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We focus attention upon the thermal statistics of the classical analogs of quasi-probabilities (QP) in phase space for the important
case of quadratic Hamiltonians. We consider the three more important OPs: Wigner’s, 𝑃-, and Husimi’s. We show that, for all
of them, the ensuing semiclassical entropy is a function only of the fluctuation product Δ𝑥Δ𝑝. We ascertain that the semiclassical
analog of𝑃-distribution seems to becomeunphysical at very low temperatures.Thebehavior of several other information quantifiers
reconfirms such an assertion inmanifold ways.We also examine the behavior of the statistical complexity and of thermal quantities
like the specific heat.

1. Introduction

A quasi-probability distribution is a mathematical construc-
tion that resembles a probability distribution but does not
necessarily fulfill some of Kolmogorov’s axioms for prob-
abilities [1]. Quasi-probabilities exhibit general features of
ordinary probabilities. Most importantly, they yield expec-
tation values with respect to the weights of the distribution.
However, they disobey the third probability postulate [1] in
the sense that regions integrated under them do not repre-
sent probabilities of mutually exclusive states. Some quasi-
probability distributions exhibit zones of negative probability
density. This kind of distributions often arises in the study
of quantum mechanics when discussed in a phase space
representation of frequent use in quantum optics, time-
frequency analysis, and so forth.

One usually considers a density operator 𝜌 defined with
respect to a complete orthonormal basis and shows that it
can always be written in a diagonal manner, provided that an
overcomplete basis is at hand [2]. This is the case of coherent
states |𝛼⟩ [3], for which [2]

𝜌 = ∫
𝑑
2
𝛼

𝜋
𝑃 (𝛼, 𝛼

∗
) |𝛼⟩ ⟨𝛼| . (1)

We have 𝑑
2
𝛼/𝜋 = 𝑑𝑥𝑑𝑝/2𝜋ℏ, with 𝑥 and 𝑝 being phase

space variables. Coherent states, right eigenstates of the
annihilation operator 𝑎, serve as the overcomplete basis in
such a build-up [2, 3].

There exists a family of different representations, each
connected to a different ordering of the creation and destruc-
tion operators 𝑎 and 𝑎

†. Historically, the first of these is
the Wigner quasi-probability distribution 𝑊 [4], related to
symmetric operator ordering. In quantum optics the particle
number operator is naturally expressed in normal order
and in the pertinent scenario the associated representation
of the phase space distribution is the Glauber-Sudarshan
𝑃 one [3]. In addition to 𝑊 and 𝑃, one may find many
other quasi-probability distributions emerging in alternative
representations of the phase space distribution [5]. A quite
popular representation is the Husimi𝑄 one [6–9], used when
operators are in antinormal order. We emphasize that we
work here with classical analogs of𝑊,𝑃, and𝑄. As stated, we
will specialize things to the three 𝑓-functions associated to a
Harmonic Oscillator (HO) of angular frequency 𝜔. In such a
scenario the three (classical analog) functions that we call for
convenience 𝑓

𝑃
, 𝑓
𝑄
, and 𝑓

𝑊
are just Gaussians.The pertinent

treatment becomes wholly analytical.
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1.1. Our Goal. In this paper, we wish to apply semiclassical
information theory tools associated with these analog 𝑃,
𝑄, and 𝑊 representations (for quadratic Hamiltonians) in
order to describe the associated thermal semiclassical features.
The idea is to gain physical insight from the application of
different information quantifiers to classical analogs of quasi-
probability distributions. It will be seen that useful insights
are in this way gained. WE will discover that, out of the three
functions, only 𝑓

𝑄
and 𝑓

𝑊
are sensible analogs, while 𝑓

𝑃

exhibits problems if the temperature is low enough.
We insist that, in this paper, we will regard quasi-

probabilities as semiclassical distributions in phase space,
analogs of the quantum quasi-probabilistic distributions, and
try to ascertainwhat physical features they are able to describe
at such semiclassical level. One has [10, 11]

