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Abstract

The aggressive expansion of anthropogenic activities isngldoncreasing
pressure on biodiversity, particularly in tropical regioldere, conservation efforts are
hindered by poor understanding of species ecology and the falunolicy
instruments to account for multiple stressors of lasd-change. While protected areas
are central to conservation strategies, there is a@er@nsensus that the future of
tropical biodiversity will be determined by how well modifiednéiscapes are
managed. In this thesis | advance our understanding of bistiy@ersistence in
modified tropical landscapes to inform emerging incenbi@eed policy mechanisms
and supply-chain initiatives. Capitalising on recent advantesmote-sensing and
hierarchical occupancy modelling, | provide a spatial appraishlodiversity in a
modified landscape in Sabah, Malaysian Borneo. Fieldwmak conducted at the
Stability of Altered Forest Ecosystems (SAFE) projectlame-scale landscape
modification experiment, comprising a degradation gradienlefgrowth forest,
selectively logged forest, remnant forest patches andaih plantations. The
assessment focused on camera-trapping of tropical majrasdalsey are sensitive to
anthropogenic stressors, occupy key trophic positions, amdtised in conservation.
In Chapter 2 | link mammal occupancy data to airborne spdttral remote-sensing
information to show how the conservation value of rfiedilandscapes is dictated by
the intensity of the underlying land-use. Logged forestsnedaappreciable levels of
mammal diversity, and oil palm areas were largely devoidst specialists and
threatened taxa. Moreover, many mammal species disprapuately occupied
forested areas that retained old growth structural chaistats. The most influential
structural measures accounted for vertical and horizowc@inponents in

environmental space, which cannot currently be derived framaesdional satellite

Vi



data. Using a novel application of ecological threshollyais, | demonstrate how
multispectral data and multi-scale occupancy models efmitientify conservation
and restoration areas in degraded forests. In Chaptess3eks the potential for
carbon-orientated policy mechanisms (High Carbon StétRS, Approach and
REDD+) to prioritise high carbon areas with correspondamdiversity value in
highly modified landscapes. The areas of highest carblue yaioritised via HCS
supported comparable species diversity to old growth forestetser, the strength,
nature and extent of the biodiversity co-benefit was d#g@non how carbon was
characterised, the spatial resolution of carbon daiudh,tlae species considered. In
Chapter 4 | further scrutinised HCS protocols to evaluate holthes delineated
high priority forest patches that safeguard species mastnallle to land-use change
(i.e. IUCN threatened species). The minimum core argairezl to define a high
priority patch (100 ha) supported only 35% of the mammal communitiact the
core area criterion would need to increase to 3,199 hader do sustain intact
mammal assemblages, and an order of magnitude highentingupressure was
considered. These findings underline the importance dgiiating secondary
disturbance impacts into spatial conservation planning. id¥dv landscape
interventions are directed to where they will have thextgst impact, they can be
financially sustaining and garner local support for consenvafio this end | provide
recommendations to guide policy implementation in modifiegical landscapes to

support holistic conservation strategies.

Keywords. Camera-trapping, hierarchical modelling, human-modified |aayms;

land-use change, mammals, oil palm, selective loggingthBast Asia.
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Chapter 1. Introduction

Tropical forest ecosystems: value, status and an uncertain future

Tropical forests are distributed across four biogeograptedms (Neo-
South/Central America; Afro-: continental Africa, Madagasc Asian:
continental/insular Asia; Australasian-tropics: AustalPapua New Guinea, insular
Pacific; Achard et al., 2002hd account for less than 12% of the world’s terrestrial
surface area (Bonan, 2008), yet, are amongst the mosticaghiécosystems on the
planet. Globally, tropical forests are reservoirdiofogical diversity (Barlow et al.,
2018), regulate biogeochemical and hydrological cycles (Lewa.,e2015 MEA,
2005), and store ~30% (200-300 Pg C) of the carbon held in theriatrei®sphere
(Mitchard, 2018Pan et al., 2011). Locally, they provide economic goods, starsy
services and climatic stability to 1.5 billion people livingeitreme poverty (World
Bank, 2004 Vira et al., 2015). Given the scale of influence that tedgarests exert
on ecological processes and rural livelihoods, it is widetpgnised that biodiversity
conservation, climate change and human well-being artladired to the fate of these

ecosystems (Diaz et al., 2Q@ardner et al., 2010)

Since the 1980s, the tropical forest extent has declinad 7 to 1.1 billion
ha, equating to a range contraction of 35% (Wright, 2010¥dent decades, tropical
deforestation has continued at a consistent rate of l®Bmha year, though the
geographic focus of forest loss has shifted during this period Boazil to other
countries of South America and insular Southeast ASiartis et al., 2018). The
remaining forest estate has been substantially alterddrecent estimates suggesting

up to 82% of the area has already been degraded by someffouman use (Watson

1



et al., 2018). Current levels of deforestation and unsustaiexbploitation release 2.9
Pg C yeat into the atmosphere, contributing to 30% of anthropoggeienhouse gas
emissions (Pan et al., 2011). Moreover, the continuedoloepical forests greatly
diminishes the environmental and societal benefits pneyide. Despite this, global
efforts to temper land-use change have proved largelyectefé (Butchart et al.,

2010).

Tropical deforestation and environmental degradation arerdhy a complex
interplay of local and global stressors embedded withanging socio-economic
contexts (Barlow et al., 2018), which renders mitigatidoref challenging. Forest
loss is mediated by human population growth, increasinggmta consumption and
globalisation, which dictate demand for forest resoutceaddress the needs of a
burgeoning populationd{Annunzio et al., 2015, Geist and Lambin, 2002). These
global stressors orchestrate the extent to which proximmeehanisms, such as
agricultural conversion, resource extraction, infrastmec development and
urbanisation, contribute to land-use change (Curtis €2G8 Potapov et al., 2017)
Global socio-economic changes indicate an uncertaimefubr tropical forests. By
2050, projected population growth (United Nations, 2013) and subsinoteases in
the gross domestic product of rapidly industrialising nationsvid.et al., 2015) is
expected to lead to a further 710 million ha of agricultural laging needed (Tilman
et al., 2017), and escalate international and domesticrdkfoa forest resources to
unprecedented levels. These demands are likely to be rtied tnopics, where the
majority of population growth is expected to occur (United dveti 2013), and
favourable climatic conditions, coupled with competitivendlaprices, provide

environmental and economic incentives for forest comwerd aurance et al., 2014)



To ensure that future resource acquisition does not followcuheent template of

unsustainable exploitation, more effective environmegaakrnance is required.

The global biodiversity crisis

The global proliferation of human activities at theoerse of natural habitat
has resulted in precipitous biodiversity declines (Dirzad. g2@14). Current extinction
rates are several orders of magnitude higher than the loacigrate (Ceballos et al.,
2015) and comparable to the five previous mass extinctionsyBatnosky et al.,
2011). This equates to 338 documented vertebrate losses sinceYba®@ €t al.,
2016), with a further 11,981 species threatened with extin¢ttmifmann et al.,
2010). Human impacts have accelerated in recent decadesngesua 52% decline
in remaining vertebrate populations (McLellan et al., 2014)diBersity losses are
most pronounced in tropical forests (Hoffmann et al., 204Rich sustain half of the
world’s described taxa (Dirzo and Raven, 200&cheffers et al., 2012), including
exceptional concentrations of endemic species (Myeais,2000), but are subjected
to some of the highest rates of habitat loss globally ¢elaet al., 2013). Biodiversity
underpins ecosystem functioning, stability and resiliencedi@ale et al., 2006
Seddon et al., 2016), thus impoverished faunal communitiescacmpromise the
myriad ecosystem services provided by tropical forests amaidise their capacity
to resist state-shifts following environmental perturbetidHooper et al., 2005
Thompson et al., 2009). This implies that biodiversitg logropical forests will result
in negative feedback loops for human well-being and climbémge (Diaz et al.,

2006). Given the high proportion of data deficient species entithpics and the



likelihood of extinction debts owing to a legacy of foresploitation, the true extent

of the biodiversity crisis in tropical ecosystems kely underestimated.

In recognition of the role of tropical deforestationthe global biodiversity
crisis, ambitious multi-lateral government agreemeat&lemerged to curtail current
rates of land-use change. The New York Declaration oest®r(United Nations,
2014) and the UN Sustainable Development Goals (United Nations) Bottbseek
to fully halt deforestation by 2020 and 2030 respectively. Moredkie New York
Declaration on Forests further aims to restore up to 3B@mhectares of degraded
forest before 2030. To maximise the impact of these prageeagreements, and
ensure ambitious proposals translate into effective ceai$@n action, governmental
commitments must be underwritten by policy instruments deeel from a robust

scientific evidence-base (Sutherland et al., 2004).

Human-modified tropical landscapes

The expanding sphere of anthropogenic influence acroseotties raises the
guestion, how will biodiversity persist in an increasinglynam-dominated world?
Biologically rich primary, or old growth, forests arensaered fundamental to
biodiversity preservation (Gibson et al.,, 2011), yet thegount for only a small
fraction of the remaining tropical forest estate (Potagt al., 2017Watson et al.,
2018). Therefore, policies focussing solely on primary foretention will be of
limited value. There is therefore increasing recognitionoragat conservation
practitioners that human-modified landscapes can m@aysignificant role in

safeguarding biodiversity in tropical regions (Chazdorlgt2009 Gardner et al.,

4



2009 Kremen and Merenlender, 2018/elo et al.,, 2013). Human-modified
landscapes typically comprise remnant primary- and skggrvegetation embedded
within human-dominated land-uses such as farmland and loggests (Malhi et al.,
2014). These systems cover large areas of the tropicakbémd could potentially
form integral links between isolated primary forests amdeoted areas (Gardner et
al., 2009, Struebig et al., 2015). Moreover, in regions devbitact primary forest
cover, human-modified landscapes provide critical reftgidiodiversity (Chazdon
et al., 2009). The conservation value of these landscapemcipally determined by
the nature and intensity of the underlying land-use (Burwaakt al., 2014Edwards
et al., 2011 Edwards et al., 2014) and the spatial characteristics ofetinaining
vegetation (Ewers and Didham, 2006). Therefore, the capacityuman-modified
landscapes to support biodiversity is contingent on actaeagement practices that
reconcile production goals and conservation objectivedftearet al., 201,0Koh and
Gardner, 2010). If human-modified landscapes are to be atesgmwithin a new
holistic conservation paradigm, baseline informationbardiversity persistence is

essential to inform land-use regulations in modifiedesyst

Biodiversity responses to landscape-maodification

To gauge the potential for human-modified systems to toméito the
conservation agenda, it is necessary to understand bisitiviersponses to land-use
change and secondary disturbance impacts. Given thatr@oindrivers of land-use
change also represent dominant land-use designatibnsnan-modified landscapes,
this information provides a valuable insight into prospeots biodiversity in

anthropogenically-altered systems. It is important to nadée ttiese threats operate
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over different temporal and spatial scales, can impawesf ecosystems
independently, concurrently or interactively, and are epmted by natural driving
forces such as climate change (Gardner et al., 20093. Well-recognised that
biodiversity declines along a gradient of structural andstic complexity (Gibson et
al., 2011), though the severity of impacts are moderataaibythat confer sensitivity

to land-use change (Newbold et al., 2014).

Oil palm agricultural expansion

In recent decades, the expansion of commodity agrieuttas emerged as the
most pervasive threat to tropical forests and biodiver&igh¢e et al., 201 Tilman
et al., 2017). Since 1980, 83% of the agricultural land establlsdr@e at the expense
of tropical forests (Gibbs et al., 2010). Of these comtiez] oil palm Elaeis
guineensiy is at the forefront of agriculturally-orientated censtion concerns.
Driven by biofuel markets and demand for palm oil deriesjvoil palm currently
occupies 18.7 million ha of land (Meijaard et al., 2018), predantly replacing
lowland tropical forest (Gaveau et al., 20X3ibbs et al., 2010). Much of the
biologically suitable land to meet future demand for oil padnresponds with highly
biodiverse tropical forest ecosystems (Pirker et al., 2088)understanding of oil
palm impacts on biodiversity is, therefore, paramountiétermine the ecological

consequences of future expansion.

Recent estimates suggest that agricultural activities aanagative effect on
half of the world’s threatened species (Tanentzap et al.,, 2015). Global increases in

agricultural land mass have resulted in dramatic specamele the magnitude of



which is modulated by patterns of bilateral trade and peitacaconsumption
(Chaudhary and Kastner, 2Q1benzen et al., 2012). Oil palm expansion has a
profound influence on biodiversity, negatively impacting up to 8&%%species
(Danielsen et al., 200%itzherbert et al., 2008The displacement of tropical forests
by oil palm monocultures causes taxonomically consistedtictions in species
richness, disproportionately affecting forest specialists gpecies of conservation
concern (mammals: Wearn et al., 20Y6e et al., 2015birds: Edwards et al., 2010b
Edwards et al., 20314nvertebrates: Ewers et al., 2Q1=ayle et al., 2010plants:
Danielsen et al., 200®rescher et al., 2016). These changes are the reshithtaf
homogenisation and altered microclimate conditions @fastal., 2011)Given the
ecological footprint of commodity production, mitigatioreasures that reconcile
biodiversity conservation and oil palm development arenéis$e vulnerable tropical
regions. However, oil palm is a highly efficient, profitalsrop, providing substantial
social and economic benefits which complicates envirormhetgcision making
(Meijaard et al., 2018). Thus, effective policies in promurctlandscapes must

consider the socio-economic trade-offs associatedimtithventions.

Selective logging

Selective logging refers to the discriminatory harvestirmber. Selective
logging is a significant driver of forest degradation due tmemic globalization and
the demand for high-value timber (Lambin and Meyfroidt, 2QEurance, 2007)
Between 2000 and 2005, over 400 million ha of tropical forest i@asatdd to the
permanent timber estate and subject to some degregghdp(Asner et al., 2009

Blaser et al., 2011). During this period, tropical timber expgetgerated an annual
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revenue of US$2.1 billion (Malhi et al., 2014), highlighting g@nomic motives
underpinning wood extraction. It is important to note that, wiranticed sustainably,
logging does not result in forest degradation (Bryan e2@1.3). However, short-term
profits incentivize unsustainable harvest intensities dompromise forest integrity
(Putz et al., 2012)Unsustainable logging is characterised by the disproporéonat
removal of large trees and substantial collateral gena residual vegetation (Pinard
and Putz, 1996). This results in structural simplificationtre remaining forest
characterised by a lower, less variable canopy heighilegyrgwer vegetation strata
(Kumar and Shahabuddin, 2Q0@kuda et al., 2003) and a spatially dispersed canopy
(Hardwick et al., 2015). The immediate environmental consequefdegging are
accompanied by insidious secondary impacts. Logging providestnomic impetus
for road construction (364,489 km built in Malaysian Boradane; Bryan et al.,
2013), which subjects the remaining stand to a suite of envaotainpressures
including illegal colonisation, increased incidence of witd,fand hunting (Bicknell

et al., 2015Laurance and Arrea, 2017)

Logged forests are central to global conservation planningadtheir well-
documented biological value. Selectively logged forests teen found to retain
between 70 and 90% of the species found in primary foRestry( et al., 2010
Edwards et al., 201 Edwards et al., 2014&truebig et al., 2013Vearn et al., 2017)
Though reported compositional shifts in faunal communitieggest that forest
specialist species may be sensitive to the structurahtdtes associated with timber
extraction (Edwards et al., 2014). Nuanced assessments bibtheersity value of
logged forest have provided a more conservative appraisaéinfcapacity to retain

species. Biodiversity has shown to be sensitive to Bameensity (Burivalova et al.,



2014), extraction method (Bicknell et al., 2014) and frequemhdgroporal rotation
(Edwards et al., 2011). Taken as a whole, these findings sugjgesksgged forests
can make a significant contribution to biodiversity comagon provided they are
managed responsibly and sustainably. Moving forward, it is mperto safeguard
logged forests from conversion to agricultural land of lowerdiversity value
(Barlow et al., 2007Edwards et al., 2010a), which has become a common land-use
trajectory in tropical regions. Given limited conseiwatfunding (McCarthy et al.,
2012) and the vast extent of the timber estate, a deepestardbng of the specific
structural features of logged forest that promote biodiwergtention to inform

conservation prioritisation would be desirable.

Habitat fragmentation

Fragmentation refers to the process by which habitafriasires continuous
tracts of habitat into a spatial subset of ecologsiainds that are nested within a
human-modified matrix (Ewers and Didham, 2006). Globallyxipnate mechanisms
of land-use change have greatly accelerated the eatehtmagnitude of habitat
fragmentation (Wilson et al., 2016). The remaining foestate comprises 130 million
fragments across the world, averaging 29 ha in sizedBet al., 201/Taubert et al.,
2018). Consequently, a growing proportion of biodiversity residgsn fragmented
landscapes across the tropics (Gibson et al., 2011), wétglres an understanding

of fragmentation impacts on biodiversity persistence.

Habitat fragmentation processes operate at both patch-ratgtégpe scales to

influence the distribution of biodiversity (Fahrig, 2003}. the patch scale, Island



Biogeography Theory (MacArthur and Wilson, 2001) predicts shaller, isolated
patches support impoverished faunal communities due to extirationisation
dynamics. Habitat size places constraints on the nuaflspecies a patch can sustain.
Smaller fragments support fewer species, occurring at lowsitass, which are more
vulnerable to local extinction due to stochastic evé€hBisers and Didham, 2006)
Patch isolation determines the rate of colonisatisolaied patches receive fewer
immigrants to buffer resident populations against locahetion (Brown and Kodric-
Brown, 1977). However, the degree to which a fragment istedlis dictated by
fragment shape, the structural connectivity of the landsaagé¢he dispersal capacity
of the species (Cote et al.,, 2017). A global synthesisagimentation impacts on
biodiversity confirmed these theoretical underpinnings, doatinge consistent
population declines and reduced local species richness fombenwof species in

smaller, more isolated fragments (Haddad et al., 2015)

At the patch-scale, edge effects are key determinanbtsodiversity. Edge
effects refer to the proportion of habitat influenced iyirmnmental externalities, and
become more pronounced with decreasing fragment size ath@eir 2008). Edge
habitat is characterised by distinct abiotic conditiand altered biotic interactions
that obligate forest species cannot tolerate (Laurance 204al). Population declines
for 652 species have been documented in edge-effected I{Rifatifer et al., 2017)
Moreover, edge effects were found to permeate up to 400 m infordst, though
other estimates suggest these effects can extend up tofrbhnthe forest edge
(Brodie et al., 2015a). Edge effects alter microclimatimditions and biotic
interactions, resulting in elevated tree mortalirgliferation of invasive species and

dominance of ecotone-tolerant generalists (Laurance, 2@@&)ectively, these
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modifications disrupt ecological processes and placesyreon sensitive obligate
forest species (Ewers and Didham, 20k ifer et al., 2017}t is estimated that 70%
of the world’s forests are situated within 1 km of a forest edge (Haddad et al., 2015)

indicating the scale of edge influences on biodiversity.

Patch-scale dynamics are mediated by the landscape ¢cagegifically the
proportion of habitat remaining in the landscape and métribates (Fahrig, 2017)
The habitat amount hypothesis suggests that patch-scalencgkien biodiversity are
redundant until the total available habitat within a landsa#ops below a threshold
of 30% (Banks-Leite et al., 2014). This hypothesis was corabddrin an oil palm-
dominated landscape, though at a higher forest habitat dfdesh?25-55% (Pardo et
al., 2018). This suggests that the threshold value may bengenti on matrix
attributes. Commonly neglected in theoretical framewofksagmentation, matrix
gualities have been shown to supersede patch-level influencgsecies occupancy
and community composition (Garmendia et al., 2013). It e lsuggested that
species can persist in sub-optimal habitat patches amdoowe dispersal limitations
provided they can exploit supplementary resources in #texr{Antongiovanni and
Metzger, 2005Ricketts, 200,1Sodhi et al., 2005). Taken as a whole, the distribution
and persistence of biodiversity in fragmented landscepdstermined by processes
operating across multiple spatial-scales, which must beupted to ascertain and

mitigate the distinct drivers of species loss.

