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The present study, deals with the 24-hour prognosis of the outdoor biometeorological conditions in an urbanmonitoring site within
the Greater Athens area, Greece. For this purpose, artificial neural networks (ANNs) modelling techniques are applied in order to
predict the maximum and the minimum value of the physiologically equivalent temperature (PET) one day ahead as well as the
persistence of the hours with extreme human biometeorological conditions. The findings of the analysis showed that extreme heat
stress appears to be 10.0% of the examined hours within the warm period of the year, against extreme cold stress for 22.8% of the
hours during the cold period of the year. Finally, human thermal comfort sensation accounts for 81.8% of the hours during the year.
Concerning the PET prognosis, ANNs have a remarkable forecasting ability to predict the extreme daily PET values one day ahead,
as well as the persistence of extreme conditions during the day, at a significant statistical level of 𝑃 < 0.01.

1. Introduction

The impact of climate and prevailing weather on human
thermal comfort discomfort is almost obvious. Environmen-
tal conditions affect the heat balance between the human
body and the environment and they are the source of
possible discomfort conditions. In particular, during the
summer period, extreme meteorological conditions have a
direct impact on energy consumption of buildings for air-
conditioning purposes [1]. It has been reported as an increase
of about 800% in annual purchases of air-conditioning units
ever since, due to the serious heat waves observed in Greece
during 1987–1989 [2].

Human thermal comfort or discomfort conditions may
be assessed through a large number of theoretical and empir-
ical indices requiring usually a larger or smaller number
of input microclimate parameters such as air temperature,

wind speed, and air humidity [4–6]. An important issue,
in terms of human health risk assessment, is to predict the
microclimate and the associated human thermal comfort-
discomfort conditions in the urban environment. Despite the
existence of various microclimate models, there are only a
fewmodels that are able to deal with human thermal comfort
estimations, for example, the RayMan model [7, 8] and the
Envi-Met model [9]. These models may be used efficiently
in both estimating and predicting human thermal comfort
conditions in the urban environment [10–13].

The present study deals with the application of artificial
neural networks (ANNs), an alternative modeling technique
against common modeling efforts for the evaluation and
the prognosis of human thermal comfort conditions in the
urban environment. During the last decade, there has been an
increasing use of ANNs, in various aspects of the atmospheric
environment studies [14–20]. Despite this increasing use
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of ANNs and their advantages (generalization properties,
capability of handling high dimensional data, and nonlinear-
ities), the number of ANNs model applications in problems
related to bioclimatic aspects of human health is, however,
still limited (e.g., [21, 22]), whereas in the case of the urban
environment studies, those focus only on the microclimate
patterns [23]. Specifically, during the last decade, only few
researches around the world started to apply the artificial
neural networks modeling in order to predict the human
thermal comfort-discomfort levels for different purposes.

Gao and Bai [24] proposed an artificial neural net-
work model for the prediction of bioclimatic conditions by
the use of back-propagation neural network, giving good
results. Wong et al. [25] investigated the predictability of
clothing sensory comfort from psychological perceptions
by using a feed-forward back-propagation network in an
artificial neural network (ANN) system. Results, showing
a good correlation between predicted and actual comfort
ratings with a significance of 𝑃 < 0.01 for all of the
five developed models, indicated that overall comfort per-
formance is predictable with neural networks, particularly
models with log sigmoid hidden neurons and pure linear
output neurons. Ji et al. [26] examined the possibility of
using ANNs to model the relationship between the thermal
environmental factors and the residents’ thermal reaction in
order to predict the environmental thermal comfort. The test
results showed that the ANN model had higher precision
in prediction than the traditional method-linear regression
under steady conditions. Further, under unsteady conditions,
the model can also be correctly used to predict the change
of the residents’ thermal reaction avoiding dealing with the
complicated nonlinear relation, while using the regression
method. Atthajariyakul and Leephakpreeda [27] presented
a practical approach to determine human thermal comfort
quantitatively via neural computing.The results showed good
agreement between the thermal comfort index calculated
from the neural network model in real time and those
calculated from the conventional PMV model. Liu et al. [28]
examined the relation between the main influencing factors
(such as temperature, relative humidity, air velocity, mean
radiant temperature, air pressure, and clothing insulation)
and human thermal sensation, using ANN. Moreover, back-
propagation (BP) neural network evaluationmodel of human
thermal comfort was put forward under low pressure envi-
ronment and learning algorithm of network was given. Liu
et al. [28] concluded that the prediction of network model is
closely consistent with experimental results.

Finally, regarding Greece and the prognosis of human
thermal comfort-discomfort levels using ANNs models,
Mihalakakou et al. [23] applied an intelligent “data-driven”
method (ANN) for investigating, analyzing, and quanti-
fying the urban heat island phenomenon in the major
Athens region, where hourly ambient air-temperature data
are recorded at twenty-three stations. The results were tested
with extensive sets of nontraining measurements and it was
found that they correspondedwell to the real values.Moustris
et al. and Vouterakos et al. [29–31] developed ANNs in order
to forecast the human thermal comfort-discomfort levels
within the Greater Athens Area (GAA), Greece, as well as

the number of consecutive hours of thermal discomfort for
the next day. Results in all cases showed that ANNs have
a good ability to forecast one day ahead the values of the
thermal indices used.

