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We provide a recipe for “fattening” a category that leads to the construction of a double category. Motivated by an example where
the underlying category has vector spaces as objects, we show how a monoidal category leads to a law of composition, satisfying
certain coherence properties, on the object set of the fattened category.

1. Introduction and Geometric Background

The interaction of point particles through a gauge field can
be encoded by means of Feynman diagrams, with nodes
representing particles and directed edges carrying an element
of the gauge group representing parallel transport along that
edge. If the point particles are replaced by extended one-
dimensional string-like objects, then the interaction between
such objects can be encoded through diagrams of the form

ℎ

𝑥1

𝑥2

𝑦1
𝑓1

𝑓2

𝑔1 𝑔2

𝑦2

(1)

where the labels 𝑓
𝑖
and 𝑔

𝑖
describe classical parallel transport

and ℎ, which may take values in a different gauge group,
describes parallel transport over a space of paths.

Wewill now give a rapid account of some of the geometric
background. We refer to our previous work [1] for further
details.Thismaterial is not logically necessary for reading the
rest of this paper but is presented to indicate the context and
motivation for some of the ideas of this paper.

Consider a principal𝐺-bundle 𝜋 : 𝑃 → 𝑀, where𝑀 is a
smooth finite dimensional manifold and𝐺 a Lie group, and a

connection𝐴 on this bundle. In the physical context,𝑀may
be spacetime, and 𝐴 describes a gauge field. Now consider
the set P𝑀 of piecewise smooth paths on 𝑀, equipped
with a suitable smooth structure. Then, the spaceP

𝐴
𝑃 of 𝐴-

horizontal paths in 𝑃 forms a principal 𝐺-bundle over P𝑀.
We also use a second gauge group 𝐻 (that governs parallel
transport over path space), which is a Lie group along with
a fixed smooth homomorphism 𝜏 : 𝐻 → 𝐺 and a smooth
map

𝐺 × 𝐻 → 𝐻 : (𝑔, ℎ) → 𝛼 (𝑔) ℎ (2)

such that each 𝛼(𝑔) is an automorphism of𝐻, such that

𝜏 (𝛼 (𝑔) ℎ) = 𝑔𝜏 (ℎ) 𝑔
−1,

𝛼 (𝜏 (ℎ)) ℎ
 = ℎℎℎ−1

(3)

for all 𝑔 ∈ 𝐺 and ℎ, ℎ ∈ 𝐻. We denote the derivative 𝜏(𝑒)
by 𝜏, viewed as a map 𝐿𝐻 → 𝐿𝐺, and denote 𝛼(𝑒) by 𝛼, to
avoid notational complexity. Given also a second connection
form 𝐴 on 𝑃 and a smooth 𝛼-equivariant vertical 𝐿𝐻-valued
2-form 𝐵 on 𝑃, it is possible to construct a connection form
𝜔
(𝐴,𝐵)

on the bundleP
𝐴
𝑃

𝜔
(𝐴,𝐵)

= eV∗
1
𝐴 + 𝜏 (𝑍) , (4)
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where 𝑍 is the 𝐿𝐻-valued 1-form onP
𝐴
𝑃 specified by

𝑍 = ∫
1

0

𝐵, (5)

which is a Chen integral.
Consider a path of paths in 𝑃 specified through a smooth

map

Γ̃ : [0, 1]
2 → 𝑃 : (𝑡, 𝑠) → Γ̃ (𝑡, 𝑠) = Γ̃

𝑠 (𝑡) = Γ̃
𝑡

(𝑠) , (6)

where each Γ̃
𝑠
is 𝐴-horizontal and the path 𝑠 → Γ̃(0, 𝑠) is

𝐴-horizontal. Let Γ = 𝜋 ∘ Γ̃. The bi-holonomy 𝑔(𝑡, 𝑠) ∈ 𝐺 is
specified as follows: parallel translate Γ̃(0, 0) along Γ

0
| [0, 𝑡]

by 𝐴, then up the path Γ𝑡 | [0, 𝑠] by 𝐴, back along Γ
𝑠
-reversed

by 𝐴 and then down Γ0 | [0, 𝑠] by 𝐴, then the resulting point
is

Γ̃ (0, 0) 𝑔 (𝑡, 𝑠) . (7)

The following result is proved in [1].