The retention of forest fragments within human-modifendscapes has long
been recognised as a valuable management tool to secureetsdgivetention.
Understanding the dynamics of biodiversity persistenceagniented landscapes is,
therefore, central to developing effective managemerdtegfies and policies
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(Meijaard and Sheil, 2007). However, quantifying the optimalrasttaristics of
remnant vegetation that promote biodiversity retenti@s proved challenging
(Fahrig, 2003). This information is fundamental to guidegiesithat seek to establish

ecologically functional forest networks in human-maatifenvironments.

Hunting

The ‘empty forest syndrome’ is a pervasive phenomenon describing the
widespread defaunation of forests as a result of huriieglford, 1992 Harrison,
2011). Across the tropics, intact vertebrate assemblagestarated to occur in only
1-35% of the remaining forest extent (Morrison et al., 20Wi)dlife are generally
hunted for food, medicine, ornamentation or illegatie (Corlett, 2007). Subsistence
hunting is considered sustainable at a population density pérson per ki
(Robinson and Bennett, 2004), however current population densitiésiman-
modified areas across the tropics range between 46 and &2 perkm? (Bennett,
2002). Bushmeat harvest rates reflect this discrepandy,bsiiveen 150 and 4,900
tonnes harvested across tropical regions annually (F&,082). Though these
figures likely underestimate current levels of offtake. &ber, infrastructure
development and growing affluence stimulate remote denwanwliltilife derivatives
(Harrison et al., 2016). Yet, despite substantial impactsingucontinues to represent
a source of uncertainty in studies investigating biodiverséssistence in human-

modified landscapes.

Hunting can have profound impacts on the abundance, diveasity

composition of wildlife communities (Peres, 2001). Ipamtropical meta-analysis,
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Benitez-Lopez et al. (2017) documented an 83% reduction in mapupalations
due to hunting with accessibility being the most influentigkedainant of biotic
declines. Hunting pressure is therefore exacerbated by prexmesthanisms of land-
use change that develop infrastructure to facilitate acoessriote forest frontiers.
Humans are typically central place foragers, thus hgntitensity is a function of
distance from human settlements and generally decggsitbea threshold of 20 km
(Peres, 2000) Technological advances in weaponry and the accessilolity
international markets for the exportation of animaldmais ha&e intensified offtake
in affected regions (Harrison et al., 2016). Hunting pressuee delicate balance
between hunter preference and species sensitivity. Humadmgdpyomactices can be
examined in relation to optimal foraging theory, wherebyimam returns are sought
per unit effort (Cowlishaw and Dunbar, 2000). Accordingly, laggme offer the best
return on effort, while abundant species, or thoselaifgmy behavioural traits that
facilitate identification and location (i.e. group livingyoal, predictable behaviour
patterns), are desirable harvest options due to ease ofedftafford et al., 2017
Wright, 2003). Vulnerability to hunting is also dependent on ki@ogical
characteristics of the target organism, with long-livedcise persisting at low
densities with long generation times being sensitive tdoéagon (Ripple et al.,
2016). Furthermore, the selective removal of prefererd@cies alters biotic
interactions across multiple trophic levels, withazang effects on biodiversity and
ecosystem services (Brodie, 20Hosin, 2014 Wright, 2003) For example, the
persecution of large frugivorous mammals and birds disrugtgtbcess of seed
dispersal, influencing the spatial and genetic signatdrptaots and trees, and thus

the services provided by the forest (Harrison, 20Thys, hunting has far-reaching
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consequences beyond numerical and distributional restiscion forest-dwelling

taxa.

Hunting is a cryptic phenomenon that is notoriously cliffi to quantify,
restricting our capacity to manage unsustainable exptmitati human-modified
landscapes (Benitez-Lopez et al., 20Péres, 2001). Current understanding of
hunting impacts is predominantly derived from coarse congaief hunted versus
non-hunted sites (Cullen Jr et al., 20@aletti et al., 2009) or direct/indirect
encounters with human hunters (Brodie et al., 20Bampaio et al., 2010). Both
approaches are problematic to execute. Statistics would subgesto area of the
tropics is truly free of hunting pressure, while it imglistic to infer absence of
evidence based on evidence of absence given potentiamfierfect detection.
Qualitative methods, particularly specialised intervieviamggues (Nuno and St. John,
2015), offer promising tools to investigate hunting, while mitiggthon-response
(Groves, 2006) and social desirability bias (Fisher, 1993) aotynrassociated with
investigations regarding illegal behaviour. However, thesenigeés require large
sample sizes, impose limitations on survey design amddmte a methodological
complexity that may prove challenging for people withimited educational
background (Nuno and St. John, 2015). Alternatively, proxiesafithropogenic
pressure based on proximity to infrastructure are commonly eap(@enitez-Lopez
et al., 2017Michalski and Peres, 2007). While hunting has been censigtlinked
to distance to access points (Symes et al., 2016), baslti&an distance measures
fail to capture the complexity of accessibility. Collgety, this implies a need for a
spatially explicit hunting index that captures the nuaoteontemporary hunting

practices.
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Policy options for biodiversity conservation in human-modified

landscapes

Halting the modification and conversioof forests is perhaps the most
effective strategy to ensure species persistence icaldandscapes. Protected areas
are known to be an effective tool to safeguard biodivensitiie tropics (Beaudrot et
al., 2016a Laurance et al., 2012) and attenuate forest loss (Gaveau @0@F
Geldmann et al, 2013Linkie et al, 2008). However, they are spatially
underrepresented and under-resourced (Butchart et al., 20153 wWidely
acknowledged that key biodiversity areas are not capturedebgutinent protected
area configuration (Watson et al., 2014), which accountsrfiyr9.8% of the tropical
biome (Schmitt et al., 2009oreover, there is lingering uncertainty as to howicstat
protected areas will capture dynamic shifts in species llisisns due to climate
change (Guisan et al., 2013). It is estimated that leasltbfs of the current protected
area network is expected to represent present climaticiooadh the next century
(Loarie et al., 2009Although international commitments to expand the globadrext
of the protected area network will afford some security tpit¢ed forests and
biodiversity (Aichi Target 11; Convention on BiologicaiMerisity, 2010), previous
expansions have been predominantly opportunistic, resultingniapresentative,
biased spatial coverage (Butchart et al., 20bppa and Pfaff, 2009Dnly 6% of
protected areas reported sufficient resources for efeechianagement (Convention
on Biological Diversity, 2003), with cascading influencesbonindary delineation,
enforcement, resource management and the provision astnfcture (Bruner et al.,

2001). The economic sustainability of protected areas hadeaén questioned. Less
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than 10% of maintenance costs are met by tropical nasaggesting an over-reliance
on external support to meet management costs (Balmfoitd 20@3). Collectively,
these limitations encourage poor governance and reduce pdoaeeteeffectiveness,
which, in turn, compromises biodiversity conservation dbjes. While protected
areas remain a fundamental element of global consenvstrategies, their capacity
to safeguard biodiversity is contingent on informed expansod financial

reinforcement (Pouzols et al., 2014).

There is increasing recognition that the efficacy of mtaiaist approaches to
conservation is inextricably linked to the socio-econoiaitors that underpin land-
use change (Symes et al., 2016). Thus the potential forederve network to
contribute to biodiversity objectives is determined by thderx to which
anthropogenic pressures are managed in adjacent humaneshotihdscapes
(Chazdon et al., 2009). Two dominant paradigms have emergecbiacile the socio-
economic dimensions of land-use change and biodiversigispamnce in modified
systems: conservation payment mechanisms and supply-chaativies. These
instruments are voluntary, market-based and predominanégtine-driven, but vary
in their degree of state involvement (Lambin et al., 2Qd8nbin et al., 2014)
Common to both is explicit consideration of the langsekevel impacts of human
actors (Perfecto and Vandermeer, 2008) and an understandimg adupled socio-

ecological dynamics inherent in human-modified landss4piel et al., 2007).
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Market-based payment mechanisms

Market-based payment mechanisms describe a range of pslicyments that
assign economic value to natural capital to provide Gr@rencouragement for
conservation (Miles and Kapos, 2008under, 2007). They are founded on the tenet
that benefits derived from nature must be perceived befonservation can be
justified (Barlow et al., 2018). Commoditising ecosystenvises derived from
tropical forests provides the economic impetus for theitection, which improves
prospects for biodiversity in vulnerable landscapes while gaghécal support for
conservation (Tilman et al., 2017). Payment mechanisengberently performance-
based and characterised by conditional voluntary agréer{dfunder et al., 2008)
Financial incentives can be structured to compensate avoitied ar reward pro-
active environmental management (Wunder, 2005). Adjacenicigml are
underwritten by the dual concepts of dependency and willingogxs/ (Redford and
Adams, 2009). Willingness to pay by consumers must exceeddi@ation of the
provider to accept payment, thus, to guarantee successfenmapiation, perceived
benefits must offset incurred opportunity costs (Lambiralet 2014). Moreover,
payment mechanisms are dependent on institutional frarkewmfacilitate financial
transactions and secure compliance from service provilemadian et al., 2010/an

Noordwijk et al., 2012).

A suite of problems relate to the commoditization dfira capital provided
by forests. Some ecosystem services are not amenaldertoneic valuation (Abson
and Termansen, 2011), and, while effective markets exigirfvisioning services,
they are lacking for cultural, supporting and regulating sesyi necessitating

charitable support (Adams, 2014). Even when effective maekedts the value of the
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ecosystem service is dictated by market forces, supplg@mand, all of which may
fluctuate to remove economic value from the ecosystehthtars financial motivations
for conservation (Vira and Adams, 2009). If the quantityvalue of the final
ecosystem service is of overarching importance, thereaareerns that delivery can
be met in impoverished environments, or, novel, syntlesystems that maximise
ecosystem service delivery yet retain little native ivexsity (Redford et al., 2014)
Finally, the social success of ecosystem service atehipolicy is contingent on the
equitable distribution of benefits; a failure to incorperdocal communities into
benefit-sharing can lead to conflict, leakage and utgtial failure (Birch et al.,

2014)

The United Nations Reducing Emissions from Deforestatiod forest
Degradation (REDD+) policy is perhaps the most prominensawation payment
mechanism. REDD+ provides a financial alternative to thgimate mechanisms of
land-use change. Within the REDD+ framework developing nsiawe compensated
for actions that maintain, enhance or restore the catiooed in tropical forests (Miles
and Kapos, 2008). Qualifying actions comprise a range of mamajestrategies,
including avoided deforestation, sustainable forest manageara afforestation
(Venter and Koh, 2012From a biodiversity conservation perspective, REDD+is a
attractive prospect due to its potential to deliver bioditxeisi-benefits (Gardner et
al.,, 2012) These “win-win” outcomes allude to regions where carbon value is
intrinsically linked to high biodiversity, thus managemeiioas that maintain carbon
simultaneously protect biodiversity at no additional cdst date there is little
consensus on the capacity for REDD+ to deliver co-bengfihderson et al., 2009

Ferreira et al., 201 8laidoo et al., 2008urner et al., 2007), indicating they are likely
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scale-dependent and context-specific. Understanding tititioms necessary for co-

benefits is essential to target REDD+ applications taetiey will be most effective.

Supply chain initiatives

Supply chain initiatives describe a broad suite of environashenommitments
proposed by private actors to demonstrate sustainability witiemw bperations
(Lambin et al., 2018). They reflect a corporate resptmgeowing consumer unease
concerning the links between commodity production and envirotaingegradation.
Supply chain initiatives have been aligned with the Newk\Xeclaration on Forests,
under which, corporate actors pledged to eliminate deforestassociated with
commodities before 2020 (United Nations, 2014). These devefipmedicate

increasing traction for environmentally-conscious production.

Supply chain initiatives encompass two complimentary pginssl sectoral
standards and corporate pledges. Sectoral standards refénciplgs and criteria
adopted by coalitions of companies that define sustainablelards of practice
(Lambin et al.,, 2018). These standards are conventiof@itgalised within the
context of eco-certification schemes which require d@npe from affiliated
companies, often at significant opportunity costs (Auldlgt2008). In recompense,
companies receive price premiums on certified productspasférential access to
lucrative, environmentally-vigilant Western markets (Lamdtiral., 2014). In recent
decades, nearly 400 certification standards have incorporate@onmental
safeguards on a range of goods and services, includingtheal soy, beef, forestry

and oil palm sectors (Carlson et al.,, 2018). Timber angalih certification are
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governed by the Forest Stewardship Council (FSC) and Roundtal$eistainable
Palm Oil (RSPO), respectively. Critics have argued thétfication schemes are
compromised by weak standards (Laurance et al., 2010), ambigu@edings
(Dennis et al., 2008), limited enforcement (Ruysschaert alesS2014) and a failure
to reprimand non-compliance (Meijer, 2015). Moreover, limiipthke constrains the
environmental scope of certification. For example iivedtoil palm accounts for only
20% of the global trade (Garrett et al., 2016). The shontggs of certification
schemes to safeguard biodiversity is evidenced by a 500,000 shafl@&imatran
orang-utan Pongo abel)i habitat during the operational tenure of the RSPO
(Ruysschaert and Salles, 2014). Conversely, since 2000,ezkttiionesian oil palm
concessions were associated with a 33% reduction in deftoestompared to non-
certified plantations (Carlson et al., 2018), indicatingt tt@ntinual revisions of

sustainability criteria may be overcoming some of tleseHimitations.

Corporate pledges are publicly stated, non-governmental torments to
source and produce commodities independently of deletereusal and
environmental impacts. Recent “zero-debrestation” pledges to eliminate forest loss
from commodity supply-chains demonstrate corporate camenit to sustainability.
Sustainability pledges arose from the perceived inadegoh&gctoral standards
(Khor, 2011). While corporate pledges do not yield financial lksnefuivalent to
certification, they reduce the reputational risk assediavith commodity production
and create a favourable brand image (Lambin et al., 2018)hwlhic be used to
leverage an increased market share and maximise profiteg,/A2009Elder et al.,
2014). However, tracking compliance with zero-deforestaiommitments has

proved challenging due to land tenure disputes (Gaveau et al., 2DbiBapver, in
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the context of corporate pledges, deforestation canteefest- or gross-deforestation,
which have contrasting implications that can translate toepgg\practical outcomes
for conservation (Brown and Zarin, 2013). There are asocerns that zero-
deforestation could limit socio-economic growth in natiasith a high proportion of
primary forest cover (Senior et al., 2015). If corporamitments are to safeguard
tropical forests and their biodiversity, there needse@reater standardisation in the

formulation, adoption and implementation of sustainahiiedges.

Effective methodologies to identify and prioritise fdrésbitat in human-
modified landscapes are essential to translate corpocatemitments into
environmentally sustainable operations. Presently, Higls&€wation Value (HCV)
criteria guide the implementation of many supply-chaitiatives in the forestry,
agriculture and mining sector§he HCV concept seeks to identify areas with
exceptional ecological, social or cultural importance, ensure that they are managed
in a manner that maintains or enhances their inherené (@rown et al., 2013). A
key criticism of the HCV tool is that the criteria do® spatially restrictive to provide
sufficient security to the vast expanses of forest valslerto conversion (Edwards et
al., 2012). HCV criteon 3 focu®s on endangered, rare or endemic species and
ecosystems, which are intrinsically range restricteds timiting the geographical
scope of the concept (Edwards et al., 2012). Moreover, Hifiarafford no explicit
security to degraded forests that comprise the majoritgeofemaining forest estate
and retain considerable ecological value (Barlow et28lQ7, Berry et al., 2010
Struebig et al., 2013Yhough, it is worth noting that social or cultural HCV aiie
(4-6) may afford species protection whexplicit recognition is absent. However,

HCV implementation is further hindered by a weak logisticaiiework (Yaap et al.,
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2010) and implementation guidelines that are open to intetipreand malpractice
(Koh et al., 2009)The success of supply-chain initiatives is dependent nsucoer
and corporate belief in the integrity of the product, witchld be jeopardised by the
misapplication of tools that strive to deliver environmentalasoability. Evidently,
there is a need to develop and evaluate alternative mmsirs that can objectively and

transparently identify areas of conservation valu@iwiproduction landscapes.

Status of the world’s mammals

The taxonomic class Mammalia, colloquially termed mammala diverse
grouping of 5,487 species distributed across 1,229 genera, 153 faandi@8 orders
(Bininda-Emonds et al., 2003chipper et al., 2008). Mammals are an exceptionally
adaptive group inhabiting most otiworld’s terrestrial and marine biomes. Mammals
occupy key ecological roles in tropical forest ecosystancluding trophic regulation
(predation: Estes et al., 2QIlerborgh et al., 20Qherbivory: Jia et al., 201&mith
et al.,, 2016) seed dispersal (Corlett, 2Q1Granados et al., 2018), seed predation
(Asquith et al., 1997) and biogeochemical cycling (Berzagaii £2018 Sobral et al.,
2017). It is estimated that 90% of tropical tree species deperateractions with
wildlife to complete their life cycles (Malhi et aR014). Consequently, mammal
extirpation can have cascading effects on ecosystettidning and stability (Kurten,
2013). For example, Brodie (2018) linked the loss of tropieahmals to large-scale
compositional shifts in tropical tree communities andcoonitant declines in carbon
sequestered by tropical forests. Moreover, no other taw@ngroup has captivated
humanity more than mammals. They are frequently cduigh profile species with

demonstrated public appeal (Macdonald et al., 2015). Mammealghas highly
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effective conservation ambassadors to raise public awarehessical ecological
iIssues and garner financial support for interventions thraughnational marketing

campaigns (Macdonald et al., 2017).

Despite their inherent value, conservation efforts fegeamrd mammals have
often proved ineffective. Twenty-five percent of mammatpuating to 1139 species,
are considered threatened with extinction, most of wieh concentrated in the
tropics (Hoffmann et al., 201&chipper et al., 2008). Land-use change is a principal
driver of threat status (Crees et al., 20I@8man et al., 2017), with estimates
suggesting affected species have lost an average of 50Beiobfhistorical range
(Ceballos and Ehrlich, 2002). Dwindling habitat availability dedpwith wide-
ranging habits suggests that conservation strategies focussiety on the
preservation of primary forest will be of little valugew approaches to compliment
protectionist strategies are therefore essential togsafd vulnerable mammal

populations.

Effective conservation requires accurate informationtia distribution,
occurrence and abundance of threatened species. InplEstrmammal conservation
is hindered by an alarming paucity of information on theagpobf threatened species
(Sodhi, 2008). This is reflected in the fact that 15% ofrilesd species are considered
data-deficient on the IUCN Red List (Schipper et al., 2008yuking the necessary
information to inform mammal conservation is complicateg their ecology.
Mammals are inherently cryptic, persist at low densiied range over wide areas
which makes them logistically challenging to study (Brod&.e2015b). Developing
evidence-based solutions to the threats facing mammalseequethodologies that
can overcome these limitations.
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Technological and statistical mitigation measures

Modern advances in remote technologies and statistiethods present
opportunities to overcome the obstacles associated antplsg tropical mammals.
Remotely operated digital cameras, or camera-traps,dmggged as an effective tool
to gather ecological information on cryptic, data-deficgpecies. Camera-traps are
continuous time detectors that employ motion- and pagssnaeried sensors, triggered
by a combination of movement and anomalous heat signaitinesuse of camera-
traps as a Eulerian approach to biodiversity monitoringimagased markedly in
recent decades as units have become more affordable famenef(Rowcliffe and
Carbone, 2008). Camera-traps are now widely-recognised gsitlegoal sampling
strategy for a range of applications, including abundamstienations, taxonomic
inventories, conservation assessments and behaviowakiagens (Burton et al.,
2015). The main advantages of camera-traps are that tbeilgra non-invasive,
labour-efficient means to collect robust informationwaifdlife populations largely
free of observer bias (Kays et al., 2009). When comptregiternative sampling
methods such as line transects and track counts, carapgawere found to be the

optimal sampling method for medium-large mammals (Silvetiral., 2003).

