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A mathematical model of HIV/AIDS transmission incorporating treatment and drug resistance
was built in this study. We firstly calculated the threshold value of the basic reproductive number
(R0) by the next generation matrix and then analyzed stability of two equilibriums by constructing
Lyapunov function. When R0 < 1, the system was globally asymptotically stable and converged to
the disease-free equilibrium. Otherwise, the system had a unique endemic equilibrium which was
also globally asymptotically stable. While an antiretroviral drug tried to reduce the infection rate
and prolong the patients’ survival, drug resistance was neutralizing the effects of treatment in fact.

1. Introduction

It was reported that 2.7 million people were newly infected by HIV/AIDS virus and 1.8
million patients died of AIDS-related causes in 2010 worldwide. By the end of 2010, about
34 million people were living with HIV/AIDS in the world [1]. China estimated that 2.8
million died of AIDS-related causes in 2011, and there were about 7.8 million HIV-infected
people by the end of 2011 [2].

Since the initial infectious diseases model was presented by Anderson et al. in 1986
[3–5], various mathematical models have been developed among which the treatment has
been addressed [6–16]. For example, Wang and Zhou’s model tried to address HIV treatment
and progression by CD4 ∼+ T-cells and virus particles in microcosmic [8]; Blower, Boily
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et al., and Bachar and Dorfmayr’s works tried to investigate the effect of treatment on
sexual behaviors [9–11]; Blower et al., Sharomi and Gumel and Nagelkerke et al. studied
the epidemic contagion transmission in some specific regions or groups considering drug
resistance [12–14].

In this work, we established a model by adding effect of drug resistance into the
similar models in the literatures [6–11, 15, 16]. The model in [12–14] are include both virus
drug resistance and drug sensitive on the treatment. However the model in [12] did not
distinguish the stage of HIV and AIDS, our model aware of the different between HIV
infections and AIDS patients. Moreover, compare to those models in [13, 14], we carefully
consider some infections would exit treatment group without developing drug-resistance
due to other reasons such as migration. Theoretical analysis on global stability of endemic
equilibrium has then been implemented.

2. Dynamic Model

According to the progression of disease, the total populations were separated into five
groups: susceptible population, early-stage HIV population, symptomatic population, AIDS
patients, and those who are accepting ART; we marked them with S(t), I(t), J(t), A(t), and
T(t) separately. Treatment has three outcomes: (1) a patient can respond to treatment and
remain the ART; (2) exit treatment due to clinical failure, migration, or other reasons without
developing drug resistance; (3) virologically fail and develop drug resistance. We use R(t) to
denote patients in situation (3).

We made some assumption as below.

(1) Infection occurred when susceptible and infected contact with each other took
place.

(2) Only people in the period of AIDS may die of AIDS disease-related, then use d
denote the disease-related death rate of the AIDS. And use μ denote the mortality
rate in the total population.

(3) Although AIDS patients have the higher viral load, we assume they will not infect
others because they have the obvious clinical symptoms and were accepting ART.

(4) When in the situation (2) of treatment, we assume these people transformed into
asymptomatic individuals.

According to the assumptions, the flow diagram of the six subpopulations was shown
in Figure 1.

The model was collected as the following differential equations:

S′ = Λ − μS − (β1I + β2J + β3T + β4R
)
S,

I ′ =
(
β1I + β2J + β3T + β4R

)
S − αI − μI,

J ′ = αI − (ρ1 + σ + k1
)
J − μJ + γT,

T ′ = σJ − (ρ2 + γ + k2
)
T − μT,

R′ = k1J + k2T − ρ3R − μR,

A′ = ρ1J + ρ2T + ρ3R − (d + μ
)
A,

(2.1)
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Figure 1: Relationship between different populations.

where Λ is the recruitment rate of the susceptible population, β1 is the probability of
transmission by an infection in the first stage, β2 is the probability of transmission by an
infection in the second phase, β3 = lβ2 (l < 1) is the probability of transmission by a patient
being treated, β4 is the probability of transmission by a drug resistance individual, α is the
transfer rate constant from the asymptomatic phase I to the symptomatic phase J , σ is the
proportion of treatment, γ is the exit treatment rate without developing drug resistance, k1 is
probability constant of infection by transmission of drug-resistant strains, and k2 is the rate
of acquiring drug resistance during treatment; ρi (i = 1, 2, 3) denote transfer rate constant by
an infection from phase J , T , R to the AIDS cases A, respectively.

