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Abstract We examine a renormalizable SUSY SO(10)
model without fine-tuning. We show how to construct MSSM
doublets and to predict proton decay. We find that in the min-
imal set of Yukawa couplings the model is consistent with
the experiments, while including 120H to fit the data there
are inconsistencies.

1 Introduction

Supersymmetric (SUSY) grand unification theories (GUTs)
of SO(10) [1,2] are very important candidates for the new
physics beyond the standard model (SM). As was firstly
occurred in the SU(5) models, a very serious difficulty in
all GUT models is the realization of doublet–triplet split-
ting (DTS) within the same Higgs multiplets. The two Higgs
doublets of the minimal supersymmetric standard model
(MSSM) have weak scale masses, while the color triplets
and anti-triplets in the same representations need to have
masses of the GUT scale. This is not only needed in the real-
ization of gauge coupling unification [3–8], but also needed
in the suppression of proton decay mediated by the colored
Higgsinos [9–12].

In the models without natural DTS, the two Higgs dou-
blets of the MSSM are generated through fine-tuning the
doublet mass matrix [13–18]. The condition is highly non-
linear, so that it is difficult for these doublets to satisfy those
constraints got by fitting the SM fermion masses and mixing.
Consequently, the superpotential parameters are difficult to
fix so that the models are difficult to make definite predictions
on data like proton decay.

In the present work, we will discuss the MSSM dou-
blets and proton decay in a renormalizable SUSY SO(10)
model [19] in which the DTS is realized through the
Dimopoulos–Wilczek (DW) mechanism [20–33] of miss-
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ing vacuum expectation value (VEV). In this model, the
MSSM doublets are linear combinations of the Higgs dou-
blets from several different representations of SO(10). Con-
sequently, the superpotential parameters are easily related to
these doublets. Then the color-triplet Higgs mass matrix is
determined, which makes the determination of proton decay
feasible. Being a renormalizable model, the Z2 subgroup of
the SO(10) center Z4 remains unbroken which acts as the
matter parity, thus dangerous dimension-four operators of
proton decay are eliminated, and the lightest SUSY particle
(LSP) is stable which is a good candidate of the dark matter
[34].

There are also other important advantages in the model
[19]. Following [35–37], the type-I seesaw mechanism [38–
44] for neutrino masses and mixing is incorporated without
introducing a real scale. Instead, only a VEV smaller than
the GUT scale is used, so that all heavy particles are given
masses of the GUT scale. Consequently, the mass splitting
among them is not large and thus the threshold effects of the
GUT scale can be small, at least when we adjust the parame-
ters which are not used in the present numerical study. In this
sense the gauge coupling unification is maintained. Further-
more, the form of the color-triplet mass matrix exhibits pro-
ton decay suppression explicitly [36,37]. However, whether
the model [19] is realistic or not depends on whether its pre-
diction on proton decay is consistent with the data, and we
will examine this in the following.

2 Superpotential

The model in [19] is a renormalizable SUSY SO(10) model in
which the Yukawa couplings are given by the superpotential

W Fermion = Y i j
10ψiψ j H1+Y i j

120ψiψ j D1+Y i j
126ψiψ j�1, (1)

which is generally enough to fit all fermion masses and mix-
ing. Here ψi (i = 1, 2, 3) are the matter superfields, H1, D1

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/189733982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5254-2&domain=pdf
mailto:chenzhiyongczy@pku.edu.cn
mailto:dxzhang@pku.edu.cn


669 Page 2 of 10 Eur. Phys. J. C (2017) 77 :669

and �1 are the Higgs superfields in the 10, 120 and 126 rep-
resentations of SO(10), respectively.

SO(10) symmetry is broken by �(210) and/or A(45) +
E(54) into SU (3)C × SU (2)L × U (1)B−L × U (1)I3R . To
further break U (1)B−L ×U (1)I3R into U (1)Y of the MSSM
symmetry, the SM singlets which carry nonzero B−L quan-
tum numbers need to have VEVs. In renormalizable models
these SM singlets are contained in �(126) + �(126). It has
been studied in [15] that these VEVs v = v, which is required
by the D-flatness of SUSY, should be taken at the GUT scale
2 × 1016 GeV to avoid breaking gauge coupling unification.
However, to generate low energy neutrino masses and mix-
ing, the seesaw mechanism requires these VEVs to be of
order ∼ 1014 GeV. To solve this discrepancy, we need to
introduce two pairs of � + �, one �1 couples to the matter
fields through (1) which has a smaller VEV v1 ∼ 1014 GeV
for the seesaw mechanism, the other VEVs are at the GUT
scale to realize gauge coupling unification.