𝑓
𝑃
= 𝛾
𝑃
𝑒
−𝛾𝑃|𝛼|

2

, 𝛾
𝑃
= 𝑒
𝛽ℏ𝜔

− 1 (𝑃-function) ,

𝑓
𝑄
= 𝛾
𝑄
𝑒
−𝛾𝑄|𝛼|

2

, 𝛾
𝑄
= 1 − 𝑒

−𝛽ℏ𝜔
(𝑄-function) ,

𝑓
𝑊

= 𝛾
𝑊
𝑒
−𝛾𝑊|𝛼|

2

,

𝛾
𝑊

= 2 tanh(
𝛽ℏ𝜔

2
) (𝑊-function) ,

(2)

where 𝛽 = 1/𝑘
𝐵
𝑇, 𝑘
𝐵
is the Boltzmann constant, and 𝑇 is

the temperature. They will be used as semiclassical statistical
weight functions. Since ours is not a quantum approach, the
ordering of HO-creation and destruction operators 𝑎 and 𝑎

†

plays no role whatsoever.

1.2. Historic Considerations and Organization. The thermo-
dynamics properties associated with coherent states have
been the subject of much interest. See, for instance, [12, 13].
Notice that HO is a really relevant system that yields useful
insights of wide impact. Indeed, HO constitutes much more
than a mere example. It is of special relevance for bosonic
or fermionic atoms contained in magnetic traps [14–16] and
for system that exhibits an equidistant level spacing in the
vicinity of the ground state, like nuclei or Luttinger liquids.

For thermal states, the Gaussian HO-quantum phase
spaces distributions are known in the literature for applica-
tions in quantum optics.

This paper is organized as follows. Section 2 refers to
different information quantifiers in a phase space represen-
tation for Gaussian distributions. In Section 3 we calculate
the classical analog Fano factor. Features of the fluctuations
are analyzed in Section 4. Additionally, we discuss the notion
of linear entropy. Finally, some conclusions are drawn in
Section 5.

2. Semiclassical Information Quantifiers

Consider a general normalized gaussian distribution in phase
space

𝑓 (𝛼) = 𝛾𝑒
−𝛾|𝛼|
2

, (3)

whose normalized variance is 1/𝛾 with 𝛾 taking values 𝛾
𝑃
,

𝛾
𝑄
, and 𝛾

𝑊
. We discuss next, in these terms, some important

information theory quantifiers.

2.1. Shift-Invariant Fisher’s Information Measure. The infor-
mation quantifier Fisher’s information measure, specialized
for families of shift-invariant distributions, which do not
change shape under translations, is [17, 18]

𝐼 = ∫𝑑𝑥𝑓 (𝑥) (
𝜕 ln𝑓 (𝑥)

𝜕𝑥
)

2

, (4)

and, in phase space, it adopts the appearance [19]

𝐼 =
1

4
∫

𝑑
2
𝛼

𝜋
𝑓 (𝛼) (

𝜕 ln𝑓 (𝛼)

𝜕 |𝛼|
)

2

(5)

such that considering 𝑓(𝛼) given by (3) we get 𝐼 = 𝛾, whose
specific values are 𝛾

𝑃
, 𝛾
𝑄
, and 𝛾

𝑊
for the three functions 𝑓

𝑃
,

𝑓
𝑄
, and 𝑓

𝑊
. The behavior of these quantities is displayed

in Figure 1. The solid line is the case 𝑃, the dashed one is
the Wigner one, and the dotted curve is assigned to the
Husimi case. Now, it is known that in the present scenario
themaximumattainable value for 𝐼 equals 2 [19].The𝑃-result
violates this restriction at low temperatures more precisely at

𝑇 < 𝑇crit =
(ℏ𝜔/𝑘

𝐵
)

ln 3
≈ 0.91023

ℏ𝜔

𝑘
𝐵

, (6)

with 𝑇 being expressed in (ℏ𝜔/𝑘
𝐵
)-units.

2.2. Logarithmic Entropy 𝑆. The logarithmic Boltzmann’s
information measure for the the probability distribution (3)
is

𝑆 = −∫
𝑑
2
𝛼

𝜋
𝑓 (𝛼) ln𝑓 (𝛼) = 1 − ln 𝛾, (7)

so that it acquires the particular values

𝑆
𝑃
= 1 − ln (𝑒𝛽ℏ𝜔 − 1) , (8)

𝑆
𝑄
= 1 − ln (1 − 𝑒

−𝛽ℏ𝜔
) , (9)

𝑆
𝑊

= 1 − ln(2 tanh(
𝛽ℏ𝜔

2
)) , (10)

for, respectively, the distributions 𝑓
𝑃
, 𝑓
𝑄
, and 𝑓

𝑊
. These

entropies are plotted in Figure 2. Notice that 𝑆
𝑃

< 0 for
𝑇 < ℏ𝜔/(𝑘

𝐵
ln(1 + 𝑒)) ≈ 0.76(ℏ𝜔/𝑘

𝐵
) < 𝑇crit. Negative

classical entropies are well known. As an example, one can
cite [20].