Theorem 1. Suppose that

Γ̃ : [0, 1]
2 → 𝑃 : (𝑡, 𝑠) → Γ̃ (𝑡, 𝑠) = Γ̃

𝑠 (𝑡) = Γ̃
𝑡

(𝑠) (8)

is smooth, with each Γ̃
𝑠
being 𝐴-horizontal and the path 𝑠 →

Γ̃(0, 𝑠) being 𝐴-horizontal. Then, the parallel translate of Γ̃
0
by

the connection 𝜔
(𝐴,𝐵)

along the path [0, 𝑠] → P𝑀 : 𝑢 → Γ
𝑢
,

where Γ = 𝜋 ∘ Γ̃, results in

Γ̃
𝑠
𝑔 (1, 𝑠) 𝜏 (ℎ0 (𝑠)) , (9)

with 𝑔(1, 𝑠) being the “bi-holonomy” specified as in (7), and
𝑠 → ℎ

0
(𝑠) ∈ 𝐻 solving the differential equation

𝑑ℎ
0 (𝑠)

𝑑𝑠
ℎ
0(𝑠)
−1 = − 𝛼 (𝑔(1, 𝑠)

−1)

× ∫
1

0

𝐵 (𝜕
𝑡
Γ̃ (𝑡, 𝑠) , 𝜕𝑠Γ̃ (𝑡, 𝑠)) 𝑑𝑡

(10)

with initial condition ℎ
0
(0) being the identity in𝐻.

Consider the category C
0
whose objects are fibers of a

given vector bundle𝐸 over𝑀 andwhose arrows are piecewise
smooth paths in𝑀 (up to “backtrack equivalence”; for more
on this notion see [2]) alongwith parallel transport operators,
by a connection 𝐴, along such paths. Note that all arrows
are invertible. In Figure 1, 𝐸

𝑝
1

is the vector space which is
the fiber over the corresponding point 𝑝

1
. For the path 𝑐

1
,

there is a parallel transport operator 𝑓
1
: 𝐸
𝑝
1

→ 𝐸
𝑞
1

. Next,
if 𝑐
2
is a path from the base of the fiber 𝐸

𝑝
2

to the base of
𝐸
𝑞
2

, then there is a corresponding parallel transport operator
𝑓
2
: 𝐸
𝑝
2

→ 𝐸
𝑞
2

.
A “higher” morphism 𝑐

1
→ 𝑐
2
is obtained from any

suitably smooth path of paths, starting with the initial path
𝑐
1
and ending with 𝑐

2
(again backtracks need to be erased).

Using the connection 𝐴, this produces parallel transport

𝐸𝑝1

𝐸𝑝2

𝐸𝑞1

𝐸𝑞2

𝑐1

𝑐2

Figure 1: Paths and fibers.

operators and paths 𝐸
𝑝
1

→ 𝐸
𝑝
2

and 𝐸
𝑞
1

→ 𝐸
𝑞
2

. Moreover,
another connection 𝐴 and 2-form 𝐵, along with a path of
paths lead to a linear map Mor

𝑙
(𝐸
𝑝
1

, 𝐸
𝑞
1

) → Mor
𝑙
(𝐸
𝑝
2

, 𝐸
𝑞
2

),
where Mor

𝑙
(𝐸, 𝐹) is the vector space of all linear maps 𝐸 →

𝐹. We view this, in a “first approximation,” as a morphism
from the object Mor(𝐸

𝑝
1

, 𝐸
𝑞
1

) to the object Mor(𝐸
𝑝
2

, 𝐸
𝑞
2

)
(say, mapping all paths from 𝑝

1
to 𝑞
1
to the path 𝑐

2
). In this

paper, we will not develop this framework in full detail (that
would build on the theory fromour earlier work [1]) but focus
on more algebraic aspects and other purely algebraic issues
(such as monoidal structures).