To be specific, we introduce the following superpotential:

(m1 + η1�)�1�2 + (m2 + η2�) �2�1 + η3Q�2�2, (2)

which contains all interactions relevant to the U (1)B−L

breaking. The D-flatness condition of maintaining SUSY at
the GUT scale is simply |v1|2 + |v2|2 = |v1|2 + |v2|2. The
F-flatness conditions are

0 = (
v1 v2

) (
0 m1 + η1�0

m2 + η2�0 η3Q

)
,

0 =
(

0 m1 + η1�0

m2 + η2�0 η3Q

) (
v1

v2

)
,

where �0 is a combination of the three VEVs in �, and the
SO(10) singlet Q has a VEV ∼ 10−2�GUT. This smaller
VEV Q can be linked with the Planck scale by Q ∼
�2

GUT/�Planck through the Green–Schwarz mechanism [45–
48], provided that the extra global symmetry is embedded
into an anomalous U(1) symmetry [37]. One set of solutions
of the above equations require m2 + η2�0 = 0, which gives

v1 = v2
η3Q

η1
η2
m2 − m1

∼ 10−2�GUT (3)

and

v2 = 0, (4)

and v2 ∼ v1 ∼ �GUT satisfying the D-flatness condition.
Note that following (2), the color-triplet–anti-triplet mass
matrix has the structure

(
0 �GUT

�GUT Q

)
. (5)

When only �1 couples with the matter superfields, we can
integrate out �2 − �2 to generate the effective triplet mass

matrix whose elements are ∼ �2
GUT
Q ∼ 102�GUT. Conse-

quently, the dimension-five operators for proton decay medi-
ated by the color triplet–anti-triplet of �1 are suppressed
accordingly. To suppress proton decay mediated by D1(120)

of (1), we need also introduce a second D2(120) to get a mass
matrix with the same structure as (5).

Now we include H1(10), which couples with the mat-
ter superfields. H1, D1,�1,�1 couple with D2,�2,�2

through �. Note that in � there is also a pair of SU (2)L
doublets. As will be seen in the next section, v2 = 0 elim-
inates some possible mixing terms between the doublets of
� and those of H1, D1,�1,�1. This is crucial in gener-
ating a pair of massless doublets in the model. There are,
however, also a pair of massless color triplet–anti-triplet. To
give these triplet masses of the GUT scale, we need to use
the DW mechanism using a second H2(10) and A(45) with
DW-type VEVs A1 = 0, A2 �= 0. Here A1 and A2 are the
VEVs of the SM singlets in the (1,1,3) and (15,1,1) directions,
respectively, under the SU (4)c × SU (2)L × SU (2)R sub-
group of SO(10). To suppress H1(10) mediated dimension-
five operators for proton decay, we need another A′(45)

whose VEVs A′
1 �= 0, A′

2 = 0, which are the comple-
ments to the DW (CDW) mechanism. In [19] it was found
that the simplest method to realize both the DW and the
CDW mechanisms is using the superpotential of the form

ξ1PAA′ + (ξ2E + ξ3R)A′A′′, (6)

which contains all interactions for A′ and the new A′′(45)

contributing to their F-terms. Here P, R are SO(10) sin-
glets playing the roles of masses and E is a 54 of SO(10).
Solving the F-term conditions for A′′ gives the CDW
VEV A′

2 = 0, then solving the F-term conditions for
A′ gives the DW VEV A1 = 0. There is another set
of solutions with A′

1 = 0 and A2 = 0, which are not
used.

In the renormalizable models, the direct application of
the DW mechanism does not work, since the couplings
H1AH2 and D1AH2 exist simultaneously. The latter inter-
action invalidities the DW mechanism due to the cou-
pling D1(15, 2, 2)A2(15, 1, 1)H2(1, 2, 2) using the nota-
tions under SU (4)c×SU (2)L ×SU (2)R . To avoid this inter-
action, the filter mechanism [33] can be used with the super-
potential

PH1h + mhhh + AhH2 + 1

2
mH2 H

2
2 (7)

where dimensionless couplings are suppressed. The singlet
P is used as a filter to eliminate D1PAH2 while keeping
H1PAH2. To apply the CDW mechanism to suppress proton
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Table 1 Notations and
Z24 × Z4 properties of all
superfields. Here ψi (i = 1, 2, 3)

are the matter superfields

A′′ E R A′ P A E ′ � Q ψi

SO(10) 45 54 1 45 1 45 54 210 1 16

Z24 2 12 12 10 2 12 0 0 4 −1

Z4 −1 0 0 1 1 2 0 0 0 0

H1 h h H2 H3 D1 �1 �1 D2 �2 �2

SO(10) 10 10 10 10 10 120 126 126 120 126 126

Z24 2 −4 4 8 6 2 2 2 −2 −2 −2

Z4 0 −1 1 1 2 0 0 0 0 0 0

Table 2 Redefinitions of the
couplings Old η′

1 η′
2 η′

3 η′
4 η′

5 η′
6 η′

7 η′
8 η′

9

New 10
√

6η1 10
√

6η2 η3 2
√

30η4 2
√

30η5 2
√

30η6 2
√

30η7 η8
5
√

2
2 η9

Old η′
10 η′

11 η′
12 η′

13 η′
14 η′

15 λ′
1 λ′

2

New 5
√

2
2 η10 2η11

√
5η12

√
5η13

3
√

2
2 η14

3
√

6
2 η15

√
6λ1 2

√
2λ2

decay mediated by the color triplets of H1, the last term in
(7) is replaced by

A′H2H3 + 1

2
mH3 H

2
3 . (8)

Consequently, H1 mediated proton decay is fobidden, as can
be seen in Sect. 3. In building realistic models, mass param-
eters can be replaced by VEVs of singlets and/or 54s.