The growth of the city of Athens in the last decades and
the phenomenon of urbanization obviously have led to the
creation of a microclimate with explicit effects on human
thermal comfort-discomfort. The knowledge of human ther-
mal comfortdiscomfort levels, predicted for the next days, is
very important for suitable actions in order to protect public
health [29–31]. The aim of this work is the prognosis of the
biometeorological conditions, expressed by the physiologi-
cally equivalent temperature (PET), one day ahead within the
GAA urban environment, using ANNsmodeling techniques.

2. Data and Methodology

2.1. The Monitoring Site. The Greek capital city of Athens is
located in an area of about 450 km2 with a complex topog-
raphy within the Greater Athens Area-basin. According to
the census of 2011, about the 40% of Greece’s population
lives in the Greater Athens Area (GAA). During the last
decades and due to continued population growth, there was
an extremely large and rapid spatial and residential growth of
theGAA.This development led, according tomany scientists,
to the heat island effect [32–35]. This phenomenon leads to
the creation of microclimates resulting in the configuration
of different humans thermal comfort-discomfort conditions
even between adjacent regions [32–36].

For the estimation of human thermal comfort-discomfort
levels, the physiologically equivalent temperature (PET) in
an hourly base was calculated using the RayMan model.
Specifically, hourly values of air temperature (∘C), wind speed
(m/s), relative humidity (%), and global solar irradiation
(W/m2) covering the period 15/06/2005–31/12/2011 (57,384
hours) were used. These data concern the location of Galatsi
(GAL) and have been recorded by the Hydrological Obser-
vatory of Athens (HOA) operated by the National Technical
University of Athens [37]. Figure 1 depicts the monitoring
site within the GAA. The monitoring station is sited within
the Galatsi water treatment plant installations of the Water
Supply and Sewerage Company of Athens (WSSCA). Data
completeness of the examined location-monitoring site is
found about 98.8%.

2.2. Physiologically Equivalent Temperature. ThePET is based
on the Munich Energy balance Model for Individuals
(MEMI), which describes the thermal conditions of the
human body in a physiologically relevant way [38]. PET is
defined as the air temperature at which, in a typical indoor
setting (without wind and solar radiation), the heat budget
of the human body is balanced with the same core and skin
temperature under the complex outdoor conditions to be
assessed [39, 40]. Table 1 presents the different stress levels
and human thermal sensations according to PET value.

For biometeorological purposes, the height of 1.1m is
considered as the mean gravity center of the human body
[7]. In order to calculate the hourly values of PET, using
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Figure 1:The Greater Athens Area (GAA) along with the examined
monitoring site of Galatsi.

Table 1: Physiologically equivalent temperature (PET) for different
grades of thermal sensation and physiological stress on human
beings (during standard conditions: heat transfer resistance of
clothing: 0.9 clo, internal heat production: 80W) [41].

PET (∘C) Thermal sensation Physiological stress level
<4 Very cold Extreme cold stress
8 Cold Strong cold stress
13 Cool Moderate cold stress
18 Slightly cool Slight cold stress
23 Comfortable No thermal stress
29 Slightly warm Slight heat stress
35 Warm Moderate heat stress
41 Hot Strong heat stress
>41 Very hot Extreme heat stress

the RayMan model, the hourly values of wind speed at 1.1m
above the ground are necessary. The available wind speed
values (56,704 hourly values) derived from an anemometer’s
recordings, which is mounted on the top of a meteorological
mast at a height of 10.0m above the ground. The meteo-
rological mast is located inside the water treatment plant
installations of the WSSCA. It is a flat area without vigorous
and high obstacles 150∼200m around the meteorological
mast approximately. Figure 2 depicts, (Google Maps-Google
Earth), the monitoring site inside the WSSCA area.

For that purpose, the measured hourly values of wind
speed at 10.0m above the ground level had to be recalculated
at the high of 1.1m above the ground level. This parameter-
ization assumes a logarithmic vertical wind profile as it is
described in (1) [42, 43]:

𝑢 (𝑧) = 𝑢ref ⋅
ln (𝑧/𝑧

0
)

ln (𝑧ref/𝑧0)
, (1)

where 𝑢(𝑧) is the wind speed at height (𝑧) above the ground
level, (𝑧

0
) is the aerodynamic roughness length of the surface

Figure 2: Map of the examined monitoring site of Galatsi with its
altitude above sea level (from Google Maps-Google Earth).

in meters, and 𝑢ref is the measured wind speed by the
anemometer at the (𝑧ref) height above the ground level. In
our case, 𝑧 = 1.1m and 𝑧ref = 10.0m. The aerodynamic
roughness length of the surface for the given monitoring site
was taken as 𝑧

0
= 0.03m [44].

