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LetM be a latticemodule over themultiplicative lattice L. A nonzero L-latticemoduleM is called second if for each 𝑎 ∈ 𝐿, 𝑎1
𝑀
= 1
𝑀

or 𝑎1
𝑀

= 0
𝑀
. A nonzero L-lattice moduleM is called secondary if for each 𝑎 ∈ 𝐿, 𝑎1

𝑀
= 1
𝑀
or 𝑎𝑛1

𝑀
= 0
𝑀
for some 𝑛 > 0. Our

objective is to investigative properties of second and secondary lattice modules.

A multiplicative lattice 𝐿 is a complete lattice in which there
is defined as a commutative, associative multiplication which
distributes over arbitrary joins and has the compact greatest
element 1

𝐿
(least element 0

𝐿
) as a multiplicative identity

(zero). An element 𝑎 ∈ 𝐿 is said to be proper if 𝑎 < 1
𝐿
. An

element𝑝 < 1
𝐿
in 𝐿 is said to be prime if 𝑎𝑏 ≤ 𝑝 implies either

𝑎 ≤ 𝑝or 𝑏 ≤ 𝑝. If 0
𝐿
is prime, then𝐿 is said to be a domain. For

𝑎 ∈ 𝐿, we define√𝑎 = ⋁{𝑥 ∈ 𝐿 : 𝑥
𝑛
≤ 𝑎 for some integer 𝑛}.

An element 𝑝 < 1
𝐿
in 𝐿 is said to be primary if 𝑎𝑏 ≤ 𝑝 implies

either 𝑎 ≤ 𝑝 or 𝑏 ≤ √𝑝.
If 𝑎, 𝑏 belong to 𝐿, (𝑎:

𝐿
𝑏) is the join of all 𝑐 ∈ 𝐿 such

that 𝑐𝑏 ≤ 𝑎. An element 𝑒 of 𝐿 is called meet principal if
𝑎⋀𝑏𝑒 = ((𝑎:

𝐿
𝑒)⋀ 𝑏)𝑒 for all 𝑎, 𝑏 ∈ 𝐿. An element 𝑒 of 𝐿

is called join principal if ((𝑎𝑒⋁ 𝑏):
𝐿
𝑒) = 𝑎⋁(𝑏:

𝐿
𝑒) for all

𝑎, 𝑏 ∈ 𝐿. 𝑒 ∈ 𝐿 is said to be principal if 𝑒 is both meet
principal and join principal. 𝑒 ∈ 𝐿 is said to be weak meet
(join) principal if 𝑎⋀ 𝑒 = 𝑒(𝑎:

𝐿
𝑒) (𝑎⋁(0

𝐿
:
𝐿
𝑒) = (𝑒𝑎:

𝐿
𝑒)) for

all 𝑎 ∈ 𝐿. An element 𝑎 of a multiplicative lattice 𝐿 is called
compact if 𝑎 ≤ ⋁𝑏

𝛼
implies 𝑎 ≤ 𝑏

𝛼
1

⋁𝑏
𝛼
2

⋁ ⋅ ⋅ ⋅ ⋁ 𝑏
𝛼
𝑛

for
some subsets {𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
}. If each element of 𝐿 is a join

of principal (compact) elements of 𝐿, then 𝐿 is called a 𝑃𝐺-
lattice (CG-lattice). If 𝐿 is a 𝐶𝐺-lattice and 𝑝 is a primary
element, then√𝑝 is prime [1, Lemma 2.1].

Let 𝑀 be a complete lattice. Recall that 𝑀 is a lattice
module over the multiplicative lattice 𝐿 or simply an 𝐿-
module in case there is a multiplication between elements of
𝐿 and𝑀, denoted by 𝑙𝐵 for 𝑙 ∈ 𝐿 and 𝐵 ∈ 𝑀, which satisfies
the following properties:

(1) (𝑙𝑏)𝐵 = 𝑙(𝑏𝐵);
(2) (⋁

𝛼
𝑙
𝛼
)(⋁
𝛽
𝐵
𝛽
) = ⋁

𝛼,𝛽
𝑙
𝛼
𝐵
𝛽
;

(3) 1
𝐿
𝐵 = 𝐵;

(4) 0
𝐿
𝐵 = 0
𝑀
;

for all 𝑙, 𝑙
𝛼
, 𝑏 in 𝐿 and for all 𝐵, 𝐵

𝛽
in𝑀.