When we use all the above superfields to build the model,
the F-flatness conditions cannot be all consistent so that a new
E ′(54) is introduced. All the superfields are summarized in
Table 1. To avoid unwanted terms, we have enforced an extra
symmetry Z24 × Z4 under which the transformation proper-
ties of all the particles are also listed in Table 1. Note that to
generate the seesaw VEV ∼ Q through the Green–Schwarz
mechanism, this discrete symmetry is the subgroup of the
anomalous gauge U(1) groups [37], its symmetry breaking
may not bring in the domain wall problem.

Then the full superpotential is

WHiggs = WSB + WD� + Wfilter + WDW , (9)

where

WSB = 1

2
m��2 + λ′

1�
3 + λ′

2E
′�2 + λ′

3�A2

+1

2
mE ′E ′2 + 1

2
mE E

2

+λ′
4E

2E ′ + λ′
5E

′3 + 1

2
mAA

2 + λ′
6E

′A2

+1

2
mRR

2 + λ′
7REE ′,

WD� = (
η′

1� + m1
)
�1�2 + (

η′
2� + m2

)
�2�1

+η′
3Q�2�2 + �D1

(
η′

4�2 + η′
5�2

)

+�
(
η′

6�1 + η′
7�1

)
D2 + η′

8QD2
2

+E ′(η′
9�1�2 + η′

10�1�2)

+�H1
(
η′

11D2 + η′
12�2 + η′

13�2
)

+ (
mD + η′

14E
′ + η′

15�
)
D1D2,

Wfilter = κ1PH1h + (
κ2E

′ + mh
)
hh + κ3AhH2

+κ4A
′H2H3

+1

2
(κ5R + κ6E)H2

3 .

WDW = ξ1PAA′ + (ξ2E + ξ3R)A′A′′.

Here, the couplings with “′” follow the notations given in
[16]. However, not all of them are normalized properly to be
of order one. In Table 2, we redefine these couplings so that
the unprimed couplings are of order one numerically.

Compared to [19], we have eliminated a reluctant 45 and
its interactions. Although the superpotential (9) is compli-
cated, it solves several major difficulties of SUSY SO(10) at
the same time and thus can be taken as a prototype of realistic
SUSY GUTs. The many representations used in building this
model may bring in the question if they are allowed. To our
knowledge, except the string model argument [49] based on
perturbative study, there is no reason to exclude these repre-
sentations in principle. Whether the model is minimal or not
remains an open question.

3 The weak doublets and the color triplets

The mass matrix for the doublets can be read off from (9). To
simplify the discussion, we neglectWfilter at first and consider
its effects later. The mass matrix for the doublets is

MD�
D =

(
06×5 A6×5

B4×5 C4×5

)
, (10)
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where the columns are (Hu
1 , Du

1 , D′u
1 ,�

u
1,�u

1;�u;�
u
2,

�u
2, Du

2 , D′u
2 ), and the rows are (Hd

1 , Dd
1 , D′d

1 ,�d
1 ,�

d
1;�d ;

�d
2 ,�

d
2 , Dd

2 , D′d
2 ). The sixth row corresponds to �d , and

the first five entries in this row are proportional to v2,
which is zero. It is obvious that the upper-most six rows
are not independent which combine into a massless eigen-
state of Hd type, while the left-most five columns give a

B4×5 =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

−η12

(√
2

2 �2 + 1
2�3

)
η4�3

2 η4

(
�1√

2
+ �3√

3

)
b14

1
2

√
5
6 E

′η9

1
2η13

(√
2�2 − �3

)
η5�3

2 b23
1
2

√
5
6 E

′η10 b25

−η11�1 b32
η15�3

2
√

2
η7�3

2
η6�3

2

− η11�3√
2

η15�3

2
√

2
b43 η7

(
�1√

2
+ �3√

3

)
b45

⎞

⎟⎟⎟⎟⎟
⎟
⎠

,

Hu type massless eigenstate. Consequently, the massless
doublets can easily be seen from (10),

H0
u = α1

u H
u
1 + α2

u D
u
1 + α3

u D
′u
1 + α4

u�
u
1 + α5

u�
u
1

H0
d = α1

d H
d
1 + α2

d D
d
1 + α3

d D
′d
1 + α4

d�
d
1

+α5
d�

d
1 + α6

d�
d
1 (11)

satisfying the linear equations

(α1
d , α

2
d , α

3
d , α

4
d , α

5
d , α

6
d)