Finally, using the hourly values of the air temperature, air
relative humidity, wind speed at 1.1m above the ground, and
the corresponding hourly values of global solar irradiance,
the hourly values of PET were calculated.

2.3. Artificial Neural Networks. Artificial neural networks
are a branch of artificial intelligence developed in the 1950s
aiming at imitating the biological brain architecture. They
are an approach to the description of functioning of human
nervous system through mathematical functions. Typical
ANNs use very simple models of neurons. These artificial
neurons models retain only very rough characteristics of
biological neurons of the humanbrain [45]. ANNs are parallel
distributed systems made of many interconnected nonlinear
processing elements (PEs), called artificial neurons [46]. A
renewal of scientific interest has grown exponentially since
the last decade, mainly due to the availability of appropriate
hardware that hasmade themconvenient for fast data analysis
and information processing [47].

During the last two decades, more and more scientists
around the world have apply ANNs modeling in many
different scientific fields. ANNs have a lot of applications in
many sectors such as

(i) pattern classification applications,
(ii) control, time series, estimation, prediction, and prog-

nosis,
(iii) optimization,
(iv) environmental applications,
(v) engineering applications,
(vi) financial and commercial applications,
(vii) medical diagnosis,
(viii) management and marketing applications,
(ix) energy cost prediction.
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2.3.1. Multilayer Perceptron and Feed-Forward ANNs. The
Multilayer Perceptron (MLP) is the most commonly used
type of ANNs. Its structure consists of processing elements
(PEs) and connections [48]. PEs, which are called neurons,
are arranged in layers. The first layer is the input layer, one or
more hidden layers follow and the final layer is the output
layer. An input layer serves as buffer that distributes input
signals to the next layer, which is a hidden layer. Each neuron
of the hidden layer communicates with all the neurons of the
next hidden layer, if any, having in each connection a typical
weight factor. So, each unit-artificial neuron in the hidden
layer sums its input, processes it with a transfer function, and
distributes the result to the output layer. It is also possible that
there are several hidden layers connected in the same fashion.
The units-artificial neurons in the output layer compute
their output in a similar manner. Finally, the signal reaches
the output layer, where the output value from the ANN is
compared to the target value and an error is estimated. Thus,
the values of weight factors are amended appropriately and
the training cycle is repeated until the error is acceptable,
depending on the application. Since data flow within the
artificial neural network from a layer to the next one without
any return path, such kinds of ANNs are defined as feed-
forward ANNs. The structure of a feed-forward Multilayer
Perceptron artificial neural network can be represented as in
Figure 3.

2.3.2. Feed-Forward ANNs Training and the Back-Propagation
Training Algorithm. The training-learning process of ANNs
can be far from the ensemble optimum in some cases, and the
problem can be solved only with a very good database, the
best choice of the input configuration for training, or using
most powerful learning algorithms [47].

The back-propagation learning algorithm consists of two
steps of computation: a forward pass and a backward pass.
In the forward pass, an input pattern vector is applied to
the sensory nodes of the network, that is, to the units in the
input layer. The signals from the input layer are propagated
to the units in the first layer and each unit produces an
output. The outputs of these units are propagated to the
units in the subsequent layers and this process continues
until, finally, the signals reach the output layer, where the
actual response of the network to the input vector is obtained
(Figure 3).

During the forward pass, the synaptic weights of the
network are fixed. During the backward pass, on the other
hand, the synaptic weights are all adjusted in accordance with
an error signal, which is propagated backward through the
network against the direction of synaptic connections.

The mathematical analysis of the algorithm is well
described by Viotti et al. [47]. It is worthwhile noting that
a network architecture having just one hidden layer and
activation functions arranged as described above, constitutes
a universal predictor and it can theoretically approximate any
continuous function to any degree of accuracy. In practice,
such degree of flexibility is not achievable because parameters
must be estimated from sample data, which are both finite and
noisy [49].
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Figure 3: Typical MLP feed-forward artificial neural network
structure [3].

The ANNs work on a matrix containing more patterns.
Particularly, the patterns represent the rows while the vari-
ables are the columns. This data set is a sample. To be
more precise, giving the ANN three different subsets of the
available sample, we can get the forecasting model; the three
subsets concern the training, the validation and the test
subsets. These subsets are briefly described as follows:

(i) training subset, the group of data with which we train-
educate the network according to the gradient descent
for the error function algorithm, in order to reach the
best fitting of the nonlinear function representing the
phenomenon;

(ii) validation subset, the group of data, given to the
network still in the learning phase, by which the
error evaluation is verified, in order to update the
best thresholds and weights effectively. Also, the cross
validation phase during the model training is used
to avoid the models’ overtraining. If the model is
overtrained, then memorize the problem instead to
find a reliable solution;

(iii) test subset, one or more sets of new and unknown
data for the ANN, which are used to evaluate ANN
generalization, that is, to evaluate whether the model
has effectively approximated the general function
representative of the phenomenon, instead of learning
the parameters uniquely.

