linear elastic stiffness
tensor. It is worth noting that the length scales for statics and
dynamics are not equal in general. When the static length
scale is zero, the theory is a special form of Aifantis’ strain-
gradient elasticity, and when the dynamics length scale is
zero, the theory reduces to Eringen’s stress-gradient elasticity
theory. When both internal length scale parameters tend to
zero, the theory becomes Hooke’s law of classical elasticity.
Identification and quantification of the internal lengths have
been discussed in Askes and Aifantis [15], which is beyond
the focus of this paper.

Due to the fact that |𝑙2
𝑑
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𝑠
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constitutive relations can be approximated up to 2nd order
terms as follows: (1 + 𝑙

2

𝑠
∇2 − 𝑙2

𝑑
∇2)𝜎
𝑖𝑗

= 𝐶
𝑖𝑗𝑘𝑙

𝜀
𝑘𝑙
, or the

alternative form 𝜎
𝑖𝑗
= 𝐶
𝑖𝑗𝑘𝑙

(1+ 𝑙2
𝑑
∇2 − 𝑙2
𝑠
∇2)𝜀
𝑘𝑙
. These relations

will be used in the sequel to derive robust approximate but
quite general results appropriate for all formulations.

4. Formulation of Linear Gradient Shell
Theory Based on (1−𝑙2
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Once we adopt the constitutive equation of implicit gradient
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For orthogonal coordinates, we have the two-dimensional
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where 𝐴
𝑖
denote Láme parameters of the mid-surface of the

shell.
For a thin shell consisting of a homogeneous, isotropic

elastic material, the constitutive equations for the effective
contact equations have the constitutive equation (3).

Then, their gradient counterparts read as follows:
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The corresponding balance equations read
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The specific strain energy of the shell is given by𝑊 = [1+(𝑙2
𝑑
−

𝑙2
𝑠
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5. Formulation of Linear Gradient Shell
Theory Based on 𝜎

𝑖𝑗
≅ 𝐶
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The appropriate gradient constitutive equations for this shell
theory take the form
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and the balance equations read
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6. Formulation of Linear Gradient Shell
Theory Based on (1 + 𝑙2

𝑠
∇2 − 𝑙2

𝑑
∇2)𝜎
𝑖𝑗
≅ 𝐶
𝑖𝑗𝑘𝑙

𝜀
𝑘𝑙

The appropriate gradient constitutive equations for this shell
theory take the form

(1 − 𝑙
2

𝑑
∇
2
+ 𝑙
2

𝑠
∇
2
)𝑁
𝛼𝛽

=
𝐸ℎ

1 − V2
[(1 − V) 𝑎𝛼𝜆𝑎𝛽𝜇 + V𝑎𝛼𝛽𝑎𝜆𝜇] 𝜀

𝜆𝜇
,

(1 − 𝑙
2

𝑑
∇
2
+ 𝑙
2

𝑠
∇
2
)𝑀
𝛼𝛽

=
𝐸ℎ3

12 (1 − V2)
[(1 − V) 𝑎𝛼𝜆𝑎𝛽𝜇 + V𝑎𝛼𝛽𝑎𝜆𝜇] 𝜅

𝜆𝜇
,

(11)

and the balance equations read

[𝑁
𝛼𝛽

|𝛼
− 𝑏
𝛽

𝛼
𝑄
𝛼
] + (1 − 𝑙

2

𝑑
∇
2
+ 𝑙
2

𝑠
∇
2
) 𝑝
𝛽
= 0,

[𝑄
𝛼

|𝛼
+ 𝑁
𝛼𝛽

𝑏
𝛼𝛽

] + (1 − 𝑙
2

𝑑
∇
2
+ 𝑙
2

𝑠
∇
2
) 𝑝
3
= 0,

𝑄
𝛽
= 𝑀
𝛼𝛽

|𝛼
.

(12)

7. Conclusions

Various gradient (nano)shell models can be easily formu-
lated by simply replacing the classical constitutive equations
of classical elasticity with the constitutive equation of the
implicit gradient elasticity (1 − 𝑙2

𝑑
∇2)𝜎
𝑖𝑗

= 𝐶
𝑖𝑗𝑘𝑙

(1 − 𝑙2
𝑠
∇2)𝜀
𝑘𝑙

and its approximate versions of strain gradient 𝜎
𝑖𝑗
= 𝐶
𝑖𝑗𝑘𝑙

(1 +

𝑙2
𝑑
∇2 − 𝑙2

𝑠
∇2)𝜀
𝑘𝑙
and stress gradient (1 + 𝑙2

𝑠
∇2 − 𝑙2

𝑑
∇2)𝜎
𝑖𝑗

=

𝐶
𝑖𝑗𝑘𝑙

𝜀
𝑘𝑙
counterparts. All formulations can also be extended

in an analogous manner, to geometrically nonlinear theory
of gradient shells [16].
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