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Let (X, d) be a metric space and a sequence of continuous maps fn : X → X that converges
uniformly to a map f. We investigate the transitive subsets of fn whether they can be inherited by f
or not. We give sufficient conditions such that the limit map f has a transitive subset. In particular,
we show the transitive subsets of fn that can be inherited by f if fn converges uniformly strongly
to f .

1. Introduction

A topological dynamical system is a pair (X, f), where X is a compact metric space with
metric d and f : X → X is a continuous map. WhenX is finite, it is a discrete space and there
is no any nontrivial convergence. Hence, we assume that X contains infinitely many points.
Define N by the set of all positive integers.

In [1], Blanchard and Huang introduced the concepts of weakly mixing subset and
partial weak mixing, derived from a result given by Xiong and Yang [2] and showed “partial
weak mixing implies Li-Yorke chaos” and “Li-Yorke chaos does not imply partial weak
mixing”. A closed set A with at least two elements is said to be weakly mixing if for any
k ∈ N, any choice of nonempty open subsets V1, V2, . . . , Vk of A and nonempty open subsets
U1, U2, . . . , Uk ofX withA∩Ui /= ∅, i = 1, 2, . . . , k, there exists am ∈ N such that fm(Vi)∩Ui /= ∅
for 1 ≤ i ≤ k. A topological dynamical system (X, f) is called partial weak mixing if X contains
a weakly mixing subset. Motivated by the idea of Blanchard and Huang’s notion of “weakly
mixing subset”, Oprocha and Zhang [3] extended the notion of weakly mixing subset and
gave the concept of “transitive subset” and discussed its basic properties.

It is a well-known fact that if a sequence of continuous maps converges uniformly,
then the uniform limit map is continuous. Abu-Saris and Al-Hami [4] studied uniform
convergence and chaotic behavior. Later Abu-Saris et al. [5] pointed out some wrong claims
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in [4] and corrected them. Román-Flores [6] gave sufficient conditions for the topological
transitivity of uniform limit map f : X → X of a sequence of continuous maps fn : X → X,
where X is a compact metric space. Fedeli and Le Donne [7] studied the dynamical behavior
of the uniform limit of a sequence of continuous self-maps on a compact metric space
satisfying topological transitivity or other related properties and gave some conditions for
the transitivity of a limit. Bhaumik and Choudhury [8] investigated the chaotic behavior of
the uniform limit map f : I → I of a sequence of continuous topologically transitive maps
fn : I → I, where I is a compact interval. Recently, Yan, Zeng, and Zhang et al. [9] studied
transitivity and sensitive dependence on initial conditions for uniform limits.

In this paper, motivated by the idea of Román-Flores [6], we give sufficient conditions
such that the limit map f has a transitive subset. In particular, we prove that A is a transitive
subset of (X, f) if A is a transitive subset of (X, fn) for every n ∈ N when a sequence of
continuous maps fn converges strongly uniformly to a map f , where (X, d) is a compact
metric space. Moreover, we give an example to show that if A is a transitive subset of (X, f),
then A cannot be a transitive subset of (X, fn) for some n ∈ N.

2. Preliminaries

Topological transitivity (see [10–12]) are global characteristic of topological dynamical
systems. Let (X, f) be a topological dynamical system. (X, f) is topologically transitive if for
any nonempty open subsets U and V of X there exists a n ∈ N such that fn(U) ∩ V /= ∅. For a
topological dynamical system (X, f), the orbit of x is the set orb(x, f) = {fn(x) : n ∈ N} for
every x ∈ X. (X, f) is point transitive if there exists a point x0 ∈ X with dense orbit, that is,
orb(x0, f) = X. Such a point x0 is called a transitive point of (X, f). By [13], if X is a compact
metric space without isolated points, then the topologically transitive and point transitive are
equivalent.

Definition 2.1 (see[3]). A closed subsetA is called a transitive subset of (X, f) if for any choice
of nonempty open subset VA of A and nonempty open subset U of X with A ∩ U/= ∅, there
exists a n ∈ N such that fn(VA) ∩U/= ∅.