The model is established in practice; thus we assume all parameters are nonnegative.
Since theA of system (2.1) does not appear in the equations, in the following analysis,

we only consider the system as follows:

S′ = Λ − μS − (β1I + β2J + β3T + β4R
)
S,

I ′ =
(
β1I + β2J + β3T + β4R

)
S − (α + μ

)
I,

J ′ = αI − (ρ1 + σ + k1 + μ
)
J + γT,

T ′ = σJ − (ρ2 + γ + k2 + μ
)
T,

R′ = k1J + k2T − (ρ3 + μ
)
R.

(2.2)

Theorem 2.1. Let the initial data be S(0) = S0 > 0, I(0) = I0 > 0, J(0) = J0 > 0, T(0) = T0 > 0
and R(0) = R0 > 0; then the solutions of system (2.2) are all positive for all t > 0. For the model, the
feasible region of system (2.2) isΩ = {(S, I, J, T, R) ∈ R

5
+ : S + I + J + T +R ≤ Λ/μ, 0 < S ≤ Λ/μ},

and Ω for system (2.2) is positively invariant.

Proof. From the first equation of (2.2)

S′ = Λ − μS − (β1I + β2J + β3T + β4R
)
S, (2.3)

consider the following two categories.

(1) When t0 > 0 and S(t0) = 0.

Equation (2.3) becomes S′ = Λ (t = t0), due to Λ > 0; we have S′(t0) > 0, that is,
when t > t0, S(t) is an increasing function about t. Therefore, we can conclude that
when tis the neighborhood of t0 and t > t0, S(t) ≥ S(t0) > 0.
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(2) When t0 > 0 and S(t0) > 0.

Equation (2.3) can be written as

S′

S
=

Λ
S

− [μ +
(
β1I + β2J + β3T + β4R

)]
, (2.4)

that is

S′

S
≥ −[μ +

(
β1I + β2J + β3T + β4R

)]
, (2.5)

thus,

S(t) ≥ S(0) exp

[

−
∫ t

0

[
μ +
(
β1I(s) + β2J(s) + β3T(s) + β4R(s)

)]
ds

]

> 0. (2.6)

Similarly for the other equations of system (2.2)we can easily show that I(t), J(t), T(t),
R(t) are increasing functions about t when t0 > 0 and I(t0) = 0, t0 > 0 and J(t0) = 0, t0 > 0
and T(t0) = 0, t0 > 0 and R(t0) = 0, respectively; then when t > t0, X(t) ≥ X(t0) > 0 (X =
I, J, T, R). Otherwise, when t0 > 0 and X(t0) > 0 (X = I, J, T, R), we have the following results
corresponding to the respective hypothesis:

I ′

I
≥ −(α + μ

)
. (2.7)

Thus,

I(t) ≥ I(0) exp
[−(α + μ

)
t
]
> 0,

J ′

J
≥ −(ρ1 + σ + k1 + μ

)
.

(2.8)

Thus,

J(t) ≥ J(0) exp
[−(ρ1 + σ + k1 + μ

)
t
]
> 0,

T ′

T
≥ −(ρ2 + γ + k2 + μ

)
.

(2.9)

Thus,

T(t) ≥ T(0) exp
[−(ρ2 + γ + k2 + μ

)
t
]
> 0,

R′

R
≥ −(ρ3 + μ

)
.

(2.10)

Thus,

R(t) ≥ R(0) exp
[−(ρ3 + μ

)
t
]
> 0. (2.11)
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Then, we have that I(t), J(t), T(t), and R(t) are all strictly positive for t > 0. Thus we can
conclude that all solutions of system (2.2) remain positive for all t > 0.