Let 𝑀 be an 𝐿-module. If 𝑁, 𝐾 belong to 𝑀, (𝑁:
𝐿
𝐾) is

the join of all 𝑎 ∈ 𝐿 such that 𝑎𝐾 ≤ 𝑁. Particularly, (0
𝑀
:
𝐿
1
𝑀
)

is denoted by 𝑎𝑛𝑛(𝑀). If 𝑎 ∈ 𝐿 and 𝑁 ∈ 𝑀, then (𝑁:
𝑀
𝑎)

is the join of all 𝐻 ∈ 𝑀 such that 𝑎𝐻 ≤ 𝑁. An element 𝑁
of𝑀 is called meet principal if (𝑏 ∧ (𝐵:

𝐿
𝑁))𝑁 = 𝑏𝑁 ∧ 𝐵 for

all 𝑏 ∈ 𝐿 and for all 𝐵 ∈ 𝑀. An element 𝑁 of 𝑀 is called
join principal if 𝑏 ∨ (𝐵:

𝐿
𝑁) = ((𝑏𝑁 ∨ 𝐵):

𝐿
𝑁) for all 𝑏 ∈ 𝐿

and for all 𝐵 ∈ 𝑀.𝑁 is said to be principal if it is both meet
principal and join principal. In special cases, an element 𝑁
of 𝑀 is called weak meet principal (weak join principal) if
(𝐵:
𝐿
𝑁)𝑁 = 𝐵 ∧ 𝑁 ((𝑏𝑁:

𝐿
𝑁) = 𝑏 ∨ (0

𝑀
:
𝐿
𝑁)) for all 𝐵 ∈

𝑀 (for all 𝑏 ∈ 𝐿).𝑁 is said to be weak principal if𝑁 is both
weak meet principal and weak join principal.

Let 𝑀 be an 𝐿-module. An element 𝑁 in 𝑀 is called
compact if 𝑁 ≤ ⋁

𝛼
𝐵
𝛼
implies 𝑁 ≤ 𝐵

𝛼
1

∨ 𝐵
𝛼
2

∨ ⋅ ⋅ ⋅ ∨ 𝐵
𝛼
𝑛

for some subsets {𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
}. The greatest element of 𝑀

will be denoted by 1
𝑀
. If each element of 𝑀 is a join of

principal (compact) elements of 𝑀, then 𝑀 is called a 𝑃𝐺-
lattice module (𝐶𝐺-lattice module).

Let 𝑀 be an 𝐿-module. An element 𝑁 ∈ 𝑀 is said to be
proper if𝑁 < 1

𝑀
. For all elements𝑁 of𝑀, [𝑁, 1

𝑀
] is a set of

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 291924, 4 pages
http://dx.doi.org/10.1155/2014/291924

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/189755752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 The Scientific World Journal

all 𝐾 ∈ 𝑀 such that𝑁 ≤ 𝐾 ≤ 1
𝑀
and [𝑁, 1

𝑀
] is an 𝐿-lattice

module with 𝑎 ⋅ 𝐾 = 𝑎𝐾 ∨ 𝑁 for all 𝑎 ∈ 𝐿 and 𝐾 ∈ 𝑀 such
that𝑁 ≤ 𝐾.

For various characterizations of lattice modules, the
reader is referred to [2–9].

Definition 1. A nonzero 𝐿-lattice module 𝑀 is called second
if for each 𝑎 ∈ 𝐿, 𝑎1

𝑀
= 1
𝑀
or 𝑎1
𝑀

= 0
𝑀
.

Definition 2. A nonzero 𝐿-lattice module 𝑀 is called sec-
ondary if for each 𝑎 ∈ 𝐿, 𝑎1

𝑀
= 1
𝑀
or 𝑎𝑛1

𝑀
= 0
𝑀
for some

𝑛 > 0.

Example 3. Let 𝑍 be the integers, let 𝑄 be the rational
numbers, and let𝑄 be𝑍-module. Suppose 𝐿 = 𝐿(𝑍) is the set
of all ideals of𝑍 and𝑀 = 𝐿(𝑄) is the set of all submodules of
𝑄. Thus,𝑀 as 𝐿-lattice module is a second module, since for
every integer 𝑛 ∈ 𝑍, (𝑛𝑍)𝑄 = 𝑄 or (𝑛𝑍)𝑄 = 0.

