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Let G be a locally compact group with a fixed left Haar measure λ and Ω be a system of weights
on G. In this paper, we deal with locally convex space Lp(G,Ω) equipped with the locally convex
topology generated by the family of norms (‖.‖p,ω)ω∈Ω. We study various algebraic and topological
properties of the locally convex space Lp(G,Ω). In particular, we characterize its dual space and
show that it is a semireflexive space. Finally, we give some conditions under which Lp(G,Ω) with
the convolution multiplication is a topological algebra and then characterize its closed ideals and
its spectrum.

1. Introduction

Throughout this paper, letG denote a locally compact Hausdorff group with a fixed left Haar
measure λ. By a weight function on G, we mean an arbitrary strictly positive measurable
function on G, and, by a system of weights on G, a set of weight functions Ω such that given
ω1, ω2 in Ω and c > 0, there is an ν ∈ Ω such that cωi(x) ≤ ν(x) (i = 1, 2) for locally almost all
x ∈ G.

For a weight function ω and 1 ≤ p < ∞, let Lp(G,ω) denote the space of all complex-
valued measurable functions f on G such that fω ∈ Lp(G), the usual Lebesgue space on
G with respect to λ; see [1] for more details. Then, Lp(G,ω) with the norm ‖ · ‖p,ω defined
by ‖f‖p,ω := ‖fω‖p for all f ∈ Lp(G,ω) is a Banach space. We also denote by L∞(G, 1/ω)
the space of all measurable complex-valued functions f on G such that f/ω ∈ L∞(G),
the space defined in [1]. Then, L∞(G, 1/ω) with the norm ‖ · ‖∞,ω defined by ‖f‖∞,ω :=
‖f/ω‖∞ for all f ∈ L∞(G, 1/ω) is a Banach space. Furthermore, for 1 ≤ p < ∞, the
topological dual of Lp(G,ω) coincides with Lq(G, 1/ω), where q is the exponential conjugate
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to p defined by 1/p + 1/q = 1. In fact, the mapping T from Lq(G, 1/ω) to Lp(G,ω) de-
fined by

〈
T
(
f
)
, g

〉
=
∫

G

f(x)g(x)dλ(x) (1.1)

is an isometric isomorphism; see for example [2]. For measurable functions f and g on G, the
convolution multiplication

(
f ∗ g)(x) =

∫

G

f
(
y
)
g
(
y−1x

)
dλ

(
y
)

(1.2)

is defined at each point x ∈ G for which this makes sense. The algebraic and topological
properties of weighted Lp-spaces have been studied extensively; see for example [2–5].

Let 1 ≤ p < ∞ and Ω be a system of weights on G, we set

Lp(G,Ω) =
⋂

ω∈Ω
Lp(G,ω). (1.3)

In this paper, we equip the space Lp(G,Ω) with the natural locally convex topology
generated by the family of norms ‖ · ‖p,ω, where ω runs through Ω. For a similar study in
other contexts, see [6–8]. We investigate certain algebraic and topological properties of the
locally convex space Lp(G,Ω). Our results generalize and improve some interesting results of
[5] and partially answer a question raised in [3].

2. Preliminaries and Some Basic Results

Let G be a locally compact Hausdorff group with a fixed left Haar measure λ and Ω be a
system of weights on G. We equip Lp(G,Ω) with the locally convex topology generated by
the family of norms (‖ · ‖p,ω)ω∈Ω and denote this topology by τΩ. So (Lp(G,Ω), τΩ) has a basis
of closed absolutely convex neighbourhoods at the origin of the form

Vp,ω =
{
f ∈ Lp(G,Ω) :

∥∥f
∥∥
p,ω ≤ 1

}
, (ω ∈ Ω). (2.1)

Note that the topology τΩ is Hausdorff, because if f ∈ Lp(G,Ω) and f /= 0, we have
λ({x ∈ G : f(x)/= 0}) > 0. Put E = {x ∈ G : f(x)/= 0} and fix ω ∈ Ω. Then,

∥∥f
∥∥
p,ω =

(∫

G

(∣∣f
∣∣ω

)p
dλ

)1/p

≥
(∫

E

(∣∣f
∣∣ω

)p
dλ

)1/p

> 0, (2.2)

and thus τΩ is Hausdorff.
If Ω and Γ are two systems of weights on G and for every ω ∈ Ω, there is a ν ∈ Γ such

that ω ≤ ν (pointwise locally almost everywhere on G), then we write Ω ≤ Γ. In the case
which Γ ≤ Ω and Ω ≤ Γ, we write Ω ∼ Γ.
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Proposition 2.1. Let Ω and Γ be two systems of weights on G and T : G → G be a measurable
mapping such that Ω ≤ Γ ◦ T := {ν ◦ T : ν ∈ Γ}. If the Radon-Nikodym function h = d(λ ◦ T−1)/dλ
belongs to L∞(G), then the mapping f �→ f ◦ T is a continuous linear map from (Lp(G,Γ), τΓ) into
(Lp(G,Ω), τΩ).