Despite these benefits, biodiversity monitoring usingerantrap methods is
confounded by imperfect detection, where a species is ptasembt detected within
a sampling unit (Guillera-Arroita, 201KacKenzie et al., 2017). Failure to account
for imperfect detection results in an underestimatibtine biological response of the
target species, introducing inferential bias that can proeaighd management

recommendations (Benoit et al., 2018). Moreover, rpeeiss, that are often most
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vulnerable to land-use change, often yield insufficienadat reliable inference,
regardless of survey effort (Sollmann et al., 20Zkin et al., 2010). Recent
innovations in hierarchical modelling have provided a frameworknit@gyate the
consequences of imperfect detection and rare specieg@uce (Dorazio and Royle,
2005). Hierarchical models comprise conditionally-dependent;cemiponents
describing the ecological and sampling processes underpineinata (Gelman and
Hill, 2006). Thus the state process of interest can besated through explicit
recognition of detectability (Zipkin et al., 2009). In these of rare species, multi-
species modelling approaches introduce an additional hierafrdumponent that
draws species-specific inferences from collective comiyustata. This has been
shown to improve parameter precision for species infrebuegtected during
sampling (Broms et al., 201Bacifici et al., 2014). From a conservation management
perspective, multi-species models provide an efficient procéduptimise camera-
trap by-catch and determine the impact of interventianesa a range of species,
rather than merely those targeted by conservation/isédtiatives (Benoit et al.,

2018 Zipkin et al., 2010).

Conservation assessments typically require speciaditiodata be coupled
with covariates describing the biotic and abiotic condgiof a site. These species-
habitat associations underpin our understanding of how aesped| respond to
environmental perturbations. Given the vast area requitsnoétarger mammals, it
is logistically unfeasible to collect environmental covasatat ecologically
meaningful scalef situ. Moreover, species-habitat associations are multi-fadtori
processes, operating across a range of spatial and temnspatas (Chalfoun and

Martin, 2007). To capture this complexity, biotic and abicbnditions need to be
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guantified over a range of spatial extents that asdyr&nowna priori (Mayor et al.,

2009)

Advances in remote-sensing have provided ecologists wablit to couple
in situ biodiversity data with global environmental datasets to devaiformed
mitigation actions for land-use change (Turner, 2014). Rersensing products
provide extensive spatio-temporal coverage of the tropicahdyidacilitating the
characterisation of biodiversity patterns across remainder-sampled regions
(Anderson, 2018Pettorelli et al., 2014Turner et al., 2015). However, tropical forest
applications are hindered by technological constraints ando@mvental challenges.
Optical remote-sensing techniques cannot reliably detect fliststbance (Bryan et
al.,, 2013). For example, satellite-imagery has been showmderestimate forest
degradation by up to 50% (Asner et al., 2008)reover, cloud cover, atmospheric
disturbances and topographic shadow effects restrict theéygaatl availability of
valid observations (Miettinen et al., 2014). Yet, everemwbata of sufficient quality
are accessible, the temporal window to quantify foresturdiance is limited due to
rapid regrowth of secondary vegetation (Peres et al., 200®&) scope of remote-
sensing is also restricted to appraisals of upper canopymedhee to the inability of
sensing apparatus to sufficiently penetrate the uppermosihyegetation (Gibbs et
al., 2007 Morel et al., 2011). High-resolution airborne Light Detattéond Ranging
(LIDAR) has emerged as a possible panacea to these chalemydms become a
popular tool to characterise fine-scale habitat influencdsamtiversity (Lefsky et al.,
2002). However, to date, LIDAR applications to support the coatenvof terrestrial

mammals in tropical regions are largely lacking (DaviesAsnr, 2014).
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Southeast Asia: aregionin crisis

Southeast Asia’s forests are considered the most intensively used across the
tropical biome (Laurance, 2007outheast Asia is defined by member states of the
Association of Southeast Asian Nations: Cambodia, Lao,MDfnmar, Thailand,
Viet Nam (continental); Brunei, Indonesia, Malaysia, Pdpea Guinea, Timor Leste
(insular); Miettinen et al. (2014). The region has B3tmillion ha of forest cover
since 1990 and has been subjected to some of the highest deimnastes in the
world (Sodhi et al., 201 Gtibig et al., 2013). The dominant drivers of deforestation
include the proliferation of commodity agriculture and indakscale selective
logging, which represent 77- and 13% of forest loss respécti@ertis et al., 2018)
Southeast Asia exports in excess of 62 million tonrfesil@alm annually, which
equates to 85% of the global supply (Meijaard et al., 2018).dstimated that 55%
of the regions current oil palm extent came at the expense of pyifoaest (Koh and
Wilcove, 2008). Moreover, the region contributes 67% af tbtal volume of
harvested tropical timber (Sodhi, 2008he commercial value of Southeast Asia’s
dominant dipterocarp trees has resulted in the highebetiextraction rates across
the tropics, exceeding 100*ma, which is an order of magnitude greater than those
experienced in South America or Africa (Fisher et al., 20%tdhi et al., 2004). The
remaining forest across the region is highly fragmenteldsasceptible to secondary
disturbance impacts (Brinck et al., 2017). The initial intms caused by
anthropogenic habitat modification increases accessibdityemote forest frontiers
and extends the reach of human hunters (Harrison, 2(dl6). It is estimated that
only 1% of the remaining forest cover is free of someel of hunting pressure

(Morrison et al., 2007). With the Southeast Asian popmriadcheduled to increase to
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2.6 billion before 2050 (Laurance, 2007), these pressures aretbkiglensify over

time.

Pervasive forest modification threatens Southeast Asia’s exceptional
biological diversity. The region overlaps with four lggd biodiversity hotspots,
characterised by rarity and endemism (Myers et al., 2600 example, the Sundaland
hotspot accommodates 3% of the planet’s endemic vertebrates (Myers et al., 2000)
However, if patterns of land-use change continue upon pnesent trajectory, it is
estimated that 79% of the region’s vertebrates will be consigned to extinction by 2100,
48% of which are mammals (Brook et al., 2008ammals have lost 70% of their
original habitat across the region (Myers et al., 20€@ugh the development of
effective conservation measures has proved challengingodaeweak ancilliary
evidence-base. Basic ecological knowledge is lackingnfost Southeast Asian
vertebrate species, 32% of which are considered dataedefitii et al., 2016)The
case study of Singapore provides a stark reminder as teadlugieal consequences
of unabated land-use change, with a 95% reduction in fooest precipitating the
loss of 87% of the faunal community (Brook et al., 2003ye6ithe scale of regional
forest modification, evidence-based conservation ietgigns that recognise the role
of humanmodified landscapes are essential to safeguard Southeast Asia’s imperilled,

but poorly understood, mammal diversity.

Thesis structure

This thesis aims to ascertain the biological value omdn-modified

landscapes for tropical mammals that are acutehatbned by land-use change but
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poorly known to science. To this ericaim to fill critical knowledge gaps in tropical
mammal ecology, while assessing how well they are reprekeitten policy options
that seek to enhance the conservation potential obhumodified landscapes and
address the distal drivers of land-use change. Capitabsimmpntemporary advances
in remote technologies and statistical modellih@im to understand the value of
coupled applications to overcome impediments associatedawtpling rare, cryptic
and wide-ranging species. Throughout,focus on Southeast Asia, a region
characterised by unsustainable levels of land-use chambevitdlife exploitation.
Evaluating policy options in this geographic context providesniech needed
evidence-base for a vulnerable tropical region while stremgty the conservation
toolkit to prevent environmentally analogous outcomes els@nhethe tropics. To
achieve thseprincipal aims, this thesis comprises three data clgmach of which
constitutes a stand-alone research paper. Due to the aralize nature of these

chapters | adopt a shift in passive voice, replacing &ngwith plural pronouns.

Chapter 2 provides a nuanced appraisal of the biodiversity value of tbgge
forests. Using high-resolution remote-sensing data and poeeéssing techniques,
we describe forest architectural properties across a gtadie disturbance at
unprecedented levels of detail. We characterise mamrb@bhhassociations using
bespoke multi-species, multi-scale occupancy models tareapbe hierarchical
nature of habitat selection relative to the structuralirenment. Using a high
conservation value species as a case study, we dentemstvamodel outputs can be
practically applied to inform the prioritisation of consgion and restoration areas to

support ambitious policy targets for degraded land rehabilitation.
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Chapter 3 explores the potential for carbon-orientated potiegchanisms to
safeguard forest remnants of biodiversity value in prodndandscapes. Specifically,
we investigate spatial concordance between carbon and daisithivto understand the
potential for aligned climate change mitigation and cosag@n outcomes in human-
modified landscapes. We develop robust estimates of maootigbancy and species
richness to provide the first scientific appraisal oftitoeliversity credentials of phase
one High Carbon Stock protocols, which we critically comptyrea REDD+
application. Our assessment builds on the shortcoming®wibus research by using

primary biodiversity data and adopting spatial scales apprepoatecision makers.

Chapter 4 builds on the work o€Chapter 3 by assessing the value of phase
two HCS protocols to design ecologically functional foressaics in human-
modified landscapes, which we use to ascertain the value ofdlgpited to zero-
deforestation commitments. Specifically, we charactenmammal abundance in
forest fragments to understand the patch- and landscagepteperties that promote
biodiversity persistence. Moreover, we incorporate a besEpatially-explicit
hunting pressure variable to quantify secondary disturbampacis on mammal
populations. We use these outputs to understand whether cuH&3

recommendations safeguard vulnerable mammals in fragmiangstapes.
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Abstract

Logged forests are considered integral to global consenvalanning, yet our
understanding of the specific structural properties thaitteilspecies persistence in
degraded habitats is lacking. Moreover, forests are intigrémee-dimensional
environments yet this is rarely incorporated into assessmef species-habitat
associations to inform conservation action. Focussir®abah, Malaysian Borneo, a
region characterised by high levels of forest degradatwe couple airborne
multispectral remote-sensing methods (LIDAR) and camagsping to capture the
three-dimensional properties of forest architecture andtiy#re terrestrial mammal
community across a gradient of disturbance. Here we Iré&esa habitat structural
properties mediate biodiversity declines relative to loggnoyiced structural
degradation. Mammals were most responsive to covariadésexplicitly captured
vertical structure and heterogeneity and actively seléwbitiats retaining old growth
structural characteristics, including tall canopies,réased plant area density
throughout the vertical column and the availability of aater diversity of
environmental niches. We find mammals to be more responsitie atale of third-
order habitat selection, indicating that resourcestraeked at successively lower
hierarchical levels to overcome limitations in impoveslenvironments. Our results
demonstrate the sensitivity of mammals to logging-induceangds in forest
structure, providing empirical support for sustainable forgstagtices that maintain
architectural diversity. To support policies aimed at piging degraded land for
conservation, we introduce a framework to integrate biodiyersnsiderations into
environmental decision-making. Focussing on a high conseryaianity species, we

demonstrate how ecological thresholds, delineating abrapigels in the occurrence
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state relative to aspects of the structural environneznt,be practically applied to

prioritise conservation and restoration areas in degracteinss.

Keywords. Camera-trapping, ecological thresholdgrest structure, LIDAR,

occupancy, prioritisation, selective logging, Southéasi, Sunda clouded leoprard
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| ntr oduction

Habitat degradation is globally pervasive in forest ecosstaffecting ~4
billion hectares (82%) of the remaining forest extent (Watsbal., 2018). Forest
degradation can have profound impacts on habitat suitafoititgrrestrial vertebrates,
particularly in tropical regions where biodiversity is hosncentratedBarlow et al.,
2018) This has led to degradation concerns being integrated ifiby,pmost notably
by the Bonn Challenge which seeks to restore 350 million heaédegraded land

before 2030 [fttp://www.bonnchallenge.ory/ However, frameworks to integrate

biodiversity considerations into the prioritisation of nerable degraded forests for
conservation are currently lacking, though remain esdentitropical regions with

limited institutional or regulatory capacity.

Logging in the tropics, albeit selective, can be destrectsner et al., 2005),
resulting in structural simplification of forests duelte tisproportionate removal of
high biomass trees and collateral damage to residual vege{&inard and Putz,
1996). Degraded forests now rival intact primary forestsaddminant form of forest
cover within the tropical biome and have become cemtrajlobal conservation
planning. While the value of logged forest for biodiversity coreton is well
established for a range of taxonomic groups (Edwards €044 Putz et al., 201,2
Wearn et al., 2016}his perspective is primarily derived from coarse compasf
logged and primary foresBy coercing habitat into uniform classifications, studies
overlook spatial heterogeneity within and between loggimgessions, which can be
substantial (Berry et al., 2008). When defined along a mauntn, the conservation
value of logged forest is known to decline with increasinggileg intensity
(Burivalova et al., 2014), extraction technique (Bicknelbkt 2014) and temporal
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frequency of rotation (Edwards et al.,, 2011). While these rfgsliallude to the
ecological consequences of biomass extraction, we atié A limited understanding
of the specific structural attributes associated with ilserdity retention in degraded
forest ecosystems. This information is fundamental d@pitalise on conservation
opportunities within the vast tropical timber estate ainelctlinterventions to where

they will have the greatest imgac

Forest structure is synonymous with habitat quality whicHdragestablished
consequences for wildlife. Structurally complex environmentvigeoa greater
breadth of environmental niches (MacArthur, 1984) and accalatadigher species
diversity by facilitating co-existence through mechanisswech as resource
partitioning and niche diversification (Hearn et al., 2018bjotasts, structure can be
partitioned into horizontal and vertical components, whlietermine the distribution
(Palminteri et al., 2012), diversity (Gouveia et al., 20d)ndance (Martins et al.,
2017) and behaviour (Loarie et al., 2018ne et al., 2014) of animals. Despite the
multidimensionality of tropical forest ecosystems (Oligeand Scheffers, 2018)
considerations of the three-dimensional environmentrarely incorporated into
conservation planning. Given that up to 75% of forest-dwelling meates access

canopy resources (Kays and Allison, 2001), a broader perspmsatiesirable.

For forest management to align with biodiversity covegon objectives, an
understanding of the structural features of the forest@mwient that species actively
utilise (Moreira-Arce et al., 2016) and how these are #@#®uoc with ecological
processes (Lone et al., 2014) is required. Positive @asems with species diversity
have been identified in 77% of studies exploring the inflaeoft forest structure
(Simonson et al.,, 2014), indicating active selection #bructurally complex
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environments. Active habitat selection is an adaptive gg®seeking to balance
reward (resource acquisition, mating opportunities) redatto risk (energy
expenditure and predation) (Mayor et al., 200%)erefore, it is generally assumed
that preferential habitat use corresponds to areas thaeyawoological benefits
(Mosser et al., 2009). Given the limited funding availabletorservation (McCarthy
et al., 2012), knowledge of preferential habitat for vulnerapkecies is paramount to
inform conservation investment. This is particularly jpent in degraded forests
which retain appreciable levels of biodiversity but arecspsble to conversion to

agricultural lands of limited biological value (Edwards et2014)

Efforts to characterise habitat selection and inform exsagion are hindered
by simplifying assumptions that overlook the inherent cewxipt underpinning
species-habitat associations. Habitat selection is #&edelsierarchical process
describing home range establishment and episodic use offhageelements to meet
ecological demands; termed second- and third-order hagtattion respectively
(Johnson, 1980). Despite the sensitivity of ecologicalyaea to scale, habitat
selection models predominantly adopt a single-scale fMuo&arigal et al., 2016)
which obscure scale-dependent associations and hierarctspatijfic environmental
interactions (Mayor et al., 2009). Forest architectuex|gected to influence patterns
of biodiversity at a range of spatial scales (Tews ¢t28l04), yet there are few
guantitative assessments of habitat structure and biodwersoss multiple scales

concurrently (but see Mateo-Sanchez et al., 2016).

The advent of multi-scale occupancy models (Mordecali ,e2@l11, Nichols
et al., 2008) provides an analytical platform to account tfe hierarchically
structured, scale-dependent nature of habitat selection edrilecting for sampling
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bias. However, to date, applications have been largely limitesingle-species
approaches (Aing et al., 201@rosby and Porter, 201Bipsey et al., 201,Mordecai

et al.,, 2011). Tropical forest mammals are inherently aa cryptic, complicating
guantitative assessment (Brodie et al., 2015b). Multi-epeoiccupancy models
circumvent this issue to provide robust parameter estimatespézies infrequently
encountered during biodiversity surveys (Dorazio and R@@e5). Thus, the formal
integration of multi-species methods within a multi-edehdmework would provide a
powerful statistical tool to capture the complexityhabitat selection for vulnerable

species to support conservation interventions in degradest goesystems.

Here, we assess degradation impacts on habitat structurbichdersity
across a gradient of disturbance to provide a nuanced pévspmtthe conservation
value of logged tropical forests. Our detailed appraisal f@acosehe Malaysian state
of Sababh, in a region characterised by high levelsrettalegradation (Gaveau et al.,
2016k Hansen et al., 2013). Of the remaining forest area, 466h&dered degraded,
a figure which could likely rise to 88% if current land-useigiestions are honoured
(Gaveau et al., 2014). Combining high resolution airborne LIDWR sophisticated
processing protocolsViacArthur and Horn, 1969Stark et al., 2012)we develop
forest structural metrics based explicitly on three-dinmeradiplant area distributions
and chart their deterioraticacross a degradation gradient. Drawing on an extensive
camera-trap dataset, we identify the specific structumabates of degraded forest
ecosystems that facilitate habitat use. Adopting a nex&dnsion to multi-scale
occupancy models we explicitly account for the scale-oldget, hierarchical nature
of habitat selection within a multi-species framewdken the current policy focus

of identifying degraded lands for conservation, we demonsimtespecies-structure
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habitat associations can be practically applied to delineaiatymrestoration and
conservation areas in logged forests and guide reactiveoemental management

plans.

M ethods

Study site and sampling design

Fieldwork was undertaken at the Stability of Altered Foresisiztems
Project (SAFE; www.SAFEproject.net) and neighbouring oil pastates in Sabah,
Malaysian Borneo (Ewers et al., 2011). The SAFE Pr@egerimental area is nested
within the Kalabakan Forest Reserve (KFR; 4°33°N, 117°16’E), comprising lowland
and hill dipterocarp forest. A legacy of selective logging hasulted in a
heterogeneous landscape encompassing a degradation g(&itier.1). Between
1978 and 2008, KFR was subjected to multiple logging rotationactixty a total of
179 n? ha?, leaving the remaining stand in a heavily-degraded statiee{Sgr et al.,
2013). Similarly, the adjacent Ulu Segama Forest Reserveweietwo rounds of
timber extraction at a reduced cumulative rate of 15@ah, and with more stringent
size quotas. In contrast, the adjoining Brantian-Tantilgin Jungle Reserve (VJR)
retains near-pristine, old growth forest, though theatige of illegal encroachment
is apparent on the western and southern borders. Tiebdisce gradient is broadly
representative of the transitional degradation statasalyof landscapes in Borneo

and elsewhere in much of tropical Southeast Asia.

We established 74 sampling locations to characterise foresttuséduc
properties and the mammal community across the study ciyoels(Fig. 2.1).
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Locations were selected to capture the degradation gracbéitve to logging
intensity using the Putz and Redford (2010) classification seh&td Growth Forest
(VJR; N=10), Managed Forest (Ulu Segama Forest Resé&tv&b) and Heavily-
degraded forest (KFRyY=28). We also sampled remnant forest embedded within an
oil palm matrix N=21), differentiated from degraded forest due to isolatiosh an

increased exposure to anthropogenic stressors.