Table 1 lists a set of critical temperatures 𝑇crit for typical
electromagnetic (EM) waves.

We see from Table 1 that serious anomalies are detected
for 𝑃-distribution in the case of radio waves of high fre-
quency. 𝑃 becomes negative, which is absurd, for rather high
temperatures, where one expects classical physics to reign.
Accordingly, one concludes that quasi-probabilities do not
exhibit a sensible classical limit in 𝑃-case contrary to what
happens in both𝑊 and 𝑄 ones.
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Table 1: Critical temperatures 𝑇crit for typical radio waves, with ℎ/𝑘
𝐵
= 4.799 10

−11 Kelvin per second.

Frequency (]) Critical temperatures (∘K)
Extremely low frequency (ELF) 3–30Hz 1.4397 10−10–1.4397 10−9

Super low frequency (SLF) 30–300Hz 1.4397 10−9–1.4397 10−8

Ultra low frequency (ULF) 300–3000Hz 1.4397 10−8–1.4397 10−7

Very low frequency (VLF) 3–30 kHz 1.4397 10−7–1.4397 10−6

Low frequency (LF) 30–300 kHz 1.4397 10−6–1.4397 10−5

Medium frequency (MF) 300KHz–3MHz 1.4397 10−5–1.4397 10−4

High frequency (HF) 3–30MHz 1.4397 10−4–1.4397 10−3

Very high frequency (VHF) 30–300MHz 1.4397 10−3–1.4397 10−2

Ultra high frequency (UHF) 300MHz–3GHz 1.4397 10−2–1.4397 10−1

Super high frequency (SHF) 3–30GHz 1.4397 10−1–1.4397
Extremely high frequency (EHF) 30–300GHz 1.4397–14.397
Tremendously high frequency (THF) 300GHz–3000GHz 14.397–143.97
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Figure 1: Fisher measure versus temperature 𝑇 expressed in
(ℏ𝜔/𝑘

𝐵
)-units. The solid line is the case 𝑃, the dashed one is the

Wigner one, and the dotted curve is assigned to theHusimi instance.
The vertical line represents the critical temperature 𝑇crit.

2.3. Statistical Complexity. The statistical complexity 𝐶,
according to López-Ruiz et al. [21], is a suitable product of
two quantifiers such that 𝐶 becomes minimal at the extreme
situations of perfect order or total randomness. Instead of
using the prescription of [21], but without violating its spirit,
wewill take one of these two quantifiers to be Fisher’smeasure
and take the other to be an entropic form, since it is well
known that the two behave in opposite manner [22]. Thus

𝐶 = 𝑆𝐼 = 𝛾 (1 − ln 𝛾) , (11)

which vanishes for perfect order or total randomness. For
each particular case, we explicitly have

𝐶
𝑃
= (𝑒
𝛽ℏ𝜔

− 1) [1 − ln (𝑒𝛽ℏ𝜔 − 1)] , (12)

𝐶
𝑄
= (1 − 𝑒

−𝛽ℏ𝜔
) [1 − ln (1 − 𝑒

−𝛽ℏ𝜔
)] , (13)

𝐶
𝑊

= 2 tanh(
𝛽ℏ𝜔

2
) [1 − ln(2 tanh(

𝛽ℏ𝜔

2
))] , (14)

for, respectively, the distributions 𝑓
𝑃
, 𝑓
𝑄
, and 𝑓

𝑊
. The

maximum of the statistical complexity occurs when 𝛾 = 1

and the associated temperature values are

𝑒
𝛽ℏ𝜔

− 1 = 1 ⇒ 𝑇 =
ℏ𝜔

𝑘
𝐵

ln 2 > 𝑇crit

for the 𝑓
𝑃
-function,

1 − 𝑒
−𝛽ℏ𝜔

= 1 ⇒ 𝑇 = 0 for the 𝑓
𝑄
-function,

2 tanh(
𝛽ℏ𝜔

2
) = 1 ⇒ 𝑇 =

ℏ𝜔

2𝑘
𝐵

arctan(1
2
)

for the 𝑓
𝑊
-function.

