Hindawi Publishing Corporation The Scientific World Journal Volume 2014, Article ID 291924, 4 pages http://dx.doi.org/10.1155/2014/291924

Research Article **Second and Secondary Lattice Modules**

\mathbf{Fethi} Çallıalp, 1 Ünsal Tekir, 2 Emel Aslankarayiğit Uğurlu, 2 and Kürşat Hakan Oral 3

¹ Department of Mathematics, Beykent University, Ayazaga-Maslak, 34396 Istanbul, Turkey

² Department of Mathematics, Marmara University, Ziverbey, Goztepe, 34722 Istanbul, Turkey ¨

³ Department of Mathematics, Yildiz Technical University, 34210 Istanbul, Turkey

Correspondence should be addressed to Kürşat Hakan Oral; khoral@yildiz.edu.tr

Received 22 April 2014; Accepted 7 September 2014; Published 14 October 2014

Academic Editor: Aldo Humberto Romero

Copyright © 2014 Fethi Callialp et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let *M* be a lattice module over the multiplicative lattice *L*. A nonzero *L*-lattice module *M* is called second if for each $a \in L$, $a1_M = 1_M$ or $a1_M = 0_M$. A nonzero *L*-lattice module *M* is called secondary if for each $a \in L$, $a1_M = 1_M$ or $a^n1_M = 0_M$ for some $n > 0$. Our objective is to investigative properties of second and secondary lattice modules.

A multiplicative lattice L is a complete lattice in which there is defined as a commutative, associative multiplication which distributes over arbitrary joins and has the compact greatest element 1_L (least element 0_L) as a multiplicative identity (zero). An element $a \in L$ is said to be proper if $a < 1_L$. An element $p < 1_L$ in L is said to be prime if $ab \leq p$ implies either $a \leq p$ or $b \leq p$. If 0_L is prime, then L is said to be a domain. For $a \in \hat{L}$, we define $\sqrt{a} = \bigvee \{x \in L : x^n \le a$ for some integer $n\}$. An element $p < 1_L$ in L is said to be primary if $ab \le p$ implies either $a \leq p$ or $b \leq \sqrt{p}$.

If a, b belong to L , $(a:_{L}b)$ is the join of all $c \in L$ such that $cb \leq a$. An element e of L is called meet principal if $a \bigwedge be = ((a \cdot_L e) \bigwedge b)e$ for all $a, b \in L$. An element e of L is called join principal if $((ae \nabla b):_L e) = a \nabla (b:_L e)$ for all $a, b \in L$. $e \in L$ is said to be principal if e is both meet principal and join principal. $e \in L$ is said to be weak meet (join) principal if $a \bigwedge e = e(a \cdot_L e)$ $(a \bigvee (0_L \cdot_L e) = (ea \cdot_L e))$ for all $a ∈ L$. An element a of a multiplicative lattice L is called compact if $a \leq \bigvee b_{\alpha}$ implies $a \leq b_{\alpha_1} \bigvee b_{\alpha_2} \bigvee \cdots \bigvee b_{\alpha_n}$ for some subsets $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$. If each element of L is a join of principal (compact) elements of L , then L is called a PG lattice (CG-lattice). If L is a CG-lattice and p is a primary element, then \sqrt{p} is prime [1, Lemma 2.1].

Let M be a complete lattice. Recall that M is a lattice module over the multiplicative lattice L or simply an L module in case there is a multiplication between elements of L and M, denoted by lB for $l \in L$ and $B \in M$, which satisfies the following properties:

(1)
$$
(lb)B = l(bB);
$$

\n(2) $(\bigvee_{\alpha} l_{\alpha})(\bigvee_{\beta} B_{\beta}) = \bigvee_{\alpha, \beta} l_{\alpha} B_{\beta};$
\n(3) $1_L B = B;$
\n(4) $0_L B = 0_M;$

for all *l*, l_{α} , *b* in *L* and for all *B*, B_{β} in *M*.