Degradation Gradient
O Sampling Sites
' I o1d Growth Forest
l:l Managed Forest

Cl Heavily Degraded Forest

- Remnant Forest
O ki

0 2.5 5 75 10

Figure 2.1: Map of the study site and sampling design. Map detailsrtbebr geographic context of
the study site in Malaysia (inset), the classificatibforest across the disturbance gradient within the
Stability of Altered Forest Ecosystems (SAFE) projeeiaalliDAR flight path (black outline) and

camera-trap locationtNE74).
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LIDAR methods and structural variable development

To characterise the structural properties of the lapéscdiscrete-return
airborne Light Detection and Ranging (LIDAR) surveys wameducted in November
2014 by NERC’s Airborne Research Facility (Fig. 1b). LiDAR is an active remote
sensor that emits a laser pulse of light from a lagtdraft towards a target object and
guantifies distance based on the time elapsed betweesi@masd reflection (Lefsky
et al., 2002). Surveys employed a Leica ALS50-II sendaclzed to a Dornier 228-
201 light aircraft, flown at an elevation of 1400-2400 m.aastl a velocity of 120-
240 knots. The sensor emitted pulses at a frequency of 120 ktdunpassing a scan
angle of 12° and a footprint of 40 cm, resulting in a polattd density of 25-50 points
m2. Concurrent ground surveys using a Leica base staticititafied accurate

georeferencing of the point-cloud.

To quantify structural metrics, point-cloud data were subjectedwtn
processing procedures. Initially, ground and non-ground returmespaetitioned from
the point-cloud, using the former to generate a 1 m resaldigital elevation model
(DEM). We constructed a canopy height model (CHM) of lsimiesolution by
normalising non-ground returns and subtracting ground obsersatérived from the
DEM. To complement this approach, and develop a nuanceaghtingito canopy
structure, plant area density (PAD) distributions were geedifrom point-cloud data
using a variant of the MacArthur-Horn (1969) method, medifor use with discrete-
return LIDAR (Stark et al., 2012). The MacArthur-Horn had corrects PAD for
shadow effects caused by canopy elements closer to the,sam$thus higher in the
vertical column. This approach has distinct advantagesather methodologies. For

example, PAD distributions are based strictly on vegetairoperties, rather than the
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underlying point-cloud, thus providing a three-dimensional persgectithe vertical
column that cannot be achieved by CHMs. Moreover, indeggneerification has
found strong correspondence between PAD distributions agdtat®n samples

harvested directly from the vertical caln (Stark et al., 2012)

From the CHM and PAD distributions we extracted metricsajgture three
distinct axes of the structural environment (Table 2.1; &awnd Asner, 2014)
horizontal structure, the arrangement of vegetatiohax eandy dimensions; vertical
structure, the arrangement of vegetation inzZltBmension, and; vertical structural
heterogeneity, the variability of canopy properties. 8Wenplimented these metrics
with structural landscape context variables derived fteenGHM to broadly capture

the availability and quality of forest habitat (Table 2.1).

As a preliminary assessment of the structural signatuierest degradation,
we employed Bayesian linear models to determine differemcderest canopy
properties acrossdegradation gradient. Structural covariates were extrastetean
values across buffer radii corresponding to optimal scafethird-order habitat
selection (detailed in Table S2.1). Linear models wepemented in the statistical
software JAGS (Just Another Gibbs Sampler) version 4Bunmer, 2017), called

through R using the package “jagsUI” (Kellner, 2016).
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Table 2.1: Structural covariates quantified from LiDAR-derived poirdud data. Covariates capture
three distinct axes of forest structure (horizontal strectvertical structure, vertical heterogeneity) and
were derived from either canopy height models (CHM) or plaet density (PAD) distributions

developed using the MacArthittern Method and adjusted for use with discrete-return LiDAR.

Structural Axis Metric Processing Description

Method
Horizontal Gap fraction CHM Proportion of focal patct
Structure containing vegetation below 5 m

height, indicative of forest gaps.
Number of layers PAD Number of contiguous canog
layers within the vertical columr

indicative of connectivity

Vertical Canopy height CHM Average canopy height as deriv
Structure from the CHM surface
Plant Area Density PAD Plant area density, inclusive

vegetation, stems and branches.

Vertical Shannon Index PAD The diversity of environmente
Heter ogeneity niches within the canopy profile
Shape PAD Morphological measurement of tt

relative distribution of vegetatio
within the canopy. Ratio of th
height in the canopy with th
highest vegetation density and t
height of the 99th percentile of tt

distribution
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L andscape Forest Cover CHM Proportion of forest cover. Fore

Context defined as trees >10 m in heigl
Indicative of habitat availability.

Canopy height CHM Standard deviation of canog

variability height. Indicative of forest quality

Mammal surveys

To characterise the mammal community, we collected detéaodbn-detection
data using camera-traps between June 2015 and August 2017. Repeteked
digital cameras (Reconyx HC500, Wisconsin, USA) were deplaacross the 75
sampling locations, randomly stratified across the degoadgtadient (Fig. 1b) and
separated by a mean distance of 1.6 km. Within each docatie established two
camera-trap stations positioned up to 250 m apart dependingeoterrain and
availability of forest cover (mean=185 m), resulting intosal of 148 stations.
Accounting for theft, vandalism, malfunction and animal dge) data were obtained

from 125 units distributed across 74 sampling locations.

Camera-traps were deployed for a minimum of 42 consecuoiglgs per
camera station, yielding a total survey effort of 5,472 cartigp nights. Cameras
were positioned at a standardised height of 30cm andigresit on flat surfaces
targeting low resistance travel routes and randomisedidosasimultaneously to
maximise detections and capture intra- and ispetific difference is species’ use of

habitat features (Cusack et al., 20fearn et al., 2013)
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Modelling framework

We developed a multi-species extension to multi-scalepsrey models to
explore second- and third-order habitat selection by iumedarge terrestrial
mammals relative to LIDAR-derived structural variablesthii a traditional single-
season, single-species framework, occupancy is estinatgdefined locations using
spatially or temporally replicated samples to accouninfiperfect detection and thus
differentiate between true absence and non-detectiooK&feie et al., 2017). We
extend this framework to incorporate spatial and temporalcegmin and multi-

species inference.

Our model formulation employed single-species models agtaral building
blocks (Guillera-Arroita, 2017) and comprised three conditipitependent sub-
components describing the partially observed processes wyiaary ¢), habitat use
(a) (state process model) and detection (observation o@leése sub-models
corresponded to the hierarchical nature of our sampling desigrivalent to site,
camera station (spatial replicate) and survey (tempegdicate) respectively. We

modelled occurrence, of species at sitej as the realisation of Bernoulli trial:

z.j ~ Bernoulli(yi )

wherez; is a binary variable indicating species presence/absemte;an
expresses the probability of species occurrence at a gitenHabitat useg, of
speciesi within sitej at camera statioh is defined as the outcome of a second

Bernoulli process conditional on species presence,

aiji|z,; ~ Bernoulli(zj - 9ij)

44



wheregi, is a binary variable indicating presence/absence atthera station
and$ expresses the probability of habitat use. To account fpernfact detection in

habitat use, we specified a third Bernoulli process:

Yijlklaij ~ Bernoulli(aijik - pijik)

where yijix represents a 4-dimensional array containing the olerve
detection/non-detection dath,is the temporal replicate aml; i« is the detection
probability conditional on species presence. Under this fiation we interpret model
parameters as: (1) the probability that a site is occupiadiive to coarse covariates
influencing home range establishment (second-order haataction); (2) episodic
occupation within the home range given that the sitec@ipied to meet ecological
demands relative to fine-scale covariates (third-ohdduitat selection), and, (3) the
probability of detecting a mammal species during a surveizcagg given that the site

was being utilised.

Single-species models were linked by an additional hieraicha@mponent
that modelled species-specific parameters as realisations & community-level
distribution. This approach assumes species respond simbatlyot identically, to
environmental conditions. Species-specific parameter assnthus reflect a
compromise between individual response and the average resddahe community,
modulated by detection history. This process induces shrinfthgeborrowing of
statistical strength by individual species across thenuamity), which has been shown
to improve estimation precision for data-poor specie®dnfently detected during

sampling (Pacifici et al., 2014)
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Detection/non-detection data for each camera statiore vinned into
independent sampling occasions of six-days in length (2-fcaégd per site). We
excluded three species with fewer than five detectionsigin@ut sampling (banded
linsang,Prionodon linsangbantengBos javanicussmooth-coated ottetutrogale
perspicillatd, as models are unable to discern changes in occupancyttios® in
detection when observations are very sparse (Broda.,e2015b) Moreover, we
acknowledge that strictly arboreal species (i.e. gibbéhdobates sp., langurs,
Presbytissp., small-toothed palm civet&rctogalidia trivirgatg cannot be reliably

monitored using our sampling design and restrict inferencatestrial species.

Multi-scale occupancy models assume independence betwpatial
replicates (Mordecai et al., 2011), however, spatiallytetesl designs may result in
Markovian dependence as a result of animal ranging behajes et al., 2010)
To test this assumption, we employed a Jaccard Intjeto(determine the degree of
similarity in detection histories between camera statinested within sites for all
study species (Dorazio et al., 2011). We found little evidenaenufarity, with the
exception of the bearded pig=0.51; P=0.008), Bornean yellow muntjad<0.33;
0.015), red muntjacJE0.27;P=0.048) and pig-tailed macaqu&=0.31; 0.008), for

which correspondence was attributed to high levels of abundance

To assess mammalian responses to habitat configuration faedt
architectural properties, we developed occupancy, habitahdsgetection models of

the form:
logit(wij) = aoi + aaiForest Covegr axiForest Quality+ e(Year);
logit(%i,) = Boi + puStructure + SxStructuré;, + e(Year,)i
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logit(pijikx) = doi+ i Trap_Efforf) + 6,PAD_Herl, + dziNlay;,

Occupancy, habitat use and detection probabilities were madelléhe logit
scale with random slopes and intercepts relative toespédle modelled second-order
habitat selectiony;) as a function of habitat availability (Forest Covenyl quality
(Canopy Height Variability), at coarse spatial-scalelevent to home range
establishment. We assessed third-order habitat selg&ionrelative to variables
associated with our three structural axes, and incorposat@zhd-order polynomial
terms to account for non-linear responses. Due to analytiocadlyibitive levels of
multicollinearity (f|> 0.7; GVIF >5) independent models were constructed for each
structural predictorN=6). Scale optimisation methods were applied to second-order-
(circular buffers of radii: 1, 1.5, 2 km) and third-ordabltat selection (radii: 10, 25,
50, 100, 150, 250, 500 m) sub-models to characterise optimal s¢alelection for
environmental predictors and determine sensitivity to spatteht. We implemented
temporal random effects)(for both the occurrence and habitat use models to addres
unmeasured inter-annual variation due to multi-year sampliVe modelled detection
as a function of structural and sampling covariates presumeidfluence the
observation process, including: sampling intensity (“Trap Effort”), obstructing
vegetation features in the camera-tdagection zone (“PAD HERB”) and alternative
pathways in the vertical column (“Nlay”). Detection covariates were extracted across
a fixed buffer of 25 m, corresponding to the detection zdeir camera-trap models.
Prior to analysis, all continuous covariates were cemtnedstandardised to place them

on a comparable scale and improve model convergence.

Hierarchical multi-species occupancy models were imphate using a
Bayesian framework (for details of model code see supple82 1), specified with
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uninformative priors for intercept and slope parameters. Mbdelled variance
parameters associated with temporal random effectsr¢igeally using a half-
Cauchy distribution to mitigate potential overestimation tudew factor levels
(Gelman, 2006). We specified three Markov chains per paeajredach comprising
150,000 iterations with a thin rate of 100 and a burn-in pefid®,000. Convergence
was assessed visually, to determine adequate mixing of chashstaistically, using
the Gelman-Rubin statistic, with values <1.1 indicatngvergence (Gelman et al.,
1996). Model fit was assessed using a predictive posterior cvbaa) compares the
observed data against a simulated, idealised dataset (Geltnal.,, 1996). W
extracted Bayesia® values as a numerical summary of the posterior predict
distribution, with values of 0.5 indicating adequate mditleWWe assessed model fit
using a Pearson y? discrepancy measure for binomial data and a “lack of fit” statistic

(Kéry and Schaub, 2011)

To compare competing models between structural covarldted) @nd scales
(N=7), we ranked models using Watanabe Akaike-Information-GritefWWatanabe,
2010), a within-sample model selection criteria analogoud@afd robust to latent
parameters (Broms et al., 2018)nless stated otherwiseje present results as the
posterior distribution means with 95% Bayesian Credibtervals (BCl: 2.5 and
97.3" percentiles of the posterior distribution). Parameaeesconsidered influential
if their BCI does not overlap zero. We report findings focworence and detection
parameters corresponding to the overall best fitting madelpresent findings for
habitat use parameters according to the highest ranked|sgztie associated with

that structural covariate.
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Delineating restoration and conservation prioritgas

Focussing on a high conservation priority species, the&alouded leopard
(Neofelis diard), we implemented change point analysis to link abrupt siniftee
occurrence state to specific forest architectural progeftde restrict change point
analysisto structural properties, relative to which, the species detrated a
significant response. We define an ecological thresiédzone of transition between
two stable states, characterised by a rapid rate ofeh@tuggett, 2005). Using the
“bep” package in R (Erdman and Emerson, 2007), we employed a Bayesian hlgorit
(10,000 iterations, 2,000 burn-in) to identify points in the joted sigmoidal
occupancy response of the clouded leopard that esdiithie highest rate of change.
Threshold values were used to partition the predicted resjostnree occupancy
states: (1) zone of stressow occupancy, low rate of change; (2) zone of transition
high rate of change, and (3) zone of tolerand¢ggh occupancy, low rate of change.
From a prioritisation perspective, zones of toleranceeve®nsidered to represent
conservation priority areas, as they were charactehsehigh, stable occurrence.
Moreover, zones of transition were viewed as optimabrason areas as they would

provide the highest rate of change in occupancy.

To develop a spatially explicit surface of conservatiot @estoration priority
areas, we quantified corresponding structural values framshblds to define
covariate-specific environmental bounds related to our occypsiates. These
environmental values were subsequently employed to reclagsiiged raster
surfaces of structural covariates. Based on our foumifignt predictors, &
developed a consensus map of conservation designatiossutdise the extent of

these areas and the level of agreement between cegariat
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Results
The structural signature of forest degradation

We compared structural forest properties across a degnadgptdient and
identified consistent patterns of structural simplificatielative to logging intensity
(Fig. 2.2). Typically, logging-induced degradation resulteaihigher proportion of
canopy gaps (Old Growth: mean: 0.24, BCI: 0.15-0.34; Managed: 0.09,1@:0-0.
Heavily-degraded: 0.39, 0.33-0.44; Remnant: 0.61, 0.54-0.67); lower casiyecti
throughout the canopy (Old Growth: 2.83, 2.66-2.99; Managed F@&&; 2.79-
3.12; Heavily-degraded: 2.47, 2.38-2.56; Remnant: 2.07, 1.95-2.19); lovggtt hei
profiles (Old Growth: 24.22 m, 21.82-26.79; Managed Forest: 23.37 m,-26.83;
Heavily-degraded: 13.95 m, 12.56-15.31; Remnant: 9.93 m, 8.14-11.75), reduced
vegetation density throughout the vertical column (Oldv@ino 5.24, 4.61-5.89;
Managed Forest: 6.71, 6.07-7.36; Heavily-degraded: 3.96, 3.58-4.33; Reth0&8n
3.58-4.33) and fewer environmental niches, as determined by Shbnaieonvalues
of the plant area distribution (Old Growth: 2.76, 2.57-2.94; MadaForest: 2.69,

2.50-2.86; Heavily-degraded: 1.63, 1.53-1.73; Remnant: 1.35, 1.22-1.48).
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b. Vertical structure
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c. Vertical heterogeneity
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Figure 2.2: Probability of habitat use (third-order habitat selection)triopical forest mammals in
response to structural degradation of forest architetmectural changes in horizontal structure (panel
a), vertical structure (panel b) and vertical heterogeni#ynel c). Top rows represent structural
modification across a tropical disturbance gradient.iViplots depict the kernel density distribution
of the data (coloured shapes), wider sections indicateegnaabability that structural characteristics
within a disturbance class will take a given value. Botgpkontained therein describe the median
(central vertical line), interquartile range (outer vertlozads of the box) and 95% Bayesian Credible
Interval (thin horizontal lines). Middle rows demonstrétie occupancy response of the mammal
community to structural alterations. Community trendspaesented as predicted responses derived
from posterior means and 95% Bayesian Credible Interva@lg.(Bottom rows denote effect sizes for
species-specific responses to structural modificationpi&®ent effect sizes for species parameters (c)
as posterior means (points) and BCI (horizontal lines). @oéyts and horizontal lines represent non-
responsive species, blue suggests influential unimodat®fec red indicates influential non-linear
associations described by second-order polynomial téffexts for species-specific associations ar

considered substantial if the BCI does not overlap zeroi¢aédashed black line).

Pairwise comparisons between disturbance classes foomgistently
significant declines in structural attributes between ManageldHeavily-degraded
Forest and Heavily-degraded and Remnant Forest (see Table@Gihirary to these
trends Old Growth and Managed Forest were structurally sifFidavever, our results
indicated a greater proportion of gaps and lower vegetalemsity throughout the

canopy in Old Growth Forest.

Mammalian responses to forest structural properties

At both scales of habitat selection, models containingamates extracted

across larger spatial extents were consistently idedt#s providing the best fit to the
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data. We found occurrence relative to second-order habdlgiction was best
modelled with covariates extracted across buffers withradius of 2 km
(1979.98WAIC<2167.38), while structural covariates associated with thirdrorde
habitat selection demonstrated the greatest responsea¢ta250 m (Gap Fraction,
Number of Layers, Canopy Height) and 500 m (Plant Area iDei@hannon Index,

Shape) buffer radii (see supplementary Table S2.2 failglet

Factors affecting second-order habitat selection

At the community-level, we found no consistent respae$stive to Forest
Cover (mean effect size: -0.11, BCI: -0.56-0.40) or Canopghté&/ariability, likely
driven by marked differences between species. At the etalecond-order habitat
selection, multi-scale, multi-species occupancy modelealed Forest Cover and
Canopy Height Variability to be influential predictors faveral species (Fig. 2.3).
For example, the Bornean yellow muntjdugptiacus atheroded.14, 0.36-2.26) and
banded civet Hemigalus derbyanus 0.83, 0.01-2.02) demonstrated positive
associations with Forest Cover. Conversely, the lebgatrPrionailurus bengalensis
-1.27, -2.49 to -0.38), greater mouse-ddeaulus napu-0.99, -1.78 to -0.28) and
long-tailed macaqueMacaca fascicularis0.82, -1.65 to -0.03) responded negatively
to the availability of forest habitat, and consequently weseerprevalent in heavily
degraded forests with open canopy. Forest quality was identifiedn important
determinant of second-order habitat selection for thex&uor yellow muntjac (1.53,
0.62-2.56), lesser mouse-de€Frggulus kanchit 0.89, 0.16-1.79), marbled cat
(Pardofelismarmorata0.93, 0.06-2.09), red muntja@igntiacusmuntjak 1.38, 0.17-

2.54) and thick-spined porcupindystrix crassispinis0.82, 0.01-1.73). Conversely,
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the leopard cat (-2.00, -3.58 to -0.45) demonstrated a preferentmvter quality

habitat characterised by a less variable canopy.
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Figure 2.3: Landscape context factors influencing Bornean mammal occus@oynd-order habitat
selection). Covariates delineate the extent (forestrtawnel quality (canopy height variability) of forest
habitat. Effect sizes for species parameters are pgessas posterior means (points) and 95% BCI
(horizontal lines). Grey points and horizontal lines espnt non-responsive species, while blue
suggests influential relationships. Effects are consideubstantial if the 95% BCI does not overlap

zero (vertical dashed black line).
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Factors affecting third-order habitat selection

At finer spatial scales, the hierarchical models idestifiactive habitat
selection for structurally complex environments to be entidé both the community-
and species-levels (Fig.2. Mammal assemblages demonstrated non-linear, second-
order polynomial responses to Gap Fraction and Plant Beseity, suggesting a
complexity that could not be captured by linear methodsfotMad evidence of weak
positive relationships (identified using 90% BCI) with the Nbemof Canopy Layers
(0.28, 0.04-0.54), Shannon Index (0.38, 0.06-0.77), Canopy H& g4, (0.07-0.69)
and Shape (0.44, 0.11-0.85), implying the importance of matoreected forest
habitat, containing a breadth of environmental niches donnsunity persistence.
Using WAIC scores to rank models, structural variables &ssolcwith vertical
heterogeneity (Plant Area Density: WAIC=1979.98; Canopy HEWAIC=2039.60)
and vertical complexity (Shannon Index: WAIC=2016.74; Shape: @¥2030.87)
were found to be stronger predictors of mammalian habitatthes® horizontal
heterogeneity (Gap Fraction: WAIC=2059.08; Number of Layer20¥2.13),
emphasizing the importance of the vertical axes ofsbostructure in influencing

habitat use

Forest structure was identified as a key determinant od-trder habitat
selection for 16 of the 28 Bornean mammals sampled (FB). &pecies of
conservation concern demonstrated strong positive asems with measures of
vertical heterogeneity and complexity, including the Swidaded leopard (Canopy
Height = 1.76, 0.33-3.42; Plant Area Density: 1.66, 0.43-3.25; Shdnder: 1.75,
0.29-3.73), binturongAfctictic binturong Canopy Height = 1.17, 0.28-2.42; Shannon

Index: 1.32, 0.12-3.15), tufted ground squirrBhéithrosciurus macroti<Canopy
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Height = 1.25, 0.17-2.26; Shannon Index: 1.84, 0.34-3.73) and marbl&dasdtArea
Density: 1.33, 0.03-2.67). Vertical heterogeneity and complexitge veemilarly

important in governing habitat selection by the Bornean wettauntjac, long-tailed
porcupine Trichys fasciculath and banded civet (all detailed in Fig. 2.2). The
horizontal arrangement of vegetation was also foundetarbinfluential predictor;
aversion to canopy gaps was found for the Sunda cloudedde@fall, -2.59 to -
0.05), banded civet (-0.84, -1.52 to 2.46), long-tailed porcupine ({1&&,to -0.02)
and red muntjac (-0.59, -1.14 to -0.07), while the sambar &ems@a(unicolor0.57,

0.18-1.12) and banded civet (0.73, 0.20-1.53) demonstrated/@@ssociations with

the number of contiguous layers within the canopy.