2.4. Architecture Structure of the Developed ANNs Models.
Applying the RayMan model, the hourly values of PET
were calculated covering the examined period 15/06/2005–
31/12/2011. Then, the daily maximum and minimum PET
values from the 24 hourly values were extracted. Further, the
numbers of hours during the day where PET is greater than
41.0∘C or less than 4.0∘C (Table 1) were estimated.

Two different ANN models were developed. The first,
ANN no. 1, was trained to forecast 24 hours ahead the daily
maximum and minimum PET value, as well as the number
of extreme heat stress hours (PET > 41.0∘C) during the next
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day, for the warm period of the year (May–September) [36].
The second ANN model, ANN no. 2, was trained to forecast
24 hours ahead the daily maximum and the minimum PET
value, as well as the number of the extreme cold stress hours
(PET < 4.0∘C) during the next day, for the cold period of the
year (October–April) [36].

In order to estimate the optimal number of previous days
that should be taken into account for the appropriate ANNs
training, it is important to formulate an appropriate data set
and decide howmany days prior to the forecasted day should
be included in the training data set. For that purpose, the daily
maximum and minimum PET values for the studied period
have been organized in a superposed epoch analysis (SPEA)
illustrations and are depicted in Figure 4 [50, 51].

The “zero” day (D-0) represents themean dailymaximum
or minimum PET values for the warm and the cold period
of the year, respectively, when an “exceedance” day (PET
> 41.0∘C or PET < 4.0∘C) occurred in the monitoring site,
Galatsi. The other days, named as D-1, D-2, and so forth,
represent the mean value of the daily maximum orminimum
PET values 1, 2, 3, 4, 5, 6, 7, and 8 days before the exceedance
day, respectively. In a same manner, the days named D+1,
D+2, and so forth, represent the mean value of the daily
maximum or minimum PET values 1, 2, 3, 4, 5, 6, 7, and 8
days after the exceedance day, respectively.

The significance of differences between two samplemeans
was investigated applying the t-statistic, in other words, the
difference of two-means test [52]. This test requires that we
calculate twomeans and compare them to see if one is greater
than the other. Results showed that there is a significant
increase ofmean daily PET values three days before the “zero”
day, 𝑡
(0.05,1024)

≥ 1.960, and 𝑡
(0.05,1330)

≥ 1.960 for the warm
and the cold period of the year, respectively, at a significant
statistical level of 𝑃 < 0.05.

The above results are also depicted in Figure 4, which
shows that during the warm period of the year (upper graph),
there is a significant increase of daily maximum PET values
three days before the “zero” day. The same conclusion is
extracted for the cold period of the year (lower graph).
It seems that three days before the “zero” day, the daily
minimum PET value is reduced.

In other words, when an “exceedance” day (PET > 41.0∘C
or PET < 4.0∘C) occurs, there is a significant trend of the
daily maximum and minimum values three days earlier.
Furthermore, in both warm and cold periods of the year, it
appears that the phenomenon is smoothed out three to four
days after the onset of the “exceedance” day.

Taking into consideration the SPEA analysis, the appro-
priate training data set was created, including data con-
cerning the three days, prior to the forecasted day. Initially,
the available data were divided in two data files. The first
concerns the warm period of the year (May–September) and
the second the cold period of the year (October–April). Two
different prognostic ANN models were developed, ANN no.
1 for the warm period of the year and ANN no. 2 model for
the cold period of the year. In both cases, the available data
sets were divided into two subsets. The first subset included
data from the period 2005 to 2010 and used for training
the ANN model. A portion of this subset (20%) was used
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Figure 4: Superposed epoch analysis during the warm period of the
year (upper graph) and during the cold period of the year (lower
graph).

for cross validation during the training process. The second
subset included data for 2011 and was used as the testing set
for the evaluation of the developed ANN no. 1 and ANN no.
2 models.

Table 2 presents the input PEs and the outputs targets for
the developed ANN no. 1 and ANN no. 2 forecasting models
respectively.The twodevelopedmodels are feed forwardMLP
ANNs.They consist of one input layerwith 21 PEs, one hidden
layer with 4 PEs (hidden neurons) and one output layer with
3 PEs. Also, they have 4 PEs (hidden neurons) in the hidden
layer. The transfer function in both ANN no. 1 and ANN no.
2 is the hyperbolic tangent function, and the learning rule in
both models is the momentum [31].The best ANNs structure
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Table 2: The input PEs and the output target for the developed ANN no. 1 and ANN no. 2 forecasting models, respectively.