Remark 2.2. (1) By Definition 2.1, (X, f) is transitive if and only if X is a transitive subset of
(X, f).

(2) If a ∈ X is a transitive point of (X, f), then {a} is a transitive subset of (X, f).

Definition 2.3 (see[14]). Let (X, τ) be a topological space. A and B are two nonempty subsets
of X. B is dense in A if A ⊆ A ∩ B.

In fact, we easily prove that B is dense inA if and only if VA ∩B /= ∅ for any nonempty
open set VA of A.

Proposition 2.4. Let (X, f) be a topological dynamical system and A be a nonempty closed set of X.
Then the following conditions are equivalent.

(1) A is a transitive subset of (X, f).

(2) Let VA be a nonempty open subset ofA andU a nonempty open subset ofX withA∩U/= ∅.
Then there exists n ∈ N such that VA ∩ f−n(U)/= ∅.

(3) LetU be a nonempty open set of X withU ∩A/= ∅. Then ⋃
n∈N

f−n(U) is dense in A.



Discrete Dynamics in Nature and Society 3

Proof. (1) ⇒ (2) Let A be a transitive subset of (X, f). Then for any choice of nonempty open
set VA of A and nonempty open set U of X with A ∩ U/= ∅, there exists n ∈ N such that
fn(VA) ∩U/= ∅. Since fn(VA ∩ f−n(U)) = fn(VA) ∩U, it follows that VA ∩ f−n(U)/= ∅.

(2) ⇒ (3) Let VA be a nonempty open set ofA andU be a nonempty open set ofXwith
A∩U/= ∅. By the assumption of (2), there exists n ∈ N such that VA∩f−n(U)/= ∅. Furthermore,

VA ∩
⋃

n∈N

f−n(U) =
⋃

n∈N

(
VA ∩ f−n(U)

)
/= ∅. (2.1)

Hence,
⋃

n∈N
f−n(U) is dense in A.

(3) ⇒ (1) Let VA be a nonempty open set of A and U a nonempty open set of X with
A ∩U/= ∅. Since ⋃n∈N

f−n(U) is dense inA, it follows that VA ∩⋃
n∈N

f−n(U)/= ∅. Hence, there
exists n ∈ N such that VA ∩ f−n(U)/= ∅. Moreover, fn(VA ∩ (f−n(U)) = fn(VA) ∩ U, which
implies fn(VA) ∩U/= ∅. Therefore, A is a transitive subset of (X, f).

Definition 2.5. Let (X, d) be a metric space and a sequence of continuous maps fn : X → X,
for each n ∈ N. {fn : n ∈ N} is said to converge strongly uniformly to f if for any ε > 0, there
exists n0 ∈ N such that for any x ∈ X, l ∈ N and n ≥ n0 satisfying

d
((

fn
)l(x), f l(x)

)
< ε. (2.2)

If {fn : n ∈ N} converges strongly uniformly to f , {fn : n ∈ N} is called a strong uniform
convergent sequence.

The following example is from [9, 15]; we show that the example is a strong uniformly
convergence example.

Example 2.6. Let I = [0, 1]. Denote Iji = [j − 1/3i−1, j/3i−1] for any i ∈ N and j = 1, 2, . . . , 3i−1. Let
f
j

i : Iji → I
j

i satisfy

f
j

i (x) =
j − 1
3i−1

+ f1
i

(

x − j − 1
3i−1

)

for any x ∈ I
j

i , where (2.3)

f1
i (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 ≤ x ≤ 1
3i
,

3x − 1
3i−1

, if
1
3i

< x <
2
3i
,

1
3i−1

, if
2
3i

≤ x ≤ 1
3i−1

.

(2.4)

For any n ∈ N, we define fn : I → I satisfying

fn(x) = f
j
n(x) for any x ∈ I

j
n and j = 1, 2, . . . , 3n−1. (2.5)

Then it is easy to see that fn : I → I is a continuous map for each n ∈ N and fn converges
strongly uniformly to idI , the identity on I.
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3. Main Results

Let C(X,X) denote the set of continuous maps f : X → X. In the sequel, as in usual, d∞(f, g)
denotes the uniformmetric on C(X,X), that is, d∞(f, g) = supx∈Xd(f(x), g(x)). A topological
space X is perfect if X is closed and has no isolated points. Clearly, if X is a perfect space,
then any nonempty open set U of X has no isolated points.