Next, add all the the equations of system (2.2); we have

(S + I + J + T + R)′ = Λ − μ(S + I + J + T + R) − (ρ1J + ρ2T + ρ3R
)

≤ Λ − μ(S + I + J + T + R).
(2.12)

Then,

lim
t→∞

sup(S + I + J + T + R) ≤ Λ
μ
. (2.13)

In a similar fashion we have S′ ≤ Λ − μS from the first equation of (2.2); then
limt→∞ supS ≤ Λ/μ.

Thus, the feasible solution of system remains in the region Ω, and Ω as the feasible
region for system is positively invariant. In the following, the dynamics of system (2.2) will
be considered in Ω.

3. The Basic Reproduction Number and the Disease-Free Equilibrium

3.1. The Basic Reproduction Number

It is easy to see that the model has a disease-free equilibrium (DFE), P0 = (Λ/μ, 0, 0, 0, 0).
Following the paper [17], we obtain the basic reproduction number by using the next
generation operator approach.

Let y = (I, J, T, R, S)T ; thus we have

y′ = F(y) − V(y), (3.1)

where

F(y) =

⎛

⎜⎜⎜⎜⎜
⎝

(
β1I + β2J + β3T + β4R

)
S

0
0
0
0

⎞

⎟⎟⎟⎟⎟
⎠

, (3.2)

V(y) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(
α + μ

)
I

−αI + (ρ1 + σ + k1 + μ
)
J − γT

−σJ +
(
ρ2 + γ + k2 + μ

)
T

−k1J − k2T +
(
ρ3 + μ

)
R

−Λ + μS +
(
β1I + β2J + β3T + β4R

)
S

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.3)
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Then the derivatives of F(y) and V(y) at the DFE P0 = (0, 0, 0, 0,Λ/μ) are partitioned as

DF
(
P0

)
=
(
F 0
0 0

)
,

DV
(
P0

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

V

0
0
0
0

β1 · Λ
μ

β2 · Λ
μ

β3 · Λ
μ

β4 · Λ
μ

μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.4)

F and V are the 4 × 4 matrices as follows:

F =

⎛

⎜⎜⎜⎜
⎝

β1 · Λ
μ

β2 · Λ
μ

β3 · Λ
μ

β4 · Λ
μ

0 0 0 0
0
0

0
0

0 0
0 0

⎞

⎟⎟⎟⎟
⎠

,

V =

⎛

⎜⎜
⎝

Q1 0 0 0
−α Q2 − γ 0
0 −σ Q3 0
0 −k1 −k2 Q4

⎞

⎟⎟
⎠,

(3.5)

where

Q1 =
(
α + μ

)
, Q2 =

(
ρ1 + σ + k1 + μ

)
,

Q3 =
(
ρ2 + γ + k2 + μ

)
, Q4 =

(
ρ3 + μ

)
.

(3.6)

Hence the reproduction number, denoted by R0, is the spectral radius of the next
generation matrix FV −1:

R0 = ρ
(
FV −1

)
= R1 + R2 + R3 + R4. (3.7)

Here

R1 =
β1
Q1

· Λ
μ
, R2 =

β2αQ3

Q1
(
Q2Q3 − σγ

) · Λ
μ
,

R3 =
β3ασ

Q1
(
Q2Q3 − σγ

) · Λ
μ
, R4 =

β4α(k1Q3 + k2σ)
Q1
(
Q2Q3 − σγ

)
Q4

· Λ
μ
.

(3.8)

3.2. DFE and Stability

Theorem 3.1. The disease-free equilibrium P0 of system is globally asymptotically stable for R0 < 1
and unstable for R0 > 1.
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Proof. (1) The Jacobian matrices of system (2.2) at the DFE are

J(P0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−μ −β1 ·
Λ
μ

−β2 · Λ
μ

−β3 ·
Λ
μ

−β4 ·
Λ
μ

0
0
0
0

D

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.9)

where

D =

⎛

⎜
⎜
⎜
⎜
⎝

β1 · Λ
μ
−Q1 β2 · Λ

μ
β3 · Λ

μ
β4 · Λ

μ
α −Q2 γ 0
0 σ −Q3 0
0 k1 k2 −Q4

⎞

⎟
⎟
⎟
⎟
⎠

. (3.10)