∗A6×5 = 0,

B4×5(α
1
u, α

2
u, α

3
u, α

4
u, α

5
u)

† = 0 (12)

and the normalization conditions

1 = |α1
u |2 + |α2

u |2 + |α3
u |2 + |α4

u |2 + |α5
u |2,

1 = |α1
d |2 + |α2

d |2 + |α3
d |2 + |α4

d |2 + |α5
d |2 + |α6

d |2. (13)

The explicit forms of A6×5 and B4×5 can be read off from
the superpotential,

A6×5 =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

−η13v̄2 a12
1
2η12

(√
2�2 − �3

)
−η11�1 − η11�3√

2

−η5v̄2
η5�3

2
η4�3

2 a24
η15�3

2
√

2

−√
3η5v̄2 a32

1
6η4

(
3
√

2�1 − 2
√

3�3

)
η15�3

2
√

2
mD − E ′η14

2
√

30
+ η15�2√

3√
6η2v̄2 a42

1
2

√
5
6 E

′η9
η6�3

2 η6

(
�1√

2
+ �3√

3

)

0 1
2

√
5
6 E

′η10 m1 + η1

(
2�2−

√
2�3

)

√
3

η7�3
2

1
6η7

(
3
√

2�1 − 2
√

3�3

)

a61
√

6v1η2 0 −v1η6 −√
3v1η6

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

,

where

a12 = −1

2
η13

(√
2�2 + �3

)
,

a24 = mD + 3

2

√
3

10
E ′η14,

a32 = η5

(
�1√

2
+ �3√

3

)
,

a42 = m2 +
η2

(
2�2 + √

2�3

)

√
3

,

a61 = m� −
√

3

10
E ′λ2 + √

3λ1�2 +
√

3

2
λ1�3,

and

where

b14 = m1 +
η1

(
2�2 + √

2�3

)

√
3

,

b23 = η5

(√
2

2
�1 −

√
3

3
�3

)

,

b25 = m2 +
η2

(
2�2 − √

2�3

)

√
3

,

b32 = mD + 3

2

√
3

10
E ′η14,

b43 = mD − E ′η14

2
√

30
+ η15�2√

3
,

b45 = η6

(√
2

2
�1 −

√
3

3
�3

)

.

Here we have used the fields to represent the VEVs of
their SM singlets without introducing confusion, and �1,2,3

are the VEVs of � in the (1,1,1), (15,1,1) and (15,1,3) direc-
tions, respectively, under the SU (4)c × SU (2)L × SU (2)R
subgroup.

Now we take into the effects of Wfilter. Ordering both the
columns and the rows as (H0

u(d), h, h, H2, H3) with H0
u,d

123
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given in (11), we have the doublet mass matrix

Mfilter
D =

⎛

⎜⎜
⎜
⎝

0 α1
dκ1P 0 0 0

α1
uκ1P 0 κ2E ′ + mh 0 0

0 κ2E ′ + mh 0 κ3A1 = 0 0
0 0 κ3A1 = 0 0 κ4A′

1
0 0 0 κ4A′

1 κ5R + κ6E

⎞

⎟⎟
⎟
⎠

,

(14)

then we have a pair of massless eigenstates

Hu = (κ2E ′ + mh)H0
u − (α1

uκ1P)hu
√|α1

uκ1P|2 + |κ2E ′ + mh |2
,

Hd = (κ2E ′ + mh)H0
d − (α1

dκ1P)hd
√

|α1
dκ1P|2 + |κ2E ′ + mh |2

, (15)

which are the weak doublets in the MSSM. For P having a
VEV of order �GUT the components of Hu,d

1 in the MSSM
doublet Hu,d are not small, thus we can take (15) as pure
normalization without significant numerical effects, and we
will neglect these effects in the doublets to simplify our dis-
cussions.

In the absence of the effects from Wfilter, there are two
more pairs of color triplets from �1,2 + �1,2 comparing to
the doublets, and the mass matrix for the triplets without the
effects of Wfilter is

MD�
T =

(
07×6 A7×6

B5×6 C5×6

)
, (16)

where the columns are (HT
1 , DT

1 , D′T
1 ,�

T
1 ,�

′T
1 ,�T

1 ;
�T ;�

T
2 ,�

′T
2 ,�T

2 , DT
2 , D′T

2 ), while the rows are similarly
ordered. Again, there is a pair of massless triplets. We can
re-write the mass matrix in (16) as

MD�
T =

(
06×6 A′

6×6
B ′

6×6 C ′
6×6

)
, (17)

so that only the upper-left sub-matrix may couple to the mat-
ter fields. The explicit forms of A′