Not all species selected structurally complex environmetis |&opard cat (-
1.35, -2.69 to -0.32) and Malay porcupittystrix brachyura0.61, -1.08 to -0.20)
demonstrated negative associations with Plant Area Densgitile the long-tailed
macaque was found to have a negative response to measueztcal complexity
(Shannon Index: -1.25, -2.37 to -0.30; Shape: -1.04, -2.16 to -0.06). rifuwtee
polynomial trends were identified for a number of specaédative to Plant Area

Density (pig-tailed macaqu&acaca nemestrina0.35, -0.75 t0-0.09; Sunda stink

badger Mydaus javanensis0.33, -0.77 to -0.03; thick-spined porcupine: -0.35, -0.87

to -0.08) and Gap Fraction (Malay porcupine: -0.38, -0.77 to -Qp@ptailed
macaque: -0.34, -0.74 to -0.01) indicating tolerance to moderatdls lef/structural
degradation. Species-specific outputs for all top-rankirglets are available in

supplementary figures S2.1-S2.12.
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Delineating restoration and conservation prioritgas

Bayesian change point analysis identified zones of tlanstharacterised by
high rates of change in Sunda clouded leopard occupand@afwpy Height (lower
bound = 10.68; upper bound = 21.11 m; Fig. 2.4b), Gap Fraction {00323; Fig.
2.4c), Plant Area Density (2.315.05; Fig. 2.4d) and Shannon Index (1-68.74;
Fig. 2.4e). Areas within these zones were considered priestoration areas, while
areas exceeding the upper bound were viewed as priority coliseraseas. Based
explicitly on clouded leopard habitat use, 12,290 ha (40.7%) abthéforest area
would be identified as priority conservation zones, and 12,8404h.9%) of the
landscape for potential restoration (Fig. 2.4a). Relatveextent, the largest
concentrations of conservation priority areas weretifieth in Old Growth (1,555 ha,
12.7%) and Managed Forest (8,200 ha, 66.7%). Furthermore, trest €lasses
demonstrated the highest levels of consensus betwidenrastructural metrics (65.0
and 67.8% of total designated area respectively). Restorappartanities were
predominantly identified in Managed (3.340 ha/26.4) and Heavily-degrautedts
(6,705 ha/53.1%) but agreement between metrics was less conviommgpriority
conservation areas were typically situated in Heavily-degrégl@@0 ha/60.0%) and
Remnant Forest (1,845 ha/35.2%) and were consistently deateddior three to four

of the structural metrics (38.9 and 75.3% of total designate). are
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characteristics (b-e). Vertical dashed black lines (bgesent the lower and upper bounds of the zone

of transition, characterised in red line graphs by the higlussérior probability of change.

Discussion

Logged forests are integral to global conservation plannired, our
understanding of the specific structural properties thatttteilspecies persistence in
degraded habitats is lacking. Among the many studies explorengahservation
value of logged tropical forest for biodiversity (Burivadost al., 2014Edwards et al.,
2011 Edwards et al., 2014Putz et al., 2012) ours is the first to consider
multidimensionality to identify the architectural elerteethat underpin the ecological
significance of degraded ecosystems. We demonstrate cdaobrbiodiversity
declines relative to structural degradation across a gradietugging intensity.
Moreover, we illustrate how species-habitat associgtioan be aligned with
conservation planning to integrate biodiversity considanatioto the designation of

priority conservation areas.

When evaluating forest structural properties across adigpa gradient, we
found consistent evidence of structural simplificatioratie¢ to logging intensity
between the Managed, Heavily-degraded and Remnant Foressclalsseobserved
simplification was characterised by a lower height profilth reduced vegetation
density, resulting in fewer environmental niches, lessectenl canopy pathways and
a spatially dispersed canopy. Unsustainable selective logdjstgiguished by high
biomass removal and a short rotational length, has leglicated as the primary
driver of forest degradation across Southeast Asia (gt et al., 2014)

Unsustainable practices facilitate structural simplificabgrtausing soil compaction
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and reductions in the seed bank (Pinard et al., 2000), wésthct the successional
capacity of forest habitats (Bischoff et al., 2005). kemnore, fragmented forests,
analogous to our remnant forest class, are susceptientt damage and altered
microclimatic conditions which precipitate additional madity of large trees

(Laurance et al., 2000). Our findings echo previous struassalissments of degraded
forests (Hardwick et al., 201%ent et al., 2015Kumar and Shahabuddin, 2005
Okuda et al.,, 2003), while empirically demonstrating progressicéitactural

deterioration associated with repeated logging and fragtiem

Structural properties were found to be comparable between th&rowith
and Managed Forest classes. This anomaly could refleatapid recovery of our
Managed Forest which has been unencumbered from logging préssune last
decade (Reynolds et al., 2011). Elsewhere in Southe&strAstoration of structural
canopy elements has been shown to take up to 55 years gosiglgBrearley et al.,
2004), though only negligible differences in canopy heigttehbeen documented
following 23 years of recovery (Okuda et al., 2003). While thesgrnibed interval
between logging rotations is 15-30 years, the realisekatéda period across
Southeast Asia averages 16 years (Fisher et al., 201JX5e Tigures indicate that
current practices are insufficient to facilitate nakuecovery following logging-

induced structural degradation.

The ecological neighbourhood concept describes the spstimit et which a
species becomes receptive to environmental variation (éddiet al.,, 1987
McGarigal et al., 2016). Defining these neighbourhoods is fuadtah to
understanding the complexity of habitat selection in degrag®systems. Our
analyses consistently identified the mammal communitymast responsive to
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covariates aggregated across the largest spatial exteotsgically, this implies that
larger areas are required to accrue ecological benefits dvailable habitat features
in impoverished environments. From a conservation perspettigereinforces the
widely-recognised notion that large areas of suitable dtadie essential to facilitate

ecological processes and safeguard tropical mammals.

Previous studies of tropical mammals have found optimalaspatents to
range between 50 m (Niedballa et al., 204/&J 7.7 km (Hearn et al., 2018t)ough
these extents are likely to be species- and habitat-sped#ntifying optimal spatial
scales is fundamental to ensure that ecological assydatian be identified and
practically applied to inform policy. While there is a gene@isensus that spatial
extent should be tailored to the ranging behaviour oftidyssystem (Mayor et al.,
2009), detailed information on the spatial ecology of ceyrtipical species is rarely
available. To this end, our study demonstrates the valterative scale optimisation
methods to identify optimal ecological neighbourhoods whewement data are

unavailable.

Our multi-scale appraisal reveals novel insights into thalselection by
tropical mammals. This information is paramount in ddgdasystems where species
persistence is dependent upon identifying the specific fathatsunderpin habitat
suitability. We found that forest availability and qualisg, indicated by forest cover
and canopy height variability respectively, were impori@miers of second-order
habitat selection. Forest cover describes the geogrdgohinds of suitable habitat,
while canopy height variability illustrates the coarse plexity of the forest (Bergen
et al., 2009) and defines the continuum across which resowaree distributed
throughout the suitable space. Habitat availability has beewn to be an important
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factor defining species occurrence (Hearn et al., 20¥8thalski and Peres, 2005)
However, our results indicate contrasting responses, imiadatly driven by species
that have adapted to take advantage of resources in degraded-forest habitats

(greater mouse-deer: Heydon and Bulloh, 1%3pard cat: Mohamed et al., 2013).

We found greater support for the positive influences oédbiquality on
second-order habitat selection (i.e. home range edtai®@nt). This finding likely
reflects increased resources in structurally compléxdts, such as fruit and browse
availability for ungulates (Brodie and Giordano, 2013), andathendance of small
canopy mammals for arboreal predators such as the magtl@elareira-Arce et al.,
2016). The contrasting influences of forest availability andityuaay be indicative
of the level of degradation across our study landscap@eHtange establishment was
not based on forest cover because degraded forest is fevept@l to the same degree
as old growth forest, which accounts for only 8.3% of onddgape. In response,
species appear to be actively selecting home range aa¢astin adequate structural
guality to meet their ecological requirements. Our findinggosrt those of Barlow et
al. (2016) in emphasizing the importance of maintaining fogeslity as well as

extent.

At the scale of habitat use, we elucidate the strugbuoglerties that constitute
quality habitat and how they facilitate ecological procesgdlant area density
throughout the vertical column was the strongest predwtathird-order habitat
selection, emphasizing the importance of variables thaiptuce the
multidimensionality of forest ecosystems. For arboagatbush predators, such as the
Sunda clouded leopard and marbled cat, vegetation density prowvses that
increases hunting efficiency through visual or locomotbstruction, as has been
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demonstrated for lions (Davies et al.,, 2016). Conversely,tatge density and
distribution may provide refugia for prey species such gslates, particularly when
engaged in vulnerable behaviours such as resting or ruminéBoodie and

Brockelman, 2009)

Mammals actively selected for forest areas with taiéaropies and a greater
breadth of environmental niches, which are characterigt@perties of late-
successional stands (Pe@karos, 2003). Mature, diverse forests demonstrate thighe
primary productivity (Apps et al.,, 2004) and afford greater uesgs to primary
consumers such as the Bornean yellow muntjac. Moretalrees are fruiting oases
for frugivorous species such as binturong (Felton e2@03) and have shown to be
preferential habitat features for species with similatatyepreferences (Davies et al.,
2017), suggesting supplementary ecological benefits of matanels. Forests with
late-successional characteristics accumulate letr It a faster rate (Scherer
Lorenzen et al.,, 2007), attracting a diverse, abundant @brate community that

could benefit insectivorous species like the banded civet.

Generally, our results indicate that mammals activelgcsed structurally
complex environments at fine-scales suggesting sensitivitgigturbance that
simplifies canopy elements. This emphasises the impmetaf maintaining and
restoring structurally intact forests for biodiversitynservation. Taken as a whole,
our results confirm the hypothesis that species willktr@&sources at successively
lower hierarchical levels of habitat selection to owemne limitations at the preceding
level (Mayor et al., 2009). Our mammal community was mespansive at the scale
of habitat use, presumably because resources were not stlffieieailable at coarser
designations of habitat selection. Moreover, theserfgglallude to the potentialfo
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negative feedback loops in degraded systems. Mammals okeym@cological roles
in forest ecosystems, including trophic regulation (Estes., 2011), seed dispersal
(Brodie and Brockelman, 2009) and seedling recruitment (Granaedal., 2018)
Active avoidance of heavily-degraded areas could potent#iygt the resilience of
these systems, preventing natural post-disturbance mgcand leaving ecosystems
in a state of arrested succession (Ghazoul et al., 2am8)ultimately, defaunation

(Dirzo et al., 2014).

The capacity to identify and prioritise degraded forestsc@oservation is
imperative to inform biodiversity management in tropical ¢oes with limited
regulatory and institutional frameworks. This is partidylamportant since logged
forests play a pivotal role in safeguarding biodivgrsaigainst the impacts of
environmental change (Struebig et al., 2015). Capitalising oanpaccy response
curves to prioritise land revealed 12,290 ha of potential corigamnareas based on
records of active habitat selection by a high consemairiority species, the Sunda
clouded leopard. These areas were predominantly distributleith iatd Growth and
Managed Forests and rarely Heavily-degraded Forests. Cadligctinese findings
provide further evidence of declining conservation value wittreasing logging
intensity (Burivalova et al., 2014). We delineate a furth@i640 ha of forest
gualifying for restoration. Based on figures provided in Budihattal. (2014a)
combined restoration and opportunity costs for the study sitddwe financially
prohibitive (>US$5 million), and potentially ineffective given thek of consensus
among structural variables. An optimal strategy maytdbeoncentrate restoration
within Old Growth and Managed Forest sites, to promote comitgcin forests

retaining a higher proportion of conservation priorityegteNatural regeneration may
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be a more viable strategy for low priority areas in Heasddgraded Forest.
Implementation is encouraged by evidence that degraded sfocast recover
significant biodiversity within 10-years following the cassn of harvesting (Brodie

et al., 2015h)

The analytical framework presented in this chapter could lpmeaetical
applications for Southeast Asian conservation policyeReproposals by the Sabah
government to increase protected area coverage by 5%, coupilethevstate-wide
availability of LIDAR data (Asner et al., 2018), provides apanalleled opportunity
to mobilise a collaborative network of camera-trap datddlydntegrate biodiversity
considerations into conservation planning. Capitalisinghesd developments could
greatly augment policy instruments that seek to mobilsedmservation potential of

degraded logged forests.

Synthesis and application

Ambitious policy targets proposed by the Bonn Challenge proh@madmap
to attenuate forest degradation (Chazdon et al., 2016). Loggestisfavill no doubt be
central to restoration efforts and conservation planningrapical countries. Our
findings provide a nuanced perspective on the conservailoe wf degraded logged
forests. The ecological significance of these modifietiitats is primarily governed
by fine-scale structural characteristics, which are afaat of the legacy of logging
across the landscape. To date there has been litdersus on the impacts of logging
on tropical mammals, suggesting that uniform classifioatof logged forest do not

sufficiently capture the inherent heterogenetydegraded systems. Tropical forests
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are multidimensional environments, which must be recogrisedvidence-based
frameworks to guide policy implementation in degraded habiégse, we identify
consistent active selection by biodiversity for struaglyrcomplex environments, and
advocate reduced-impact logging as a preventative measureaitdaim forest
architectural integrity and reconcile production and corsenv (Bicknell et al.,

2014)

For the substantial areas of forest already sulijdotensustainable practices,
we provide further evidence of the value of LIDAR to dem& cgraded forests
However, the associated cost of surveys may prove fianprohibitive over spatial
extents adequate enough to facilitate up-scaling for develamations. To ensure
biodiversity considerations are integrated into degradassessment, we provide an
analytical framework to map conservation priority areasdegraded systems.
Moreover, we caution against an over-reliance on traditidegradation measures,
such as biomass, and advocate the use of metricsagtate ecologically meaningful

components of the structural environment from the persjgeafibiodiversity.
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Supplementary infor mation

Table S2.1: Response of forest architectural properties to struati@griadation. Using outputs from a
mean parameterisation of a Bayesian linear modetjets| average structural covariate value across
each degradation class (Old Growth, Managed Forest, Haagisraded Forest, Remnant Forest) and
structural differences between classes. Parameter apssinare presented as the mean, standard
deviation, 2.8 and 97.% percentile values of posterior distributions. Diffexesiin structural covariates
between degradation classes were considered signifidayesian credible intervals (2'%ercentile

and 97.8 percentile) did not overlap zero (highlighted in bold).

Structural Parameter Mean SD  2.5th 97.5th
Variable Percentile Percentile
Canopy height Old Growth 24.22 1.27 21.82 26.79
Managed Forest 23.37 1.24 20.92 25.85
Heavily-degraded 13.95 0.71 12.56 15.31
Forest
Remnant Forest 9.93 0.90 8.14 11.75
Old Growth vs. -0.84 1.75 -4.24 2.61
Managed
Old Growth vs. - 144 -13.15 -7.54
Heavily-degraded 10.27
Old Growth vs. - 155 -17.32 -11.28
Remnant 14.29
Managed vs. Heavily- -9.43 144 -12.21 -6.56
degraded
M anaged vs. - 152 -16.46 -10.46
Remnant 13.44
Heavily-degraded vs.  -4.01 1.15 -6.26 -1.73
Remnant
Gap fraction Old Growth 0.24 0.05 0.15 0.34
Managed Forest 0.09 0.05 0.00 0.18
Heavily-degraded 0.39 0.03 0.33 0.44
Forest
Remnant Forest 0.61 0.03 0.54 0.67
Old Growth vs. -0.15 0.07 -0.28 -0.03
M anaged
Old Growth vs. 0.14 0.05 0.04 0.25
Heavily-degraded
Old Growth vs. 0.36 0.06 0.25 0.47
Remnant
Managed vs. Heavily- 0.29 0.05 0.19 0.40
degraded
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Managed vs. 051 0.06 0.40 0.63
Remnant
Heavily-degraded vs. 0.22 0.04 0.13 0.31
Remnant
Number of Old Growth 2.83 0.08 2.66 2.99
layers
Managed Forest 2.96 0.08 2.79 3.12
Heavily-degraded 2.47 0.05 2.38 2.56
Forest
Remnant Forest 2.07 0.06 1.95 2.19
Old Growth vs. 0.13 0.12 -0.10 0.36
Managed
Old Growth vs. -0.36 0.10 -0.55 -0.16
Heavily-degraded
Old Growth vs. -0.75 0.11 -0.96 -0.55
Remnant
Managed vs. Heavily- -0.49 0.10 -0.67 -0.30
degraded
M anaged vs. -0.88 0.10 -1.08 -0.68
Remnant
Heavily-degraded vs.  -0.39 0.08 -0.55 -0.24
Remnant
Plant area Old Growth 5.24 0.33 4.61 5.89
density
Managed Forest 6.71 0.33 6.07 7.36
Heavily-degraded 3.96 0.19 3.58 4.33
Forest
Remnant Forest 2.08 0.24 1.60 2.56
Old Growth vs. 147 0.46 0.54 2.35
M anaged
Old Growth vs. -1.28 0.38 -2.04 -0.54
Heavily-degraded
Old Growth vs. -3.16 041 -3.98 -2.38
Remnant
Managed vs. Heavily- -2.75 0.38 -3.50 -1.99
degraded
M anaged vs. -4.63 041 -5.43 -3.82
Remnant
Heavily-degraded vs.  -1.89 0.31 -2.48 -1.27
Remnant
Shannon Old Growth 2.76 0.09 2.57 2.94
Index
Managed Forest 2.69 0.09 2.50 2.86
Heavily-degraded 1.63 0.05 1.53 1.73

Forest
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Remnant Forest 1.35 0.07 1.22 1.48
Old Growth vs. -0.07 0.13 -0.32 0.18
Managed
Old Growth vs. -1.12 011 -1.34 -0.91
Heavily-degraded
Old Growth vs. -140 011 -1.63 -1.18
Remnant
Managed vs. Heavily- -1.06 0.11 -1.26 -0.85
degraded
M anaged vs. -1.33 011 -1.55 -1.11
Remnant
Heavily-degraded vs.  -0.28 0.08 -0.44 -0.11
Remnant

Shape Old Growth 0.21 0.03 0.16 0.27
Managed Forest 0.20 0.03 0.15 0.25
Heavily-degraded 0.20 0.02 0.17 0.23
Forest
Remnant Forest 0.22 0.02 0.18 0.25
Old Growth vs. -0.01 0.04 -0.09 0.06
Managed
Old Growth vs. -0.01 0.03 -0.08 0.05
Heavily-degraded
Old Growth vs. 0.00 0.03 -0.06 0.07
Remnant
Managed vs. Heavily- 0.00 0.03 -0.06 0.06
degraded
Managed vs. Remnan 0.01 0.03 -0.05 0.08
Heavily-degraded vs.  0.02 0.03 -0.03 0.07

Remnant
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Table S2.2: Model selection, scale optimisation and model fit sumrstaiistics. Model selection and
scale optimisation were based on comparison of Watakigbealues, with the lowest scoring WAIC
values indicating the overall best model (presented in dibitalics) and the most responsive scales
for each structural covariate (presented in bold). Modeld# judged using Bayesidhvalues (BPV)
and the “lack-of-fit” statistic (Chat). BPV values between 0.05 and 0.95 and Chat scores ~1 indicate

adequate model fit.