Proof. Given f ∈ Lp(G,Γ) and ω ∈ Ω, choose ν ∈ Γ such that ω ≤ ν ◦ T . Then we have

∥
∥f ◦ T∥∥p,ω =

(∫

G

(∣∣f ◦ T(x)∣∣ω(x)
)p
dλ(x)

)1/p

≤
(∫

G

(∣∣f ◦ T(x)∣∣(ν ◦ T)(x))pdλ(x)
)1/p

=
(∫

G

(∣∣f(x)
∣
∣ν(x)

)p
d
(
λ ◦ T−1

)
(x)

)1/p

≤
(∫

G

(∣∣f(x)
∣
∣ν(x)

)p
h(x)dλ(x)

)1/p

≤ ‖h‖∞
∥∥f

∥∥
p,ν < ∞.

(2.3)

Hence, ω(f ◦T) ∈ Lp(G). Since ω ∈ Ωwas arbitrary, f ◦T ∈ Lp(G,Ω). Continuity also follows
from the above relations.

The space of all bounded Borel measurable functions on G with compact support will
be denoted by Bc(G). Let us remark that if Bc(G) ⊆ Lp(G,Ω), then Bc(G) is norm dense in
Lp(G,ω) for any weight ω on G; see for example [9].

Corollary 2.2. Let Ω and Γ be two systems of weights on G. Then,

(i) If Ω ≤ Γ, then the induced topology τΩ on Lp(G,Γ) is weaker than τΓ.

(ii) If Bc(G) ⊆ Lp(G,Γ) ⊆ Lp(G,Ω) and τΩ ⊆ τΓ, thenΩ ≤ Γ. In particular, Ω ∼ Γ if and only
if Lp(G,Γ) = Lp(G,Ω).

Proof. (i) is trivial. For (ii), we observe that for any ω ∈ Ω, there is a ν ∈ Γ such that
Vp,ν ⊆ Vp,ω ∩ Lp(G,Γ). So the identity map I from (Lp(G,Ω), ‖ · ‖p,ν) into (Lp(G,ω), ‖ · ‖p,ω)
is continuous. Since Lp(G,Γ) is dense in (Lp(G, ν), ‖ · ‖p,ν), I can be extended continuously
to a continuous linear mapping on Lp(G, ν). The extension map is again the identity map.
So Lp(G, ν) ⊆ Lp(G,ω). Hence, there exists a constant c > 0 such that ω(x) ≤ c ν(x) locally
almost everywhere; see Lemma 2.1 in [10]. This proves that Ω ≤ Γ.

Let us recall the definition of the projective limit of a family of locally convex spaces.
Let (Λ,≤) be a partially ordered set and {Xα : α ∈ Λ} be a family of locally convex spaces, and
for α ≤ β, fα,β be a linear map fromXβ intoXα. Suppose that fαγ = fαβ◦fβγ for all α ≤ β ≤ γ and
fαα be the identity map on Xα for all α ∈ Λ. Then, the projective limit of the family (Xα, fα,β)
is defined as

lim
α

(
Xα, fα,β

)
=

{

(xα) ∈
∏

α∈Λ
Xα : xα = fα,β

(
xβ

)
, whenever α ≤ β

}

; (2.4)

for more details see for example [11].

Proposition 2.3. Let Ω be a system of weights on G. Then (Lp(G,Ω), τΩ) is a complete space.
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Proof. We note that for any two weights ω, ν ∈ Ω with ω ≤ ν, Lp(G, ν) ⊆ Lp(G,ω). Let
the mapping Iω,ν : Lp(G, ν) → Lp(G,ω) be the canonical injection. Then, it is clear that
(Lp(G,Ω), τΩ) is isomorphic to the projective limit system limω(Lp(G,ω), Iω,ν) of the Banach
spaces (Lp(G,ω), ‖ · ‖p,ω), ω ∈ Ω, and, hence, is complete; see Lemma 3.2.1 in [12].

Proposition 2.4. The locally convex space (Lp(G,Ω), τΩ) is normable if and only if the topology τΩ
is generated by ‖ · ‖p,ω for some ω ∈ Ω.

Proof. If Lp(G,Ω) is normable, then it has a neighbourhood V of zero that is norm bounded
with respect to ‖ · ‖p,ω for every ω ∈ Ω. Hence, there is ω′ ∈ Ω so that Vp,ω′ = {f ∈ Lp(G,Ω) :
‖f‖p,ω′ ≤ 1} is norm bounded in the space (Lp(G, ν), ‖ · ‖p,ν) for every ν ∈ Ω. This implies that
there is a positive constant cν so that Vp,ω′ ⊆ cνVp,ν, and our claim is proved. The converse is
clear.

3. The Dual and Bidual of LP(G,Ω), 1 ≤ p < ∞
In this section we deal with the dual space of (Lp(G,Ω), τΩ) and, among other things, charac-
terize its equicontinuous subsets.

Theorem 3.1. If 1 ≤ p < ∞ and Bc(G) ⊆ Lp(G,Ω), then the dual space of (Lp(G,Ω), τΩ) is
Ω · Lq(G) := {ωf : ω ∈ Ω, f ∈ Lq(G)} with 1/p + 1/q = 1.