Input Layer (PEs) Output layer
(targets values)

The number of the month (1, 2, 3, . . . , 12)

Themaximum and the minimum daily value of PET of the
next day, as well as the number of hours during the next day
with PET > 41.0∘C (ANN no. 1) or PET < 4.0∘C (ANN no. 2)

The maximum daily air temperature for each of the three previous
days
The minimum daily air temperature for each of the three previous
days
The maximum daily PET value for each of the three previous days
The minimum daily PET value for each of the three previous days
The number of hours with PET > 41.0∘C (ANN no. 1) for each of
the three previous days or the number of hours with PET < 4.0∘C
(ANN no. 2) for each of the three previous days
The persistence factor (PF) for each of the three previous days
The maximum (ANN no. 1) and the minimum (ANN no. 2) air
temperature of the next day (the forecasted day)

was selected based on a set of exploratory experiments.
The aforementioned architecture structure of both ANNno. 1
and ANN no. 2 was selected after the trial-and-error method
[53–56].

The persistence factor (PF), which is mentioned in
Table 2, is an integer number. The PF is representing the
number of consecutive exceedance days (persistence) where
the PET value is greater than 41.0∘C (warmperiod of the year)
or less than 4.0∘C (cold period of the year). For example,
PF = 5 means that the given day is the fifth consecutive
exceedance day, and PF = 6 means that the given day is the
sixth consecutive exceedance day and so on. According to the
statistical treatment of the available data, it was found that
during the warm period of the year, PF takes values ranging
between 1 and 37. This means that 37 consecutive days with
dailymaximumPET greater than 41.0∘C (extreme heat stress)
were observed at least one time. During the cold period of the
year, PF takes values ranging between 1 and 45, meaning that
45 consecutive days with daily minimum PET less than 4.0∘C
(extreme cold stress) were observed at least once.

2.5. Statistical Performance Indices. In order to evaluate the
results and the predicting performance of the developed
models, statistical indices such as the root mean square
error (RMSE), the mean bias error (MBE), the coefficient
of determination (𝑅2), and the index of agreement (IA)
were used. The coefficient of determination (𝑅2) provides
information about the percentage of the variance that the
model is able to explain [57, 58]. The RMSE is a commonly
used measure of the differences between the predicted values
by a predictable model and the real observed values. The
RMSE is used as a single measure that indicates the ability
of the model to predict and has the same units as the
predicted value. The RMSE is always positive and a zero
value is ideal. The MBE provides information on the long-
term performance. A low MBE is desirable. Ideally, a zero
value of MBE should be obtained. A positive value gives the
average amount of overestimation in the calculated values
while a negative value underestimates. The coefficient of

determination (𝑅2) is used in cases of statistical models,
whosemain purpose is the forecast of future outcomes on the
basis of other related information. It is the proportion of the
variability in a data set that is accounted for, by the statistical
model. It provides a measure of how well future outcomes
are likely to be predicted by the model. The coefficient values
range from zero to one (0 ≤ 𝑅2 ≤ 1). The closer the value
is to one, the better and more accurate the prediction is. The
index of agreement is a dimensionless measure with values
between zero and one (0 ≤ IA ≤ 1). The IA gives information
about how close the predicted values are to the observed ones.
When IA = 0, there is no agreement between prediction
and observation, while IA = 1 denotes a perfect agreement
between prediction and observation.

The accuracy of the proposed prognostic models to pre-
dict the “exceedances” days was assessed by using appropriate
statistical indices such as the true predicted rate (TPR),
the false positive rate (FPR), the false alarm rate (FAR),
and the Success Index (SI) [58]. The true predicted rate
(TPR) represents the fraction of correct predictions over total
exceedances with values from 0.0% to 100.0% and a perfect
score equals 100.0%. False positive rate (FPR) represents
the fraction of false predictions over total nonexceedances
with values from 0.0% to 100.0% and a perfect score equals
0.0%. False alarm rate (FAR) represents the fraction of false
predictions over total exceedances with values from 0.0% to
100.0% and a perfect score equals 0.0%. Finally, SI represents
the fraction of correct predictions over total predictions with
values from 0.0% to 100.0% and a perfect score equals 100.0%.

3. Results and Discussion

Initially, the hourly values of PETduring the examined period
15/6/2005–31/12/2005 were calculated applying the RayMan
model. Figure 5 depicts the time series of hourly PET values,
along with extreme heat (PET > 41∘C) and cold stress (PET <
4∘C) thresholds, for the period 15/06/2005–31/12/2011.

According to the statistical treatment data analysis and
Figure 5, during the warm period of the year, PET > 41.0∘C
(extreme heat stress) appeared in 10.0% of the examined
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Figure 5: The time series of hourly PET values along with extreme
heat (PET > 41∘C) and cold stress (PET < 4∘C) thresholds, for the
period 15/06/2005–31/12/2011.

hours (2,449 of the 24,609 available hours) present, against
22.8% of the hours during the cold period of the year (7,320
of the 32,095 available hours) with PET < 4.0∘C (extreme
cold stress). Finally, a comfort human thermal sensation
appeared in 81.8%of the hours during the years.This indicates
that in general, the bioclimatic conditions in the examined
monitoring site could be characterized as human healthy
comfort conditions.