(15)

The statistical complexity 𝐶 is plotted in Figure 3.

2.4. Linear Entropy. Another interesting information quanti-
fier is that of the Manfredi-Feix entropy [23], derived from
the phase space Tsallis (𝑞 = 2) entropy [24]. In quantum
information this form is referred to as the linear entropy [25].
It reads

𝑆
𝑙
= 1 − ∫

𝑑
2
𝛼

𝜋
𝑓
2
(𝛼) = 1 −J, (16)

J = ∫
𝑑
2
𝛼

𝜋
𝑓
2
(𝛼) =

𝛾

2
. (17)

Accordingly, we have

𝑆
𝑙
= 1 −

𝛾

2
; 0 ≤ 𝑆

𝑙
≤ 1. (18)

This is semiclassical result, which is valid for small 𝛾. In
particular,

𝑆
𝑙,𝑃

= 1 −
𝛾
𝑃

2
= 1 −

𝑒
𝛽ℏ𝜔

− 1

2
,

𝑆
𝑙,𝑄

= 1 −
𝛾
𝑄

2
= 1 −

1 − 𝑒
−𝛽ℏ𝜔

2
,

𝑆
𝑙,𝑊

= 1 −
𝛾
𝑊

2
= 1 −

2 tanh (𝛽ℏ𝜔/2)
2

.

(19)
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Figure 2: Left: logarithmic entropies, 𝑆
𝑃
, 𝑆
𝑄
, and 𝑆

𝑊
, as a function of the temperature 𝑇 in (ℏ𝜔/𝑘

𝐵
)-units. The solid line is the case 𝑃, the

dashed one is theWigner one, and the dotted curve is assigned to the Husimi instance. Right: zoom of the logarithmic entropies as a function
of temperature 𝑇 in (ℏ𝜔/𝑘

𝐵
)-units. Negative values of 𝑆

𝑃
occur below 𝑇 = ℏ𝜔/(𝑘

𝐵
ln(1 + 𝑒)), with the critical temperature < 𝑇crit. Remaining

details are similar to those of left figure. We have added the classical entropy of the harmonic oscillator 𝑆class = 1 − ln(𝛽ℏ𝜔).
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Figure 3: Complexities 𝐶
𝑃
, 𝐶
𝑄
, and 𝐶

𝑊
versus the temperature 𝑇

in (ℏ𝜔/𝑘
𝐵
)-units. The solid line is the case 𝑃, the dashed one is the

Wigner one, and the dotted curve is assigned to theHusimi instance.

Note that in the 𝑃-instance the linear entropy becomes
negative once again for 𝑇 < 𝑇crit. Contrary to what happens
for the logarithmic entropy, the linear one can vanish in 𝑊

representation. The lineal entropies are plotted in Figure 4.
The ensuing statistical complexity that uses 𝑆

𝑙
becomes

𝐶
𝑙
= 𝑆
𝑙
𝐼 = 𝐼 (1 −

𝐼

2
) = 𝛾 (1 −

𝛾

2
) , (20)

vanishing for both 𝛾 = 0 and 𝛾 = 2, the extreme values of
𝛾-physical range (we showed above that 𝛾 cannot exceed 2
without violating uncertainty restrictions).

3. Fano Factor’s Classical Analog

In general, the Fano factor is the coefficient of dispersion of
the probability distribution 𝑝(𝑦), which is defined as [26]

F =
Δ𝑦
2

⟨𝑦⟩
, (21)

where Δ𝑦2 = ⟨𝑦
2
⟩ − ⟨𝑦⟩

2 is the variance and ⟨𝑥⟩ is the mean
of a random process 𝑦.

If 𝑝(𝑦) is a Poisson distribution then one sees that the
pertinent Fano factor becomes unity (F = 1) [10, 27]. We
remind the reader of two situations:

(1) ForF < 1, sub-Poissonian processes occur.
(2) ForF > 1, the process is super-Poissonian.