Remark 4. Every second lattice module is a secondary lattice.
But the converse is not true. For this, we can give the following
example.

Example 5. Let 𝑍 be the integers and let 𝑍
4
be 𝑍-module.

Suppose that 𝐿 = 𝐿(𝑍) is the set of all ideals of 𝑍 and 𝑀 =

𝐿(𝑍
4
) is the set of all submodules of 𝑍

4
. Thus,𝑀 as 𝐿-lattice

module is a secondary lattice module, which is not a second
lattice module.

Example 6. Let 𝑍 be the integers and 𝐿 = 𝐿(𝑍) the set of all
ideals of 𝑍. Thus, 𝐿 as 𝐿-lattice module is neither a second
lattice module nor a secondary lattice module.

Proposition 7. Let 𝐿 be a 𝐶𝐺-lattice and let 𝑀 be a nonzero
𝐿-lattice module. If for each compact 𝑎 ∈ 𝐿, 𝑎1

𝑀
= 1
𝑀

or
𝑎1
𝑀

= 0
𝑀
, then𝑀 is a second 𝐿-lattice module.

Proof. Let 𝑟 ∈ 𝐿. Since 𝐿 is a 𝐶𝐺-lattice, then we have 𝑟 =

⋁
𝑖
𝑐
𝑖
such that 𝑐

𝑖

󸀠s are compact elements of 𝐿. Then, we obtain
𝑟1
𝑀

= (⋁
𝑖
𝑐
𝑖
)1
𝑀

= ⋁
𝑖
𝑐
𝑖
1
𝑀
. We have two cases.

Case 1. If 𝑐
𝑖
1
𝑀

= 0
𝑀

for each compact 𝑐
𝑖
∈ 𝐿, then we have

𝑟1
𝑀

= (⋁
𝑖
𝑐
𝑖
)1
𝑀

= ⋁
𝑖
𝑐
𝑖
1
𝑀

= 0
𝑀
.

Case 2. If 𝑐
𝑖
1
𝑀

= 1
𝑀

for some compact 𝑐
𝑖
∈ 𝐿, then we have

𝑟1
𝑀

= (⋁
𝑖
𝑐
𝑖
)1
𝑀

= ⋁
𝑖
𝑐
𝑖
1
𝑀

= 1
𝑀
.

Hence, 𝑟1
𝑀

= 1
𝑀

or 𝑟1
𝑀

= 0
𝑀

for each 𝑟 ∈ 𝐿. Conse-
quently,𝑀 is second.

Proposition 8. If 𝑀 is a second 𝐿-lattice module, then
𝑎𝑛𝑛(𝑀) = (0

𝑀
:
𝐿
1
𝑀
) = 𝑝 is a prime element of 𝐿. In this case,

𝑀 is called 𝑝-second lattice module.

Proof. Suppose that 𝑀 is a second 𝐿-lattice module. Clearly,
𝑎𝑛𝑛(𝑀) = 𝑝 is a proper element of 𝐿. Let 𝑎𝑏 ≤ 𝑝 and assume
that 𝑏 󳠠 𝑝; that is, 𝑏1

𝑀
̸= 0
𝑀
. But 𝑀 is a second 𝐿-lattice

module; then 𝑏1
𝑀

= 1
𝑀
. Since 𝑏1

𝑀
= 1
𝑀

and 𝑎𝑏1
𝑀

= 0
𝑀
,

then 𝑎1
𝑀

= 0
𝑀
, which implies that 𝑎 ≤ 𝑝.

Proposition 9. If 𝑀 is a secondary 𝐿-lattice module, then
𝑎𝑛𝑛(𝑀) is a primary element of 𝐿.