Proof. Let h ∈ Lq(G, 1/ω). We define the linear functional F : Lp(G,Ω) → C by F(f) =∫
G fh dλ, then F ∈ (Lp(G,Ω), τΩ)

∗.
Conversely, let F ∈ (Lp(G,Ω), τΩ)

∗. First, we know that Bc(G) ⊆ Lp(G,Ω) ⊆ Lp(G,ω)
for every ω ∈ Ω. So there is a ν ∈ Ω such that |F(f)| ≤ 1 whenever f ∈ {h ∈ Lp(G,Ω) :
‖h‖p,ν ≤ 1}. As F is bounded in the intersection of the unit ball of (Lp(G, ν), ‖ · ‖p,ν) with
(Lp(G,Ω), ‖ · ‖p,ν), F is continuous on Lp(G,Ω)with the topology induced by the norm ‖ · ‖p,ν.
Since Lp(G,Ω) is dense in (Lp(G, ν), ‖ · ‖p,ν), F can be extended continuously to a continuous
linear form on Lp(G, ν) which we denote by F̃. Then, we have F̃ ∈ (Lp(G, ν), ‖ · ‖p,ν)∗, and
hence there is a unique h ∈ Lq(G, 1/ν) so that

F̃
(
f
)
=
∫

G

fhdλ
(
f ∈ Lp(G, ν)

)
; (3.1)

therefore, we obtain the following isomorphism:

Φ :
⋃

ω∈Ω
Lq

(
G,

1
ω

)
−→ (Lp(G,Ω), τΩ)

∗, (3.2)

defined by Φ(h) = Fh, where Fh(f) =
∫
G fhdλ for all f ∈ Lp(G,Ω).

Lemma 3.2. Let Ω be a system of weights on G. For every ω ∈ Ω, define the mapping Tω :
Lp(G,Ω) → Lp(G) by Tω(f) = fω. Then, V ◦

p,ω = T ∗
ω(B

◦) for ω ∈ Ω, where B is the closed unit ball
of Lp(G) and B◦ denotes its polar.

Proof. It is clear that Tω is a well-defined continuous linearmap. Also, Tω(Lp(G,Ω)) is dense in
(Lp(G), ‖ · ‖p). Therefore T ∗

ω (the adjoint of Tω) is weak∗ continuous and one to one linear map
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from Lq(G) into Ω · Lq(G), where 1/p + 1/q = 1. Now, since B◦ is σ(Lq(G), Lp(G))-compact
by the Alaoglu theorem and so T ∗

ω(B
◦) is σ(Ω · Lq(G), Lp(G,Ω))-compact, while T ∗

ω(B
◦) is

obviously convex. So we find that

Vp,ω =
{
f ∈ Lp(G,Ω) : Tω

(
f
) ∈ B

}
= T−1

ω (B) =
{
f ∈ Lp(G,Ω) : Tω

(
f
) ∈ B◦◦}

=
{
f ∈ Lp(G,Ω) :

∣∣T ∗
ω

(
g
)(
f
)∣∣ ≤ 1, for every g ∈ B◦} = T ∗

ω(B
◦)◦.

(3.3)

Form which it follows that

V ◦
p,ω = T ∗

ω(B
◦)◦◦ = T ∗

ω(B
◦). (3.4)

We have the following characterization of the equicontinuous subsets of Ω · Lq(G).

Theorem 3.3. Let 1 ≤ p < ∞ and M be a subset of (Lp(G,Ω), τΩ)
∗ = Ω · Lq(G). The following are

equivalent.

(a) M is τΩ-equicontinuous.

(b) There are ω ∈ Ω and an equicontinuous subset M′ of (Lp(G), ‖ · ‖p)∗ = Lq(G) so that
M ⊆ ω ·M′.

(c) There are ω ∈ Ω and α > 0 such that sup{‖f/ω‖q : f ∈ M} ≤ α < ∞ whenever
1/p + 1/q = 1.

Proof. (a ⇒ b) By (a), there is ω ∈ Ω so that M ⊆ V ◦
p,ω, where Vp,ω = {f ∈ Lp(G,Ω) : ‖f‖p,ω ≤

1}. According to Lemma 3.2, we have V ◦
p,ω = T ∗

ω(B
◦), where B is the closed unit ball of Lp(G).

Hence M ⊆ ωB◦.
(b ⇒ c) There is α > 0 so that M′ ⊆ αB◦ by (b). So M ⊆ αωB◦, and supf∈M‖f/ω‖q ≤ α.
(c ⇒ a) If p = 1, it is clear that

M ⊆
{
f ∈ Lp(G,Ω) :

∫

G

∣∣f(x)
∣∣ω(x)dλ(x) ≤ 1

α

}◦
, (3.5)

and if 1 < p < ∞, by Hölder’s inequality, for h ∈ M and

f ∈ W =
{
f ∈ Lp(G,Ω) :

∥∥f
∥∥
p,ω ≤ 1

α

}
, (3.6)

we have

∣∣∣∣

∫

G

hf dλ

∣∣∣∣ ≤
∫

G

∣∣∣∣
h

ω

∣∣∣∣
∣∣fω

∣∣dλ ≤
∥∥∥∥
h

ω

∥∥∥∥
q

∥∥fω
∥∥
p ≤ 1. (3.7)

Hence, M ⊆ W◦, and this guarantees that M is τΩ-equicontinuous in both cases.
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Proposition 3.4. Let Ω be a system of weights on G. Then, the set of extreme points of V ◦
p,ω is the set

{ωf : f ∈ Lq(G), ‖f‖q = 1} for 1 < p < ∞, and {f ∈ L∞(G) : |f | = 1 l.a.e. } for p = ∞.