Instead of vector bundles, one could also work with the
principal bundle 𝑃 itself, taking as objects of a categoryC

0
all

the fibers of the bundle 𝑃 and as morphisms 𝑓 : 𝑃
𝑝

→ 𝑃
𝑞
the

𝐺-equivariant bijections𝑃
𝑝

→ 𝑃
𝑞
, where𝑃

𝑝
and𝑃
𝑞
are fibers

of 𝑃, over points 𝑝 and 𝑞, and paths running from 𝑝 to 𝑞.
The interface between gauge theory and category theory,

in various forms and cases, has been studied in many works,
for instance [1, 3–7]. In the present paper, we extract the
abstract essence of some of these structures in a category
theory setting, leaving the differential geometry behind as
the concrete context. We abstract the process of passing
from the point-particle picture to a string-like picture to a
functor which generates a category F(C) from a category
C. Proposition 5 describes properties of a natural product
operation on the objects of F(C) when C is a monoidal
category. An excellent review of monoidal categories in
relation to topological quantum field theory can be found in
[8]. Symmetric monoidal bicategories are discussed in [9] in
a context different from ours.

2. The Fat Category

LetC be a category.We define a new category F(C) as follows.
The objects of F(C) are the morphisms of C. A morphism in

F(C) from the object 𝑥
1

𝑓
1

→ 𝑦
1
to the object 𝑥

2

𝑓
2

→ 𝑦
2
consists

of morphisms 𝑥
1

𝑔
1

→ 𝑥
2
and 𝑦

1

𝑔
2

→ 𝑦
2
in C, along with a set-

mapping

ℎ : Mor (𝑥
1
, 𝑦
1
) → Mor (𝑥

2
, 𝑦
2
) , (11)

which maps 𝑓
1
to 𝑓
2
as follows:

ℎ (𝑓
1
) = 𝑓
2
. (12)
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(In a later section we require that the hom-sets Mor(𝑥, 𝑦)
themselves also have algebraic structure that should be pre-
served by such ℎ.) Here is a diagram displaying a morphism
𝑢 of F(C):

𝑥1

𝑥2

𝑦1

ℎ

𝑓1

𝑓2

𝑔2𝑢 = 𝑔1

𝑦2

(13)

It is clear that this does specify a category, which we call the
fat category for C (composition is “vertical,” with successive
ℎs composed). Sometimes it will be easier on the eye to write

(𝑥, 𝑦, 𝑓) (14)

for 𝑥
𝑓

→ 𝑦. Thus, diagram (13) can also be displayed as

(𝑥1, 𝑦1, 𝑓1)

(𝑥2, 𝑦2, 𝑓2)

𝑢 (15)

The composition V∘
𝑉
𝑢 of morphisms in F(C) is defined

“vertically” by drawing the diagram of V below that of 𝑢 and
composing vertically downward.

Commutative diagrams in C lead to morphisms of F(C)
in a natural way and yield a subcategory of F(C) that is
recognizable as the “category of arrows” [10, §I.4], sometimes
denoted as Arr(C).

Lemma 2. Any commutative diagram

𝑥1

𝑥2

𝑦1

𝑦2

𝑓1

𝑓2

𝑔1 𝑔2 (16)

in C, in which 𝑔
1
is an isomorphism, generates a morphism

(𝑥
1
, 𝑦
1
, 𝑓
1
)
𝑢

→ (𝑥
2
, 𝑦
2
, 𝑓
2
) (17)

in F(C),

𝑥1

𝑥2

𝑦1
𝑓1

𝑓2

𝑔2ℎ𝑢𝑢 = 𝑔1

𝑦2

(18)

where

ℎ
𝑢
: Mor (𝑥

1
, 𝑦
1
) → Mor (𝑥

2
, 𝑦
2
) : 𝜙 → 𝑔

2
𝜙𝑔−1
1
. (19)

Moreover, if

𝑓1

𝑓2

𝑓3

𝑔2𝑔1

𝑥1

𝑥2

𝑦1

𝑦2

𝑥3 𝑦3

𝑔1 𝑔2

(20)

is a commutative diagram in C, where 𝑔
1
and 𝑔

1
are isomor-

phisms, then the composite of the induced morphisms,

𝑢 : (𝑥
1
, 𝑦
1
, 𝑓
1
) → (𝑥

2
, 𝑦
2
, 𝑓
2
) ,

V : (𝑥
2
, 𝑦
2
, 𝑓
2
) → (𝑥

3
, 𝑦
3
, 𝑓
3
) ,

(21)

is the morphism in F(C) induced by the commutative diagram

𝑓1

𝑓3

𝑥1

𝑥2

𝑦1

𝑧3

 𝑔1𝑔1 𝑔2𝑔2 (22)