From the idea of Román-Flores [6], we obtain the following theorem.

Theorem 3.1. Let (X, d) be a compact metric space and a sequence of continuous maps fn : X → X
that converges uniformly to a map f . Assume that A is a perfect set of X and A is a transitive subset
of (X, fn) for all n ∈ N. Additionally, suppose that

(1) d∞((fn)
n, fn) → 0 as n → ∞,

(2) {(fn)n(x) : n ∈ N} is dense in A, for some x ∈ X.
Then A is a transitive subset of (X, f).

Proof. Let VA be a nonempty open set of A and U a nonempty open set of X with A ∩U/= ∅.
Since condition (2), there exists x0 ∈ X such that {(fn)n(x0) : n ∈ N} is dense in A.
Furthermore, by condition (1) and A is perfect, we obtain that the sequence {fn(x0) : n ∈ N}
is also dense in A. Moreover, VA is a nonempty open set of A; there exists k ∈ N such that
z = fk(x0) ∈ VA. Let G = (U ∩ A) \ {f(x0), f2(x0), . . . , fk(x0)}. Then G is a nonempty open
set ofA. SinceA is a perfect metric space and {fn(x0) : n ∈ N} is dense inA, there exists l > k
such that fl(x0) ∈ G ⊆ (U ∩A). Hence, we have

fl(x0) = fl−k
(
fk(x0)

)
= fl−k(z) ∈ fl−k

(
VA

)
∩ (U ∩A). (3.1)

Consequently, fl−k(VA) ∩U/= ∅. Therefore, A is a transitive subset of (X, f).

Theorem 3.2. Let (X, d) be a compact metric space. Assume a sequence of continuous maps fn :
X → X that converges strongly uniformly to a map f and A is a transitive subset of dynamical
systems (X, fn) for each n ∈ N. Then A is a transitive subset of (X, f).

Proof. Let VA be a nonempty open set of A and U a nonempty open set of X with A ∩U/= ∅.
Since X is a compact metric space and A ∩ U/= ∅, there exists a nonempty open set W of X
such that W ⊆ U and W ∩A/= ∅.

Let Wn =
⋃∞

k=1(fn)
−k(W) for each n ∈ N. Since A is a transitive subset of (X, fn) for

each n ∈ N, by Proposition 2.4, then Wn is an open set of X and Wn is dense in A. We denote
W∞ =

⋂∞
n=1 Wn. By Baire theorem,W∞ is dense inA. Furthermore, we have VA∩W∞ /= ∅. Take

a point y0 ∈ VA ∩W∞. There exists kn ∈ N such that y0 ∈ (fn)
−kn(W) for each n ∈ N. Denote

xn = (fn)
kn(y0) for each n ∈ N. Without loss of generality, we may assume limn→∞xn = x ∈ W

because X is a compact metric space. Choose a δ > 0 such that B(x, δ) = {y ∈ X : d(x, y) <
δ} ⊆ U. Since maps sequence {fn : n ∈ N} converges strongly uniformly to f and limn→∞xn =
x, there exists n0 ∈ N such that

d
((

fn0

)kn0
(
y0
)
, fkn0

(
y0
))

<
δ

2
and d(xn0 , x) = d

((
fn0

)kn0
(
y0
)
, x

)
<

δ

2
. (3.2)

It follows that d(x, fkn0 (y0)) < δ, which implies fkn0 (y0) ∈ U. Therefore, fkn0 (VA) ∩ U/= ∅.
This shows that A is a transitive subset of (X, f).
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The following example is from [4]. We give the examplewhich shows if maps sequence
{fn : n ∈ N} converges uniformly to a map f and A is a transitive subset of (X, fn) for each
n ∈ N, then A cannot be a transitive subset of (X, f).