Proof. Fix ω ∈ Ω and let Tω : Lp(G,Ω) → Lp(G) be the map defined in Lemma 3.2. From
Lemma 3.2, it follows that for any extreme point h of V ◦

p,ω, there is an extreme point f of B◦

so that h = T ∗
ω(f) = fω.

Conversely, let ω ∈ Ω be arbitrary and let h = ωf , where f is an extreme point of B◦.
Clearly, h ∈ V ◦

p,ω, and if h = cg + (1 − c)k for some g, k ∈ V ◦
p,ω and 0 < c < 1, then there are

m,n ∈ B◦ such that T ∗
ω(m) = g and T ∗

ω(n) = k. Thus, T ∗
ω(f) = h = T ∗

ω(cm + (1 − c)n) and since
T ∗
ω is one to one, f = cm + (1 − c)n. However f is an extreme point of B◦, which implies that

f = m = n, and hence h = g = k, that is, h is an extreme point of V ◦
p,ω. Now the rest of the

proof is easy to complete; see for example Section 2.14 in [13].

Let us recall that a locally convex space (E, τ) is called semireflexive if (E, τ)∗∗ = E.

Theorem 3.5. Let Ω be a system of weights on G. Then (Lp(G,Ω), τΩ) is semireflexive.

Proof. If F ∈ (Lp(G,Ω), τΩ)
∗∗, then the restriction of F to Lq(G, 1/ω), for every ω ∈ Ω,

belongs to Lq(G, 1/ω)∗, where Lq(G, 1/ω) was considered with the induced strong topology
on (Lp(G,Ω), τΩ)

∗. Now if {hα}α∈I ⊆ Lq(G, 1/ω) and hα → h for some h ∈ Lq(G, 1/ω) in the
norm ‖ · ‖q,1/ω, then for every weakly bounded set A in Lp(G,Ω),

∫

G

f(hα − h)dλ −→ 0 uniformly on A. (3.8)

This means that hα → h in the strong topology of (Lp(G,Ω), τΩ)
∗. Hence, for every

ω ∈ Ω, there is a unique fω ∈ Lp(G,ω) so that

F(h) =
∫

G

fωhdλ on Lq

(
G,

1
ω

)
. (3.9)

Now note that if ω, ν ∈ Ω with ω ≤ ν, then Lp(G, ν) ⊆ Lp(G,ω) and Lq(G, 1/ω) ⊆
Lq(G, 1/ν). Therefore for every h ∈ Lq(G, 1/ω),

∫

G

fωhdλ =
∫

G

fνh dλ, (3.10)

and hence fω = fν almost everywhere. This implies that

F ∈ lim
ω

(Lp(G,ω), Iω,ν) = Lp(G,Ω). (3.11)

Conversely, if f ∈ Lp(G,Ω), then it is obvious that the linear form

F(h) =
∫

G

fhdλ
(
h ∈ (Lp(G,Ω), τΩ)

∗) (3.12)
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is continuous with respect to the strong topology on (Lp(G,Ω), τΩ)
∗. So the canonical imbed-

ding J : Lp(G,Ω) → (Lp(G,Ω), τΩ)
∗∗ is onto. Hence Lp(G,Ω) is semireflexive.

4. LP(G,Ω) As a Topological Algebra

In this section, we study conditions on a system of weights Ω for that Lp(G,Ω) with the
convolution multiplication to be a topological algebra. We commence with some definitions.

If f is a function on G, the left translate of f by x ∈ G is the function given by Lxf(y) =
f(x−1y). A subset F of functions on G is called left translation invariant if Lxf ∈ F for all
f ∈ F and x ∈ G.

A weight function ω on a locally compact group G is called left moderate if


(s) := ess sup
t

ω(st)
ω(t)

< ∞, (4.1)

for all s ∈ G. It is easy to see that 
(s) > 0, 
(st) ≤ 
(s)
(t); see [4] or [9]. Let us remark
that any submultiplicative and any locally integrable left moderate measurable function is
bounded and bounded away from zero on any compact subset of G; see Theorem 2.7 in [10].
In particular, 
 is bounded on compact sets. The condition thatω is left moderate is equivalent
to that the space Lp(G,ω) (for 1 ≤ p ≤ ∞) being translation invariant; see for more details [4].
Observe that for f ∈ Lp(G,ω) and x ∈ G,

∥∥Lxf
∥∥
p,ω =

(∫

G

(∣∣∣f
(
x−1t

)∣∣∣ω(t)
)p

dλ(t)
)1/p

=
(∫

G

(∣∣f(t)
∣∣ω(xt)

)p
dλ(t)

)1/p

≤
(∫

G

(∣∣f(t)
∣∣
(x)ω(t)

)p
dλ(t)

)1/p

= 
(x)
∥∥f

∥∥
p,ω.

(4.2)

Lemma 4.1. Let Ω be a system of weights on G. Then Lp(G,Ω) is left translation invariant if and
only if every element of Ω is left moderate.

Proof. The “if” part is clear by the remarks above. For the converse, we need only to note that
Lp(G,Ω) is dense in (Lp(G,ω), ‖ · ‖p,ω) for ω ∈ Ω.

Theorem 4.2. Let Ω be a system of locally integrable left moderate weights on G and f ∈ Lp(G,Ω).
Then, the map x �→ Lxf from G into (Lp(G,Ω), τΩ) is continuous.