As mentioned above, the whole data set was divided into
two subsets. The first subset concerns the warm period of the
year (May–September) and the second one the cold period
of the year (October–April). Further below, the results with
respect to the warm and cold period of the year are presented
and discussed separately.

3.1. Warm Period of the Year (May–September). The data set
of the year 2011 was absolutely unknown to the trained ANN
model ANN no. 1. Thus, the model was then fed with the
appropriate data in order to forecast 24 hours ahead the
daily maximum and minimum PET value, as well as the
number of hours during the next day when PET is greater
than 41.0∘C (extreme heat stress). Then, the forecasted values
were compared with the observed ones.

Figure 6 depicts the observed versus the predicted daily
maximum PET values (a), the scatter plot between the
observed versus the predicted daily maximum PET values
(b), the differences between the observed and the predicted
daily maximum PET values (c), and the histogram with the
distribution of the absolute differences between the observed
and the predicted daily maximum PET values (d) . Further,
Figure 7 illustrates the same as Figure 6, but with respect to
daily minimum PET values. Table 3 presents the values of the
statistical indices used for the evaluation of the forecasting
ability of the developed ANN no. 1 model.

According to Figures 6 and 7 and Table 3, the developed
ANNno. 1 prognostic model presents a very good forecasting

Table 3: Statistical indices for the evaluation of the forecasting
ability of the developedANNno. 1 forecastingmodel. One day ahead
prognosis. Warm period of 2011.

RMSE MBE 𝑅
2 IA

Maximum PET value (∘C) 2.9∘C −0.5∘C 0.831 0.950
Minimum PET value (∘C) 1.2∘C −0.2∘C 0.910 0.975
Hours with PET > 41.0∘C 1.3 hrs −0.3 hrs 0.796 0.938

ability. Specifically, concerning, on one hand, the prediction
of the daily maximum PET value, the coefficient of determi-
nation equals 𝑅2 = 0.831, which means that the model is able
to explain 83.1% of the variability of the daily maximum PET
24 hours ahead. On the other hand, 𝑅2 = 0.910 with respect
to the prediction of the daily minimum PET value, meaning
that the model is able to explain 91.0% of the variability of
the daily minimum PET, 24 hours ahead. Besides, 70.0% of
the absolute differences between the observed and predicted
daily maximum PET values range between −3.0∘C and
+3.0∘C, against 98.0% of the absolute differences between
the observed and predicted daily minimum PET values. The
same conclusions can be derived concerning the prognosis
of the number of the hours during the next day when
PET is greater than 41.0∘C. Figure 8 presents the observed
versus the predicted hours with PET > 41.0∘C (a), the scatter
plot between the observed and predicted hours with PET >
41.0∘C (b), the differences between the observed and the
predicted hours with PET > 41.0∘C (c), and the histogram
with the distribution of the absolute differences between the
observed and the predicted hours with PET > 41.0∘C (d).
The coefficient of determination equals 𝑅2 = 0.796, meaning
that the developed model is able to explain 79.6% of the
variability of the hours with extreme heat stress one day
ahead. Finally, 96.0% of the absolute differences between the
observed and the predicted hours with PET > 41.0∘C, range
between −3.0 hours and +3.0 hours. All the aforementioned
indicate that the developedANNno. 1 prognosticmodel, after
its appropriate training phase, presents a very satisfactory
forecasting ability at a significant statistical level of 𝑃 < 0.01.

Table 4 presents the values of the statistical indices for the
evaluation of the forecasting ability of the model in order to
predict correctly the exceedances days, in other words, the
days with daily maximum PET greater than 41.0∘C (extreme
heat stress). Concerning the ability of the model to forecast
whether the next day is going to be a day with extreme heat
stress sensation (exceedance day) and according to Table 4,
the true predicted rate is TPR = 85.9%, which indicates that
the fraction of the correct predictions over total exceedances
is forecasted by themodel at a rate of 85.9%. Also, FPR = 4.0%
which means that the fraction of false predictions over total
nonexceedances is quite small. Furthermore, FAR = 4.3%,
meaning that the fraction of false predictions over total
exceedances is very small. Finally, SI = 90.8%, which indicates
that the fraction of correct predictions over total predictions
is about 90.8%. In other words, the developed ANN no. 1
model is able to forecast at a rate of 90.8% whether the next
day is going to be an exceedance day or not. As far as the hours
with extreme heat stress (PET > 41.0∘C), one day ahead, are
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Figure 6: Observed versus predicted daily maximum PET values (a); scatter plot between observed versus predicted daily maximum PET
values (b); observed minus predicted daily maximum PET values (c) and histogram with the absolute differences between the observed and
the predicted daily maximum PET values (d). One day ahead prognosis. Warm period of 2011.

concerned, SI was found equal to 84.3%, indicating that the
fraction of correct predictions over total predictions is about
84.3%.

