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Arable lands are needed for sustainable agricultural systems to support an ever-growing human population. Soil quality needs to
be defined to assure that new land brought into crop production is sustainable. To evaluate soil quality, a number of soil attributes
will need to be measured, evaluated, and integrated into a soil-quality index using the multivariable indicator kriging (MVIK)
procedure. This study was conducted to determine the spatial variability and correlation of indicator parameters on a field scale
with respect to soil quality and suitability for use with MVIK. The variability of the biological parameters decreased in the order
of respiration > enzyme assays and qCO2 > microbial biomass C. The distribution frequency of all parameters except respiration
were normal although the spatial distribution across the landscape was highly variable. The biological parameters showed little
correlation with each other when all data points were considered; however, when grouped in smaller sections, the correlations
were more consistent with observed patterns across the field. To accurately assess soil quality, and arable land use, consideration of
spatial and temporal variability, soil conditions, and other controlling factors must be taken into account.

1. Introduction

The challenge of feeding 9 billion people by the year 2050
is intimidating. Multiple strategies are needed to meet this
challenge. Strategies include reducing human population
growth, decreasing protein consumption, increasing crop
and animal production, and increasing the agricultural land
base for production. While some food staples (crops and
livestock) are increasing, others are static or decreasing [1].
Currently food production for 6 billion people occurs on
13% of the global land surface [2].

The current strategical focus has been on increasing
yields and increasing the agricultural land base [3, 4]. The
challenge to moving these strategies forward is to evaluate
(1) new land for the ability to produce crops and (2)
the soil’s resilience and resistance to degrade over time
from agriculture management. Thus, the concept of soil
quality needs to be developed to evaluate and manage land
developed for increased crop production [5, 6]. In a global
context, soil quality affects not only soil productivity but

is also a significant factor governing environmental quality,
human and animal health, and food safety and quality [7].
Soil quality of current and future agricultural land is of
similar importance to humankind as air and water quality;
thus, it is apparent that simply protecting soil quality by
slowing soil degradation or maintaining the current level of
soil health will not provide the soil quality that will be needed
for future generations. Soil quality must be improved as well.

To properly assess soil quality, appropriate soil indicators
or properties must be identified. These indicators must
be quantified on a local and landscape basis as a means
for making small-scale and regional management decisions.
Indicators proposed to asses soil quality are diverse and
include chemical, physical, and biological variables as well
as descriptive terms [8]. Once the indicators are identified,
methods need to be developed to integrate the indicators into
a soil quality index. This integration procedure will require
the use of information from all indicators as well as their
interactions [9]. Several years ago, a procedure was developed
to spatially evaluate soil quality. The procedure, multiple
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variable indicator kriging (MVIK), categorizes numerous
variables based on specific criteria producing a probability
that an “area” or “soil” meets qualified standards [9]. For
example, criteria can be developed and parameters measured
and integrated to evaluate if a land area is suitable for
development of irrigated agriculture. The MVIK method
has been used to map the distribution of soil nutrients
[10], define zones of soil pollutants [11], evaluate chemical
health risks of groundwater [12], evaluate soil quality indices
[6, 13], classify soil degradation in agricultural lands [14],
and assess groundwater quality for irrigated agriculture [15].

The underlying principle of MVIK is the spatial vari-
ability of indicator parameters across the landscape. In this
study, we have chosen several chemical and microbiological
parameters that have been shown to be important in
agriculture and are considered good indicators of soil quality
[8, 9]. These indicators, not meant to be inclusive, include
microbial biomass, respiration, metabolic quotient (qCO2),
dehydrogenase, and phosphatase enzyme activity as well
as pH, organic carbon (%C), and electrical conductivity
(EC). We explore the spatial variability and relationships
of indicators across a small landscape that was intensively
sampled. Knowing the range and spatial variability criteria
for MVIK, we can develop a system for the evaluation of
suitable land for crop production.

2. Materials and Methods

2.1. Soil Collection. Soil samples were taken from a slightly
north-sloping agricultural field in Southeastern Washington
State, USA. The field had previously been cropped to winter
wheat (Triticum aestivum L.). The soil is a Palouse silt loam
classified as a fine-silty mixed, superactive, Pachic Ultic
Haploxeroll having an average organic C content of 1.5% and
a total N content of 0.15%.