3. A Double Category of Isomorphisms

Let F(C)
0
be the category whose objects are the invertible

arrows of C and whose arrows are the arrows

ℎ

𝑥1

𝑥2

𝑦1
𝑓1

𝑓2

𝑔1 𝑔2

𝑦2

(23)

in F(C) in which the verticals 𝑔
1
and 𝑔

2
are also isomor-

phisms inC.This is, for all purposes here, as good as assuming
that all arrows ofC are invertible, sincewewill onlyworkwith
such arrows. In the geometric context, the arrows represent
parallel transports and so the invertibility assumption is
natural. The mapping ℎ is motivated by the “surface” parallel
transport mentioned briefly in (10).
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Let us define horizontal composition of morphisms in
F(C)
0
as follows:

𝑥1 𝑥1

𝑥2 𝑥2

𝑦1 𝑦1

𝑦2 𝑦2 𝑧2

𝑧1

𝑧2

1𝑧

ℎ

𝑓1

𝑓2

𝑔1 𝑔2 𝑔1

𝑓1 𝑓1𝑓1

𝑓2 𝑓2𝑓2

ℎ ℎ 𝑔2𝑔2 = 𝑔1∘𝐻

(24)

where the composition is defined only when 𝑔
1
= 𝑔
2
, and ℎ

is given by

ℎ : Mor (𝑥
1
, 𝑧
1
) → Mor (𝑥

2
, 𝑧
2
) : 𝑓 → ℎ (𝑓𝑓−1

1
) ℎ (𝑓
1
)⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓
2

.

(25)

Note that ℎ satisfies

ℎ (𝑓
1
𝑓
1
) = ℎ (𝑓

1
) ℎ (𝑓
1
) = 𝑓
2
𝑓
2
. (26)

Consider now the following diagram:

𝑧1

𝑗

𝑥1

𝑥2

𝑦1

𝑦2

𝑥3 𝑦3

𝑧2

𝑧3

ℎ

𝑓1

𝑓2

𝑓3

𝑔3𝑔2

𝑔1

𝑔1 ℎ

𝑔2 𝑔3

𝑓1

𝑓2

𝑓3

𝑗

(27)

The morphisms of F(C)
0
thus have two laws of composi-

tion: ∘
𝑉
and ∘
𝐻
. As we see below, these compositions obey a

consistency condition (28), which thereby specifies a double
category [10, 11, §I.5].

Proposition 3. The morphisms of F(C)
0
form a double cate-

gory under the laws of composition ∘
𝑉
and ∘
𝐻
in the sense that

for diagram (27), with notation as explained above,

(𝑢
𝑗
∘
𝐻
𝑢
𝑗
) ∘
𝑉
(𝑢
ℎ
∘
𝐻
𝑢
ℎ
) = (𝑢

𝑗
∘
𝑉
𝑢
ℎ
) ∘
𝐻
(𝑢
𝑗
∘
𝑉
𝑢
ℎ
) , (28)

for all morphisms 𝑢
𝑗
 , 𝑢
𝑗
, 𝑢
ℎ
, 𝑢
ℎ
 in Mor (F(C)

0
) for which the

compositions on both sides of (28) are meaningful.

Proof. Denote by 𝑢
ℎ
the morphism of F(C)

0
specified by the

upper left square in (27), by 𝑢
ℎ
 the morphism specified by

the upper right square, by 𝑢
𝑗
the morphism specified by the

lower left square, and, lastly, by 𝑢
𝑗
 themorphism specified by

the lower right square.

Let 𝑓 ∈ Mor(𝑥
1
, 𝑧
1
). Then,

((𝑢
𝑗
∘
𝐻
𝑢
𝑗
) ∘
𝑉
(𝑢
ℎ
∘
𝐻
𝑢
ℎ
)) (𝑓) = (𝑢

𝑗
∘
𝐻
𝑢
𝑗
)

× (ℎ (𝑓𝑓−1
1

) 𝑓
2
)

= 𝑗 (ℎ (𝑓𝑓−1
1

)) 𝑓
3
,

(29)

((𝑢
𝑗
∘
𝑉
𝑢
ℎ
) ∘
𝐻
(𝑢
𝑗
∘
𝑉
𝑢
ℎ
)) (𝑓) = ((𝑢

𝑗
∘
𝑉
𝑢
ℎ
) (𝑓𝑓−1

1
)) 𝑓
3

= 𝑗 (ℎ (𝑓𝑓−1
1

)) 𝑓
3
.