For ourGaussian distribution (3), if one sets now𝑦 = |𝛼|
2,

one has the classical Fano analog

F =

⟨|𝛼|
4
⟩
𝑓
− ⟨|𝛼|

2
⟩
2

𝑓

⟨|𝛼|
2
⟩
𝑓

, (22)

where the expectation value of the functionA(𝛼) is calculated
as

⟨A⟩𝑓 = ∫
𝑑
2
𝛼

𝜋
𝑓 (𝛼)A (𝛼) , (23)

indicating that 𝑓(𝛼) is the statistical weight function. Thus,
after computing the mean values involved in (22) by taking
into account definition (23), the Fano factor becomes

F =
1

𝛾
=

1

𝐼
, (24)
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Figure 4: Left: linear entropies 𝑆
𝑙,𝑃
, 𝑆
𝑙,𝑄
, and 𝑆

𝑙,𝑊
versus the temperature 𝑇 in (ℏ𝜔/𝑘

𝐵
)-units. The solid line is the case 𝑃, the dashed one is

the Wigner one, and the dotted curve is assigned to the Husimi instance. Right: 𝑆
𝑙,𝑃

as a function of the temperature 𝑇 in (ℏ𝜔/𝑘
𝐵
)-units. We

note that the linear entropy 𝑆
𝑙,𝑃

is negative below the 𝑇 value 𝑡crit = 𝑇crit𝑘𝐵/ℏ𝜔 = ln 3.

which, for a Gaussian distribution, links the Fano factor to
the distribution’s width and to Fisher’s measure 𝐼. We are
speaking of processes that are of a quantumnature and cannot
take place in a classical environment. Thus, with reference to
the critical temperature defined in (6), we have to deal with

F
𝑃
=

1

𝑒𝛽ℏ𝜔 − 1
(= 1 at 𝑇 =

ℏ𝜔

𝑘
𝐵
ln 2

> 𝑇crit)

for the 𝑓
𝑃
function,

F
𝑄
=

1

1 − 𝑒−𝛽ℏ𝜔
(= 1 at 𝑇 = 0)

for the 𝑓
𝑄
function,

F
𝑊

=
1

2 tanh (𝛽ℏ𝜔/2)
(= 1 at 𝑇 = 𝑇crit)

for the 𝑓
𝑊

function.

(25)

The 𝑓
𝑄
-case reaches the super- to sub-Poissonian transi-

tion only at 𝑇 = 0, while the other two cases reach it at finite
temperatures.

4. Fluctuations

We start this section considering the classical Hamiltonian of
the harmonic oscillator that reads

H (𝑥, 𝑝) = ℏ𝜔 |𝛼|
2
, (26)

where 𝑥 and 𝑝 are phase space variables, |𝛼|2 = 𝑥
2
/4𝜎
2

𝑥
+

𝑝
2
/𝜎
2

𝑝
, 𝜎2
𝑥
= ℏ/2𝑚𝜔, and 𝜎

2

𝑝
= ℏ𝑚𝜔/2 [28].

Using the definition of the mean value (23), from (26), we
immediately find [29]

⟨
𝑥
2

2𝜎2
𝑥

⟩

𝑓

= ⟨
𝑝
2

2𝜎2
𝑝

⟩

𝑓

= ⟨|𝛼|
2
⟩
𝑓
, (27)

with

⟨|𝛼|
2
⟩
𝑓
= 𝛾∫

𝑑
2
𝛼

𝜋
𝑒
−𝛾|𝛼|
2

|𝛼|
2
=

1

𝛾
, (28)

where ⟨𝑥⟩
𝑓

= ⟨𝑝⟩
𝑓

= ⟨𝛼⟩
𝑓

= 0, while 𝛾 takes the
respective values 𝛾

𝑃
, 𝛾
𝑄
, and 𝛾

𝑊
. The concomitant variances

are Δ𝑥
2

= ⟨𝑥
2
⟩
𝑓
− ⟨𝑥⟩

2

𝑓
= 2𝜎

2

𝑝
/𝛾 and Δ𝑝

2
= ⟨𝑝

2
⟩
𝑓
−

⟨𝑝⟩
2

𝑓
= 2𝜎
2

𝑝
/𝛾. Hence, for our general Gaussian distribution,

one easily establishes that

U = Δ𝑥Δ𝑝 =
ℏ

𝛾
, (29)

which shows that 𝛾 should be constrained by the restriction
𝛾 ≤ 2, (30)

if one wishes the inequality

Δ𝑥Δ𝑝 ≥
ℏ

2
(31)

to hold.
Specializing (29) for our three quasi-probability distribu-

tions yields

Δ𝑥Δ𝑝 =
ℏ

𝑒𝛽ℏ𝜔 − 1
, for 𝑓

𝑃
function,

Δ𝑥Δ𝑝 =
ℏ

1 − 𝑒−𝛽ℏ𝜔
, for 𝑓

𝑄
function,

Δ𝑥Δ𝑝 =
ℏ

2 tanh (𝛽ℏ𝜔/2)
, for 𝑓

𝑊
function.