Obviously, −D = [dij] is a 4 × 4 matrix with dij ≤ 0, for i /= j, i, j = 1, . . . , 4 and dii > 0
for i = 2, . . . , 4. If R0 < 1, we have R1 = (β1/Q1) · (Λ/μ) < R0 < 1 from the expression of (3.8);
thus d11 = Q1 − β1 · (Λ/μ) = Q1(1 − R1) > 0.

Define the positive vector subsequently:

x =

(

1,
αQ3

Q2Q3 − σγ
,

ασ

Q2Q3 − σγ
,
α(k1Q3 + k2σ)(
Q2Q3 − σγ

)
Q4

)T

. (3.11)

If R0 < 1, −D · x = [Q1(1 − R0), 0, 0, 0]
T ≥ 0.

Then begin to show that all the eigenvalues of −D are nonzero:

det(−D) = Q1Q4
(
Q2Q3 − σγ

) − β1
(
Q2Q3 − σγ

)
Q4

− α
(
β2Q3 + β3σ

)
Q4 − α

(
β2Q3 + β3σ

)
Q4.

(3.12)

Simplify the above expression through substituting formula (3.8) into (3.12):

det(−D) = Q1Q4
(
Q2Q3 − σγ

)
(1 − R0). (3.13)

Here Q2Q3 − σγ = (ρ1 + σ + k1 + μ)(ρ2 + γ + k2 + μ) − σγ > 0; thus, det(−D) > 0; namely, −D
has non zero eigenvalue for R0 < 1.

In conclusion, if R0 < 1, −D is an irreducible matrix with dii > 0 and dij ≤ 0(i /= j), there
exists a positive vector x such that −D ·x ≥ 0. Hence, the real part of each nonzero eigenvalue
of −D is positive according to theM-matrix theory; that is, each eigenvalue ofD has negative
real part.

Through the structure of the Jacobian matrix J(P0), it can be seen that the eigenvalues
of J(P0) consist of −μ and all eigenvalues of D. Hence, all eigenvalues of J(P0) have negative
real part for R0 < 1; thus, disease-free equilibrium P0 is locally asymptotically stable.
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(2) Let U1 = m1I + m2J + m3T + m4R, where mi(i = 1 · · · 4) are positive constants as
follows:

m1 =
β1
Q1

+
β2αQ3

Q1
(
Q2Q3 − σγ

) +
β3ασ

Q1
(
Q2Q3 − σγ

) +
β4α(k1Q3 + k2σ)
Q1
(
Q2Q3 − σγ

)
Q4

,

m2 =
β2Q3

Q2Q3 − σγ
+

β3σ

Q2Q3 − σγ
+

β4(k1Q3 + k2σ)
(
Q2Q3 − σγ

)
Q4

,

m3 =
β2γ

Q2Q3 − σγ
+

β3Q2

Q2Q3 − σγ
+

β4
(
k1γ + k2Q2

)

(
Q2Q3 − σγ

)
Q4

,

m4 =
β4
Q4

.

(3.14)

When R0 < 1, the time derivative ofU1 is

U′
1

∣∣
(2.2) = m1I

′ +m2J
′ +m3T

′ +m4R
′

=
(
m1β1S −m1Q1 +m2α

)
I +
(
m1β2S −m2Q2 +m3σ +m4k1

)
J

+
(
m1β3S +m2γ −m3Q3 +m4k2

)
T +
(
m1β4S −m4Q4

)
R

= (m1S − 1)
(
β1I + β2J + β3T + β4R

)
.

(3.15)

Let M = max(β1/m1, β2/m2, β3/m3, β4/m4); due to limt→∞ supS ≤ Λ/μ, M is the finite
number, then

U′
1 ≤
(
m1

Λ
μ

− 1
)
(
β1I + β2J + β3T + β4R

)

= (R0 − 1)
(
β1I + β2J + β3T + β4R

)

≤ M(R0 − 1)(m1I +m2J +m3T +m4R).