The findings of the analysis during the warm period of
the year revealed that the combination of the prognosis of the
dailymaximumandminimumPET valueswith the prognosis
of the number of extreme heat stress hours simultaneously,
one day ahead, gives the ability for a goodmonitoring of what
is expected to happen during the next day.

3.2. Cold Period of the Year (October–April). Following the
same reasoning, the prognostic ability of the developed
ANN no. 2 model is presented. The ANN no. 2 model was
appropriately trained in order to predict, for the cold period
of the year, the daily maximum and minimum PET values, as
well as the number of extreme cold stress hours during the
next day.

Table 4: Statistical indices for the evaluation of the forecasting
ability of the developed ANN no. 1 forecasting model to predict the
number of hours during the day when PET > 41.0∘C (extreme heat
stress). One day ahead prognosis. Warm period of 2011.

TPR
(%)

FPR
(%)

FAR
(%)

SI
(%)

Day with maximum PET > 41.0∘C 85.9 4.0 4.3 90.8
Day with extreme heat hours 80.0 9.5 7.7 84.3

Figure 9 depicts, for the cold period of the year, the
observed versus the predicted dailymaximumPETvalues (a),
the scatter plot between the observed versus the predicted
daily maximum PET values (b), the differences between
the observed and the predicted daily maximum PET values
(c), and the histogram with the distribution of the absolute
differences between the observed and the predicted daily
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Figure 7: Observed versus predicted daily minimum PET values (a); scatter plot between observed versus predicted daily minimum PET
values (b); observed minus predicted minimum daily PET values (c) and histogram with the absolute differences between the observed and
the predicted minimum daily PET values (d). One day ahead prognosis. Warm period of 2011.

Table 5: Statistical indices for the evaluation of the forecasting
ability of the developed ANN no. 2 forecasting model. One day
ahead prognosis. Cold period of 2011.

RMSE MBE 𝑅
2 IA

Maximum PET value (∘C) 3.7∘C −0.7∘C 0.819 0.943
Minimum PET value (∘C) 0.9∘C +0.0∘C 0.940 0.984
Hours with PET < 4.0∘C 2.3 hrs +0.2 hrs 0.896 0.972

maximum PET values (d). Figure 10 depicts the same as
Figure 9, but with respect to daily minimum PET values.
Table 5 presents the values of the statistical indices used for
the evaluation of the forecasting ability of the developedANN
no. 2 model.

According to Figures 9 and 10 and Table 5, the developed
ANN no. 2 prognostic model shows a very good forecasting
ability. Concerning the prediction of the daily maximum
PET value, during the cold period of the year, the coefficient

of determination equals 𝑅2 = 0.819, which means that the
model is able to explain 81.9% of the variability of the daily
maximumPETvalue, 24 hours ahead. Further, with respect to
the prediction of the daily minimum PET value, 𝑅2 equals to
0.940, meaning that the model is able to explain 94.0% of the
variability of the daily minimum PET value, 24 hours ahead.
Also, 59.7% of the absolute differences between the observed
and predicted daily maximum PET values range between
−3.0∘C and +3.0∘C, against 100.0% of the absolute differences
between the observed and predicted daily minimum PET
values. The same conclusions can be derived concerning the
prognosis of the number of the hours during the next day
with extreme cold stress (PET < 4.0∘C). Figure 11 presents the
observed versus the predicted hours with PET < 4.0∘C (a),
the scatter plot between the observed and predicted hours
with PET < 4.0∘C (b), the differences between the observed
and the predicted hours with PET < 4.0∘C (c), and the
histogram with the distribution of the absolute differences
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Figure 8: Observed versus predicted hours with PET > 41.0∘C (a); scatter plot between the observed and predicted hours with PET > 41.0∘C
(b); observed minus predicted hours with PET > 41.0∘C (c) and histogram with the absolute differences between the observed and the
predicted hours with PET > 41.0∘C (d). One day ahead prognosis. Warm period of 2011.

between the observed and the predicted hours with PET
< 4.0∘C (d). The coefficient of determination equals 𝑅2 =
0.896, which means that the developed model is able to
explain 89.6% of the variability of the hours with extreme
cold stress, one day ahead. Further, 82.6% of the absolute
differences between the observed and the predicted hours
with PET < 4.0∘C range between −3.0 hours and +3.0 hours.
All the aforementioned indicate that the developed ANN
no. 2 prognostic model, after its appropriate training phase,
presents a very satisfactory forecasting ability at a significant
statistical level of 𝑃 < 0.01.

Table 6 presents the values of the statistical indices for the
evaluation of the forecasting ability of the developed model
ANN no. 2, in order to predict correctly the exceedances
days, in other words, the days with minimum PET value
less than 4.0∘C (extreme cold stress hours). Concerning the
ability of the model to forecast whether the next day is going

Table 6: Statistical indices for the evaluation of the forecasting
ability of the developed ANN no. 2 forecasting model to predict the
number of hours during the day when PET < 4.0∘C (extreme cold
stress). One day ahead prognosis. Cold period of 2011.