(30)

Comparing (29) and (30), we have the claimed equality (28).

Then, F(C)
0
equipped with both laws of composition ∘

𝑉

and ∘
𝐻
is a double category [11]. In the geometric context, this

is expressed as a flatness condition for the connection 𝜔
𝐴,𝐴,𝐵

described in the Introduction; for more, see, for instance, [1,
3].

4. Enrichment for Morphisms

We continue with the notation and structures as before; C
is a category and F(C) is the “fat” category described in
Section 2. Now let F(C)

1
be a subcategory of F(C)

0
, having

the same objects but possibly fewer morphisms. The idea is
that the hom-sets in F(C) could have additional structure;
for example, if C has only one object 𝐸

𝑝
, a fiber of a vector

bundle, then Mor(𝐸
𝑝
, 𝐸
𝑝
) is a group under composition.

The morphisms of F(C)
1
could be required to be group

automorphisms. We require that for any objects 𝑥, 𝑦, 𝑧 of C
and isomorphism 𝑔 : 𝑦 → 𝑥, the map

𝑟
𝑔
: Mor (𝑥, 𝑧) → Mor (𝑦, 𝑧) : 𝑓 → 𝑓𝑔 (31)

is a morphism of F(C)
1
.

Proposition 4. Let F(C)
1
be any subcategory of F(C)

0
having

the same objects as F(C)
0
, and satisfying the condition (31)

as explained above. Both horizontal and vertical composites
of morphisms in F(C)

1
are in F(C)

1
. Thus, F(C)

1
is a double

category.

Proof. The consistency condition between horizontal
and vertical compositions has already been checked in
Proposition 3. Thus, we need only to check that horizontal
composition, specified in (25) as

ℎ : Mor (𝑥
1
, 𝑧
1
) → Mor (𝑥

2
, 𝑧
2
) : 𝑓 → ℎ (𝑓𝑓−1

1
) ℎ (𝑓
1
) ,

(32)

is a morphism of F(C)
1
, for all invertible 𝑓

1
∈ Mor(𝑥

1
, 𝑦
1
)

and all ℎ : Mor(𝑥
1
, 𝑦
1
) → Mor(𝑥

1
, 𝑦
1
), ℎ ∈ Mor(𝑦

1
, 𝑧
1
) →

Mor(𝑦
1
, 𝑧
1
)morphisms in F(C)

1
. Observe that

ℎ (𝑓) = ℎ (𝑓𝑓−1
1

) ℎ (𝑓
1
) = 𝑟
ℎ(𝑓
1
)
∘ ℎ ∘ 𝑟

𝑓
−1

1

(𝑓) , (33)

where the notation 𝑟
𝑔
is as in (31). Thus, ℎ is a composite of

morphisms in F(C)
1
.
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5. Monoidal Structures

In this section we will explore some algebraic structural
enhancements of the fattened category F(C)

0
. The discussion

is motivated by intrinsic algebraic considerations, but we
discuss briefly now the relationship with the geometric
context.

Consider the very special case where C is the category
with only one object 𝐸

𝑜
, the fiber over a fixed point 𝑜 in a

vector bundle, and a morphism 𝑓 : 𝐸
𝑜
→ 𝐸
𝑜
is a an ordered

pair as follow:

𝑓 = (𝑐, 𝑇) , (34)

consisting of a piecewise smooth loop 𝑐 based at 𝑜 (with
backtracks erased) along with a linear map 𝑇 : 𝐸

𝑜
→ 𝐸

𝑜

representing parallel transport around the loop. For F(C)
0

in this special case, a morphism ℎ : Mor(𝐸
𝑜
, 𝐸
𝑜
) →

Mor(𝐸
𝑜
, 𝐸
𝑜
) arises from paths of paths alongwith a linearmap

End(𝐸
𝑜
) → End(𝐸

𝑜
), where End(𝐸

𝑜
) is the vector space of

all linear maps 𝐸
𝑜

→ 𝐸
𝑜
. Each hom-set Mor(𝐸

𝑜
, 𝐸
𝑜
) is a

monoid: composition

Mor (𝐸
𝑜
, 𝐸
𝑜
) ×Mor (𝐸

𝑜
, 𝐸
𝑜
) → Mor (𝐸

𝑜
, 𝐸
𝑜
) : (𝑓, 𝑓)

→ 𝑓 ⊗ 𝑓

(35)

is given by concatenation of loops along with ordinary
composition of linear maps in End(𝐸

𝑜
):

(𝑐, 𝑇) ⊗ (𝑐, 𝑇) = (𝑐 ∗ 𝑐, 𝑇 ∘ 𝑇) , (36)

where 𝑐 ∗ 𝑐 is the loop 𝑐 followed by the loop 𝑐. (Since this
discussion is primarily for motivation, we leave out technical
details of “backtrack erasure.”)