Let M be an L-module. If N, K belong to $M,(N:_{L}K)$ is the join of all $a \in L$ such that $aK \leq N$. Particularly, $(0_M:_{L} 1_M)$ is denoted by ann(M). If $a \in L$ and $N \in M$, then $(N:_{M} a)$ is the join of all $H \in M$ such that $aH \leq N$. An element N of M is called meet principal if $(b \wedge (B:_{L} N))N = bN \wedge B$ for all $b \in L$ and for all $B \in M$. An element N of M is called join principal if $b \vee (B:_{L}N) = ((bN \vee B):_{L}N)$ for all $b \in L$ and for all $B \in M$. N is said to be principal if it is both meet principal and join principal. In special cases, an element N of M is called weak meet principal (weak join principal) if $(B:_{L}N)N = B \wedge N ((bN:_{L}N) = b \vee (0_{M}:_{L}N))$ for all $B \in$ *M* (for all *b* ∈ *L*). *N* is said to be weak principal if *N* is both weak meet principal and weak join principal.

Let M be an L -module. An element N in M is called compact if $N \leq \bigvee_{\alpha} B_{\alpha}$ implies $N \leq B_{\alpha_1} \vee B_{\alpha_2} \vee \cdots \vee B_{\alpha_n}$ for some subsets $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$. The greatest element of \tilde{M} will be denoted by 1_M . If each element of M is a join of principal (compact) elements of M , then M is called a PGlattice module (CG-lattice module).

Let M be an L-module. An element $N \in M$ is said to be proper if $N < 1_M$. For all elements N of M, $[N, 1_M]$ is a set of all $K \in M$ such that $N \le K \le 1_M$ and $[N, 1_M]$ is an *L*-lattice module with $a \cdot K = aK \vee N$ for all $a \in L$ and $K \in M$ such that $N \leq K$.

For various characterizations of lattice modules, the reader is referred to [2–9].

Definition 1. A nonzero *L*-lattice module *M* is called second if for each $a \in L$, $a1_M = 1_M$ or $a1_M = 0_M$.

Definition 2. A nonzero L -lattice module M is called secondary if for each $a \in L$, $a1_M = 1_M$ or $a^n 1_M = 0_M$ for some $n>0$.

Example 3. Let Z be the integers, let Q be the rational numbers, and let Q be Z-module. Suppose $L = L(Z)$ is the set of all ideals of Z and $M = L(Q)$ is the set of all submodules of Q. Thus, M as L-lattice module is a second module, since for every integer $n \in Z$, $(nZ)Q = Q$ or $(nZ)Q = 0$.

Remark 4. Every second lattice module is a secondary lattice. But the converse is not true. For this, we can give the following example.

Example 5. Let Z be the integers and let Z_4 be Z -module. Suppose that $L = L(Z)$ is the set of all ideals of Z and $M =$ $L(Z_4)$ is the set of all submodules of Z_4 . Thus, M as L-lattice module is a secondary lattice module, which is not a second lattice module.

Example 6. Let *Z* be the integers and $L = L(Z)$ the set of all ideals of Z . Thus, L as L -lattice module is neither a second lattice module nor a secondary lattice module.

Proposition 7. *Let be a -lattice and let be a nonzero L*-lattice module. If for each compact $a \in L$, $a1_M = 1_M$ or $a1_M = 0_M$, then M is a second *L*-lattice module.

Proof. Let $r \in L$. Since L is a CG-lattice, then we have $r =$ $\bigvee_i c_i$ such that c_i 's are compact elements of L. Then, we obtain $r1_M = (\bigvee_i c_i)1_M = \bigvee_i c_i 1_M$. We have two cases.

Case 1. If $c_i 1_M = 0_M$ for each compact $c_i \in L$, then we have $r1_M = (\bigvee_i c_i)1_M = \bigvee_i c_i 1_M = 0_M.$

Case 2. If $c_i 1_M = 1_M$ for some compact $c_i \in L$, then we have $r1_M = (\bigvee_i c_i)1_M = \bigvee_i c_i 1_M = 1_M.$

Hence, $r1_M = 1_M$ or $r1_M = 0_M$ for each $r \in L$. Consequently, M is second. \Box

Proposition 8. *If is a second -lattice module, then* $ann(M) = (0_{M} : L^{1}M) = p$ is a prime element of *L*. In this case, *M* is called p-second lattice module.