Example 3.3 (see [4]). Let S1 be the unit circle and Tλ : S1 → S1 a translation map such that

Tλ(θ) = θ + 2λπ, λ ∈ R. (3.3)

Let λ be an irrational number, λn = λ/n, and Tn = Tλn : S
1 → S1 such that Tn(θ) = θ+(2λ/n)π .

Let maps sequence {Tn : n ∈ N} converge uniformly to a map T0. Then T0 is not topologically
transitive on S1; that is, S1 is not a transitive subset of dynamical system (S1, T0).

It is well known that if λ = q/p is a rational number, then all points are periodic of
period q, and so the set of periodic points is, obviously, dense in S1. Moreover, by Jacobi’s
Theorem [16], if λ is an irrational number, then Tλ is topologically transitive on S1. Therefore,
S1 is a transitive subset of (S1, Tλ). Since λn = λ/n is an irrational number for each n ∈ N, then
Tn = Tλn : S1 → S1 is topologically transitive for each n ∈ N, which implies S1 is a transitive
subset of (S1, Tn) for each n ∈ N. Moreover, maps sequence {Tλn : n ∈ N} converges uniformly
to a map T0 = id, where id is identity map. Therefore, T0 is not topologically transitive on S1,
which implies S1 is not a transitive subset of (S1, T0).

Let fn : X → X be a continuous map for each n ∈ N, and maps sequence {fn : n ∈ N}
converges uniformly to a map f . The following example shows that A is a transitive subset
of (X, f), but there exists k ∈ N such that A is not a transitive subset of (X, fk).

Example 3.4. Let

fn(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n
n − 2

x, if 0 ≤ x ≤ n − 2
2n

,

1, if
n − 2
2n

≤ x ≤ n + 2
2n

, n = 3, 4, . . .

2n
n − 2

(1 − x), if
n + 2
2n

≤ x ≤ 1.

(3.4)

Observe that the given sequence converges uniformly to tent map

f(x) =

⎧
⎪⎨

⎪⎩

2x, if 0 ≤ x ≤ 1
2
,

2(1 − x), if
1
2
≤ x ≤ 1,

(3.5)

Figures 1 and 2, which is known to be topologically transitive on I = [0, 1] (see [16]). We will
prove that [1/4, 3/4] is a transitive subset of (X, f).



6 Discrete Dynamics in Nature and Society

0

f

1
2

1

Figure 1

0 1
2

11
4

3
4

f2

Figure 2

Let S(fk) denote the set of extreme value points of fk for every k ∈ N; then S(fk) =
{1/2k, 2/2k, . . . , (2k − 1)/2k}. Since S(f) = {1/2}, f(1/2) = 1, f(0) = 0, and f(1) = 0, we have

fk(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if x =
1
2k

,
3
2k

, . . . ,
2k − 1
2k

,

0, if x = 0,
2
2k

,
4
2k

, . . . ,
2k − 2
2k

, 1.

(3.6)

Let Ij
k
= [j/2k, (j + 1)/2k] for 0 ≤ j ≤ 2k − 1. Then fk(Ij

k
) = [0, 1]. For any nonempty

open setU of [1/4, 3/4]. Without loss of generality, we takeU = (x0−ε, x0+ε) for a given ε > 0
and x0 ∈ int[1/4, 3/4], where int[1/4, 3/4] denotes the interior of [1/4, 3/4]. When l ∈ N and
l > log2(1/ε), then there exists j ∈ N and 0 ≤ j ≤ 2l − 1 such that Ijl ⊆ U. Furthermore, we
have fl(U) = [0, 1]. Thus, for any nonempty open setU of [1/4, 3/4] and nonempty open set
V of [0, 1] with V ∩ [1/4, 3/4]/= ∅, there exists k ∈ N such that fk(U) ∩ V /= ∅. This shows that
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[1/4, 3/4] is a transitive subset of (I, f). Moreover, f4(x) = 1 and (f4)
n(x) = 0(n ≥ 2) for all

x ∈ [1/4, 3/4], which implies that [1/4, 3/4] is not a transitive subset of (I, f4).
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