Model Coarse- Fine- BPV Chat WAIC
scale scale
(m) (m)
Forest cover + Forest quality + 1000 10 0.45 1.01 2150.68
Canopy height 1000 25 0.43 1.02 2112.06

1000 50 0.39 1.02 2177.02
1000 100 0.49 1.02 2152.13
1000 150 0.45 1.01 2115.11
1000 250 0.52 1.00 2144.21
1000 500 0.57 1.00 2112.66
Forest cover + Forest quality + 1000 10 0.41 1.03 2140.72
Gap fraction 1000 25 0.41 1.02 2143.88
1000 50 0.44 1.02 2085.62
1000 100 0.43 1.02 2118.44
1000 150 0.38 1.02 2108.36
1000 250 0.50 1.01 2151.82
1000 500 0.50 1.01 2059.08
Forest cover + Forest quality + 1000 10 0.44 1.01 2161.04
Number of layers 1000 25 041 1.02 2220.23
1000 50 0.39 1.03 2144.92
1000 100 0.41 1.02 2152.17
1000 150 0.37 1.03 2178.11
1000 250 0.46 1.01 2197.16
1000 500 0.51 1.01 2098.42
Forest cover + Forest quality + 1000 10 0.35 1.03 2110.17
Plant area density 1000 25 0.49 1.01 2094.70
1000 50 0.39 1.02 2113.79
1000 100 0.37 1.03 2122.11
1000 150 0.51 1.01 2133.49
1000 250 0.45 1.01 2117.06
1000 500 0.45 1.01 2101.87
Forest cover + Forest quality + 1000 10 0.44 1.01 2132.22
Shannon Index 1000 25 0.49 1.01 2077.82
1000 50 0.49 1.01 2083.64
1000 100 0.45 1.02 2129.03
1000 150 0.41 1.03 2112.02
1000 250 0.39 1.03 2117.09
1000 500 0.40 1.03 2159.95
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Forest cover + Forest quality + 1000 10 0.46 1.01 2202.90
Shape 1000 25 0.43 1.02 2096.46
1000 50 0.44 1.03 2079.89
1000 100 0.41 1.02 2136.63
1000 150 0.41 1.02 2128.74
1000 250 0.41 1.02 2091.47
1000 500 0.43 1.02 2085.71
Forest cover + Forest quality + 1500 10 0.43 1.02 2113.98
Canopy height 1500 25 0.46 1.01 2169.51
1500 50 0.43 1.02 2217.24
1500 100 0.43 1.01 2100.56
1500 150 0.51 1.01 2166.22
1500 250 0.43 1.02 2095.71
1500 500 0.46 1.02 2089.22
Forest cover + Forest quality + 1500 10 0.44 1.02 2067.09
Gap fraction 1500 25 0.38 1.03 2179.06
1500 50 0.49 1.01 2108.49
1500 100 0.34 1.03 2136.28
1500 150 0.49 1.01 2071.86
1500 250 0.41 1.03 2138.21
1500 500 0.44 1.02 2071.38
Forest cover + Forest quality + 1500 10 0.40 1.03 2203.62
Number of layers 1500 25 0.43 1.02 2134.85
1500 50 0.40 1.03 2115.06
1500 100 0.40 1.03 2143.96
1500 150 0.43 1.03 2111.04
1500 250 0.41 1.03 2088.62
1500 500 0.40 1.03 2111.11
Forest cover + Forest quality + 1500 10 0.46 1.01 2085.83
Plant area density 1500 25 0.45 1.02 2107.45
1500 50 0.56 1.01 2128.49
1500 100 0.41 1.02 2027.27
1500 150 0.45 1.02 2147.01
1500 250 0.48 1.01 2125.74
1500 500 0.44 1.01 2156.04
Forest cover + Forest quality + 1500 10 0.37 1.02 2044.55
Shannon Index 1500 25 0.37 1.04 2119.33
1500 50 0.52 1.01 2090.21
1500 100 0.45 1.02 2143.25
1500 150 0.41 1.01 2135.54
1500 250 0.41 1.02 2123.93
1500 500 0.40 1.02 2071.30
Forest cover + Forest quality + 1500 10 0.43 1.02 2084.54
Shape 1500 25 0.37 1.03 2054.64
1500 50 0.37 1.02 2108.23
1500 100 0.31 1.03 2096.33
1500 150 0.41 1.02 2079.46
1500 250 0.49 1.02 2174.09
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1500 500 0.43 1.03 2075.23
Forest cover + Forest quality + 2000 10 0.43 1.03 2043.00
Canopy height 2000 25 0.36 1.03 2082.02
2000 50 0.35 1.03 2073.89
2000 100 0.40 1.02 2109.40
2000 150 0.43 1.02 2074.70
2000 250 041 1.03 2039.60
2000 500 0.49 1.02 2041.85
Forest cover + Forest quality + 2000 10 0.47 1.02 2075.88
Gap fraction 2000 25 0.47 1.01 2133.52
2000 50 045 1.02 2111.67
2000 100 0.38 1.02 2142.91
2000 150 0.35 1.04 2061.01
2000 250 047 102 2057.30
2000 500 0.33 1.03 2060.42
Forest cover + Forest quality + 2000 10 0.47 1.02 2126.80
Number of layers 2000 25 0.38 1.03 2162.80
2000 50 0.49 1.01 2167.38
2000 100 0.44 1.01 2121.95
2000 150 0.43 1.03 2112.24
2000 250 041 1.02 2072.13
2000 500 0.38 1.02 2096.35
Forest cover + Forest quality + 2000 10 0.50 1.01 2076.72
Plant area density 2000 25 0.45 1.02 1996.37
2000 50 0.38 1.02 2049.63
2000 100 0.37 1.04 2089.81
2000 150 0.43 1.02 2079.39
2000 250 0.39 1.02 2061.02
2000 500 0.46 1.01 1979.98
Forest cover + Forest quality + 2000 10 0.39 1.03 2074.32
Shannon Index 2000 25 0.49 1.01 2027.01
2000 50 0.41 1.02 2032.58
2000 100 0.46 1.02 2123.47
2000 150 0.45 1.01 2054.50
2000 250 0.48 1.02 2070.89
2000 500 045 1.02 2016.74
Forest cover + Forest quality + 2000 10 0.43 1.02 2062.02
Shape 2000 25 0.45 1.02 2084.87
2000 50 0.42 1.02 2046.02
2000 100 0.45 1.02 2047.44
2000 150 0.43 1.02 2066.08
2000 250 0.44 1.02 2044.24
2000 500 0.40 1.03 2020.87
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Figure S2.1: Occupancy (second-order habitat selection) relative tstfaaver (m). Outputs are
presented for the 28 medium-large terrestrial mammals eterednduring our sampling. Predicted
posterior mean distribution values are presented in daek bhile uncertainty, as indicated using 95%

Bayesian credible intervals is visualised in light blue.
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Figure S2.2: Occupancy (second order habitat selection) relative &stfajuality. Forest quality was
defined using canopy height variability (m), with greateralality indicating better quality forest
habitat. Outputs are presented for the 28 medium-largett@resammals encountered during our
sampling. Predicted posterior mean distribution values asepted in dark blue, while uncertainty, as

indicated using 95% Bayesian credible intervals is visuaiiséght blue.
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Figure S2.3: Probability of habitat use (third-order habitat selecticeiqtive to canopy height (m).
Outputs are presented for the 28 medium-large terrestriahmats encountered during our sampling.
Predicted posterior mean distribution values are presentitk blue, while uncertainty, as indicated

using 95% Bayesian credible intervals is visualised in Iyn.
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Figure S2.4: Probability of habitat use (third-order habitat selegticelative to gap fractionwWe

quantify gap fraction as the proportion of canopy gaps (< meight) within a 250 m radius of the

camera trap. Outputs are presented for the 28 medium-largsti@l mammals encountered during

our sampling. Predicted posterior mean distribution valteeprasented in dark blue, while uncertainty,

as indicated using 95% Bayesian credible intervals is vigdaiislight blue.
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Figure S2.5: Probability of habitat use (third-order habitat selectioslptive to the number of
contiguous layers of vegetation within the canopy. Outprgspeesented for the 28 medium-large
terrestrial mammals encountered during our sampling. Peeldicisterior mean distribution values are
presented in dark blue, while uncertainty, as indicated using B&$ésian credible intervals is

visualised in light blue.
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Figure S2.6: Probability of habitat use (third-order habitat setectirelative to plant area density.
Outputs are presented for the 28 medium-large terrestriahmats encountered during our sampling.
Predicted posterior mean distribution values are presentitk blue, while uncertainty, as indicated

using 95% Bayesian credible intervals is visualised in .
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Figure S2.7: Probability of habitat use (third-order habitat selecti@tgtive to niche availability. We
quantify niche availability as the Shannon Index of that@aea distribution. Outputs are presented for
the 28 medium-large terrestrial mammals encountered during ioytisg. Predicted posterior mean
distribution values are presented in dark blue, while uaicéyt as indicated using 95% Bayesian

credible intervals is visualised in light blue.
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Figure S2.8: Probability of habitat use (third-order habitat seleqtietative to shape. We define shape

as the distribution of vegetation throughout the verticduem. Outputs are presented for the 28

medium-large terrestrial mammals encountered during our sampHredicted posterior mean

distribution values are presented in dark blue, while uaicéyt as indicated

credible intervals is visualised in light blue.
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Figure S2.9: Environmental and sampling covariates influencing detegiimbability. Outputs are
presented for the 28 medium-large terrestrial mammals encodichetiag our sampling. Effect sizes
are presented as posterior means (points) and 95% Bayesdibleciintervals (BCI). Effects were
considered substantial if the 95% BCI did not overlap z2ezdi¢al dashed line). Responsive species

are presented in blue.
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Figure S2.10: Detection probability relative to plant area densitythe herbaceous layer (2-5 m).
Outputs are presented for the 28 medium-large terrestriahmats encountered during our sampling.
Predicted posterior mean distribution values are presentitk blue, while uncertainty, as indicated

using 95% Bayesian credible intervals is visualised in .
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Figure S2.11: Detection probability relative to the number of contigulayers of vegetation in the
canopy. Outputs are presented for the 28 medium-largstt@tenammals encountered during our
sampling. Predicted posterior mean distribution values asepted in dark blue, while uncertainty, as

indicated using 95% Bayesian credible intervals is visuaiiséght blue.
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Figure S2.12: Detection probability relative to sampling effo¥Ve define sampling effort based on

the number of nights each camera-trap unit was opaedtiOutputs are presented for the 28 medium-

large terrestrial mammals encountered during our samplinglicRy@ posterior mean distribution

values are presented in dark blue, while uncertaintpdisated using 95% Bayesian credible intervals

is visualised in light blue.

Asian Elephant Banded Civet Bearded Pig Binturocng
5 ° 5
Sm
TS 2o 2 3 s
8% o E = S
o T —— o X
= = =] =
T T T T [ T T T = T T T T = T T T T
X & L] & 20 &1 &l L] A &0 [ 1] &l 20 &1 &7 ]
Bomean Yellow Muntjac Commeon Palm Civet Grester Mouse-desr Leopard Cat
= = 3 3
L = @ ] = =
£35 ©
£ g _______.———'—'__—-
na 24 x4 g — a
Bg v = 3 =
e o] of o
S o d S
-‘_‘_‘_‘—-—_|_-_
= = = =
- T T T T - T T T T - T T T T - T T T T
20 Bl L1} ol 20 ] &0 L] 20 L] ] & 2 40 & L
Lesser Mouse-desr Long-tailed Macaque Long-tailed Porcupine Malay Civet
5 = = s 3
= o = =}
ik
28 & 2 P ——— = "*—--_.______-_‘_
L ——
=5 o | o &
i T T T T = T T T T = T T T T = T T T T
b 0 & ) = £l &0 5 il 20 & a0 2 0 & )
Mealay Porcupine Marbled Cat Masked Falm Civet Mogonrat
= 4 o 2
5£ = = = =
2 ° - ; -
@
22 2 £ 2
==
o4 o - a; =)
BT T T T e T T T = T T T T = T T T T
2 20 & = m & & 0 i} o & 0 i) 20 & L}
Trap effort Trap effort Trap effort Trap effort

{camera trap nights)

(camera trap nights)

{camera trap nights)

{camera trap nights)

97



Detection

Detection
probabiliby

Detection
probability

probability

0 08 10

04

o

10

02

g

04 06 048 10

02

Crangutan

Fig-tailed Macague

Red Muntjac

Sambar Deer

a8 04 10

az o0

ag

0 08 10

04

o

04 08 04 10

02

aa

Short-tailed Mongoose

Sun Bear

Sunda Clouded Leopard

Sunda Pangelin

08 08 10

Q.

06 a8 10

a.

06 a8 10

a.

o "-‘-—-—-.._._______‘_ o o
T T T T = T T T T = T T T T = T T T T
20 40 & o 20 0 1] a0 i E] 1] o 20 40 -] o
Sunda Stink Badger Thidk-spined Porcupine Tufted Ground Squimel Yellow-throated Marten
i— | =z 3
al ja] ja]

a0

a0

T T T
20 20 L] a0
Trap effort
{camera trap nights)

20 20 &0 a0

Trap effort
{camera trap nights)

20 L] -] a0

Trap effort
{camera trap nights)

T T T
20 20 a0 a0
Trap effort
{camera trap nights)

98



S2.1: Model code

We provide model code for the hierarchical Bayesian mpécges, multi-
scale occupancy model, written in the BUGS language and rmepled in JAGS

called through R.

model {
# Hyper-priors for occupancy, habitat use and detettiercepts

mu.alpha.psi ~ dnorm(0, 0.01)
sigma.alpha.psi ~ dunif(0, 10)
tau.alpha.psi <- pow(sigma.alpha.psi, -2)

mu.alpha.theta ~ dnorm(0, 0.01)
sigma.alpha.theta ~ dunif(0, 10)
tau.alpha.theta <- pow(sigma.alpha.the2g, -

mu.alpha.p ~ dnorm(0, 0.01)
sigma.alpha.p ~ dunif(0, 10)
tau.alpha.p <- pow(sigma.alpha.p, -2)

# Hyper-priors for occupancy, habitat use and detectiwariate coefficients

mu.betal.psi ~ dnorm(0, 0.01)
sigma.betal.psi ~ dunif(0, 10)
tau.betal.psi <- pow(sigma.betal.psi, -2)

mu.beta2.psi ~ dnorm(0, 0.01)
sigma.beta2.psi ~ dunif(0, 10)
tau.beta2.psi <- pow(sigma.beta2.psi, -2)

mu.betal.theta ~ dnorm(0, 0.01)
sigma.betal.theta ~ dunif(0, 10)
tau.betal.theta <- pow(sigma.betal.th&p, -

mu.beta2.theta ~ dnorm(0, 0.01)
sigma.beta2.theta ~ dunif(0, 10)
tau.beta2.theta <- pow(sigma.beta2.th&p, -

mu.betal.p ~ dnorm(0, 0.01)
sigma.betal.p ~ dunif(0, 10)
tau.betal.p <- pow(sigma.betal.p, -2)

mu.beta2.p ~ dnorm(0, 0.01)
sigma.beta2.p ~ dunif(0, 10)
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tau.beta2.p <- pow(sigma.beta2.p, -2)

mu.beta3.p ~ dnorm(0, 0.01)
sigma.beta3.p ~ dunif(0, 10)
tau.beta3.p <- pow(sigma.beta3.p, -2)

# Hyperprior for half-Cauchy scale parameter foupaenicy and habitat use
models

xi.sd.psi ~ dunif(0, 10)
Xi.tau.psi <- pow(xi.sd.psi, -2)
xi.sd.theta ~ dunif(0, 10)
Xi.tau.theta <- pow(xi.sd.thet&)-

# Species-specific parameters drawn as realisdtmmsthe community
distributions

1/ e e e e e e e e e e e e e e S e e
T

for(i in 1:n.sp){
alpha.psi[i] ~ dnorm(mu.alpha.psi, tau.alpha.psi)
alpha.theta[i] ~ dnorm(mu.alpha.theta, tabakheta)
alpha.p[i] ~ dnorm(mu.alpha.p, tau.alpha.p)

betal.psi[i] ~ dnorm(mu.betal.psi, tau.betal.psi)
beta2.psi[i] ~ dnorm(mu.beta2.psi, tau.beta2.psi)
betal.theta[i] ~ dnorm(mu.betal.theta, tau.betta)th
beta2.theta[i] ~ dnorm(mu.beta2.theta, tau.betta)th
betal.p[i] ~ dnorm(mu.betal.p, tau.betal.p)
beta2.p[i] ~ dnorm(mu.beta2.p, tau.beta2.p)
beta3.p[i] ~ dnorm(mu.beta3.p, tau.beta3.p)

}

# Hyperpriors/priors for temporal random effect

for(i in 1:n.sp){
# Random year effects for psi component
for(year in 1:n.year){
eps.psi[year, i] ~ dnorm(0, eps.tau.psi[i])
eps.thetalyear, i] ~ dnorm(0, eps.tau.thetal

eps.tau.psi[i] ~ dgamma(0.5, 0.5)
xi.psi[i] ~ dnorm(0, xi.tau.psi)
sigma.cauchy.psi[i] <- abs(xi.psi[i]) / sqrt(epspaiji])

eps.tau.theta[i] ~ dgamma(0.5, 0.5)
xi.theta[i] ~ dnorm(0, xi.tau.theta)
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sigma.cauchy.theta[i] <- abs(xi.theta[i]) / sepi.tau.thetali])
}

# Ecological model for occurrence of species itejs

for(i in 1:n.sp){
for(j in 1:n.sites){
logit(psi[j,i]) <- alpha.psi[i] + betal.p$iForCov[j] +
beta2.psi[i]*CH_SD.psi[j] +
xi.psi[i]*epsipgar.counter.psi[j],i]
z[},i] ~ dbern(psi[j,i])

# Sub-unit model, occurence of species i within spagjdicate |
for(l in 1:n.spatial[j]){
logit(thetalj,l,i]) <- alpha.theth} betal.theta[i]*Structurel[j,l] +
beta2.thgdt&iructure2[j,l] +
xi.theta[i*eps.theta[year.counter.thetalj,I],i]
mu.al[j,l,i] <- z[j,i] * thetalj,1,i]
a[j,1,i] ~ dbern(mu.afj,1,i)