Proof. Suppose that 𝑀 is a secondary 𝐿-lattice module. Let
𝑎𝑏 ≤ 𝑎𝑛𝑛(𝑀) and 𝑏 󳠠 √𝑎𝑛𝑛(𝑀); we prove that 𝑎 ≤ 𝑎𝑛𝑛(𝑀).
Since 𝑎𝑏 ≤ 𝑎𝑛𝑛(𝑀) and 𝑏 󳠠 √𝑎𝑛𝑛(𝑀), we have 𝑎𝑏1

𝑀
= 0
𝑀

and (𝑏)
𝑛
1
𝑀

̸= 0
𝑀

for each 𝑛 > 0. Since 𝑀 is secondary, we
have 𝑏1

𝑀
= 1
𝑀
. Then 𝑎𝑏1

𝑀
= 𝑎1
𝑀

= 0
𝑀
, which implies

𝑎 ≤ 𝑎𝑛𝑛(𝑀).

Proposition 10. Let 𝐿 be a 𝐶𝐺-lattice. If𝑀 is a secondary 𝐿-
lattice module, then √𝑎𝑛𝑛(𝑀) = 𝑝 is a prime element of 𝐿. In
this case,𝑀 is called 𝑝-secondary lattice module.

Proof. Let 𝑀 be a secondary lattice. Then 𝑎𝑛𝑛(𝑀) is a
primary element of 𝐿 by Proposition 9. Therefore √𝑎𝑛𝑛(𝑀)

is prime by [1, Lemma 2.1].

Proposition 11. Let 𝐿 be a lattice domain and let 𝑀 be a
nonzero 𝐿-module. Then 𝑀 is a second lattice module with
𝑎𝑛𝑛(𝑀) = 0

𝐿
if and only if 𝑀 is a secondary lattice module

with√𝑎𝑛𝑛(𝑀) = 0
𝐿
.

Proof. ⇒: Since 𝑀 is a second lattice module, then 𝑀

is a secondary lattice module. Since 𝐿 is domain, then
√𝑎𝑛𝑛(𝑀) = √0

𝐿
= 0
𝐿
.

⇐: Suppose that 𝑀 is a secondary lattice module with
√𝑎𝑛𝑛(𝑀) = 0

𝐿
. Let 𝑎 ∈ 𝐿 and assume that 𝑎1

𝑀
̸= 1
𝑀
. Since

𝑀 is a secondary lattice module, then there exists a positive
integer 𝑛 such that 𝑎𝑛1

𝑀
= 0
𝑀
; that is, 𝑎 ≤ √𝑎𝑛𝑛(𝑀) = 0

𝐿
.

Then 𝑎1
𝑀

= 0
𝑀
. Hence, we obtain 𝑀 is a second lattice.

Clearly, 𝑎𝑛𝑛(𝑀) = 0
𝐿
.

Definition 12. Let 𝑀 be a nonzero 𝐿-lattice module. An
element 0

𝑀
̸= 𝑁 < 1

𝑀
is said to be pure element, if 𝑎𝑁 =

𝑎1
𝑀
⋀𝑁 for all 𝑎 ∈ 𝐿.

Proposition 13. Let 𝐿 be a 𝐶𝐺-lattice, let 𝑀 be a nonzero 𝐿-
lattice module, and let𝑁 be a pure element of𝑀. If𝑀 is a 𝑝-
secondary lattice module, then [𝑁, 1

𝑀
] and [0

𝑀
, 𝑁] are both

𝑝-secondary lattice modules.

Proof. Suppose that 𝑀 is a 𝑝-secondary lattice module. Let
𝑠 ∈ 𝐿. Since 𝑀 is a secondary lattice module, then either
𝑠1
𝑀

= 1
𝑀

and in this case 𝑠 ⋅ 1
[𝑁,1
𝑀
]
= 𝑠 ⋅ 1

𝑀
= 𝑠1
𝑀
⋁𝑁 =

1
𝑀
⋁𝑁 = 1

𝑀
= 1
[𝑁,1
𝑀
]
or there exists a positive integer 𝑡,

such that 𝑠𝑡1
𝑀

= 0
𝑀

and in this case 𝑠𝑡 ⋅ 1
[𝑁,1
𝑀
]
= 𝑠
𝑡
⋅ 1
𝑀

=

𝑠
𝑡
1
𝑀
⋁𝑁 = 0

𝑀
⋁𝑁 = 𝑁 = 0

[𝑁,1
𝑀
]
. Hence, [𝑁, 1

𝑀
] is a seco-

ndary lattice module.
It remains to show that√𝑎𝑛𝑛([𝑁, 1

𝑀
]) = 𝑝 = √𝑎𝑛𝑛(𝑀).