The climate of this region is characterized by cold wet
winters and hot dry summers with 80% of the annual 500
mm of precipitation being received between October and
March. Soil samples (220) were collected in October (Fall)
from an area of approximately 0.5 ha (50 × 110 m). The
sampling design was a regular 10 × 10 m grid with smaller
sampling distances randomly placed throughout the larger
grid. At each sampling location, approximately 200 g of soil
was collected from the top 10 cm, placed in a plastic bag and
stored at 4◦C until analyzed.

The 220 soil samples were analyzed for total organic
C, pH, electrical conductivity (EC), microbial biomass C
(SIRC), basal respiration, phosphatase (PNP), dehydroge-
nase (TPF), and calculated metabolic quotient (qCO2).
Analyses were done in triplicate.

2.2. Biological Assays. Microbial biomass was assayed using
the substrate induced respiration (SIR) method developed
by Anderson and Domsch [16]. Triplicate 10 g (dry weight)
samples of soil were weighed into 40 ml glass vials, brought
to 20% moisture (w/w), covered and kept in the dark
for 7 days at 23.5 ± 0.5◦C. After the preincubation, each
sample was amended with a saturating level of 600 ug glucose

(240 mg C) g−1 soil, bringing the soil moisture content to
25% (w/w) (−30 kPa). Water only was added to each control
sample also bringing the soil to 25% (w/w) (−30 kPa).
All tubes were flushed with hydrated air and capped with
a septum. Headspace CO2 was measured from each vial
at 3 and 24 h by injecting 0.2 ml of headspace in to a
gas chromatograph. Microbial biomass carbon (SIRC) was
calculated using the equation published by Anderson and
Domsch [16]. Soil respiration (RESP) rate was calculated as
the average rate of CO2 production per hour from the control
samples (only water added).

Soil dehydrogenase and phosphatase activity was mea-
sured using the modified technique of Bolton et al.
[17]. The substrate for dehydrogenase activity was 2,3,5-
triphenyltetrazolium (3% w/v) and p-nitrophenol phosphate
for phosphatase activity. Enzyme assays were made in
triplicate on moist soil (10 g dry weight) and reported for
dehydrogenase as 10−5 µmol triphenylformazan g−1 min−1

(TPF) and for phosphatase as 10−2 µmol p-nitrophenol
g−1 min−1 (PNP).

Metabolic quotient (qCO2) is defined as the basal
respiration per unit of microbial biomass in units of µg CO2-
C µg−1 biomass-C h−1 and was calculated from the control
sample respiration rate at the end of the incubation period
divided by the SIRC biomass [18].

2.3. Chemical Analysis. Total organic C was measured in
triplicate on each of the 220 soil samples by a wet oxidation
method [19]. The pH and electrical conductivity (EC) mea-
surements were made on saturated pastes of soil (1 : 1 w/w,
soil : water).

2.4. Statistical Methods. Summary statistics were calculated
for the 220 samples including mean, median, and standard
deviation (SD), coefficient of variation (%CV), and skew-
ness. In addition, Pearson correlation coefficients were cal-
culated for untransformed data. We also constructed maps of
the spatial distributions for each individual variable over the
0.5 ha area from untransformed data using a weighted least
squares algorithm. Every point at an unsampled location is
calculated by a weighted quadratic multiple regression on all
the points [20].

3. Results

3.1. Chemical and Biological Indicators. Univariate statistics
for measured soil properties are shown in Table 1. For
the chemical properties the mean and median values were
similar and the skewness values were low to moderate (EC).
The relatively high variability of total C (%CV = 39.6) on
this landscape was related to spatial patterns. We observed
lower values on the eastern 25% of the field (see Figure 2).
However, in general, the %CVs for chemical properties on a
landscape area are typical [21].

All biological variables, except microbial respiration,
also showed similar mean and median values with low to
moderate skewness (Table 1). The sample distribution for
respiration exhibited significant skewness (4.35) due to a few
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Table 1: Univariate statistics for measured soil properties (n = 220). Total C, pH, EC: electrical conductivity; SIRC: microbial biomass C
by substrate-induced respiration; RESP: nonamended soil respiration; PNP: phosphatase activity; TPF, dehydrogenase activity and qCO2,
metabolic quotient.