Proof. Suppose that *M* is a second *L*-lattice module. Clearly, $ann(M) = p$ is a proper element of L. Let $ab \le p$ and assume that $b \nleq p$; that is, $b1_M \neq 0_M$. But M is a second L-lattice module; then $b1_M = 1_M$. Since $b1_M = 1_M$ and $ab1_M = 0_M$, then $a1_M = 0_M$, which implies that $a \leq p$.

Proposition 9. *If is a secondary -lattice module, then* $ann(M)$ *is a primary element of L.*

Proof. Suppose that *M* is a secondary *L*-lattice module. Let $ab \leq ann(M)$ and $b \nleq \sqrt{ann(M)}$; we prove that $a \leq ann(M)$. Since $ab \leq ann(M)$ and $b \nleq \sqrt{ann(M)}$, we have $ab1_M = 0_M$ and $(b)^n 1_M \neq 0_M$ for each $n > 0$. Since M is secondary, we have $b1_M = 1_M$. Then $ab1_M = a1_M = 0_M$, which implies $a \leq ann(M).$

Proposition 10. *Let be a -lattice. If is a secondary lattice module, then* $\sqrt{ann(M)} = p$ *is a prime element of L. In this case, M is called p-secondary lattice module.*

Proof. Let M be a secondary lattice. Then $ann(M)$ is a primary element of *L* by Proposition 9. Therefore $\sqrt{ann(M)}$ is prime by [1, Lemma 2.1]. \Box

Proposition 11. *Let be a lattice domain and let be a nonzero L-module. Then M is a second lattice module with* $ann(M) = 0_L$ *if and only if M is a secondary lattice module with* $\sqrt{ann(M)} = 0_I$.

Proof. \Rightarrow : Since *M* is a second lattice module, then *M* is a secondary lattice module. Since L is domain, then $\sqrt{ann(M)} = \sqrt{0_L} = 0_L.$

 \Leftarrow : Suppose that *M* is a secondary lattice module with $\sqrt{ann(M)} = 0_L$. Let $a \in L$ and assume that $a1_M \neq 1_M$. Since M is a secondary lattice module, then there exists a positive integer *n* such that $a^n 1_M = 0_M$; that is, $a \le \sqrt{ann(M)} = 0_L$. Then $a1_M = 0_M$. Hence, we obtain M is a second lattice.
Clearly, $ann(M) = 0_L$. Clearly, $ann(M) = 0_L$.

Definition 12. Let *M* be a nonzero *L*-lattice module. An element $0_M \neq N < 1_M$ is said to be pure element, if $aN =$ $a1_M \bigwedge N$ for all $a \in L$.

Proposition 13. Let L be a CG-lattice, let M be a nonzero L*lattice module, and let* N *be a pure element of* M *. If* M *is a psecondary lattice module, then* $[N, 1_M]$ *and* $[0_M, N]$ *are both -secondary lattice modules.*

Proof. Suppose that M is a p -secondary lattice module. Let $s \in L$. Since M is a secondary lattice module, then either $s1_M = 1_M$ and in this case $s \cdot 1_{[N,1_M]} = s \cdot 1_M = s1_M \bigvee N =$ $1_M \bigvee N = 1_M = 1_{[N,1_M]}$ or there exists a positive integer t, such that $s^t 1_M = 0_M$ and in this case $s^t \cdot 1_{[N,1_M]} = s^t \cdot 1_M =$ $s^{t} 1_{M} \bigvee N = 0_{M} \bigvee N = N = 0_{[N, 1_{M}]}$. Hence, $[N, 1_{M}]$ is a secondary lattice module.

It remains to show that $\sqrt{ann([N, 1_M])} = p = \sqrt{ann(M)}$. Clearly, $\sqrt{ann(M)} \leq \sqrt{ann([N, 1_M])}$. Let r be compact and $r \leq \sqrt{ann([N, 1_M])}$. Since r is compact, there exists a positive integer *n* such that $r^n \cdot 1_{[N,1_M]} = 0_{[N,1_M]}$; that is, $r^{n}1_{M}$ $\bigvee N = N$. Hence, we have $r^{n}1_{M} \leq N$. Now we assume that $r \nless \sqrt{ann(M)}$. Then $r1_M = 1_M$, since M is secondary. Thus, $1_M = r^n 1_M \leq N$; that is, $N = 1_M$, which is a

contradiction. Therefore, $r \leq \sqrt{ann(M)}$. Consequently, we obtain $\sqrt{ann([N, 1_M])} \leq \sqrt{ann(M)}$.