Clearly, √𝑎𝑛𝑛(𝑀) ≤ √𝑎𝑛𝑛([𝑁, 1
𝑀
]). Let 𝑟 be compact and

𝑟 ≤ √𝑎𝑛𝑛([𝑁, 1
𝑀
]). Since 𝑟 is compact, there exists a

positive integer 𝑛 such that 𝑟𝑛 ⋅ 1
[𝑁,1
𝑀
]
= 0
[𝑁,1
𝑀
]
; that is,

𝑟
𝑛
1
𝑀
⋁𝑁 = 𝑁. Hence, we have 𝑟𝑛1

𝑀
≤ 𝑁. Now we assume

that 𝑟 󳠠 √𝑎𝑛𝑛(𝑀). Then 𝑟1
𝑀

= 1
𝑀
, since 𝑀 is secondary.

Thus, 1
𝑀

= 𝑟
𝑛
1
𝑀

≤ 𝑁; that is, 𝑁 = 1
𝑀
, which is a
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contradiction. Therefore, 𝑟 ≤ √𝑎𝑛𝑛(𝑀). Consequently, we
obtain√𝑎𝑛𝑛([𝑁, 1

𝑀
]) ≤ √𝑎𝑛𝑛(𝑀).

Let 𝑎 ∈ 𝐿. Since 𝑁 is pure, 𝑎𝑁 = 𝑎1
𝑀
⋀𝑁. As 𝑀 is

a secondary lattice module, then either 𝑎1
𝑀

= 1
𝑀

or there
exists a positive integer 𝑛 such that 𝑎𝑛1

𝑀
= 0
𝑀
. This implies

that either 𝑎𝑁 = 𝑁 or 𝑎𝑛𝑁 = 𝑎
𝑛
1
𝑀
⋀𝑁 = 0

𝑀
. Therefore, we

have 𝑎 ⋅ 1
[0
𝑀
,𝑁]

= 𝑎 ⋅ 𝑁 = 𝑎𝑁⋁0
𝑀

= 𝑎𝑁 = 𝑁 = 1
[0
𝑀
,𝑁]

or
𝑎
𝑛
⋅ 1
[0
𝑀
,𝑁]

= 𝑎
𝑛
⋅ 𝑁 = 𝑎

𝑛
𝑁⋁0

𝑀
= 𝑎
𝑛
𝑁 = 0

𝑀
= 0
[0
𝑀
,𝑁]

.
Hence, [0

𝑀
, 𝑁] is a secondary lattice module.

Now we show that √𝑎𝑛𝑛(𝑀) = √𝑎𝑛𝑛([0
𝑀
, 𝑁]). Clearly,

√𝑎𝑛𝑛(𝑀) ≤ √𝑎𝑛𝑛([0
𝑀
, 𝑁]). Let 𝑐 be compact and 𝑐 ≤

√𝑎𝑛𝑛([0
𝑀
, 𝑁]). Since 𝑐 is compact, there exists a positive

integer 𝑘 such that 𝑐𝑘 ⋅ 𝑁 = 𝑐
𝑘
𝑁 = 0

[0
𝑀
,𝑁]

= 0
𝑀
. Since 𝑁

is pure, we have 𝑐𝑘𝑁 = 𝑐
𝑘
1
𝑀
⋀𝑁 = 0

𝑀
. If 𝑐 󳠠 √𝑎𝑛𝑛(𝑀),

then 𝑐1
𝑀

= 1
𝑀
. Thus, 𝑐𝑘1

𝑀
= 1
𝑀
. This implies that 0

𝑀
=

𝑐
𝑘
𝑁 = 𝑁⋀𝑐

𝑘
1
𝑀

= 𝑁⋀1
𝑀

= 𝑁, a contradiction.Therefore,
𝑐 ≤ √𝑎𝑛𝑛(𝑀).

Proposition 14. Let𝑀 be a nonzero 𝐿-lattice module and let
𝑁 be a pure element of𝑀.Then𝑀 is a𝑝-second lattice module
if and only if [0

𝑀
, 𝑁] and [𝑁, 1

𝑀
] are both 𝑝-second lattice

modules.