# Detection model for replicated detection/non-de&teaibservations
for(k in 1:n.temporallj,I){
logit(p[j,k,i]) <- alpha.p[i] betal.p[i]*PAI_Herb.p[j,I] +
beta2.p[i]*Nlay.p[j,l] +
etd3.p[i]*TrapEffort[j,I]
mu.p[j,Lk,i] <- a[j,1,i] * p[j,1k,i]
yli,L,k,i] ~ dbern(mu.p[j,1,k,i])

# Calculate Pearson's Chi-squared residuals to agsstsess of fit

# Based on Kery and Royle: Applied hierarchical modeltrecology, pp. 235

# Calculate the observed and expected residuals
# Add small value to prevent division by zero

#::::::::::::::::::::::::::::::::
y.sim[j,lk,i] ~ dbern(mu.p[j,1,k,i])
chi2.obs]j,|k,i] <- pow(y][j,|,k,i] mu.pl[j,L,k,i], 2)/ (mu.p[j,l,k,i] +
0.0001)
chi2.sim[j,1,k,i] <- pow(y.sim[j,l,k,§ mu.p[j,1k,i], 2)/ (mu.p][j,|,k,i] +
0.0001)

}
chi2.obs.sum[j,l,i] <- sum(chi2.obs]j;h.temporalfj,1],i])
chi2.sim.sum[j,l,i] <- sum(chi2.sim[j,1, t@mporal[j,1],i])

}
chi2.obs.sum2[j,i] <- sum(chi2.obs.sum([jdpatial[j],i])
chi2.sim.sum2][j,i] <- sum(chi2.sim.sum[j,1:ntsdf],i])

}

# Calculate chi-squared discrepency for each species

fit.sp.obs]i] <- sum(chi2.obs.sum2],i])
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fit.sp.sim[i] <- sum(chi2.sim.sum2][,i])

c.hat.sp[i] <- fit.sp.obs[i}/fit.sp.sim[i]

bpv.sp[i] <- step(fit.sp.sim[i] - fit.sp.obs[i])
}

# Calculate model discrepency measure and fisstati

fit.obs <- sum(chi2.obs.sum2[1:n.sites, 1:n.sp])
fit.sim <- sum(chi2.sim.sum2[1:n.sites, 1:n.sp])

c.hat <- fit.obs/fit.sim
bpv <- step(fit.sim - fit.obs)

# Derived quantities
# Number of occupied sites

for(i in 1:n.sp) {
Nocc.fs[i] <- sum(z[,i])
# Number of species occurring at each site

for(j in 1:n.sites) {
Nsite[j] <- sum(z[},])
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Abstract

1. Carbon-based policies provide powerful opportunities to wipectl forest
conservation with climate change mitigation. However, rtreffectiveness in
delivering biodiversity co-benefits is dependent on highl$eeé biodiversity being
found in high carbon areas. Previous studies have focgsgdgl on the co-benefits
associated with Reducing Emissions from Deforestation anestf Degradation
(REDD+) over large spatial scales, with few empiricafigting carbon-biodiversity
correlations at management unit scales appropriate to deomsikers. Yet, in
development frontiers, where most biodiversity and catbssoccurs, carbon-based
policies are increasingly driven by commodity certifioatischemes, which are

applied at the concession-level.

2. Working in a typical human-modified landscape in Southessia, we
examined the biodiversity value of land prioritised via mapion of REDD+ or the
High Carbon Stock (HCS) Approach, the emerging land-usejpig tool for oil palm
certification. Carbon stocks were estimated via lowd aigh-resolution datasets
derived from global or local-level biomass. Mammaligreces richness was
predicted using hierarchical Bayesian multi-species occypandels of camera-trap

data from forest and oil palm habitats

3. At the community level, HCS forest supported comparable nadhufirrersity
to control sites in continuous forest, while lower carbiZS strata exhibited reduced

species occupancy.

4, No association was found between species richness and edrbo the latter

was estimated using coarse-resolution data. However, wieq high-resolution,
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locally-validated biomass data, diversity demonstratedtipesielationships with
carbon for threatened and disturbance-sensitive spastiggesting sensitivity of co-

benefits to carbon data sources and the species comlsidere

5. Policy implications. Our work confirms the potential for environmental
certification and Reducing Emissions from Deforestatiod &orest Degradation
(REDD+) to work in tandem with conservation to mitigate aducal impacts on
tropical forest carbon stocks and biodiversity. Succéssfplementation of both
approaches could be used to direct development to low cdolohjodiversity areas

in topical countries.

Keywords. Agriculture, Borneo, camera-trapping, certification, High Carboncto

land-use planning, mammals, occupancy modelling, oil palm, RED&pical forest.
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| ntr oduction

Agricultural expansion has emerged as a pervasive thresgpical forests
and biodiversity (Wilcove et al., 2013), and has been implitat the loss of ~150
million ha of tropical forest over the last three desafgibbs et al., 201MHansen et
al.,, 2013). A key driver of recent deforestation has l&#ng demand for cheap
vegetable oil such as that from oil pal@ldeis guineensjs which now covers 16
million ha across 43 countries, often at the expense picabforest (Pirker et al.,

2016)

The potential economic and social benefits associatddoiipalm (Potter,
2015) contrast with severe and well-documented ecological isyp@onversion of
forest to oil palm plantation results in major biodivrsidecline, which
disproportionately affects forest specialists and speafesonservation concern,
resulting in assemblages dominated by disturbance-tolgeaetralists (Fitzherbert et
al., 2008 Yaap et al., 2010). With around 19% of land suitable fgualin coinciding
with areas of high biodiversity (Pirker et al., 2016) 0asrforested Asia, Africa and
South America, the full ecological impact of this comitydrop is yet to be fully
realised. Mitigation measures that reconcile environmantthinability, biodiversity
conservation and production of crops such as oil palniharefore essential in tropical

regions.

Retaining native habitat in oil palm estates is known to exghtire biological
value of plantation landscapes by providing ecologicaligief and improved
connectivity (Gillies and St Clair, 2018truebig et al., 2011). However, in practice,
the designation of conservation set-asides can berbohtdg agricultural profitability,

with income exceeding US$11,240aver a 25 year growing cycle (Fisher et al.,
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2011a). Thus, conservation efforts seeking to preservet foitdsn plantations may
be more successful when economic incentives are protadefiset the opportunity
costs associated with foregoing development. Amongstraleveitigation tools
available, two incentive-driven policies based on carthocks have gained traction
in tropical regions: (1) REDD+ (United Nations Reducing Emissidmsn
Deforestation and forest Degradation) and related carbedhit cschemes, and (2)

improved land-use planning via commodity certification (Yaag.e010).

REDD+, a payment for ecosystem services tool to mitiglteate change,
aims to compensate stakeholders in developing nationsifiservation initiatives and
sustainable management practices that protect and rdstocarbon sequestered by
forests (Venter and Koh, 2012). If REDD+ were to achievedtsnomic potential,
payments generated could make forest conservation fingnoaatipetitive compared
to oil palm cultivation (Butler et al., 2009). REDD+ is alstative to conservation
because it may deliver co-benefits, whereby safeguarding laidiorc areas also
protects biodiversity at no additional cost (Gardner et 2012). However, this
assumes spatial congruence between areas of high cawdbdodiversity. In reality
it is difficult to generalise on the nature, strength amtent of these co-benefits
because outcomes vary both within and between spatias geade global: Naidoo et
al., 2008 Strassburg et al., 2010national: Egoh et al., 2008urray et al., 2015
local: RuizJaen and Potvin, 2018essler et al., 2012). The extent to which carbon-
biodiversity co-benefit assumptions hold at managementsgaies appropriate to

decision-makers remains an open question.

REDD+ is largely implemented at sub-national levels. Whileiregreasing
number of studies are recognising the importance of finlesassessments (e.g.
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Beaudrot et al., 2016Magnago et al., 20150llmann et al., 2017), most information
on biodiversity co-benefits is derived from global- arational-scale studies that
demonstrate overreliance on coarse-grained, secondargalataes. Carbon data are
typically derived from global maps (e.g. Avitabile et al., 20B&ccini et al., 2012)
which have limited application at local-scales pertinent toagament (Mitchard et
al., 2014). Furthermore, field-based species data are widelgrrepresented in the
co-benefits literature due to the costs associated with \@oglty surveys in the
tropics (Gardner et al., 2008). Researchers predominantlgmelgarse species range
delineations, which are fraught with uncertainty (RodrigQastafieda et al., 2012)
and may not account for localised extirpation due to antigengo pressure (Harrison
et al., 2016). Despite statistical advances that accounimiperfect detection in
biodiversity indices (Royle and Dorazio, 2008), these muthbave received
relatively limited application in a co-benefits contekut( see Gilroy et al., 2014
Sollmann et al., 2017), resulting in possible underestsnatepecies assemblages.
Consequently, biodiversity co-benefits assessmentscat-doales, using primary,

fine-grained data would provide valuable policy insights.

While the potential importance of REDD+ cannot be overstatgdcultural
certification schemes show promise to ensure sustaiqabfgices as companies
benefit from greater access to environmentally consci@urkets and increased price
premiums of certified products (Yaap et al.,, 2010). The RouratablSustainable
Palm Oil (RSPO) is often seen as an exemplar schethewhe agricultural sector,
currently certifying 21% of the global palm oil market acr@gt8 million ha of land
(RSPO, 2015). RSPO certification prohibits the conversidrighf conservation value

habitat in oil palm estates. However, associated aseaesgmocedures have attracted

108



criticism, raising concerns that current methodologies do afford adequate

biodiversity protection (Edwards et al., 20X¥aap et al., 2010)

The High Carbon Stock (HCS) Approach has emerged awlaule planning
tool to demarcate conservation priority areas based dwortaralue, and is being
explored within the RSPO architecture and that of otheification schemes. The
HCS methodology seeks to conserve biodiverse and ecologfoaliyional forest
networks within agricultural concessions by directing conwarsowards heavily
degraded land of low carbon value (Rosoman, 2017). This iewechby stratifying
land into discrete classes according to vegetation densitstaucture, which are then
adopted as proxies for above-ground carbon stocks and eggonsupport varying
levels of biodiversity. These strata are subsequentigatad using field-derived
above-ground carbon estimates, before land parcels emiiged for conversion

based on area and connectivity (Rosoman, 2017)

The HCS Approach has attracted widespread interest amaggsultural
industries with 10 million ha of land being evaluated acrag&sdil palm producing
countries (Rosoman, unpublished data). As a model scheengjdcessful integration
of the HCS Approach within the RSPO framework may encowrpigde across other
certifiable agricultural commodities, such as rubbersany@. Nevertheless, the extent
to which HCS strata correspond to areas of high biodiveraitie is dependent on the
accurate partitioning of vegetation classes according todibon value, as well as
the underlying association between carbon and biodiversitjor&ehe HCS
Approach is formally adopted within certification standatkbese assumptions should

be tested to understand the conservation merit of the tool.
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Here, we determine the effectiveness of incentive-drivarban-based
mechanisms to safeguard biodiversity, and provide the faledation of both the
carbon and biodiversity credentials of the HCS land-lesenpg tool. Our appraisal
focuses on a landscape undergoing conversion from flarest palm in Borneo, a
region characterised by high deforestation and forest daiijpa (Gaveau et al., 2014
Struebig et al., 2015) that is typical of most HCS applioatid-irst, we validate the
accuracy of the HCS classification procedure and quanghpibdiversity value of
the vegetation strata. We then assess the potestiREDD+ to deliver biodiversity
co-benefits using primary and high-resolution data sourceas3ess the influence of
spatial grain on the nature of co-benefit relationshipsgcamepare global- and local-
scale measures of carbon. Throughout, we employ biodiwérdices that explicitly
account for imperfect detection to provide a more accuegeesentation of species
assemblages than simple species counts. Our work eaihatextent to which policy
options that attach greater economic significance tgeseation protect vulnerable

tropical forests and safeguard biodiversity.

M aterials and methods
Study system

The study was conducted over a 13,153 ha development arpaisingithe
Stability of Altered Forest Ecosystems project (SAFE; wwafegroject.net) and
surrounding plantations in Kalabakan Forest ReservaatSabbalaysian Borneo 4
46°N, 116° 57’ E; Fig. 3.1). SAFE is a landscape-scale forest modificationréxeat

(Ewers et al., 2011) comprising highly disturbed lowland and hilledigtarp forest
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that was logged multiple times between 1978 and 2008. The widisclre includes
near-pristine forest in Brantian-Tatulit Virgin Jundleserve, twice-logged forest in

Ulu Segama Forest Reserve, and plantations (primarilabi)p

- Continuous Logged Forest
- High Carbon Stock Forest

|:] Young Regenerating Forest

|:| Scrub

O O o I:Open Land © Cameras

R [ Joilpaim

Figure 3.1: Study site, HCS stratification and camera-trap desigbsS Hlassification of the study

landscape in Sabah, Borneo. Forest cover was delineatetbimt strata on the basis of vegetation
density (Dense Forest, Young Regenerating Forest, SOpan Land) and supplemented with two
reference classes (Continuous Logged Forest, Oil Palm) &sdorest and agricultural controls. Points

indicate camera-trap locations (N=115).

HCS classification and validation

The HCS Approach uses high-resolution remotely-sensed inbagsgatify
concessions into six vegetation classes, each with ustquetural characteristics (in
descending order of carbon value): (1) ‘High Density Forest’; (2) ‘Medium Density

Forest’; (3) ‘Low Density Forest’; (4) “Young Regenerating Forest’; (5) ‘Scrub’; and,
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(6) ‘Open Land’ (see supplement S3.1). In practice, the High, Medium and Low
Density Forest strata are aggregated as ‘Dense Forest’ and earmarked for conservation.
Young Regenerating Forest can also comprise valuable catboks and is also
spared from development. The threshold for allocating Er production rests on
distinguishing these strata from heavily-degraded Scrub and CGpeh Therefore,
we mapped Dense Forest, Young Regenerating Forest, Scrub and @gkas

separate classes.

All spatial data processing was implemented in ArcGIS 10.2SR(E We
used Landsat 8 and SPOT5 satellite imagery (15 m and 2.5 hti@soespectively;
temporal range: 2012-2014) to stratify forest habitat using HESasent protocols
(see supplement S3.1). Multiple data sources were choseimitnise classification
difficulties associated with cloud cover and haze. We modk a supervised
classification of satellite images, supplemented with Viswarpretation techniques
to correct for the potentially confounding effects of topogmaghiadow (Wulder et
al., 2004). The resulting classes were then calibratety tebove-ground carbon
values derived from forest inventory dak=(39), collected as part of the core SAFE
monitoring programme. These data conform to standardisest faventory protocols
(http://lwww.rainfor.org), calculating carbon as a functiorabbve-ground biomass
(trees >10 cm DBH) using an established pantropical algorithravgCét al., 2014)
Resulting HCS classes were validated using independently der@rbon estimates

(Pfeifer et al., 2016; see supplement 3.7.2).
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Camera-trap sampling of medium-large mammals

We delineated terrestrial mammal diversity as these &a®aconsistently
prioritised in policy, land-use planning and certificatichemes. Remotely-operated
digital cameras (HC500 Hyperfire, Reconyx, Wisconsin, U.Swere deployed at
130 locations across the landscape between May and Sep&itbdFig. 3.1). These
locations were separated by a mean distance of 1.4 kndisindbuted across an
elevational gradient (mean=376 m.a.s.l.; range=64-735 h).aAscounting for theft,
vandalism and malfunction, data were retrieved from 121litotatWe stratified our
sampling according to HCS strata, while capturing the broasterdgeneity of the
landscape using reference classes (protected ‘Continuous Logged Forest’ and well-
established ‘Oil Palm Plantation”) for comparative purposes. As the extent of Scrub
and Open Land was relatively low compared to the other clasess $trata were
pooled into a single class, ‘Developed Land’, for biodiversity analyses: Continuous
Logged ForestN=27; Dense ForestN=23; Young Regenerating Forest=16;

Developed LandN=26; and, Oil Palm Plantatioh=23.

Due to the number of cameras available, data collectiorcorapleted over
two rotations, each comprising 65 locations. Single uniteewkeployed for 42
consecutive nights per location, yielding a total sunféyrteof 4,669 camera nights.
Cameras were positioned at a standardised height of 30rciow resistance travel
routes (e.g. riparian areas, logging roads, skid traitb)o#frtrail to account for inter-

and intra-specific differences in habitat use.

Prior to analyses, all images that could not be identifiegpézies level were
discarded (blurred images and photos of non-target speciesingqumatl7.6% of

142,294 images). Species encounters were considered independdst ietieey
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contained different individuals or were separated by aogesf >60 minutes. A
detection matrix was developed for each species, wherebyy4gadapling periods
were divided into six, seven-day temporal replicates. Amyara site active for fewer
than seven days was excluded from analysis, leaving 115 analyticaéach with 2-

6 replicates.

Modelling framework

We employed hierarchical Bayesian multi-species occupanoyelling
(Dorazio and Royle, 2005) to estimate species diversity ficamera data.
Hierarchical models permit the separation of ecological sampling processes that
may influence the data (Gelman and Hill, 2007). In the ecdrdf occupancy, this
means that true absences can be differentiated frordeteestion by explicitly

defining models for occurrence and detection.

Multi-species occupancy models take single-species occypdetection
models as building units (Guillera-Arroita, 2017). Followirigkin et al. (2010), we
denote the occurrence of specieat sitej by the binary variable; (1=species
presence; O=species not detected). The occurrencessfiatgcribed as the outcome of
a Bernoulli process; j ~ Bern(yij), wherey;; denotes the occurrence probability. The
true occurrence state is imperfectly observed, so thiehmcludes a second Bernoulli
processyijk ~ Berngijx*z,;), wherexjx is the observed detection/non-detection data,
k is the survey replicate arglj« represents the corresponding detection probability
conditional to species presence. The progugatz; reflects that detection at sites

where the species is present{1) happens with detection probabiliy, and that
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detection is not possible at sites where the specidséntag ;=0). We assume that
variation in the abundance of a species across sangiexgydoes not affect species

detection probabilitiep;jx (Royle and Dorazio, 2008).

Occurrence and detection models for individual species Vidted via a
hierarchical component that modelled regression costitias realisations from a
common community-level distribution with hyperparametéisder this approach,
species are assumed to respond to environmental conditicassimilar, but not
identical, manner. Derived species estimates are, trefed compromise between
individual response and the average response of the commuihiy results in
shrinkage (the borrowing of information by individuals asrti® community), which
has been shown to improve estimation precision, paatigubr rare or elusive species
that are infrequently detected during surveys (Pacificilet2814). We report

hyperparameters to provide an indication of community-levpbireses to covariates.

Spatial concordance between HCS classes, carbobiadiyersity

To assess how mammal community representation could veoyding to

policy relevant carbon variables, we described occupamtyetectability using three

models:
Model 1: logit(wij) = HaHcs class()
logit(pijk) = v()HCS Class()
Model 2: logit(yi;) = pi+ 21iCC1000+ a2iCC1006;
logit(pijk) = v@HCs Class()
Model 3: logit(yij) = pit+ 01iCC25 + a2iCC25)
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logit(pi,ik) = vGHcs class()

Occupancy and detection probabilities were modelled with Epésocon the
logit scale, specific for each species and HCS clasgl@Ml). Continuous measures
of carbon, including quadratic terms, were incorporated agcurrence models
alongside species-specific intercepts to determine the @itEmtREDD+ to deliver
biodiversity co-benefits (Models 2 and 3). These carbda ware from two sources:
coarse-grained 1 km resolution global maps (‘'CC1000'; Avitabdé¢, 2016), and 25
m resolution maps derived from biomass estimates fitwenstudy site linked to
RapideyéV satellite imagery (‘'CC25'; Pfeifer et al., 2016; for a sub$elites not
obscured by cloud cover, N=66). HCS-specific intercepts wetaned in the
detection components of Models 2 and 3 as they broadlyiloedbe influence of
habitat type. We chose to model HCS, CC1000 and CC25 separatdly sineng
evidence of collinearity between these variablgs(|7). Continuous carbon and HCS
covariates were calculated as average values extfagted 100 m buffer (ca. 3.1 ha
area) around each camera location. Covariates weneedeand standardised prior to
analysis. We found no evidence of spatial autocorrelatiotme detection dataset
(Moran’s [=0.08<P<0.92), indicating that assumptions of independence in occupancy

modelling were met (Royle and Dorazio, 2008).