(3.16)

Solve U′
1 ≤ M(R0 − 1)U1, have U1 ≤ U1(0)eM(R0−1)t, that is, lim

t→∞
U1(t) = 0, thus when t → ∞,

(I, J, T, R) → (0, 0, 0, 0). When R0 < 1, U′
1 ≤ 0, and equalities hold if and only if S = Λ/μ, I =

J = T = R = 0, that is U′
1 = 0 if and only if t → ∞. We can conclude that the solutions of

system (2.2) are all in Ψ = {(S, I, J, T, R) : S = Λ/μ, I = J = T = R = 0} and the only invariant
set inΨ is P0 by the LaSalle’s invariance principle. Thus the solutions of system (2.2) are limits
to the endemic equilibrium P0 when R0 < 1. Combine locally asymptotically stable of P0 with
convergence properties of the P0, we conclude that P0 of system is globally asymptotically
stable for R0 < 1.

(3) If R0 > 1, detD = Q1Q4(Q2Q3−σγ)(1−R0) < 0; thusD has eigenvalue with positive
real part, otherwise, detD > 0; this is contradiction. Hence, P0 is unstable for R0 > 1.
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4. Endemic Equilibrium and Stability

Equating each equation in system (2.2) to zero and solving this equilibrium equations, system
has the unique positive equilibrium P ∗ = (S∗, I∗, J∗, T ∗, R∗) for R0 > 1, here

S∗ =
Λ
μ

· 1
R0

, I∗ =
Λ
Q1

(
1 − 1

R0

)
, J∗ =

αQ3

Q2Q3 − σγ
I∗

T ∗ =
ασ

Q2Q3 − σγ
I∗, R∗ =

α(k1Q3 + k2σ)(
Q2Q3 − σγ

)
Q4

I∗.

(4.1)

Theorem 4.1. Endemic equilibrium P ∗ of system is globally asymptotically stable for R0 > 1.

Proof. Equating each equation in system (2.2) to zero, the equilibrium equations as follows
are useful:

Λ = μS∗ +
(
β1I

∗ + β2J
∗ + β3T

∗ + β4R
∗)S∗,

Q1I
∗ =
(
β1I

∗ + β2J
∗ + β3T

∗ + β4R
∗)S∗,

Q2J
∗ = αI∗ + γT ∗,

Q3T
∗ = σJ∗,

Q4R
∗ = k1J

∗ + k2T
∗,

(4.2)

where Qi is defined in (3.6).
Setting x = (S, I, J, T, R) ∈ Ω ⊂ R

+
5 , construct a Lyapunov function

U2 = U2(x) =
(
S − S∗ − S∗ ln

S

S∗

)
+A1

(
I − I∗ − I∗ ln

I

I∗

)

+A2

(
J − J∗ − J∗ ln

J

J∗

)
+A3

(
T − T ∗ − T ∗ ln

T

T ∗

)

+A4

(
R − R∗ − R∗ ln

R

R∗

)
,

(4.3)

where x∗ = P ∗ = (S∗, I∗, J∗, T ∗, R∗) and Ai > 0 is constant. There, U2(x) ≥ 0 for x ∈ IntΩ, and
U2(x) = 0 ⇔ x = x∗.

Computing the time derivative of U2, we have

U′
2 = S′

(
1 − S∗

S

)
+A1I

′
(
1 − I∗

I

)
+A2J

′
(
1 − J∗

J

)

+A3T
′
(
1 − T ∗

T

)
+A4R

′
(
1 − R∗

R

)
.

(4.4)
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Using (2.2) and (4.10), we obtain

S′
(
1 − S∗

S

)
=
(
1 − S∗

S

)
[
Λ − μS − (β1I + β2J + β3T + β4R

)
S
]

=
(
1 − S∗

S

)[
μS∗ +

(
β1I

∗ + β2J
∗ + β3T

∗ + β4R
∗)S∗

−μS − (β1I + β2J + β3T + β4R
)
S

]

= μS∗
(
2 − S

S∗ − S∗

S

)
− (β1I + β2J + β3T + β4R

)
S

+
(
β1I + β2J + β3T + β4R

)
S∗ +

(
β1I

∗ + β2J
∗ + β3T

∗ + β4R
∗)S∗

− (β1I∗ + β2J
∗ + β3T

∗ + β4R
∗)S

∗2

S
.