Proof. ⇒: Suppose that 𝑀 is a 𝑝-second lattice module. Let
𝑎 ∈ 𝐿. Since 𝑁 is pure, we have 𝑎𝑁 = 𝑁⋀𝑎1

𝑀
. As 𝑀 is a

second lattice module, then either 𝑎1
𝑀

= 0
𝑀

or 𝑎1
𝑀

= 1
𝑀
.

This implies that either 𝑎𝑁 = 0
𝑀
or 𝑎𝑁 = 𝑁. Hence, [0

𝑀
, 𝑁]

is a second lattice module. Now, we show that 𝑎𝑛𝑛(𝑀) =

𝑎𝑛𝑛([0
𝑀
, 𝑁]). Clearly, 𝑎𝑛𝑛(𝑀) ≤ 𝑎𝑛𝑛([0

𝑀
, 𝑁]). Let 𝑟 ≤

𝑎𝑛𝑛([0
𝑀
, 𝑁]). Thus, we have 𝑟𝑁 = 0

𝑀
. Now we assume that

𝑟 󳠠 𝑎𝑛𝑛(𝑀). Then we obtain 𝑟1
𝑀

= 1
𝑀
, since𝑀 is a second

lattice module. This implies that 0
𝑀

= 𝑟𝑁 = 𝑟1
𝑀
⋀𝑁 =

1
𝑀
⋀𝑁 = 𝑁, a contradiction. Therefore, 𝑟 ≤ 𝑎𝑛𝑛(𝑀).
Let 𝑡 ∈ 𝐿. Since 𝑀 is a second lattice module, either

𝑡1
𝑀

= 1
𝑀

and in this case 𝑡 ⋅ 1
[𝑁,1
𝑀
]
= 𝑡 ⋅ 1

𝑀
= 𝑡1
𝑀
⋁𝑁 =

1
𝑀
⋁𝑁 = 1

𝑀
= 1
[𝑁,1
𝑀
]
or 𝑡1
𝑀

= 0
𝑀

and in this case 𝑡 ⋅
1
[𝑁,1
𝑀
]
= 𝑡 ⋅ 1

𝑀
= 𝑡1
𝑀
⋁𝑁 = 0

𝑀
⋁𝑁 = 𝑁 = 0

[𝑁,1
𝑀
]
. Hence,

[𝑁, 1
𝑀
] is a second lattice module. It remains to show that

𝑎𝑛𝑛(𝑀) = 𝑎𝑛𝑛([𝑁, 1
𝑀
]). Clearly 𝑎𝑛𝑛(𝑀) ≤ 𝑎𝑛𝑛([𝑁, 1

𝑀
]).

Let 𝑠 ≤ 𝑎𝑛𝑛([𝑁, 1
𝑀
]). Thus, 𝑠 ⋅ 1

[𝑁,1
𝑀
]
= 0
[𝑁,1
𝑀
]
; that is,

𝑠1
𝑀
⋁𝑁 = 𝑁, and this implies that 𝑠1

𝑀
≤ 𝑁. Now we

suppose that 𝑠 󳠠 𝑎𝑛𝑛(𝑀). Then, we have 𝑠1
𝑀

= 1
𝑀
, since𝑀

is second. Hence, 1
𝑀

= 𝑠1
𝑀

≤ 𝑁, a contradiction. Therefore,
𝑠 ≤ 𝑎𝑛𝑛(𝑀).

⇐: Suppose that [0
𝑀
, 𝑁] and [𝑁, 1

𝑀
] are both second

lattice modules with 𝑎𝑛𝑛([0
𝑀
, 𝑁]) = 𝑎𝑛𝑛([𝑁, 1

𝑀
]) = 𝑝. Let

𝑟 ∈ 𝐿. We have two cases.

Case 1. If 𝑟 ≤ 𝑎𝑛𝑛([0
𝑀
, 𝑁]) = 𝑎𝑛𝑛([𝑁, 1

𝑀
]), then 𝑟𝑁 = 0

𝑀

and 𝑟 ⋅ 1
[𝑁,1
𝑀
]
= 𝑟 ⋅ 1

𝑀
= 𝑟1
𝑀
⋁𝑁 = 𝑁, which implies

𝑟1
𝑀

≤ 𝑁. Thus, 0
𝑀

= 𝑟𝑁 = 𝑁⋀𝑟1
𝑀

= 𝑟1
𝑀
.