Proof. Assume first that f ∈ Bc(G)withK = supp(f). Let x ∈ G,ω ∈ Ω, and (xα) be a net inG
convergent to x. Choose a compact neighbourhood U of x, then supp(Lxf) ⊆ UK whenever
x ∈ U. Let

k = sup{ω(s) : s ∈ UK} < ∞. (4.3)
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Choose α0 such that xα ∈ U for all α ≤ α0 and ‖Lxαf − Lxf‖p ≤ ε/k. Then

∥
∥Lxαf − Lxf

∥
∥
p,ω =

(∫

UF

(∣∣
∣f
(
xα

−1t
)
− f

(
x−1t

)∣∣
∣ω(t)

)p
dλ(t)

)1/p

≤ k

(∫

UF

(∣∣
∣f
(
xα

−1t
)
− f

(
x−1t

)∣∣
∣
p
dλ(t)

)1/p

= k
∥∥Lxαf − Lxf

∥∥
p

≤ ε,

(4.4)

for all α ≥ α0.
Finally, let f be an arbitrary element of Lp(G,Ω) and ε > 0. Let M be an upper bound

for the function 
 on the compact neighbourhood U of x; recall that 
 is submultiplicative.
For every ω ∈ Ω, there exists gω ∈ Bc(G) such that ‖f − gω‖p,ω ≤ ε/3M. By the first part, we
can choose α0 such that

∥∥Lxαgω − Lxgω
∥∥
p,ω ≤ ε

3
, xα ∈ U, (4.5)

for all α ≥ α0. One can conclude that

∥∥Lxαf − Lxf
∥∥
p,ω ≤ ∥∥Lxαf − Lxαgω

∥∥
p,ω +

∥∥Lxαgω − Lxgω
∥∥
p,ω +

∥∥Lxgω − Lxf
∥∥
p,ω

≤ 
(xα)ε + ε/3 + 
(x)ε

≤ Mε

3M
+
ε

3
+
Mε

3M
= ε,

(4.6)

for all α ≥ α0. This finishes the proof.

We now focus on some systems of weights for that Lp(G,Ω) to be an algebra under
usual convolution

f ∗ g(t) =
∫

G

f(s)g
(
s−1t

)
dλ(s)

(
f, g ∈ Lp(G,Ω)

)
, (4.7)

whenever this integral makes sense. For p = 1, it is well known that L1(G,ω) is a convolution
algebra if and only if ω is weakly submultiplicative; that is, for all x, y ∈ G,

ω(st) ≤ cω(s)ω(t), (4.8)

for some c > 0.
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For any two weight functions ω and ν on G, we set

Φ[ω,ν](x) =
∫

G

(
ω(x)

ν
(
y
)
ν
(
y−1x

)

)q

dλ
(
y
)
. (4.9)

In the case where ω = ν, we simply write Φω = Φ[ω,ω].
The following lemma is similar to Lemma 2.2 in [9].

Lemma 4.3. Let 1 < p < ∞ and Ω be a system of weights on G. If Lp(G,Ω) is a convolution algebra,
then ωp is locally integrable for each ω ∈ Ω.

The next result gives a sufficient condition for that Lp(G,Ω) to be a convolution
algebra.

Theorem 4.4. Let 1 < p < ∞ andΩ be a system of weights on G. If for every ω ∈ Ω, there is a ν ∈ Ω
such that Φ[ω,ν] ∈ L∞(G), where q is the conjugate exponent to p, then the space (Lp(G,Ω), τΩ) is a
complete locally convex algebra with continuous multiplication.

Proof. We must show that

∥∥f ∗ g∥∥p,ω ≤ ∥∥f
∥∥
p,ν

∥∥g
∥∥
p,ν (4.10)

for all f, g ∈ Lp(G,Ω). By Lemma 4.3, Bc(G) is dense in (Lp(G,Ω), ‖ ·‖p,ω), thus for anyω ∈ Ω,
it suffices to show that

∥∥f ∗ g∥∥p,ω ≤ ∥∥f
∥∥
p,ν

∥∥g
∥∥
p,ν, (4.11)

for all f, g ∈ Bc(G). For this, let f, g ∈ Bc(G). Writing

f ∗ g(x) =
∫

G

f
(
y
)
g
(
y−1x

)ν
(
y
)
ν
(
y−1x

)

ν
(
y
)
ν
(
y−1x

)dλ
(
y
)
, (4.12)

and using Hölder’s inequality, we obtain

∣∣f ∗ g(x)∣∣

≤
(∫

G

(|f(y)|ν(y))p(|g(y−1x)|ν(y−1x))pdλ(y)
)1/p

(∫

G

(
1

ν
(
y
)
ν
(
y−1x

)

)q

dλ(y)

)1/q

.

(4.13)
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This shows that

∣
∣
∣
∣

∫

G

(∣∣f ∗ g(x)∣∣ω(x)
)p
dλ(x)

∣
∣
∣
∣

≤
∫

G

(∫

G

(∣∣f
(
y
)∣∣ν

(
y
))p(∣∣

∣g
(
y−1x

)∣∣
∣ν
(
y−1x

))p
dλ

(
y
)
)
Φ[ω,ν](x)p/qdλ(x)

≤ ∥
∥f

∥
∥p

p,ν

∥
∥g

∥
∥p

p,ν

∥
∥Φ[ω,ν]

∥
∥p/q

∞ .