(32)
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These fluctuations are plotted in Figure 5.The restriction (31)
applied to the 𝑃-result entails that it holds if

𝑇 ≥
ℏ𝜔

ln 3𝑘
𝐵

= 𝑇crit ≈ 0.91023
ℏ𝜔

𝑘
𝐵

. (33)

Thus, the distribution𝑓
𝑃
seems again to becomeunphysical at

temperatures lower than 𝑇crit, for which (31) is violated. From
(29), we have 𝛾 = ℏ/U. Accordingly, if we insert this into (7),
the logarithmic entropy 𝑆 can be recast in U-terms via the
relation

𝑆 = 1 − ln( ℏ

Δ𝑥Δ𝑝
) , (34)

(also demonstrated in [30] to hold for the Wehrl entropy)
which vanishes for

Δ𝑥Δ𝑝 =
ℏ

𝑒
. (35)

In the 𝑃-instance this happens at

𝑇 = 0.71463
ℏ𝜔

𝑘
𝐵

. (36)

At this temperature Heisenberg’s-like condition (31) is vio-
lated. 𝑊 and 𝑄 distributions do not allow for such a
circumstance. Actually, in the Wigner case, which is exact,
the minimum 𝑆-value is attained at 𝛽 = ∞, where

𝑆min = 1 − ln 2 ≈ 0.306. (37)

The uncertainty restriction (31) seems to impede the phase
space entropy to vanish, a sort of quasi-quantum effect. It is
clear then that, in phase space, the logarithmic entropy, by
itself, is an uncertainty indicator, in agreement with the work,
in other scenarios, of several authors (see, for instance, [31]
and references therein).

Define now the participation ratio’s analog as [32, 33]

𝑚 =
1

J
=

2

𝛾
, (38)

where J is given by (17). This is an important quantity that
measures the number of pure states entering the mixture
determined by our general Gaussian probability distribution
of amplitude 𝛾 [32, 33]. We again encounter troubles with the
𝑃-distribution in this respect. It is immediately realized by
looking at Figure 6 that, for fulfilling the obvious condition
𝑚 ≥ 1, one needs a temperature 𝑇 ≥ 𝑇crit.

5. Conclusions

We have investigated here the thermal statistics of quasi-
probabilities’ analogs 𝑓(𝛼) in phase space for the important
case of quadratic Hamiltonians, focusing attention on the
three more important instances, that is, those of Wigner, 𝑃-,
and Husimi distributions:

(i) We emphasized the fact that for all of them the semi-
classical entropy is a function only of the fluctuation
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Figure 5: Fluctuations versus the temperature 𝑇 in (ℏ𝜔/𝑘
𝐵
)-units.

The solid line is the case 𝑃, the dashed one is the Wigner one, and
the dotted line is assigned to the Husimi instance.
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Figure 6: Participation ratio 𝑚 versus temperature 𝑇 in (ℏ𝜔/𝑘
𝐵
)-

units. The solid line is the case 𝑃, the dashed one is the Wigner one,
and the dotted curve is assigned to the Husimi instance.

product Δ𝑥Δ𝑝. This fact allows one to ascertain that
the analog 𝑃-distribution seems to become unphysi-
cal at low enough temperatures, smaller than a critical
value 𝑇crit, because, in such an instance

(1) it would violate Heisenberg’s-like principle in
such a case. The behavior of other information
quantifiers reconfirms such an assertion; that is,

(2) Fisher’s measure exceeds its permissible maxi-
mum value 𝐼 = 2;

(3) the participation ratio becomes < 1, which is
impossible.

(ii) It is also clear then that semiclassical entropy, by itself,
in phase space, looks like a kind of “uncertainty”
indicator.
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(iii) We have determined the temperatures for which the
statistical complexity becomesmaximal as a signature
of the well-known transition between classical and
nonclassical states of light whose signature is the
transition from super-Poissonian to sub-Poissonian
distributions [34].