Case 2. If 𝑟 󳠠 𝑎𝑛𝑛([0
𝑀
, 𝑁]) = 𝑎𝑛𝑛([𝑁, 1

𝑀
]), then 𝑟𝑁 = 𝑁

since [0
𝑀
, 𝑁] is a second lattice module. Hence, we have𝑁 =

𝑟𝑁 = 𝑁⋀𝑟1
𝑀
, that is, 𝑁 ≤ 𝑟1

𝑀
, since 𝑁 is pure. Because

[𝑁, 1
𝑀
] is a second lattice module and 𝑟 󳠠 𝑎𝑛𝑛([𝑁, 1

𝑀
]); we

obtain 𝑟 ⋅ 1
[𝑁,1
𝑀
]
= 𝑟1
𝑀
⋁𝑁 = 1

[𝑁,1
𝑀
]
= 1
𝑀
. Therefore, we

obtain that 𝑟1
𝑀

= 1
𝑀
. Consequently, 𝑀 is a second lattice

module.

Now we show that 𝑎𝑛𝑛(𝑀) = 𝑝. Clearly 𝑎𝑛𝑛(𝑀) ≤

𝑎𝑛𝑛([𝑁, 1
𝑀
]). Let 𝑠 ≤ 𝑎𝑛𝑛([𝑁, 1

𝑀
]).Thenwe have 𝑠⋅1

[𝑁,1
𝑀
]
=

0
[𝑁,1
𝑀
]
, that is; 𝑠 ⋅ 1

𝑀
= 𝑁. Thus, 𝑠1

𝑀
⋁𝑁 = 𝑁, and so

𝑠1
𝑀

≤ 𝑁. Now, we assume that 𝑠 󳠠 𝑎𝑛𝑛(𝑀). Then, we have
𝑠1
𝑀

= 1
𝑀
, since 𝑀 is second. Hence, 1

𝑀
= 𝑠1
𝑀

≤ 𝑁, a
contradiction. Consequently, we have 𝑠 ≤ 𝑎𝑛𝑛(𝑀).

Definition 15. An 𝐿-module 𝑀 is called a multiplication
lattice module if for every element 𝑁 ∈ 𝑀, there exists an
element 𝑎 ∈ 𝐿, such that𝑁 = 𝑎1

𝑀
.

Definition 16. A element𝑁 of an 𝐿-module𝑀 is called prime
element if 𝑁 ̸= 1

𝑀
and whenever 𝑟 ∈ 𝐿 and 𝑋 ∈ 𝑀 with

𝑟𝑋 ≤ 𝑁, then𝑋 ≤ 𝑁 or 𝑟 ≤ (𝑁:
𝐿
1
𝑀
).

Definition 17. A element 𝑁 of an 𝐿-module 𝑀 is called
semiprime element if 𝑁 ̸= 1

𝑀
and whenever 𝑟 ∈ 𝐿 and

𝑋 ∈ 𝑀 with 𝑟
2
𝑋 ≤ 𝑁, then 𝑟𝑋 ≤ 𝑁.

Remark 18. Let 𝑁 be a proper element of an 𝐿-module 𝑀.
Then𝑁 is a semiprime element if and only if whenever 𝑟 ∈ 𝐿,
𝑋 ∈ 𝑀 and 𝑘 is a positive integer with 𝑟

𝑘
𝑋 ≤ 𝑁, then 𝑟𝑋 ≤

𝑁.

We know that a prime element is semiprime, but the
converse is not true in general. The following proposition
shows that the converse is true when themodule is secondary
and multiplication.

Proposition 19. Let 𝑀 be a multiplication and secondary 𝐿-
lattice module. For all element 𝑁 of 𝑀 such that 1

𝑀
̸= 𝑁 ∈

𝑀,𝑁 is a semiprime element of 𝑀 if and only if 𝑁 is a prime
element of𝑀.

Proof. ⇒: Suppose that𝑁 is a semiprime element of𝑀 and let
𝑟𝑋 ≤ 𝑁, where 𝑟 ∈ 𝐿, 𝑋 ∈ 𝑀. Since𝑀 is a secondary lattice
module, then either 𝑟𝑛1

𝑀
= 0
𝑀
for some positive integer 𝑛 or

𝑟1
𝑀

= 1
𝑀
.