(4.14)

Whence

∥
∥f ∗ g∥∥p,ω ≤ ∥

∥Φ[ω,ν]
∥
∥1/q
∞

∥
∥f

∥
∥
p,ν

∥
∥g

∥
∥
p,ν. (4.15)

This completes the proof.

The following corollary is a direct consequence of Theorem 4.4.

Corollary 4.5. Let 1 < p < ∞ and Ω be a system of weights on G such that for every ω ∈ Ω,
Φω ∈ L∞(G). Then Lp(G,Ω) is a complete locally multiplicative convex algebra.

The next result provides us with a class of weights ω on the additive group R
n for

which the usual weighted Lebesgue space Lp(Rn, ω) becomes a Banach algebra.

Proposition 4.6. Let 1 < p < ∞ and n be a natural number. Let � : R
n → (0,+∞) be a function

such that

(i) If ‖x‖ ≤ ‖y‖, then�(x) ≤ �(y).

(ii) �−1 ∈ L1(Rn).

(iii) There exists a positive number M such that �(2x) ≤ M�(x) for all x ∈ R
n.

Then Lp(Rn, q
√
�) is a Banach algebra, where q is the conjugate exponent to p.

Proof. For any x ∈ R
n, let Ax = {y ∈ R

n : 2‖y‖ ≥ ‖x‖} and observe that

�
(
y
) ≥ �

(x
2

)
, if y ∈ Ax,

�
(
x − y

) ≥ �
(x
2

)
, if y ∈ R

n \Ax.

(4.16)

Hence, for x ∈ R
n,

Φ q√�(x) =
∫

Rn

�(x)
�
(
y
)
�
(
x − y

)dy

=
∫

Rn\Ax

�(x)
�
(
y
)
�
(
x − y

)dy +
∫

Ax

�(x)
�
(
y
)
�
(
x − y

)dy
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≤
(

�(x)
�(x/2)

)(∫

Rn\Ax

1
�
(
y
)dy +

∫

Ax

1
�
(
x − y

)dy

)

≤ 2M‖�‖1.
(4.17)

Thus, Φ q√� ∈ L∞(Rn), and now the result follows from Corollary 4.5.

Example 4.7. Let 1 ≤ p < ∞, q be the conjugate exponent to p, and n ∈ N. Set

ω(x) =
(
a + ‖x‖r)s/qb(1/q) ln(c+‖x‖t) (x ∈ R

n), (4.18)

where sr > n, b > 1 and a, c, t > 0. Then Lp(Rn, ω) is a Banach algebra.

We are going to prove the converse of Theorem 4.4. For this, we fix some notation. If
f, g be two complex-valued functions on G, then f ⊗ g denotes the function on G × G given
by f ⊗ g(x, y) = f(x)g(y) for all x, y ∈ G. Also for any two sets F and K of functions on G
we set F ⊗K = {f ⊗ g : f ∈ F, g ∈ K}. For a locally compact group G, note that the cartesian
product G ×G is a locally compact group by defining the product (x, y)(s, t) = (xs, yt) for all
x, y, s, t ∈ G.

We need the following easy lemma in the sequel.

Lemma 4.8. Let 1 < p < ∞ and Ω be a system of weights on G such that Bc(G) ⊆ Lp(G,Ω). Then
Bc(G) ⊗ Bc(G) is dense in (Lp(G ×G,ω ⊗ω), ‖ · ‖p,ω⊗ω).

Proof. Since Bc(G) is norm dense in Lp(G,ω), then Bc(G) ⊗ Bc(G) is projective tensor
norm dense in Lp(G,ω)⊗̂πL

p(G,ω), where ⊗̂ is the projective tensor product. Hence
Lp(G,ω) ⊗ Lp(G,ω) is π-dense in Lp(G,ω)⊗̂πL

p(G,ω). On the other hand, it is known that
Lp(G,ω)⊗̂πL

p(G,ω) is isometric with (Lp(G ×G,ω ⊗ω), ‖ · ‖p,ω⊗ω). In fact, the linear map

� : Lp(G,ω)⊗̂πL
p(G,ω) −→ Lp(G ×G,ω ⊗ω), �

(
f ⊗ g

)(
x, y

)
= f(x)g

(
y
)

(4.19)

for all f, g ∈ Lp(G,ω) and x, y ∈ G, can be extended to a surjective isometry; for more details,
see for example [14]. Now we conclude that Bc(G)⊗Bc(G) is ‖ · ‖p,ω⊗ω-dense in Lp(G×G,ω ⊗
ω).

The next theorem is our main result in this section.

Theorem 4.9. Let 1 < p < ∞, G be σ-compact, and Ω be a system of weights on G. If the space
(Lp(G,Ω), τΩ) is an algebra with continuous multiplication, then for every ω ∈ Ω there exists a
ν ∈ Ω such that Φ[ω,ν] ∈ L∞(G).