6×6, B ′
6×6 and C ′

6×6 are

A′
6×6 =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

η13v̄2 a12 −
√

2
3η13�3 a14 − η11�3√

3
−

√
2
3η11�2

−√
2η5v̄2

η5�3√
6

√
2
3η5�2

η4�3√
6

a25
η15�3√

6√
2η5v̄2

η5�2√
3

η5�3√
3

− η4�2√
3

η15�3√
6

a36

−√
2η2v̄2 m2

2η2�3√
3

√
5
6 E

′η9
η6�3√

6
η6�2√

3

−2η2v̄2
2η2�3√

3
a53 0

√
2
3η6�2

η6�3√
3

0
√

5
6 E

′η10 0 m1
η7�3√

6
− η7�2√

3

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

,

where

a12 = −
η13

(
3�1 + √

3�2

)

3
√

2
,

a14 =
η12

(
−3�1 + √

3�2

)

3
√

2
,

a25 = mD +
√

2

15
E ′η14 + η15�1

2
,

a36 = mD −
√

3

10
E ′η14 + η15�2

2
√

3
,

a53 = m2 + η2

(
�1 + �2√

3

)
,

B ′
6×6

=

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

0 0 0 0 0 0

− η12

(
3�1+√

3�2

)

3
√

2
η4�3√

6
η4�2√

3
m1

2η1�3√
3

√
5
6 E

′η9

−
√

2
3 η12�3

√
2
3 η4�2

η4�3√
3

2η1�3√
3

b35 0

η13

(
−3�1+√

3�2

)

3
√

2
η5�3√

6
− η5�2√

3

√
5
6 E

′η10 0 m2

− η11�2√
3

b52
η15�3√

6
η7�3√

6

√
2
3 η7�2

η6�3√
6

−
√

2
3 η11�2

η15�3√
6

b63
η7�2√

3
η7�3√

3
− η6�2√

3

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

,

where

b35 = m1 + η1

(
�1 + �2√

3

)
,

b52 = mD +
√

2

15
E ′η14 + η15�1

2
,

b63 = mD −
√

3

10
E ′η14 + η15�2

2
√

3
,

and

C ′
6×6 =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

c11 −√
2v1η2 −2v1η2 0 −√

2v1η6
√

2v1η6

−√
2η1v̄1 Qη3 0 0 0 0

−2η1v̄1 0 Qη3 0 0 0
0 0 0 Qη3 0 0
−√

2η7v̄1 0 0 0 Qη8 0√
2η7v̄1 0 0 0 0 Qη8

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

,

where

c11 = m� +
√

2

15
E ′λ2 + 1

3
λ1

(
3�1 + √

3�2 + 2
√

6�3

)
.

In calculating proton decay rates mediated by the color-
triplet Higgsinos, what is relevant is the effective mass matrix

MEff which is got from the full mass matrix by integrating out
those fields which do not couple with the matter fields. This
effective mass matrix is MEff = A′(C ′)−1B ′. Proton decay
amplitudes depend on the inverses of the eigenvalues of MEff

so that small eigenvalues of C ′ are needed to suppress pro-
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ton decay. C ′
6×6 contains five small eigenvalues which are

not enough to generate six large eigenvalues for the effec-
tive mass matrix. This is cured by including the effects from
Wfilter, which gives

Mfilter
T =

⎛

⎜⎜
⎜
⎝

0 κ1P 0 0 0
κ1P 0 κ2E ′ + mh 0 0
0 κ2E ′ + mh 0 κ3A2 0
0 0 κ3A2 0 κ4A′

2 = 0
0 0 0 κ4A′

2 = 0 κ5R + κ6E

⎞

⎟⎟
⎟
⎠

,

(18)

where the bases are (HT
1 , h

T
, hT , HT

2 , HT
3 ) in the columns

and similar for the anti-triplets in the rows. After integrating

out the fieldsh
T
, hT , HT

2 , HT
3 and their conjugates, the effect

is to give an infinite effective mass to HT
1 HT

1 , or the (1,1)
entry in MD�

T of (17) is replaced by infinity. Now there are six
large eigenvalues including an infinity in the effective triplet
mass matrix which are supposed to be sufficient to suppress
all proton decay amplitudes.

4 Determination of the parameters

In order to calculate the proton decay rates, we need to know
the parameters in the color-triplet mass matrix. These param-
eters also appear in the weak doublet mass matrix which gives
the two massless doublets of the MSSM and hence are linked
to the matter masses and mixing. There are also constraints
from the neutrino oscillations [17,50–62]. In the literature,
however, since few people believe that the MSSM doublets
are got through fine-tuning the doublet mass matrix, pro-
ton decays are calculated by simply adjusting parameters in
the color-triplet mass matrix [17,63–67]. The fitting of the
fermion masses and mixing can give constraints on the com-
ponents of the weak doublets, but they are not linked to the
color triplets in the absence of a realistic mechanism of nat-
urally generating the weak doublets.