Chemical Properties Biological Properties

C PH EC SIRC RESP PNP TPF qCO2
a

(%) (dS m−1) (mg C kg−1) (mg C kg−1 h−1) (µmol g−1 min−1× 10−2) (µmol g−1 min−1× 10−5) (×10−3)

Mean 1.70 5.14 2.13 642 1.65 3.91 4.33 1.04

Median 1.76 5.12 2.00 620 1.41 3.85 4.36 1.04

SD 0.67 0.24 0.68 198 1.17 1.30 1.57 0.44

% CV 39.6 4.70 32.0 31 71.0 33.2 36.1 42.4

Skewness −0.22 0.12 1.81 1.5 4.35 0.53 0.12 0.62

Minimum 0.35 4.56 0.95 227 0.53 1.13 0.75 0.12

Maximum 2.97 5.74 5.79 1694 9.44 9.21 7.96 2.61
a
µg CO2-C g−1 h−1/ µg biomass C g−1 soil.

high outlier values. This outlier effect is confirmed by the
75th percentile value (1.76 mg kg−1) being close to the mean
value of 1.65 mg kg−1 (data not shown) and also reflected
in the CV of 71%. Microbial biomass C ranged from 227
to 1694 mg C kg−1 soil with a CV of 31%, typical for this
biological parameter [22]. Values for metabolic quotient
(qCO2) ranged over an order of magnitude, from 0.12 to 2.61
× 10−3 µg CO2-C µg−1 biomass-C h−1, with a CV of 42%.
The enzyme assays, phosphatase and dehydrogenase, showed
similar variation among samples with CVs of 33 and 36%,
respectively.

3.2. Spatial Mapping and Correlation. The distribution of
electrical conductivity (EC), dehyrogenase (TPF), and respi-
ration (RESP) over the 0.5 ha sampling area are depicted in
Figure 1. Most sample respiration rates were near the overall
mean of 1.65 mg-C kg−1 h−1 (Figure 1, RESP). However, we
also observed a zone of higher values in the 60–70 m Easting
area and a few other elevated values at about 85–100 m
Easting. In contrast, dehyrogenase activity was distributed
throughout the field in zones of high and low activity
(Figure 1, TPF), much different than what might have been
predicted from the univariate statistics (Table 1) [23, 24].
Highest TPF activity was observed from the 0 m to 20 m
Easting, the portion of the field that also had the lowest
respiration values. Dehyrogenase activity was lower than
the mean at random locations mostly in the north half
of the field between 30 and 100 m Easting. Values of EC,
an important soil variable since soluble salts may affect
microbial and enzyme activity [25, 26] were generally similar
to the overall field mean except in the 110 m easting area
and in a few locations randomly distributed across the field
(Figure 1, EC). The trend in EC was generally opposite of
TPF and, in some areas, seemed to be similar in pattern to
RESP.

Figure 2 shows the spatial distribution of total C (%C),
pH, and microbial biomass (SIRC). Microbial biomass
was characterized by a fairly uniform spatial distribution
with many values close to the field mean (Figure 2 SIRC).
However, we also observed a significant area of the field
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Figure 1: Interpolated spatial maps, over the 110 by 50 m field, of
electrical conductivity (EC), dehydrogenase (TPF), and microbial
respiration (RESP). Units are the same as Table 1.
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Figure 2: Interpolated spatial maps, over the 110 by 50 m field, of
%C, pH and microbial biomass C (SIRC). Units are the same as
Table 1.

with values 50% greater than the mean (green). Soil pH was
less evenly spatially distributed across the field than SIRC
(Figure 2 pH). We observed a zone with relatively high values
of pH between 60 and 100 m Easting. Lower values of pH in
the eastern edge of the field also coincided with a decrease in
SIRC and %C (Figure 2 %C). Total C was distributed with
highest concentrations in the west half of the field and lowest
concentrations in the east. However, the grading from high
to low concentration was not smooth, and the field appears
to be divided into two patches. Values near the overall field
average (green) occurred mostly in a relatively narrow band
with a NW-SW orientation, near the center of the field.

Table 2 provides the Pearson correlation coefficients (r)
for the measured soil properties. We calculated r for two
spatial scales, full field or subfield. Full field calculations
represent an overall r value based on all 220 data points.
Subfield calculations were based on the data from each of
four 27.5 m W to E subsections of the field from 0 to

110 m. Analyses of the entire field generally showed poor
correlation’s between variables except between RESP and
qCO2 and SIRC and TPF (Table 2). Transformation (log10)
the data did not improve the overall correlation’s with the
only increase due to normalizing RESP.