Turning to the abstract setting,we assumehenceforth that
C is a monoidal category.This means that there is a bifunctor

⊗ : C × C → C (37)

and there is an identity object 1 inC for which certain natural
coherence conditions hold as we now describe. In addition,
there exists a natural isomorphism 𝛼, the associator, which
associates to any of the objects 𝐴, 𝐵, 𝐶 of C an isomorphism

𝛼
𝐴,𝐵,𝐶

: (𝐴 ⊗ 𝐵) ⊗ 𝐶 → 𝐴 ⊗ (𝐵 ⊗ 𝐶) (38)

such that the following diagram commutes:

((𝐴⊗ 𝐵) ⊗ 𝐶) ⊗ 𝐷 (𝐴⊗ (𝐵 ⊗ 𝐶)) ⊗ 𝐷

(𝐴 ⊗ 𝐵) ⊗ (𝐶 ⊗ 𝐷)

𝐴 ⊗ ((𝐵 ⊗ 𝐶) ⊗ 𝐷)

𝐴 ⊗ (𝐵 ⊗ (𝐶 ⊗ 𝐷))

𝛼𝐴,𝐵,𝐶 ⊗ 𝑖𝐷

𝑖𝐴 ⊗ 𝛼𝐵,𝐶,𝐷

𝛼𝐴,𝐵⊗𝐶,𝐷

𝛼𝐴,𝐵,𝐶⊗𝐷

𝛼𝐴⊗𝐵,𝐶,𝐷 (39)

There are also natural isomorphisms 𝑙 and 𝑟, the left and
right unitors, associating to each object 𝐴 in Cmorphisms

𝑙
𝐴
: 1 ⊗ 𝐴 → 𝐴, 𝑟

𝐴
: 𝐴 ⊗ 1 → 𝐴 (40)

such that

(𝐴 ⊗ 1) ⊗ 𝐵 𝐴 ⊗ (1 ⊗ 𝐵)

𝐴 ⊗ 𝐵

𝑟
𝐴
⊗
𝑖𝐵 𝑖 𝐴

⊗
𝑙 𝐵

𝛼𝐴,1,𝐵

(41)

commutes for all objects 𝐴 and 𝐵 in C.
Note that naturality means there are certain other con-

ditions as well. For example, that the left unitor is a natural

transformation means that for any morphism 𝑥
𝑓

→ 𝑦 in C
the diagram

𝑥 𝑦𝑓

𝑙𝑦

1 ⊗ 𝑓

𝑙𝑥

1 ⊗ 𝑥 1 ⊗ 𝑦

(42)

commutes; here, in the upper horizontal arrow, 1 is the
unique morphism 𝑖

1
: 1 → 1 in C.

We now define a product on the objects of F(C)

Obj (F (C)) ×Obj (F (C)) → Obj (F (C)) : (𝑢, V) → 𝑢 ⊗ V

(43)
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as follows:

(𝑥
1

𝑓
1

→ 𝑦
1
) ⊗ (𝑥

2

𝑓
2

→ 𝑦
2
)

def
= 𝑥
1
⊗ 𝑥
2

𝑓
1
⊗𝑓
2

→ 𝑦
1
⊗ 𝑦
2
.