We have seen that the 𝑃-distribution in the case of radio
waves of high frequency becomes negative, which is absurd,
as the pertinent temperatures are rather high and thus one
expects classical physics to reign. Accordingly, one concludes
that quasi-probabilities do not exhibit a sensible classical limit
in the 𝑃-case, contrary to what happens in both 𝑊 and 𝑄

ones.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors were supported by Consejo Nacional de Inves-
tigaciones Cient́ıficas y Técnicas (CONICET), Argentina.
Useful discussions with Professor R. Piasecki of Opole’s
University, Poland, are gratefully acknowledged.

References

[1] J. Von Plato, “Grundbegriffe der Wahrscheinlichkeitsrech-
nung,” in Landmark Writings in Western Mathematics, I.
Grattan-Guinness, Ed., pp. 960–969, Elsevier, Amsterdam, The
Netherlands, 2005.

[2] E. C. Sudarshan, “Equivalence of semiclassical and quantum
mechanical descriptions of statistical light beams,” Physical
Review Letters, vol. 10, pp. 277–279, 1963.

[3] R. J. Glauber, “Coherent and incoherent states of the radiation
field,” Physical Review, vol. 131, pp. 2766–2788, 1963.

[4] E. P. Wigner, “On the quantum correction for thermodynamic
equilibrium,” Physical Review, vol. 40, no. 5, pp. 749–759, 1932.

[5] F. Pennini and A. Plastino, “Smoothed Wigner-distributions,
decoherence, and the temperature-dependence of the classical-
quantum frontier,”The European Physical Journal D, vol. 61, no.
1, pp. 241–247, 2011.

[6] K. Husimi, “Some formal properties of the density matrix,”
Proceedings of the Physico-Mathematical Society of Japan, vol. 22,
pp. 264–283, 1940.

[7] S. S. Mizrahi, “Quantum mechanics in the Gaussian wave-
packet phase space representation,” Physica A, vol. 127, no. 1-2,
pp. 241–264, 1984.

[8] S. S. Mizrahi, “Quantum mechanics in the Gaussian wave-
packet phase space representation. II. Dynamics,” Physica A.
Statistical and Theoretical Physics, vol. 135, no. 1, pp. 237–250,
1986.

[9] S. S. Mizrahi, “Quantum mechanics in the Gaussian wave-
packet phase space representation III: from phase space prob-
ability functions to wave-functions,” Physica A, vol. 150, no. 3,
pp. 541–554, 1988.

[10] M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge
University Press, New York, NY, USA, 1997.

[11] W. P. Scheleich, Quantum Optics in Phase Space, Wiley, Berlin,
Germany, 2001.

[12] J.-P. Gazeau, Coherent States in Quantum Physics, Wiley-VCH,
Weinheim, Germany, 2009.

[13] E. H. Lieb, “The classical limit of quantum spin systems,”
Communications in Mathematical Physics, vol. 31, pp. 327–340,
1973.

[14] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,
and E. A. Cornell, “Observation of Bose-Einstein condensation
in a dilute atomic vapor,” Science, vol. 269, no. 5221, pp. 198–201,
1995.

[15] K. B. Davis, M.-O. Mewes, M. R. Andrews et al., “Bose-Einstein
condensation in a gas of sodium atoms,” Physical Review Letters,
vol. 75, no. 22, pp. 3969–3973, 1995.

[16] C. C. Bradley, C. A. Sackett, and R. G. Hulet, “Bose-Einstein
condensation of lithium: observation of limited condensate
number,” Physical Review Letters, vol. 78, no. 6, pp. 985–989,
1997.

[17] B. R. Frieden and B. H. Soffer, “Lagrangians of physics and the
game of Fisher-information transfer,” Physical Review E, vol. 52,
no. 3, pp. 2274–2286, 1995.

[18] M. J. W. Hall, “Quantum properties of classical Fisher informa-
tion,” Physical ReviewA, vol. 62, no. 1, Article ID 012107, 6 pages,
2000.

[19] F. Pennini and A. Plastino, “Fluctuations, entropic quantifiers
and classical-quantum transition,” Entropy, vol. 16, no. 3, pp.
1178–1190, 2014.

[20] E. H. Lieb, “Proof of an entropy conjecture of Wehrl,” Commu-
nications in Mathematical Physics, vol. 62, no. 1, pp. 35–41, 1978.
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