In the model of [19], the doublets are got without fine-
tuning so that the parameters in the doublet and the triplet
are closely related. Consequently, we need to consider the
constraints from the doublets to determine the superpotential
parameters. Instead of adjusting the superpotential parame-
ters, then solving the weak doublets and requiring them to
satisfy the low energy data, we find it is easy for the weak
doublets to take their reasonable contents while the superpo-
tential parameters are determined later. For those parameters
unconstrained by the present data, we simply take them to be
of order one as reasonable inputs.

Although there are several works on fitting the data, only
in [17,61] the detailed results are presented. In [17] an unac-
ceptably small component of 10H in the MSSM doublet Hu

is used so we will use the numerical results in [61]. The con-

straints on the contents of the MSSM doublets give the two
ratios

r = α1
u

α1
d

, s = α4
u

rα5
d

. (19)

In [61] the results are given for tan β = 10, 38, 50 for
10H + 126H coupling with the matter superfields, and
tan β = 50 only for 10H + 126H + 120H coupling with
the matter superfields. The former corresponds to taking
Y120 = 0 in the latter case.

We take tan β = 10 as an example which corresponds to
r = 13.1538 and s = 0.244325 + 0.0495071i in [61]. First,
we input the reasonable contents of the MSSM doublets as

(α1
u, α

4
u) = (0.8, 0.57) (20)

which, together with Eq. (19), give

(α1
d , α

5
d) = (0.0608189, 0.170365 − 0.0345208i). (21)

Then we also use the reasonable inputs

(α2
u, α

3
u) = (0.1, 0.1) (22)

and

(α2
d , α

3
d , α

4
d) = (0.2, 0.5, 0.4). (23)

From the normalization conditions (11), we have

α5
u = 0.122882, α6

d = 0.718391. (24)

Second, we require that all the GUT scale masses are of the
order of 1016 GeV except Q, which is taken as ∼ 1014 GeV
for the seesaw mechanism, and all the massless couplings are
of order one. The massive parameters

mD = 1.0, m1 = 0.6, m2 = 1.1, m� = 1.2, E ′ = 0.8,

�1 = −0.4, �2 = −2, �3 = −1.5, v1 = 0.5, v2 = 0.5

(25)

are in units of 1016 GeV, where in the second line the VEVs
are taken larger values due to normalizations. Note that in
principal the VEVs in (25) should be determined through
solving the F- and D-flatness conditions after all the super-
potential parameters are fixed first. The vice versa case is also
true, since there are extra free parameters in (9) not used in
the numerical calculations.

Third, for the dimensionless couplings we take

λ1 = 0.5, λ2 = 0.8, η3 = η8 = 1.0 (26)
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and

η1 = 1.4, η2 = 1.5, η4 = −0.8, η6 = −1.0. (27)

By solving the linear equations (12), we get

η5 = −0.9784 + 0.00634058i, η7 = 0.892708 − 0.142636i, η9 = 2.20273 − 0.215545i, η10 = −2.92267 − 0.283226i,

η11 = 1.16329 − 0.120945i, η12 = 1.28655 + 0.00558605i, η13 = −1.23594 − 0.111137i, η14 = −0.693669 − 0.3701i,

η15 = 2.58683 − 0.0386752i.

Putting these parameters into the doublets, we get

A6×5 =

⎛

⎜
⎜⎜
⎜⎜
⎝

0.617971 + 0.0555684i −2.67484 − 0.240524i −0.854547 − 0.00371033i 0.465314 − 0.0483782i 1.23385 − 0.128282i
0.4892 − 0.00317029i 0.7338 − 0.00475544i 0.6 0.544074 − 0.243254i −1.37188 + 0.0205106i
0.847319 − 0.00549111i 1.12405 − 0.0072845i −0.466546 −1.37188 + 0.0205106i −1.93636 + 0.0716865i
1.83712 −4.20122 0.804323 − 0.0787058i 0.75 1.14887
0 −1.06721 − 0.103419i −0.918519 −0.669531 + 0.106977i 0.520612 − 0.0831829i
−1.80115 1.83712 0 0.5 0.866025

⎞

⎟
⎟⎟
⎟⎟
⎠

,

(28)

B4×5 =

⎛

⎜
⎜
⎝

2.78438 + 0.0120894i 0.6 0.919094 −4.3478 0.804323 − 0.0787058i
0.82093 + 0.0738186i 0.7338 − 0.00475544i −0.570586 + 0.00369772i −1.06721 − 0.103419i −0.526984
0.465314 − 0.0483782i 0.544074 − 0.243254i −1.37188 + 0.0205106i −0.669531 + 0.106977i 0.75
1.23385 − 0.128282i −1.37188 + 0.0205106i −1.93636 + 0.0716865i −1.0256 + 0.16387i −0.583183

⎞

⎟
⎟
⎠.

(29)

We also get v1 = 0.0117188 through (3) which gives masses
to the right handed neutrinos.