(44)

In the fat category F(C), we then have associators and
unitors as follows. First, the unit is

1F = 1
𝑖
1

→ 1, (45)

where 1 denotes the identity object in C and 𝑖
1
the identity

map on 1. We will often denote 𝑖
1
also simply as 1, the

meaning being clear from context. For any object 𝑥
𝑓

→ 𝑦,
there is the left unitor

𝑥 𝑦
𝑓

(𝑥,𝑦,𝑓)

1 ⊗ 𝑓

𝑙𝑦= 𝑙𝑥𝑙𝔽(𝑥,𝑦,𝑓) 𝑙(𝑥,𝑦,𝑓)

1𝔽 ⊗ (𝑥,𝑦,𝑓) 1 ⊗ 𝑥 1 ⊗ 𝑦

(46)

where the mapping

𝑙
(𝑥,𝑦,𝑓)

: Mor (1 ⊗ 𝑥, 1 ⊗ 𝑦) → Mor (𝑥, 𝑦) : 𝜙 → 𝑙
𝑦
𝜙𝑙−1
𝑥

(47)

takes 1 ⊗ 𝑓 to 𝑓, as follows from the remarks made above for
(42). The right unitor is

𝑥 𝑦
𝑓

𝑥 ⊗ 1 𝑦 ⊗ 1
𝑓 ⊗ 1

𝑟𝑦𝑟𝑥 𝑟(𝑥,𝑦,𝑓) (48)

where

𝑟
(𝑥,𝑦,𝑓)

: Mor (𝑥 ⊗ 1, 𝑦 ⊗ 1) → Mor (𝑥, 𝑦) : 𝜙 → 𝑟
𝑦
𝜙𝑟−1
𝑥
.

(49)

Again, this is indeed a morphism in F(C) by essentially the
same argument that was used above in (46) for the left unitor.

The associator in F(C) is given as follows. Consider

objects 𝑥
𝑖

𝑓
𝑖

→ 𝑦
𝑖
in F(C), for 𝑖 ∈ {1, 2, 3}. The fact that 𝛼 is

a natural transformation means that the diagram

(𝑥1 ⊗ 𝑥2) ⊗ 𝑥3

𝑥1 ⊗ (𝑥2 ⊗ 𝑥3)

(𝑦1 ⊗ 𝑦2) ⊗ 𝑦3

𝑦1 ⊗ (𝑦2 ⊗ 𝑦3)

(𝑓1 ⊗ 𝑓2) ⊗ 𝑓3

𝑓1 ⊗ (𝑓2 ⊗ 𝑓3)

𝛼𝑥1,𝑥2 ,𝑥3 𝛼𝑦1,𝑦2 ,𝑦3 (50)

is commutative. Hence, by the first half of Lemma 2, this
induces a morphism

ℎℎ =

(𝑓1 ⊗ 𝑓2) ⊗ 𝑓3

𝑓1 ⊗ (𝑓2 ⊗ 𝑓3)

(𝑥1, 𝑦1, 𝑓1) ⊗ (𝑥2, 𝑦2, 𝑓2) ⊗ (𝑥3, 𝑦3, 𝑓3)

(𝑥1, 𝑦1, 𝑓1) ⊗ (𝑥2, 𝑦2, 𝑓2) ⊗ (𝑥3, 𝑦3, 𝑓3)

(𝑥1 ⊗ 𝑥2) ⊗ 𝑥3

𝑥1 ⊗ (𝑥2 ⊗ 𝑥3)

(𝑦1 ⊗ 𝑦2) ⊗ 𝑦3

𝑦1 ⊗ (𝑦2 ⊗ 𝑦3)

(51)

in F(C). In fact, ℎ is an isomorphism since the vertical arrows
in (50) are isomorphisms.

We prove the coherence condition for unitors. For this we
have the following diagram:

(𝑥1 ⊗ 1) ⊗ 𝑥2 𝑥1 ⊗ (1 ⊗ 𝑥2)

(𝑦1 ⊗ 1) ⊗ 𝑦2 𝑦1 ⊗ (1 ⊗ 𝑦2)

𝑦1 ⊗ 𝑦2

𝑥1 ⊗ 𝑥2

𝑓
1 ⊗ 𝑓
2

𝑓1 ⊗ (1 ⊗ 𝑓2 )

𝑙𝑥
1 ⊗
1

𝛼𝑦1,1,𝑦2

𝛼𝑥1,1,𝑥2

𝑥
2

(52)

The two triangles at the two ends of this “trough” commute
because of coherence in C, the top rectangle also commutes
because of the naturality of 𝛼.Then, it is entertaining to check
that the two rectangular “slanted sides” are also commutative.
In fact, the slant side on the left is