Separate analyses of the 27.5 m subfields revealed areas of
relatively high and low correlation obscured at the scale of the
entire field. For example, the full field correlation coefficient
of SIRC and RESP was 0.15 (n = 220, P < .05); however,
these two variables were significantly and positively corre-
lated in two subfields lying between 0 and 55 m Easting, sec-
tion of the field, (0.48, n = 55, P < .05 and .54, n = 55, P <
.05), respectively. In a more extreme example, the overall field
correlation of SIRC and PNP was 0.02 (n = 220, P < .05),
while correlation coefficients in the subfields varied: near 0 in
the 0 to 27.5 m section of the field, slightly positive in the 27.5
to 55 m subfield, slightly negative in the 55.0 to 82.5 m sub-
field, and significantly positive in the 82.5 to 110 m subfield.

By accounting for this intrafield heterogeneity, the
correlations between variables were more similar to the
qualitative, visual analysis of Figures 1 and 2. For example,
RESP and EC exhibited some positive correlation (0.29,
n = 55, P < .05), in the 0 to 27.5 m Easting subfield (Table 2,
Figure 1). However, in the subfield located from 27.5 to
55.0 m, where EC was increasing, the correlation coefficient
decreased to 0.10 (n = 51, P ≤ .05) (Figure 1). In the
east half of the field (55+ m Easting), correlation between
RESP and EC became increasingly negative (−0.14, n = 55,
P < .05 and −0.18, n = 53, P < .05) due to opposing
spatial gradients shown in Figure 1. Soil microbial biomass
was uncorrelated with %C over the entire field (Table 2,
Figure 2); however, SIRC was significantly correlated with
pH in all except in the 55.0 to 82.5 m subfield (Table 2) also
suggested by Figure 2 which shows SIRC as constant over the
landscape and pH as increasing.

4. Discussion

The objectives of developing a method to evaluate soil quality
include (1) the ability to monitor changes in the soil over
time and be able to quantify the direction and rate of change,
(2) evaluation of the time rate of change in soil quality due
to specific management in both the short and long term, and
(3) the ability to detect patterns of soil quality at different
spatial and temporal scales. To meet these objectives the
evaluation methodology, such as MVIK, must be based on
sensitive indicators of change in soil quality that are stable
and predictable with respect to other soil properties such
that comparisons between different locations and between
different time periods can be made.

Several biological indicators of soil quality have been pro-
posed because they are thought to be integrative variables,
sensitive to changes in soil degradation or improvement [27–
30]. However, we are interested in mapping soil quality on
the landscape level to monitor change or implement remedi-
ation, and there are several problems associated with the use
of only biological indicators over field to landscape scales.

First, biological indicators are likely to be more variable
in time and space than chemical or physical parameters and
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Table 2: Pearson correlation (r) matrix correlating chemical and biological soil parameters on a subfield and full field basis (whole field
n = 220, subfield n = 50 to 55). Values in red are significant correlations where .01 < P < .05% probability level.

%C pH EC SIRC RESP PNP TPF

Subfield Full field

pH 0.02 −0.21

0.21

−0.39

0.10

EC −0.18 −0.01 −0.29 −0.35

0.20 0.01

0.34 −0.36

0.07 −0.54

SIRC −0.01 −0.01 0.39 0.31 −0.04 −0.07

−0.02 0.4 0.27

0.02 0.09 −0.12

−0.04 0.32 −0.13

RESP −0.11 −0.17 0.14 0.2 0.29 −0.09 0.48 0.15

0.06 0.37 0.10 0.54

0.10 −0.21 −0.14 −0.05

−0.06 0.27 −0.18 0.17

PNP 0.16 0.32 −0.01 0.14 0.15 0.08 −0.05 0.02 0.20 −0.01

0.23 0.65 0.27 0.28 0.30

0.01 0.04 0.17 −0.25 0.01

−0.16 0.3 −0.13 0.33 0.11

TPF 0.14 0.23 0.37 −0.02 −0.16 0.02 0.38 0.22 0.03 0.04 −0.28 −0.05

0.07 0.3 0.32 0.33 0.26 0.13

0.31 −0.17 −0.06 0.18 0.28 0.15

0.08 −0.28 0.23 0.12 −0.05 0.07

qCO2 0.01 −0.01 −0.43 −0.11 0.01 0.04 −0.06 −0.29 0.45 0.52 0.16 0.13 −0.07 −0.17

0.12 −0.07 −0.16 −0.21 0.4 −0.01 −0.08

0.09 −0.12 −0.04 −0.3 0.73 0.14 0.09

0.03 0.06 −0.03 0.12 0.68 −0.17 −0.03

may also be influenced by these parameters [21]. Second,
univariate statistics of biological indicators may be of limited
use in the context of evaluating soil quality, because they only
characterize a system at the overall scale and do not account
for spatial patterns [23]. Finally, even if we account for
the spatial and temporal variability of biological indicators,
the precise relationship between the amount of a particular
biological indicator and it’s functional characteristics has yet
to be determined [31].