Proof. Choose an arbitrary ω ∈ Ω. Then, by assumption, there exists some ν ∈ Ω such that for
every f, g ∈ Lp(G,Ω), ‖f ∗ g‖p,ω ≤ ‖f‖p,ν‖g‖p,ν. Now for every h ∈ Lq(G, 1/ω),

F
(
f
)
=
∫

G

f(x)h(x)dλ(x)
(
f ∈ Bc(G)

)
(4.20)
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defines a continuous linear functional on Bc(G) with the norm ‖F‖ = ‖h‖q,1/ω. Also for every
f, g ∈ Bc(G), f ∗ g ∈ Bc(G), and we have

F
(
f ∗ g) =

∫

G

f ∗ g(x)h(x)dλ(x) =
∫

G

(∫

G

f
(
y
)
g
(
y−1x

)
dλ

(
y
)
)
h(x)dλ(x)

=
∫

G

∫

G

f
(
y
)
g(x)h

(
yx

)
dλ(x)dλ

(
y
)
< ∞.

(4.21)

Set F(f ⊗ g) = F(f ∗ g) = ∫
G×G f(y)g(x)h(yx) dλ × λ(x, y) for f, g ∈ Bc(G). By Lemma

4.8, F can be extended to a ‖ · ‖p.ν×ν-continuous functional on Lp(G × G, ν ⊗ ν). Since G is
σ-compact, by Exercise 15.14 in [1], it follows that the function (x, y) �→ h(yx) belongs to
Lq(G ×G, 1/(ν ⊗ ν)). But

∫

G

∫

G

(
h
(
yx

)

ν(x)ν
(
y
)

)q

dλ(x)dλ
(
y
)
=
∫

G

∫

G

(
h(x)

ν
(
y
)
ν
(
y−1x

)

)q

dλ(x)dλ
(
y
)

=
∫

G

(
h(x)
ω(x)

)q

Φ[ω,ν](x)dλ(x) < ∞.

(4.22)

Since (h/ω)q ∈ L1(G) is arbitrary, we conclude that Φ[ω,ν] ∈ L∞(G); see Section 14 in [15] or
Theorem 20.15 in [1].

As an immediate consequence of Theorem 4.9, we obtain the following corollary that
partially answers a question raised in [3].

Corollary 4.10. Let ω be a weight on σ-compact group G and 1 < p < ∞. Then Lp(G,ω) is a con-
volution algebra if and only if Φω ∈ L∞(G).

5. Ideals and the Spectrum of the Algebra LP(G,Ω)

We commence this section with the following proposition.

Proposition 5.1. Let 1 ≤ p < ∞ and let Lp(G,Ω) be a translation invariant algebra. Then

(i) (Lp(G,Ω), τΩ) has an approximate identity.

(ii) (Lp(G,Ω), τΩ) has a bounded approximate identity or an identity if and only ifG is discrete.

Proof. (i) LetU be a fixed relatively compact neighbourhood of the identity element e, and let
U be the family of all neighbourhoods of e contained in U directed by reverse inclusion. Set
eV := χV/λ(V ), and note that since elements ofΩ are locally integrable, eV ∈ Lp(G,Ω). Given
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ε > 0 and ω ∈ Ω, then by Theorem 4.2, there exists a neighbourhood W of the identity such
that ‖f − Ltf‖p,ω < ε for t ∈ W . Now, for V ∈ U with V ⊆ W , and g ∈ Lq(G, 1/ω), we have

∣
∣〈eV ∗ f − f, g

〉∣∣ =
∣
∣
∣
∣

∫

G

(
eV ∗ f − f

)
(x)g(x)dλ(x)

∣
∣
∣
∣

≤
∫

G

∫

V

∣
∣f
(
t−1x

) − f(x)
∣
∣

λ(V )
dλ(t)

∣
∣g(x)

∣
∣ dλ(x) ≤ 1

λ(V )

∫

V

〈∣∣Ltf − f
∣
∣,
∣
∣g
∣
∣〉 dλ(t)

≤ sup
t∈V

∥
∥Ltf − f

∥
∥
p,ω

∥
∥g

∥
∥
q,1/ω < ε

∥
∥g

∥
∥
q,1/ω.

(5.1)

Hence, ‖eV ∗f −f‖p,ω ≤ ε for all neighborhoods V ⊆ W , fromwhich it follows that eV ∗f → f
in τΩ-topology.

(ii) Let (eα)α be a bounded left approximate identity for Lp(G,Ω). Fix an ω ∈ Ω, then
‖eα‖p,ω ≤ M for some positive number M. Let f ∈ Lp(G,ω). Since Lp(G,Ω) is dense in
Lp(G,ω)with the norm ‖·‖p,ω, then given ε > 0, there exists g ∈ Lp(G,Ω) such that ‖f−g‖p,ω ≤
ε/3(M + 1). Choose α0 such that ‖eα ∗ g − g‖p,ω ≤ ε/3 for all α ≥ α0. Then it follows that

∥∥eα ∗ f − f
∥∥
p,ω ≤ ∥∥eα ∗ f − eα ∗ g

∥∥
p,ω +

∥∥eα ∗ g − g
∥∥
p,ω +

∥∥f − g
∥∥
p,ω

≤ M
ε

3(M + 1)
+
ε

3
+

ε

3(M + 1)
< ε,

(5.2)

for all α ≥ α0. This means that (Lp(G,ω), ‖ · ‖p,ω has a bounded left approximate identity. But
according to Theorem 4.2 in [9], this is equivalent to that G is discrete.