𝑟F
(𝑥
1
,𝑦
1
,𝑓
1
)
⊗ 1
(𝑥
2
,𝑦
2
,𝑓
2
)
: ((𝑥
1
, 𝑦
1
, 𝑓
1
) ⊗ 1F) ⊗ (𝑥

2
, 𝑦
2
, 𝑓
2
)

→ (𝑥
1
, 𝑦
1
, 𝑓
1
) ⊗ (𝑥

2
, 𝑦
2
, 𝑓
2
)

(53)

as a morphism in F(C), and the slant side on the right is

1
(𝑥
1
,𝑦
1
,𝑓
1
)
⊗ 𝑙F(𝑥2 ,𝑦2,𝑓2)

. (54)
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Thus, viewed as a diagram in F(C), the “trough” looks like

((𝑥1, 𝑦1, 𝑓1) ⊗ 1𝔽) ⊗ (𝑥2, 𝑦2, 𝑓2)

(𝑥1, 𝑦1, 𝑓1) ⊗ (𝑥2, 𝑦2, 𝑓2)

(𝑥1, 𝑦1, 𝑓1) ⊗ (1𝔽 ⊗ (𝑥2, 𝑦2, 𝑓2))

1 (𝑥 1
,𝑦1
,𝑓1
)
⊗
𝑙
𝔽
(𝑥 2
,𝑦2
,𝑓2
)

𝛼𝔽

𝑟 𝔽
(𝑥
1 ,𝑦
1 ,𝑓
1 ) ⊗
1
(𝑥
2 ,𝑦
2 ,𝑓
2 )

(55)

Since the trough commutes in C, so does its avatar (55) in
F(C), thanks to the second half of Lemma 2. This verifies the
coherence property in F(C) involving the unitors.

Now, we turn to coherence for the associators. In the
following diagram, where we leave out the⊗ products for ease

of viewing, the slant arrows are all tensor products of the 𝑓
𝑖

and the horizontal and vertical arrows are various associators:

(𝑥1𝑥2)𝑥3𝑥4 (𝑥1(𝑥2𝑥3 4))𝑥 𝑥1(𝑥2𝑥3)𝑥4

(𝑥1𝑥2)(𝑥3𝑥4) 𝑥1𝑥2(𝑥3𝑥4)

(𝑦1𝑦2)𝑦3𝑦4 (𝑦1(𝑦2𝑦3))𝑦4 𝑦1(𝑦2𝑦3)𝑦4

(𝑦1𝑦2)(𝑦3𝑦4) 𝑦1𝑦2(𝑦3𝑦4)
𝛼𝑦1 ,𝑦2 ,𝑦3 ,𝑦4

𝛼𝑥1𝑥2 ,𝑥3 ,𝑥4

(𝑓
1 𝑓
2 )(𝑓
3 𝑓
4 )

𝑓
1 ((𝑓
2 𝑓
3 )𝑓
4 )

(56)

Coherence in the monoidal category C implies that the
two rectangles at the end of this box are commutative, as
mentioned earlier.Naturality of the associator implies that the
top, bottom, and sides are also commutative. Thus, the entire
diagram is commutative. If we abbreviate the objects in F(C)
as

𝑋
𝑖
= (𝑥
𝑖
, 𝑦
𝑖
, 𝑓
𝑖
) , (57)

for 𝑖 ∈ {1, 2, 3, 4}, we can read the full diagram as a diagram
in the category F(C) as follows:

((𝑋1𝑋2)𝑋3)𝑋4

(𝑋1𝑋2)(𝑋3𝑋4)

(𝑋1(𝑋2𝑋3))𝑋4 4𝑋1((𝑋2𝑋3))𝑋

𝑋1(𝑋2(𝑋3𝑋4))

𝔽(C):

(58)

As a diagram in F(C), this is commutative, by Lemma 2.This
establishes coherence of the associator in F(C).

We have completed the proof of Proposition 5.

Proposition 5. Suppose that C is a monoidal category and
let F(C) be the category specified above in the context of (11).
Then, with tensor product as defined in (44), F(C) satisfies all
conditions of a monoidal category at the level of objects.

6. Concluding Remarks

In this paper, we have presented certain “fattened” categories
F(C), F(C)

0
, and F(C)

1
constructed out of a given categoryC;

the morphisms of F(C)
0
form a double category. It is shown

how a monoidal structure on C induces a multiplication on
the objects of F(C) that satisfies certain coherence properties.
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