(4.5)

Similarly, we obtain

A1I
′
(
1 − I∗

I

)
= A1

[
(
β1I + β2J + β3T + β4R

)
S +
(
β1I

∗ + β2J
∗ + β3T

∗ + β4R
∗)S∗

− Q1I −
(
β1I + β2J + β3T + β4R

)
S
I∗

I

]
,

A2J
′
(
1 − J∗

J

)
= A2

[
αI −Q2J + γT + αI∗ + γT ∗ − αI

J∗

J
− γT

J∗

J

]
,

A3T
′
(
1 − T ∗

T

)
= A3

[
σJ −Q3T + σJ∗ − σJ

T ∗

T

]
,

A4R
′
(
1 − R∗

R

)
= A4

[
k1J + k2T −Q4R +Q4R

∗ + k1J
∗ + k2T

∗ − k1J
R∗

R
− k2T

R∗

R

]
.

(4.6)

Substituting formula (4.5) and (4.6) into (4.4) and arranging the equation we have

U′
2 = Q0 +Q1 +Q2 +Q3 +Q4, (4.7)

where

Q0 = μS∗
(
2 − S

S∗ − S∗

S

)
,

Q1 = (A1 − 1)
(
β1I + β2J + β3T + β4R

)
S,

Q2 = (A1 + 1)
(
β1I

∗ + β2J
∗ + β3T

∗ + β4R
∗)S∗ +A2αI

∗ +A2γT
∗

+A3σJ
∗ +A4k1J

∗ +A4k2T
∗,

Q3 =
(
β1I + β2J + β3T + β4R

)
S∗ +A2αI +A2γT +A3σJ+A4k1J

+A4k2T −A1Q1I −A2Q2J −A3Q3T −A4Q4R,
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Q4 = −(β1I∗ + β2J
∗ + β3T

∗ + β4R
∗)S

∗2

S
−A1

(
β1I + β2J + β3T + β4R

)I∗

I

−A2αI
J∗

J
−A2γT

J∗

J
−A3σJ

T ∗

T
−A4k1J

R∗

R
−A4k2T

R∗

R
.

(4.8)

In (4.7), Q2 consists of all constant terms, Q3 contains all linear terms of I, J , T , R, and Q4

contains all negative nonlinear.
In order to determine the coefficient Ai ofU2, letQ3 ≡ 0 (inΩ); then the coefficients of

state variables I, J , T , R are equal to zero, that is:

β1S
∗ −A1Q1 +A2α = 0

β2S
∗ −A2Q2 +A3σ+A4k1 = 0

β3S
∗ +A2γ −A3Q3 +A4k2 = 0

β4S
∗ −A4Q4 = 0.

(4.9)

Solving (4.9), and using the expression of R0 and S∗, we have

A1 = 1, A2 =
1

Q2Q3 − σγ

(
β2Q3 + β3σ +

β4(k1Q3 + k2σ)
Q4

)
S∗,

A3 =
1

Q2Q3 − σγ

(

β2γ + β3Q2 +
β4
(
k1γ + k2Q2

)

Q4

)

S∗, A4 =
β4
Q4

S∗,

(4.10)

then, Q1 = 0.
Let S/S∗ = x, I/I∗ = y, J/J∗ = z, T/T ∗ = u, R/R∗ = v; substituting these expressions

into (4.9), and then substituting the changing expression into (4.7)