The next theorem shows that closed ideals of the algebra (Lp(G,Ω), τΩ) are exactly
translation invariant subspaces.

Theorem 5.2. Let 1 ≤ p < ∞ and Lp(G,Ω) be a translation invariant algebra. Then a closed linear
subspace of Lp(G,Ω) is an ideal in Lp(G,Ω) if and only if it is two-sided translation invariant.

Proof. Suppose that I is a τΩ-closed two-sided translation invariant subspace of Lp(G,Ω). We
have to show that g ∗ f ∈ I and f ∗ g ∈ I for all f ∈ I and g ∈ Lp(G,Ω). Let h ∈ Lq(G, 1/ω),
for some ω ∈ G, such that

∫
G f(x)h(x)dλ(x) = 0 for all f ∈ I. Then, for f ∈ I and any

g ∈ Lp(G,Ω),

∫

G

(
g ∗ f)(x)h(x)dλ(x) =

∫

G

h(x)
(∫

G

g
(
y
)
f
(
y−1x

)
dλ

(
y
)
)
dλ(x)

=
∫

G

g
(
y
)
(∫

G

Lyf(x)h(x)dλ(x)
)
dλ

(
y
)

= 0.

(5.3)

Since (Lp(G,Ω), τΩ)
∗ = Ω ·Lq(G), the Hahn-Banach theorem implies that g ∗f ∈ I for all f ∈ I

and g ∈ Lp(G,Ω). Thus I is a left ideal, and using the right translation invariance of I, it is
readily seen, in the same way, that I is also a right ideal.
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Conversely, let I be a closed ideal of (Lp(G,Ω), τΩ), and x ∈ G. Let (eα) be an
approximate identity for Lp(G,Ω). Then for each f ∈ Lp(G,Ω), we have

∥
∥Lx(eα) ∗ f − Lxf

∥
∥
p,ω ≤ 
(x)

∥
∥eα ∗ f − f

∥
∥
p,ω −→ 0. (5.4)

Hence, Lx(eα)∗f → Lxf in τΩ-topology. As I is a τΩ−closed left ideal, it follows that Lxf ∈ I;
that is, I is left translation invariant. Similarly, it is shown that I is also right translation inva-
riant.

We denote by Δ(Lp(G,Ω)) the spectrum of (Lp(G,Ω), τΩ) consisting of all τΩ-continu-
ous nonzero linear functionals Φ on Lp(G,Ω) which are multiplicative; that is,

Φ
(
f ∗ g) = Φ

(
f
)
Φ
(
g
) (

f, g ∈ Lp(G,Ω)
)
. (5.5)

We conclude this work with the following result which is a characterization of the
spectrum of (Lp(G,Ω), τΩ).

Proposition 5.3. Let Ω be a system of weights on 6-compact group G. Then

Δ(Lp(G,Ω)) =
{
Φρ : ρ ∈ Lq

(
G,

1
ω

)
, ω ∈ Ω , ρ

(
xy

)
= ρ(x)ρ

(
y
)
}
, (5.6)

where

Φρ

(
f
)
=
∫

G

f(x)ρ(x)dλ(x)
(
f ∈ Lp(G,Ω)

)
. (5.7)

Proof. Let ρ ∈ Lq(G, 1/ω) for some ω ∈ Ω such that ρ(xy) = ρ(x)ρ(y) for almost all x, y ∈ G.
Then, Φρ is ‖ · ‖p,ω-continuous and so τΩ-continuous. Moreover, for f, g ∈ Lp(G,Ω),

Φρ

(
f ∗ g) =

∫

G

∫

G

f(x)g
(
y
)
ρ
(
xy

)
dλ(x)dλ

(
y
)

=
∫

G

∫

G

f(x)g
(
y
)
ρ(x)ρ

(
y
)
dλ(x)dλ

(
y
)

= Φρ

(
f
)
Φρ

(
g
)
.

(5.8)

That is, Φρ ∈ Δ(Lp(G,Ω)).
Conversely, let Φ ∈ Δ(Lp(G,Ω)). Then Φ is bounded on a τΩ-neighbourhood of zero.

ThusΦ is bounded on the set {f ∈ Lp(G,Ω) : ‖f‖p,ω < 1}∩Lp(G,ω) for someω ∈ Ω. Therefore
Φ can be extended to an elementΦ in (Lp(G,ω), ‖·‖p,ω)∗. It follows that there exists a function
ρ ∈ Lq(G, 1/ω) such that

Φ
(
f
)
=
∫

G

fρ dλ, (5.9)
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for all f ∈ Lp(G,ω). Since for f, g ∈ Bc(G), Φ(f)Φ(g) = Φ(f ∗ g), we infer that

∫

G×G
f
(
y
)
g(x)ρ

(
y
)
ρ(x)dλ × λ

(
x, y

)
=
∫

G

∫

G

f
(
y
)
g(x)ρ

(
y
)
ρ(x)dλ

(
y
)
dλ(x)

=
∫

G

∫

G

f
(
y
)
g(x)ρ

(
yx

)
dλ

(
y
)
dλ(x)

=
∫

G×G
f
(
y
)
g(x)ρ

(
yx

)
dλ × λ

(
x, y

)
.

(5.10)

By an argument similar to the proof of Theorem 4.9, we deduce that ρ(xy) = ρ(x)ρ(y) for
almost all x, y ∈ G.
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