These problems can become critical when using the
MVIK procedure to evaluate specific criteria. The MVIK
procedure uses cutoff values to determine if a criteria has
been met, thus if indicators vary greatly in time, the cutoff
value may not be stable and land evaluation may change.

The coefficient of variation for the biological variables
measured in this study ranged from 31% for microbial
biomass-C and 30% to 40% for the enzyme assays to 71%
for soil respiration. Rochette et al. [24] found respiration

measurements in a 1 ha field (average 50 sampling points)
to have a CV ranging from 25% to 69% over the growing
season. Bonmati et al. [25] found the CV for enzymes ranged
from 28 to 60% in a small field (<0.1 ha). This is in contrast
to many chemical and physical parameters that typically
have a CV in the range of 5% to 25% on a spatial basis.
While mean values or the relative ranking of variability
may not change, actual estimates of statistical dispersion
(e.g., standard deviation) will be affected by the size of the
sampling unit especially for soil properties with strongly
skewed distributions [32].

Understanding the spatial distribution of chemical and
physical indicators of soil quality is likely to be important
for corroborating biological data and necessary to help to
explain the spatial variability of biological parameters. For
example, Figure 2 shows areas of high and low concentra-
tions of three variables occurring simultaneously in a single
field. These distinct areas maybe caused by secondary or
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tertiary factors affecting the primary variable of interest.
Greater correlation between soil quality indicators in some
sections of the field (Table 2) suggests the factors controlling
these variables change over the landscape. For example,
unlike the rest of the field, SIRC and pH were uncorrelated
in the 55 to 82 m Easting section of the field (Table 2). Since
the values of SIRC were distributed, on the average, similarly
across the entire field, the lower correlation is likely due
to increasing pH values in this section of the field seen in
Figure 2. The gradient of pH across the field may have been
related to patterns of NO3 and soil moisture content, which
decrease from W to E across the field (data not presented).
These two soil variables, individually or in combination,
may have influenced the increase in pH, and thus its
correlation with microbial biomass. Thus, successful use of
biological indicators for soil quality analysis will require an
understanding their spatial variability as well as that of any
underlying factors that might affect this variability.

Our data further illustrate that while the overall univari-
ate distribution of a biological parameter may be normal
for a field-size sample unit (Table 1), the variable may be
distributed in zones of high and low concentrations within
the field (i.e., TPF, Figure 1). Thus the full field mean value
may be of little value for guiding management decisions.
It would be impossible to manage this field to increase its
biological potential based on univariate statistics alone. In
order to be useful, we are required to sample in a manner
that will allow us to identify and delineate the significant
spatial patterns within the field. Contour maps for each soil
parameter of interest are desirable but require more sampling
and analysis meaning greater expense.

Two other aspects of soil quality indicators can affect
land evaluation even using the MVIK procedure. Firstly,
evaluating soil quality based on the quantity of a biological
indicator assumes that laboratory analyses accurately repre-
sent conditions in the field. Secondly, a critical assumption
is that the relationship between the quantity of a biological
indicator and its activity is well understood and predictable.
Yet, little attempt has been made to distinguish between these
two facets of soil quality.

Thus based on this study we suggest that soil sampling
for soil quality analysis using biological indicators should
be conducted when the soils are between 50 to 70% of
field capacity (−30 kPa), during mild temperature regimes
(Fall or late Spring) and that enough samples be taken
that contour maps can be developed. Other chemical data
should be collected at the same time, such as pH and
electrical conductivity, to provide collaborative information
for the soil quality assessment. Biological indicators of soil
quality are spatially variable; however, they are also sensitive
indicators, thus with proper analysis and interpretation they
will enhance our development of a soil quality index.

That biological indicators of soil quality should vary
across the landscape or during the course of a season is
neither novel nor surprising. This is why we developed the
MVIK procedure to smooth the variability into a probably
that can be used to define good soil quality or good arable
land. However, the more stable the data used in the MVIK
procedure the better the prediction of arable land. With the

spatial variability information on an area basis we can use
procedures such as MVIK to evaluate the probably that a new
land base will be sustainable for agricultural production.
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