Let $a \in L$. Since N is pure, $aN = a1_M \wedge N$. As M is a secondary lattice module, then either $a1_M = 1_M$ or there exists a positive integer *n* such that $a^n 1_M = 0_M$. This implies that either $aN = N$ or $a^nN = a^n1_M \wedge N = 0_M$. Therefore, we have $a \cdot 1_{[0_M,N]} = a \cdot N = aN \bigvee 0_M = aN = N = 1_{[0_M,N]}$ or $a^n \cdot 1_{[0_M,N]} = a^n \cdot N = a^n N \bigvee 0_M = a^n N = 0_M = 0_{[0_M,N]}.$ Hence, $[0_M, N]$ is a secondary lattice module.

Now we show that $\sqrt{ann(M)} = \sqrt{ann([0_M, N])}$. Clearly, $\sqrt{ann(M)} \leq \sqrt{ann([0_M,N])}$. Let c be compact and $c \leq$ $\sqrt{ann([0_M, N])}$. Since c is compact, there exists a positive integer k such that $c^k \cdot N = c^k N = 0_{[0_M,N]} = 0_M$. Since N is pure, we have $c^k N = c^k 1_M \bigwedge N = 0_M$. If $c \notin \sqrt{ann(M)}$, then $c1_M = 1_M$. Thus, $c^k 1_M = 1_M$. This implies that $0_M =$ $c^k N = N \bigwedge c^k 1_M = N \bigwedge 1_M = N$, a contradiction. Therefore, $c \leq \sqrt{ann(M)}$. \Box

Proposition 14. *Let be a nonzero -lattice module and let <i>b* be a pure element of M. Then M is a p-second lattice module *if and only if* $[0_M, N]$ *and* $[N, 1_M]$ *are both p-second lattice modules.*

Proof. \Rightarrow : Suppose that *M* is a *p*-second lattice module. Let $a \in L$. Since N is pure, we have $aN = N \bigwedge a1_M$. As M is a second lattice module, then either $a1_M = 0_M$ or $a1_M = 1_M$. This implies that either $aN = 0_M$ or $aN = N$. Hence, $[0_M, N]$ is a second lattice module. Now, we show that $ann(M)$ = $ann([0_M, N]).$ Clearly, $ann(M) \leq ann([0_M, N]).$ Let $r \leq$ *ann*([0_M, N]). Thus, we have $rN = 0_M$. Now we assume that $r \nless ann(M)$. Then we obtain $r1_M = 1_M$, since M is a second lattice module. This implies that $0_M = rN = r1_M \bigwedge N$ $1_M \bigwedge N = N$, a contradiction. Therefore, $r \leq ann(M)$.

Let $t \in L$. Since M is a second lattice module, either $t1_M = 1_M$ and in this case $t \cdot 1_{[N,1_M]} = t \cdot 1_M = t1_M \sqrt{N} =$ $1_M \bigvee N = 1_M = 1_{[N,1_M]}$ or $t1_M = 0_M$ and in this case $t \cdot$ $1_{[N,1_M]} = t \cdot 1_M = t1_M \bigvee N = 0_M \bigvee N = N = 0_{[N,1_M]}.$ Hence, $[N, I_M]$ is a second lattice module. It remains to show that $ann(M) = ann([N, 1_M]).$ Clearly $ann(M) \leq ann([N, 1_M]).$ Let $s \leq ann([N, 1_M])$. Thus, $s \cdot 1_{[N, 1_M]} = 0_{[N, 1_M]};$ that is, $s1_M \vee N = N$, and this implies that $s1_M \leq N$. Now we suppose that $s \nleq ann(M)$. Then, we have $s1_M = 1_M$, since M is second. Hence, $1_M = s1_M \leq N$, a contradiction. Therefore, $s \leq ann(M).$

 \Leftarrow : Suppose that [0_M, N] and [N, 1_M] are both second lattice modules with $ann([0_M, N]) = ann([N, 1_M]) = p$. Let $r \in L$. We have two cases.