Accordingly, for the color triplets, we have

A′
6×6 =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎜
⎝

−0.617971 − 0.0555684i −1.35872 − 0.122177i −1.51371 − 0.136114i −0.686575 − 0.00298102i 1.00744 − 0.104742i 1.89964 − 0.197503i
0.691833 − 0.00448347i 0.599145 − 0.0038828i 1.59772 − 0.0103541i 0.489898 0.279999 − 0.100378i −1.58411 + 0.0236836i
−0.691833 + 0.00448347i 1.12976 − 0.00732148i 0.847319 − 0.00549111i −0.92376 −1.58411 + 0.0236836i −0.189559 + 0.184499i
−1.06066 1.1 −2.59808 1.60865 − 0.157412i 0.612372 1.1547
−1.5 −2.59808 −1.23205 0 1.63299 0.866025
0 −2.13442 − 0.206839i 0 0.6 −0.54667 + 0.0873464i 1.03081 − 0.164702i

⎞

⎟
⎟⎟
⎟⎟
⎟
⎟
⎠

,

(30)

B′
6×6 =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎜
⎝

0 0 0 0 0 0
1.41436 + 0.00614096i 0.489898 0.92376 0.6 −2.42487 1.60865 − 0.157412i
1.5757 + 0.00684149i 1.30639 0.69282 −2.42487 −1.57658 0
0.659566 + 0.0593086i 0.599145 − 0.0038828i −1.12976 + 0.00732148i −2.13442 − 0.206839i 0 1.1
1.34325 − 0.139656i 0.279999 − 0.100378i −1.58411 + 0.0236836i −0.54667 + 0.0873464i −1.45779 + 0.232924i 0.612372
1.89964 − 0.197503i −1.58411 + 0.0236836i −0.189559 + 0.184499i −1.03081 + 0.164702i −0.773108 + 0.123526i −1.1547

⎞

⎟
⎟⎟
⎟⎟
⎟
⎟
⎠

, (31)

and

C ′
6×6 =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

−0.5684 −1.06066 −1.5 0 0.707107 −0.707107
−0.0232019 0.01 0 0 0 0
−0.0328125 0 0.01 0 0 0
0 0 0 0.01 0 0
−0.0147947 + 0.00236388i 0 0 0 0.01 0
0.0147947 − 0.00236388i 0 0 0 0 0.01

⎞

⎟⎟⎟⎟
⎟⎟
⎠

.

(32)

123



669 Page 8 of 10 Eur. Phys. J. C (2017) 77 :669

In choosing the numerical inputs above, we do not fine-
tune any number besides solving the linear equations (12).
Instead, we have imposed the constraints on the inputs that
only few small or large matrix elements can exist and all the
eigenvalues of the doublet and the triplet mass matrices are of
order �GUT. Then, no large splitting exists in the spectrum so
that the GUT scale threshold effects are small. Consequently,
the predictions on proton decay in the following are not tuned,
which will be taken as these being natural estimations in the
model [19].

5 The proton decay via dimension-five operator

In SUSY GUT models, proton decays are dominated by the
baryon and lepton number violating operators of dimension-
five,

W = Ci jkl
L Qi Q j Qk Ll , (33)

dressed mainly by the wino components of the charginos
[12]. The coefficients are [14,17]

Ci jkl
L =

(
Y i j

10 Y i j
126 0

) (
M−1

C

)

⎛

⎜
⎝

Y kl
10

Y kl
126√
2Y kl

120

⎞

⎟
⎠ . (34)

Here MC is effective triplet mass matrix got by integrating
out those fields which do not couple with Q or L in (17),
(30)–(32). For tan β = 10, we have

(Meff
T )33 =

⎛

⎝
∞ −62.1295 − 90.5827i −324.779 + 31.8573i
164.562 − 5.04775i −400.812 − 7.02252i 133.955 − 12.2758i
−200.267 − 73.1462i 411.089 + 161.251i 525.038 + 62.3212i

⎞

⎠ . (35)

It is obvious that proton decays are dominated by the contri-
butions from 126 and/or 120. Then the decay rates are pro-
portional to |Y126|4 or |Y126Y120|2. These Yukawa couplings
extracted from [61] are

Y10 =
⎛

⎝
0.000180154 + 0.000194604i 0.000928682 + 0.000572057i 0.000667056 − 0.000681864i
0.000928682 + 0.000572057i 0.00559167 + 0.0000902319i −0.00390991 − 0.0113164i
0.000667056 − 0.000681864i −0.00390991 − 0.0113164i 1.02374 + 5.28625 × 10−7i

⎞

⎠

and

Y126 =
⎛

⎝
−0.000246286 − 0.000272057i −0.00130341 − 0.000802886i −0.000936218 + 0.000957003i
−0.00130341 − 0.000802886i −0.00607135 − 0.00273387i 0.00548759 + 0.0158826i
−0.000936218 + 0.000957003i 0.00548759 + 0.0158826i 0.00938846 − 0.0581996i

⎞

⎠ . (36)