U′
2 = μS∗

(
2 − x − 1

x

)
+ 2β1S∗I∗ + 2β2S∗J∗ + 2β3S∗T ∗ + 2β4S∗R∗ +A2αI

∗

+A2γT
∗ +A3σJ

∗+A4k1J
∗ +A4k2T

∗ − β1S
∗I∗

1
x
− β2S

∗J∗
1
x

− β3S
∗T ∗ 1

x
− β4S

∗R∗ 1
x
− β1S

∗I∗x − β2S
∗J∗

xz

y
− β3S

∗T∗xu
y

− β4S
∗R∗xv

y
−A2αI

∗y
z
−A2γT

∗u
z
−A3σJ

∗ z
u
−A4k1J

∗ z
v
−A4k2T

∗u
v

= μS∗
(
2 − x − 1

x

)
+ β1S

∗I∗
(
2 − x − 1

x

)
+ β2S

∗J∗
(
2 − xz

y
− 1
x

)

+ β3S
∗T ∗
(
2 − xu

y
− 1
x

)
+ β4S

∗R∗
(
2 − xv

y
− 1
x

)
+A2αI

∗
(
1 − y

z

)

+A2γT
∗
(
1 − u

z

)
+A3σJ

∗
(
1 − z

u

)
+A4k1J

∗
(
1 − z

v

)
+A4k2T

∗
(
1 − u

v

)
.

(4.11)

Using the arithmetic mean geometric to get that 2 − x − 1/x is less than or equal to
zero, substituting Ai, and simplifying the other expressions in (4.11) after tedious algebraic
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manipulations, we can get the other expressions such as (2 − xz/y − 1/x), (2 − xu/y − 1/x),
and (2 − xv/y − 1/x) is less than or equal to zero; this indicates that U′

2 ≤ 0, and equalities
hold if and only if x = 1, y = z = u = v. Furthermore, S = S∗, I/I∗ = J/J∗ = T/T ∗ = R/R∗ = a;
then substituting S = S∗, I = aI∗, J = aJ∗, T = aT ∗, R = aR∗ into the first equation of system
(2.2), and in contrast to the first equality of (4.2), we have a = 1.

In conclusion, the limit sets of solutions in Ω are all in Γ = {(S, I, J, T, R) :
S = S∗, I = I∗, J = J∗, T = T∗, R = R∗}, and the only invariant set in Γ is P ∗ by the LaSalle’s
invariance principle. Thus the solutions of system (2.2) in Ω are limits to the endemic
equilibrium P ∗, and P ∗ is globally asymptotically stable for R0 > 1.

5. Discussion

This paper is an extended model about the works in [15, 16] by adding treatment and drug
resistance in the whole transmission as well as considering the reasons of treatment exiting.

For public health view, to bring HIV/AIDS into control, the prerequisite is reducing
the threshold value of basic reproductive number R0. If control R0 < 1, the disease can be
eliminated from population. R052 RCT study indicated that treatment can prevent in HIV
transmission [18]; this sounds that increasing proportion of treated population is helpful
to control HIV epidemic overall. In our study, ART is clearly affecting R0 in the HIV
procession. However, we cannot yet give this positive result based on the formula of R0

and σ in our work. That is because the treatment might also induce drug resistance which
neutralizes the effect of treatment. ART might produce a more complicated HIV progress.
However, decreasing acquiring drug-resistant rate k1, k2 and treatment exiting γ are the
feasible measures to reduce R0. Improving treatment standard and patients’ compliance are
the feasible and effective measures to reduce k1, k2. Certainly, new effective antiretroviral
drugs might be the real determinants.

R0 is also linked with drug resistance by the transmission rate β4 of drug resistance
individual and removing rate ρ3 from the population R. When the other parameters keep
constant, R0 is positive with β4 and negative with ρ3. The value of R0 will increase if more
patients enter this kind of population; that means the drug resistance can fuel HIV epidemic.
However, the acquiring drug-resistant rate k1, k2 can be prevented by improving treatment
quality, and the transmission coefficient parameter β4 can be reduced by decreasing contacts
between these patients and other people at public health level. Generally, early finding by
routine screening for drug resistance is an important way to find them.

Limitations in ourmodel exist. We ignored the changing drugwhen treatment failed in
practice. A refinement of the model can be done in future. Additionally, we did do simulation
with actual data, which are ongoing under further study.
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