Case 1. If 𝑟𝑛1
𝑀

= 0
𝑀
, then 𝑟𝑛1

𝑀
≤ 𝑁. Since𝑁 is a semiprime

element, we have 𝑟1
𝑀

≤ 𝑁.

Case 2. If 𝑟1
𝑀

= 1
𝑀
, then we have 𝑋 = 𝑟𝑋, since 𝑀 is a

multiplication lattice module. Then we have 𝑟𝑋 = 𝑋 ≤ 𝑁.

Therefore,𝑁 is a prime element of𝑀.
⇐: It is obvious.

Definition 20. Let 𝑀 be an 𝐿-lattice module and let 𝑁 be a
proper element of𝑀.𝑁 is called a primary element of𝑀, if
whenever 𝑎 ∈ 𝐿, 𝑋 ∈ 𝑀 such that 𝑎𝑋 ≤ 𝑁, then 𝑋 ≤ 𝑁

or 𝑎 ≤ √(𝑁:
𝐿
1
𝑀
). Particularly, if 𝑀 is nonzero and 0

𝑀
is

primary, then𝑀 is said to be primary lattice module.

Definition 21. An 𝐿-lattice module 𝑀 is said to be simple
lattice module if𝑀 = {0

𝑀
, 1
𝑀
}.



4 The Scientific World Journal

Proposition 22. Every multiplication secondary lattice mod-
ule is a primary lattice module.

Proof. Let𝑀 be amultiplication secondarymodule and 𝑟𝑋 =

0
𝑀
for some 𝑟 ∈ 𝐿,𝑋 ∈ 𝑀. Now, we assume that 𝑟√𝑎𝑛𝑛(𝑀).

Since 𝑀 is a secondary module, then we have 𝑟1
𝑀

= 1
𝑀
.

Because 𝑀 is a multiplication, then we have 𝑟𝑋 = 𝑋.
Consequently, we obtain𝑋 = 0

𝑀
.

Proposition 23. Every multiplication second lattice module is
a simple lattice module.

Proof. Let 𝑀 be a multiplication and second module. Since
𝑀 is a multiplication, for every 𝑁 ∈ 𝑀, there exists 𝑎 ∈ 𝐿

such that𝑁 = 𝑎1
𝑀
. Then we obtain 𝑎1

𝑀
= 1
𝑀
or 𝑎1
𝑀

= 0
𝑀
,

since 𝑀 is second. Thus, we have 𝑁 = 1
𝑀

or 𝑁 = 0
𝑀

for
every𝑁 ∈ 𝑀; that is,𝑀 is simple.

Definition 24. Let 𝐿 be a domain and let 𝑀 be a nonzero 𝐿-
lattice module. If 𝑟1

𝑀
= 1
𝑀
for every 0

𝐿
̸= 𝑟 ∈ 𝐿, then 𝑀 is

said to be divisible.

Definition 25. A nonzero 𝐿-lattice module 𝑀 is said to be
torsion if there exists 0

𝐿
̸= 𝑟 ∈ 𝐿 such that 𝑟1

𝑀
= 0
𝑀
.

Proposition 26. Let 𝐿 be a domain. Let𝑀 be a secondary 𝐿-
lattice module. Then either 𝑀 is a divisible module or 𝑀 is a
torsion module.

Proof. Suppose that𝑀 is a secondary module over a domain
𝐿. If𝑀 is not divisible, then there exists 0

𝐿
̸= 𝑟 ∈ 𝐿 such that

𝑟1
𝑀

̸= 1
𝑀
. Since𝑀 is a secondary lattice module, then there

exists a positive integer 𝑛 such that 𝑟𝑛1
𝑀

= 0
𝑀
. Since 0

𝐿
̸= 𝑟

and 𝐿 is a domain, then we have 𝑟𝑛 ̸= 0
𝐿
. Consequently, there

exists 0
𝐿

̸= 𝑟
𝑛
= 𝑠 ∈ 𝐿 such that 𝑠1

𝑀
= 0
𝑀
. Therefore,𝑀 is a

torsion lattice module.
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