Case 1. If $r \leq ann([0_M, N]) = ann([N, 1_M]),$ then $rN = 0_M$ and $r \cdot 1_{[N,1_M]} = r \cdot 1_M = r1_M \sqrt{N} = N$, which implies $r1_M \le N$. Thus, $0_M = rN = N \bigwedge r1_M = r1_M$.

Case 2. If $r \notin ann([0_M, N]) = ann([N, 1_M])$, then $rN = N$ since $[0_M, N]$ is a second lattice module. Hence, we have $N =$ $rN = N \bigwedge r1_M$, that is, $N \leq r1_M$, since N is pure. Because $[N, 1_M]$ is a second lattice module and $r \nless ann([N, 1_M])$; we obtain $r \cdot 1_{[N,1_M]} = r1_M \bigvee N = 1_{[N,1_M]} = 1_M$. Therefore, we obtain that $r1_M = 1_M$. Consequently, M is a second lattice module.

Now we show that $ann(M) = p$. Clearly $ann(M) \leq$ $ann([N, 1_M])$. Let $s \leq ann([N, 1_M])$. Then we have $s \cdot 1_{[N, 1_M]} =$ $0_{[N,1_M]}$, that is; $s \cdot 1_M = N$. Thus, $s1_M \bigvee N = N$, and so $s1_M \leq N$. Now, we assume that $s \notin ann(M)$. Then, we have $s1_M = 1_M$, since M is second. Hence, $1_M = s1_M \le N$, a contradiction. Consequently, we have $s \leq ann(M)$.

Definition 15. An L -module M is called a multiplication lattice module if for every element $N \in M$, there exists an element $a \in L$, such that $N = a1_M$.

Definition 16. A element N of an L -module M is called prime element if $N \neq 1_M$ and whenever $r \in L$ and $X \in M$ with $rX \leq N$, then $X \leq N$ or $r \leq (N:_{L}1_{M}).$

Definition 17. A element N of an L -module M is called semiprime element if $N \neq 1_M$ and whenever $r \in L$ and $X \in M$ with $r^2 X \le N$, then $r X \le N$.

Remark 18. Let *N* be a proper element of an *L*-module *M*. Then N is a semiprime element if and only if whenever $r \in L$, $X \in M$ and k is a positive integer with $r^k X \le N$, then $r X \le$ N.

We know that a prime element is semiprime, but the converse is not true in general. The following proposition shows that the converse is true when the module is secondary and multiplication.

Proposition 19. *Let be a multiplication and secondary lattice module. For all element* N of M such that $1_M \neq N \in$, *is a semiprime element of if and only if is a prime element of .*

Proof. \Rightarrow : Suppose that *N* is a semiprime element of *M* and let $rX \leq N$, where $r \in L$, $X \in M$. Since M is a secondary lattice module, then either $r^n 1_M = 0_M$ for some positive integer *n* or $r1_M = 1_M.$

Case 1. If $r^n 1_M = 0_M$, then $r^n 1_M \leq N$. Since N is a semiprime element, we have $r1_M \leq N$.

Case 2. If $r1_M = 1_M$, then we have $X = rX$, since M is a multiplication lattice module. Then we have $rX = X \leq N$.

Therefore, *N* is a prime element of *M*.
$$
\leftarrow
$$
: It is obvious. \Box

Definition 20. Let *M* be an *L*-lattice module and let *N* be a proper element of M . N is called a primary element of M , if whenever $a \in L$, $X \in M$ such that $aX \leq N$, then $X \leq N$ or $a \leq \sqrt{(N:_{L}1_{M})}$. Particularly, if M is nonzero and 0_{M} is primary, then M is said to be primary lattice module.