TPR
(%)

FPR
(%)

FAR
(%)

SI
(%)

Day with maximum PET < 4.0∘C 92.8 7.9 3.8 92.5

Day with extreme cold hours 98.6 31.7 12.8 89.1

to be a day with extreme cold stress (exceedance day) and
according to Table 6, the true predicted rate is TPR = 92.8%,
which indicates that the fraction of the correct predictions
over total exceedances is forecasted by the model at a rate
of 92.8%. Also, FPR = 7.9%, which means that the fraction
of false predictions over total nonexceedances is quite small.
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Figure 9: Observed versus predicted daily maximum PET values (a); scatter plot between observed versus predicted daily maximum PET
values (b); observed minus predicted daily maximum PET values (c) and histogram with the absolute differences between the observed and
the predicted daily maximum PET values (d). One day ahead prognosis. Cold period of 2011.

Furthermore, FAR = 3.8%, meaning that the fraction of
false predictions over total exceedances is very small. Finally,
SI = 92.5%, which indicates that the fraction of correct
predictions over total predictions is about 92.5%. In other
words, the developed ANN no. 2 model is able to forecast at a
rate of 92.5% whether the next day will be an exceedance day
or not. Regarding the hours with extreme cold stress (PET <
4.0∘C) for the next day, SI equals to 89.1%, which indicates
that the fraction of correct predictions over total predictions
is about 89.1%.

From the performed analysis during the cold period of
the year, it is concluded that the combination of the prognosis
of the daily maximum and minimum PET values with the
prognosis of the number of the extreme cold stress hours
simultaneously, one day ahead, gives the ability for a good
monitoring of what is expected to happen during the next
day.

4. Conclusions

The main objective of this work was to develop prognostic
models, using the artificial neural networks topology, in order
to forecast 24 hours ahead the biometeorological human
conditions for both the warm and the cold period of the year.
For that purpose, the hourly values of the well-known human
thermal index PET were calculated for the time period from
15/06/2005 till 31/12/2011 in an open space area of Galatsi,
which is located inside the urban environment of the capital
city Athens, Greece.The appropriate calculation of the hourly
PET values was carried out using the RayMan model.

Statistical treatment of the available data showed that
during the calendar year, both extreme heat and cold stress
hours appear. During the warm period of the year, 10.0%
of the examined hours present extreme heat stress (PET >
41.0∘C). Respectively, 22.8% of the hours during the cold
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Figure 10: Observed versus predicted daily minimum PET values (a); scatter plot between observed versus predicted daily minimum PET
values (b); observed minus predicted daily minimum PET values (c) and histogram with the absolute differences between the observed and
the predicted daily minimum PET values (d). One day ahead prognosis. Cold period of 2011.

period of the year present extreme cold stress (PET < 4.0∘C).
Finally, 81.8% of the hours during the calendar year present a
comfort human thermal sensation (18.0∘C < PET < 29.0∘C),
indicating that, in general, the bioclimatic conditions in the
examined monitoring site are healthy comfort conditions for
a humans.

As far as the prognostic ability of the two developed
models (ANN no. 1 and ANN no. 2) is concerned, the values
of appropriate statistical evaluation indices indicate a very
satisfactory forecasting ability at a significant statistical level
of 𝑃 < 0.01. The developed ANN models show a satisfactory
and sufficient prognostic ability in order to forecast the daily
maximum and minimum PET value, as well as the number
of extreme heat or cold stress hours for the next day. The
innovation of this work consists of the reasons listed below.

(a) The ANNs modeling is applied instead of traditional
statistical modeling.

(b) The biometeorological conditions were estimated
applying the RayManmodel and using the PET index,
a modern index which can describe very precisely the
human thermal comfort-discomfort conditions.

(c) The developed forecasting models seem to be able to
forecast 24 hours ahead not only the human thermal
comfort-discomfort levels but also the persistence
of extreme heat or cold stress, depending on the
period of the year. Thus, in an operational form, it
will be a very important tool for the state to take
the appropriate measures to avoid negative results
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Figure 11: Observed versus predicted hours with PET< 4.0∘C (a); scatter plot between the observed and predicted hours with PET< 4.0∘C (b);
observed minus predicted hours with PET < 4.0∘C (c) and histogram with the absolute differences between the observed and the predicted
hours with PET < 4.0∘C (d). One day ahead prognosis. Cold period of 2011.

for the population due to extreme meteorological
circumstances.

(d) Finally, the developed ANN models (ANN no. 1
and ANN no. 2) are able to forecast the extreme
(maximumandminimum)daily values of PET, aswell
as the persistence of the phenomenon simultaneously,
providing real time prognosis.

According to authors’ opinion, furthermore investigation
is necessary in order to increase the prognostic ability of the
proposed ANN models, as well as to extend the prediction
time at 48 or 72 hours ahead. In that way, a forecasting and
a protection monitoring network for the public health would
be developed. Also, the state would obtain prior warning of
extreme energy demand due to extreme heat waveswithin the
warm period of the year.
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