The dominant proton decay mode via the dimension-five
operator with the Wino dressing diagram is p → K+ν. The
decay rate is approximately


(p → K+ν̄) 	 
(p → K+ν̄τ )

= mp

32π f 2
π

|βH |2 × |AL AS|2

×
( α2

4π

)2 1

m2
S

|C1123
L − C1213

L + λ(C1223
L − C2213

L )|2

×5.0 × 1031 [years−1/GeV], (37)

which gives the partial lifetime

τ(p → K+ν) = 3.88362 × 1034 years (38)

for tan β = 10. In (37) we have used the MSSM and hadronic
parameters taken from [17]. The above numerical predictions
depend on the inputs (20)–(27). We have changed several
VEVs by a factor of two around 2 × 1016 GeV, and we find
that the proton partial lifetime varies in 1034 ∼ 1036 years
for tan β = 10, consistent with the present data.

We also calculate the proton decay partial lifetimes with
constraints given in [61],

τ(p → K+ν) = 5.52536 × 1034 years (39)

for tan β = 38 and

τ(p → K+ν) = 6.85908 × 1033 years (40)

for tan β = 50 with 10H + 126H giving fermion masses. As
we can see, the proton decay can be suppressed even for large
tan β and there is no obvious tan β dependence in the partial

lifetimes which are all consistent with the present lower limit
6.6 × 1033 years [68].

However, using the results by fitting the data with 10H +
126 + 120H [61],
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Table 3 Partial lifetimes of
proton decay in years using
different Higgs to fit fermion
masses. Dimension-five
operators with charged wino
dressing are used only. Inputs
(20)–(27) are used. The Yukawa
couplings are taken from [61]

Decay mode Lower limit 10H + 126H 10H + 126H + 120H
[68] tan β = 10 tan β = 38 tan β = 50 tan β = 50

p → K+ν 6.6 × 1033 3.88 × 1034 5.53 × 1034 6.86 × 1033 3.60 × 1030

p → K 0e+ – 2.67 × 1039 3.42 × 1038 3.83 × 1037 6.96 × 1035

p → K 0μ+ 6.6 × 1033 1.01 × 1036 1.35 × 1035 1.60 × 1034 2.69 × 1032

p → π+ν 3.9 × 1032 2.55 × 1037 2.85 × 1036 2.67 × 1035 2.71 × 1032

p → π0e+ 1.7 × 1034 4.64 × 1040 6.16 × 1039 7.33 × 1038 2.64 × 1036

p → π0μ+ 7.8 × 1033 1.75 × 1037 2.43 × 1036 3.06 × 1035 1.02 × 1033

τ(p → K+ν) = 3.59502 × 1030 years, (41)

which is much lower than the data [68]. This can be tracked
back to the Yukwawa couplings given in [61]. Compared
to the fitting without 120H , all the entries in the Yukawa
couplings Y126 and Y120 appearing in (34,37) are larger by
one order of magnitude. Thus the results in this case is very
difficult to understand, since without 120 the fitting is rather
good except small values like me [53], thus 120 is probably
playing a minor role in the fitting. Also, the top quark mass
calculated using the results in [61] is generally larger than
the input used by the same paper, which exhibits probably
numerical inconsistency in [61].

There are also sub-dominant decay modes whose partial
lifetimes are also calculated. The results are summarized in
Table 3. Again, there are conflicts when 120H is included to
contribute to the fermion masses.

6 Summary

In this article we have examined the renormalizable SUSY
SO(10) model [19]. Without any fine-tuning of the param-
eters, we have shown how to construct MSSM doublets,
to determine the parameters of the model, and to predict
on proton decay rates. We find that in the case using with
10H + 126H to fit fermion masses and mixing, proton decay
lifetimes are consistent with the experiment. In the case using
also 120H to fit the data, proton decay too fast. However, we
find the numerical results with 120H may not be consistent,
and independent check of the same study is highly called for.

As in all renormalizable SUSY GUT models, the large rep-
resentations used in [19] contribute largely to the β-function
of the GUT gauge coupling. Then the GUT gauge coupling
blows up quickly above the unification scale and cause the
non-perturbative problem. However, the universe was in the
GUT symmetric phase at very high temperature in its very
early stage. There occurred a phase transition and the GUT
symmetry was broken when the universe was cooling down.
However, this phase transition has only been well studied in
very simple models in the perturbative region. Without def-
inite conclusions on the phase transition, especially in the
models in non-perturbative region, the running behavior of

the GUT gauge coupling before this phase transition may not
be a real difficulty.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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minimal supersymmetric grand unified theory. Phys. Lett. B 588,
196 (2004)

14. T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac, N. Okada, Gen-
eral formulation for proton decay rate in minimal supersymmetric
SO(10) GUT. Eur. Phys. J. C 42, 191 (2005)

15. B. Bajc, A. Melfo, G. Senjanović, F. Vissani, Minimal supersym-
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