Definition 21. An *L*-lattice module *M* is said to be simple lattice module if $M = \{0_M, 1_M\}.$

Proposition 22. *Every multiplication secondary lattice module is a primary lattice module.*

Proof. Let M be a multiplication secondary module and $rX =$ 0_M for some $r \in L$, $X \in M$. Now, we assume that $r \sqrt{ann(M)}$. Since *M* is a secondary module, then we have $r1_M = 1_M$. Because M is a multiplication, then we have $rX = X$. Consequently, we obtain $X = 0_M$. \Box

Proposition 23. *Every multiplication second lattice module is a simple lattice module.*

Proof. Let M be a multiplication and second module. Since *M* is a multiplication, for every $N ∈ M$, there exists $a ∈ L$ such that $N = a1_M$. Then we obtain $a1_M = 1_M$ or $a1_M = 0_M$, since *M* is second. Thus, we have $N = 1_M$ or $N = 0_M$ for every $N \in M$; that is, M is simple.

Definition 24. Let L be a domain and let M be a nonzero L lattice module. If $r1_M = 1_M$ for every $0_L \neq r \in L$, then M is said to be divisible.

Definition 25. A nonzero *L*-lattice module *M* is said to be torsion if there exists $0_L \neq r \in L$ such that $r1_M = 0_M$.

Proposition 26. *Let be a domain. Let be a secondary lattice module. Then either is a divisible module or is a torsion module.*

Proof. Suppose that *M* is a secondary module over a domain L. If M is not divisible, then there exists $0_L \neq r \in L$ such that $r1_M \neq 1_M$. Since M is a secondary lattice module, then there exists a positive integer *n* such that $r^n 1_M = 0_M$. Since $0_L \neq r$ and *L* is a domain, then we have $r^n \neq 0_L$. Consequently, there exists $0_L \neq r^n = s \in L$ such that $s1_M = 0_M$. Therefore, *M* is a torsion lattice module. torsion lattice module.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

- [1] J. A. Johnson, "The structure of a class of *r*-lattices," *Commentarii Mathematici Universitatis Sancti Pauli*, vol. 32, no. 2, pp. 89–94, 1983.
- [2] F. Callialp and U. Tekir, "Multiplication lattice modules," *Iranian Journal of Science and Technology*, vol. 35, no. 4, pp. 309–313, 2011.
- [3] E.W. Johnson and J. A. Johnson, "Lattice modules over principal element domains," *Communications in Algebra*, vol. 31, no. 7, pp. 3505–3518, 2003.
- [4] D. S. Culhan, *Associated Primes and Primal Decomposition in Modules and Lattice Modules, and Their Duals*, University of California Riverside, 2005.
- [5] E. A. Al-Khouja, "Maximal elements and prime elements in lattice modules," *Damascus University for Basic Sciences*, vol. 19, pp. 9–20, 2003.
- [6] H. M. Nakkar, "Localization in multiplicative lattice modules," *Istoriko-Matematicheskie Issledovaniya*, vol. 2, no. 32, pp. 88– 108, 1974 (Russian).
- [7] H. M. Nakkar and I. A. Al-Khouja, "Multiplication elements and distributive and supporting elements in lattice modules," *Research Journal of Aleppo University*, vol. 11, pp. 91–110, 1989.
- [8] H. M. Nakkar and I. A. Al-Khouja, "Nakayama's Lemma and the principal elements in Lattice Modules over multiplicative lattices," *Research Journal of Aleppo University*, vol. 7, pp. 1–16, 1985.
- [9] H. M. Nakkar and D. D. Anderson, "Associated and weakly associated prime elements and primary decomposition in lattice modules," *Algebra Universalis*, vol. 25, no. 2, pp. 196–209, 1988.

http://www.hindawi.com Volume 2014

Algebra

http://www.hindawi.com Volume 2014

Journal of
Probability and Statistics http://www.hindawi.com Volume 2014

http://www.hindawi.com

http://www.hindawi.com Volume 2014

http://www.hindawi.com Volume 2014 Function Spaces Volume 2014 Hindawi Publishing Corporation

Abstract and Applied Analysis http://www.hindawi.com Volume 2014

http://www.hindawi.com Volume 2014 _{International Journal of
Stochastic Analysis}

Discrete Dynamics in Nature and Society