The models were fitted to include inference about the numbentential
species not observed during sampling (Dorazio and Royle, 2005 cHieve this,
detection data were augmented with 50 hypothetical speciésalivitero encounter
histories, following Roylest al.(2007). Predicted species richness was calculated for
each camera location allowing for post-hoc comparsween HCS classes.
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We compared mammal richness between HCS classes usingsaaBdyear
model. We follow a two-stage analytical approach describé¢Eby & Royle (2015)
whereby estimation uncertainty associated with predictpdcies richness is
propagated by the inclusion of an additional residual compomto the model
(standard deviation of richness estimates from the lieial Bayesian multi-species
occupancy models). In principle, parameter estimates dmiterived directly from
a single model, but this resulted in lower precision.c&idand-use change
disproportionately affects species of conservation @snand disturbance-sensitive
forest specialists, we report our findings for: (1) allcspg (2) threatened species
(IUCN red-listed as vulnerable, endangered or criticalldaegered); (3) non-
threatened species (IUCN least concern ar-tlereatened); (4) disturbance-sensitive
species (listed as medium-high sensitivity according tisdiNiet al., 2010), and; (5)
disturbance- tolerant species (low sensitivity; see eT&8.1 for species-specific

group assignmeht

Biodiversity co-benefits of REDD+

To assess the potential biodiversity co-benefits of REDWe extracted
predicted species richness values from the hierarchicatrecce model and explored
their association with carbon. To determine if thestationships were grain-
dependent, we derived carbon data from coarse- (CC1000, lnkhfjna-grained
(CC25, 25m) satellite-derived datasets. Associations betwamasis|of mammal
species richness and carbon at the two different spasialuteons, and foa priori
groupings, were assessed via Bayesian two-stage linear modelpoiating

guadratic terms.
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All analyses were conducted in WIinBUGS version 1.4.3 througlerRon
3.3.0 using the package “R2WinBUGS” (Sturtz et al., 2005kee supplement S3.3 for

further information on model specification and predegperformance checks.

Results

Camera-trapping yielded 3,237 independent capture events of 28sspecie
comprising 24 genera distributed across 16 families. In cintnar models predicted
30.6 species across the landscape (95% Bayesian CredéhalnBCI=28.0-37.0),
suggesting that few mammal species were missed by our samptiageffect of
imperfect detection was more pronounced at the cameraetrap Where predicted
richness was consistently greater than observed ricl{ne=sn=4.35, range=0.02-

12.26).

Spatial concordance between biodiversity and H@Ssgs

Hierarchical Bayesian multi-species models indicated rebusammalian
occupancy in the low carbon strata (Fig 3.2). Community hypameiers revealed
comparable estimates of mean occupancy between Continumged Forest
(mean=0.49, BCI=0.32-0.63), Dense Forest (0.36, 0.17-0.60) aneldped Land
(0.32, 0.12-0.56). However, community occupancy was low in Youmgiating

Forest (0.23, 0.11-0.45) and Oil Palm plantation (0.05, 0.01-0.31)

Our models demonstrated species-specific associations @ihcthsses (Fig.

3.2). For example, occupancy estimates indicate thatéegnig Sus barbatysand
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southern pig-tailed macaqudlg§caca nemestrinawere common in Continuous
Logged Forest (bearded pig: 0.71, 0.53-0.85; pig-tailed macaque: 0.7-0.86&nd
Dense Forest (bearded pig: 0.74, 0.53-0.90; pig-tailed macaque: 0.78,32%2vith
occupancy of the pig-tailed macagaiso high in Developed Land (0.71, 0.51-0.87).
Conversely, species such as the lesser mousedaagu(us kanch)l(0.20, 0.08-0.40)
and sun bearHelarctos malayan(g0.21, 0.08-0.44) were rare in Dense Forest. In
the Oil Palm plantation five species demonstrated lowanecy, four of which were
threatened taxa (Fig. 3.2e). Species-specific detection atiesrior the HCS model

are available in supplementary figures S3.1-3.4.
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Figure 3.2: Species-specific outputs from the Bayesian hierarchiodien Caterpillar plots of outputs
from the hierarchical Bayesian multi-species occupammyai Graphs show species-specific baseline
occupancy estimates (including 95% Bayesian Credible Intaelat)ve to habitat class (a-e). Mean
community hyperparameter occupancy values and their agbciadible intervals are represented in
the shaded (orange) background to each plot. Species exdhitbitviations from a baseline occupancy

of 0.5 are shown with shaded (blue) bars.

Extremes in predicted species richness were identifiegielest the reference
habitat classes (Fig. 3.3); Continuous Logged Forest was tounave the highest
richness (14.12, 13.20-15.07), while Oil Palm plantation supported ntbst
depauperate community (4.54, 3.58-5.52). Estimates of total riclnvegssimilar
between Dense Forest (11.38, 10.30-12.51) and Developed Land (10.6B1 92R-
while the number of species found in Young Regenerating Faasssignificantly

lower (8.15, 7.13-9.27). These patterns were consistentsagrspings.
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Figure 3.3: Species richness relative to HCS-delineated foreststBaixplots demonstrating species
richness in relation to habitat class for: (1) all spedigs threatened species (IUCN red-listed as
vulnerable, endangered or critically endangered); (3) distaebaensitive species. Boxes delineate
median and interquartile range of species richness valuesavettished lines outline the ¥.and

97.8" percentiles of the data and transparent circles repraasitlying data points. Letters indicate
significant differences between habitat classes withibader species groupings (different letters

suggest significance while identical letters indicate rignifgcance).

Biodiversity co-benefits of REDD+

The global- versus local-scale carbon values at cartwerations were
inconsistent. The 1 km resolution global data tended to praducé higher carbon
estimates compared to those derived from higher resolutimgery (global
mean=152.23 t C harange=50.39-236.53; local mean=22.95t C,kange= 0.31-
94.98). Carbon values from the global- and local-scalesncarresponded broadly
with biomass values derived from field inventorids164;rs=0.55 globalyrs=0.51;
local-scale). However, local-scale carbon estimata® ieind to be more precise
(RMSE: local=29.05 t C hj global=130.94 t C hg. We found no influence of
continuous measures of carbon on mammalian occupancy usiaggobal- or local-
scale carbon data (see supplementary figures S3.1-3.4)e&ppecific detection
summaries for the continuous carbon models are availalsiepplementary figuse

S3.1-3.4.

Grain-dependency between the association of carbon amimalarichness
was evident. Using global carbon data no relationship bettteewvo variables was
apparent, regardless of the species grouping (Bida,c,e). However, at the local-

sale, positive associations with carbon were identifiedHreatened and disturbance-
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sensitive species (Figs. 3.4d,f). This trend was not densiacross groupings with all
species, non-threatened and disturbance-tolerant taxand&atong no relationship

with carbon (Fig. 3.4b).
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Figure 3.4: Species richness relative to continuous metrics of cafBayesian linear model outputs
demonstrating significant positive relationships betwemadicted species richness and carbon stock
estimates derived from a 25 m resolution local dafasahreatened species; f: disturbance-sensitive
species). All other associations presented were faute hon-significant. Solid (blue) lines indicate

predicted mean posterior distribution values, dashed linestefaredicted 95% Bayesian Credible
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Intervals and vertical grey lines highlight the error asged with each estimated species richness

value.

Discussion

The extent to which biodiversity and carbon spatially aigfundamental to
our understanding of whether carbon-based policies can deliggivpaesults for
conservation in human-modified landscapes. Among the dewdies that assess
biodiversity and carbon covariance using primary and/or -fegblution data
(Magnago et al., 201%o0llmann et al., 2017), ours is the first to verify aspagtion
within a tropical landscape mosaic undergoing certificatid/e show that the
strength, nature and extent of biodiversity co-benefiésde@pendent on how carbon
stocks are characterised (i.e. categorical or continuthes)spatial resolution of the

carbon data employed, and the species considered.

Contribution of the HCS approach to biodiversityiservation

When evaluating community-level responses to HCS classesfound
comparable levels of mammalian occupancy between Connuogged Forest,
Developed Land and Dense Forest, while occupancy was reduced img Youn
Regenerating Forest and Oil Palm. Occupancy can be a viatdgaterfor abundance
under certain conditions (Efford and Dawson, 2012). Our teesauld therefore
suggest the persistence of certain mammal species at d@nsities within carbon-
poor classes, which confirms previous reports of reduced maamratundance in

impoverished forest habitats (Bicknell et al., 2014)
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Occupancy and species richness estimates for the total nhammanunity
highlight comparable levels of biodiversity between the Bdfarest and Developed
Land classes, supporting previous studies that demonstratertbervation value of
heavily degraded forest for a range of taxonomic groups (Edwveirds., 2014
Struebig et al.,, 2013Wearn et al., 2016). However, we advise caution when
interpreting the biodiversity value of Developed Land, whiely mot be fully realised
for long-lived mammal species until extinction debts, d¥eea legacy of disturbance,
are repaid (Rosa et al., 2016). The biodiversity valugsokloped Land that we found
is also crucially dependent on the low levels of huntingua study site. Hunting has
been shown to have substantial impacts on mammal caihesuelsewhere in the
region (Harrison et al., 2016). Our study adds to the growiny bb evidence that
shows oil palm plantations to have depauperate mammaliamgoitves, comprised
of few generalist species occurring at low densities (Weiaah,e2016 Yue et al.,
2015). While our data generally conform to the pattern of declibiadiversity
relative to structural complexity, Young Regenerating Foresiodetrated
comparably lower biodiversity value regardless of the metxamined. Given the
difficulties in differentiating between the Young RegetiagaForest and Scrub strata
(see supplement S3.2), we believe this finding reflectbigrties in the HCS

classification process.

While our analyses demonstrate differences in conservadioe between the
HCS strata, the ability of land parcels to support biodityersill also be limited by
habitat fragmentation effects. This process is pervasivehuman-modified
landscapes, and has contributed to species richness deélipeto/5% (Haddad et

al., 2015). While efforts to account for habitat fragmentaiticthe HCS prioritisation
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process are underway, a definitive toolkit is still in depetent. Therefore, while we
have not explicitly accounted for the independent aneérasctive effects of
fragmentation metrics (e.g. patch size, isolation @mhectivity) on biodiversity in
our analyses, it warrants further consideration as th& H@proach gains traction

across the agricultural sector.

Contribution of REDD+ to biodiversity conservation

Our results indicate that spatial concordance betweeivbisdy and carbon
can be overlooked if the latter is calculated via lesetution data. Using carbon
information from a commonly utilised global dataset,association with mammal
diversity was identified, suggesting that REDD+ initiativ@suld not provide
biodiversity co-benefits in heavily degraded landscapes. Haweviken high-
resolution carbon maps were employed, a positive oelstip with species richness
was found for threatened and disturbance-sensitive t@xapnstrating the value of
REDD+ to those species most vulnerable to land-use chétgen all species were
considered these relationships were obscured by non-theeatgeneralist species
that are resilient to disturbance. Our findings provide fursb@port for biodiversity
co-benefits in agricultural land-use mosaics, as prewodsmonstrated for a range
of taxonomic groups (birds and dung beetles: Gilroy e2@1.4; amphibians: Basham
et al., 2016) while highlighting important nuances in the carbon-biodiversit
relationship. We advocate the use of fine-grained, fialddated carbon data when
determining the extent and nature of biodiversity co-benafid suggest an emphasis

on species of conservation concern.
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Our detailed landscape appraisal is the first to identify badity co-benefits
for mammals, a taxonomic group that occupies key trophic posiin tropical forest
ecosystems and is frequently prioritised by conservati@vidus studies have proved
less convincing. Across a pantropical network of sitesu@exdet al.(2016b) found
no association between forest carbon and three meastirmammalian diversity.
However, by aggregating fine-scale biomass data at the evitd, Ithe authors
compromised the resolution of their data, potentially obsguirtra-site relationships
that would be more representative of a REDD+ managemen8imilarly, Sollmann
et al.(2017) found little correspondence between above-ground bi@ndssammal
occupancy in a certified forest reserve in MalaysiarnBo, despite adopting a
comparable methodology to the present study. Contrastidondis may be attributed

to spatial variability in hunting pressure.

Implications for HCS implementation

Given that RSPO members have little obligation to protedthidisturbed
forest of uncertain conservation value, the HCS Apgraésa useful tool to designate
high carbon, high biodiversity land in areas that would etlser be converted to
plantation. High Carbon Stock areas can also contributational and regional spatial
planning initiatives that mitigate the effects of environta¢é change on tropical
biodiversity by promoting connectivity in human-modifieddacapes (Struebig et al.,

2015).

Under current HCS guidelines, 62% (8,150 ha) of the remainingt fiorédse

study system would qualify for protection from agricultu@heersion, equating to a
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net gain of 15.72 t C Na(see Appendix S2) at an annual opportunity cost of US$3.7
million (based on Fisher et al., 2011a). The success oficdion depends on
financial returns from sustainable production offsettigebonomic losses associated
with sustainable practices. While the zero deforestaionciple of the HCS
Approach reduces reputational risk by aligning with consumer gimods calls to
eliminate deforestation from global commodity supplykebait has been considered
economically restrictive for nations with extensivespne forests (Senior et al.,
2015), indicating that current guidelines may be too string&rdta such as Young
Regenerating Forest might, therefore, end up being earchéskeonversion rather
than conservation in some circumstances. However, tiwtlconservation value of
this stratum likely to increase as forests regeneraatpact of such a policy change
needs to be fully evaluated. Carbon neutral converspresents an alternative to the
current emphasis on zero deforestation. While the specifrbon threshold for
delineating forest has proved contentious, Pirker et2811§) demonstrated that
protecting areas exceeding 100 t C!haould safeguard 73% of the climatically
suitable area for oil palm expansion. Ultimately, compise begets progression, and
while the industry should still strive for zero deforestaticarbon neutral conversion
may be more viable in specific countries and circumstaifcagricultural expansion,

economic development and forest conservation are tedosciled.

Implications for REDD+ implementation

The considerable enthusiasm for biodiversity co-benefiten obscures the
fact that REDD+ is fundamentally a carbon-orientatedhagaism with limited scope

for increasing biodiversity conservation (Venter and K20i12). While we provide
128



further evidence to verify biodiversity co-benefits imfan-modified landscapes, it is
unlikely that REDD+ will be economically viable in carbon-peavironments. Given
current economic pressures and weak carbon markets, REDQijEctprcurrently
prioritise carbon gains at low operating costs. Actingnagdty for carbon will
therefore place increasing agricultural pressure on segoadaegraded forests that
are comparatively low in carbon value but retain apprecigblkels of biodiversity
(Edwards et al., 2014). Conservationists must ensure thagusads are in place to
support vulnerable species in disturbed habitats that fallnoetee remit of carbon-

financing mechanisms.

The viability of REDD+ in human-modified landscapes isHarthindered by
the profitability of oil palm. Under current voluntary rkats, avoided deforestation
through REDD+ was found to have an opportunity cost of $32&36 ha over a 30
year period when compared to potential profits generateddiigmalm (Butler et al.,
2009). For REDD+ to be an economically competitive alteraatv oil palm
cultivation, climate change policies must legitimise RBDIarbon credits to facilitate

their trade on financially lucrative compliance mark@&stler et al., 2009)

Conclusions

Our work highlights the potential for environmental certificatéomd REDD+
financing mechanisms to work in tandem with conservatianitigate the effectsfo
agricultural expansion on tropical forest carbon stockskemdiversity. REDD+ is
well placed if it prioritises large tracts of contigudoiest, especially if commitments

to carbon stock enhancement safeguard degraded forest ofjidadlosalue.
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Certification schemes, coupled with land-use planning ®ath as HCS, can help
secure sizeable forest patches of high conservatiae walagricultural estates, and
offer a further safeguard to minimise encroachment. Cortgemisis should capitalise
on both types of carbon-based policy to maximise thenpiatéor developed lands to
provide ecological stepping stones for threatened wildéteveen a network of high-

carbon, high-biodiversity areas.
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Supplementary infor mation

S3.1: Definitions of strata delineated by the H@gdarbon Stock (HCS) Approach

=
e

High Carbon Stoé‘h Degraded Lands
(HCS) Forest S (Former Forest)

HCS AREAS MAY EVELOPED
High-Density Forest Medium Density Forest Low Density Forest Young Regenerating Scrub (8)) Cleared/Open Land (OL)
(HDF/HK3) (MDF/HK2) (LDF/HK1) Forest (YRF)

The High Carbon Stock (HCS) methodology seeks to comsbmdiverse and

ecologically functional forest networks within agriculiliconcessions by directing
conversion towards heavily degraded land of low carbon valogofRan, 2017). This
is achieved by using high resolution satellite imagery tatiftrthe landscape into
discrete strata according to vegetation density and stgjavhich are then adopted
as proxies for above-ground carbon stocks and assumed tartsugpying levels of

biodiversity. The HCS Approach recognises six distinct &g classes (detailed

below), each with unique structural characteristics.
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Habitat Classes

Analytical

Classification
Continuous L ogged Forest contains Continuous
similar structural properties to Dense | Logged

Forest. This class is not considered for
development due to its protected status
This class was incorporated as a contrt
against which carbon and biodiversity ¢

other strata could be compared.

Forest

Dense Forest comprises three classes,
high/medium/low density forest, and
refers to closed-canopy natural forest
characterised by:

e >50% canopy cover;

e Significant proportion of trees >30c
dbh;

e Dominated by climax community
tree species.

Development status€onserved

Dense Forest

Young Regenerating Forest is highly

disturbed remnant forest characterised

by:

e 30-40% canopy cover;

e Significant proportion of trees
between 10 and 30cm dbh;

e Dominated by pioneer tree species|

Development Statu€onserved

Young
Regenerating

Forest
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Scrub refers to land that has previously
been cleared but experienced some
regeneration. It is characterised by:

o <25% canopy cover,
e Dominated by tall grasses and ferng
but containing some pioneer specie

Development statu€onverted

Open Land represents a post-clearancg
habitat dominated by grass or crops wi

few woody plants.

Development statu€onverted

Developed

Land

Oil palm (Elaeis guineensjgepresents
the final phase of land-use change in tf
study system when natural forest habit
has been displaced by commodity

agriculture.

This class was incorporated as a contr
against which carbon and biodiversity ¢

other strata could be compared.

Oil Palm

Plantation
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S3.2: Validating the carbon credentials of the H@drbon Stock (HCS) Approach

Rationale

The High Carbon Stock (HCS) land-use planning tool is gainigidrain oil
palm certification as companies seek to honour thamnebments to sustainable
production. However, there is a paucity of information in gbientific literature to
validate the accuracy of the HCS stratification prodessielineate high carbon
conservation priority areas. Here, we provide an assrgnthe carbon credentials

of the HCS toolkit.

Methods and M aterials

HCS classes were delineated across the Stability of Alfeyesbt Ecosystems
(SAFE) Project study site using standardised protocols (Ros@®an). These strata
were validated using independent high-resolution satellite databove-ground
biomass (RapidEye, 5 m resolution; temporal coverage 2012-2@di&rRet al.,
2016), across cloud-free areas of the study landscapeorCstidicks were calculated
using a conversion factor of 0.47 (Martin and Thomas, 2011, values were
extracted from 200 random points per HCS class800) separated by a minimum
distance of 50 m. A Bayesian linear model was employed ¢ordigte the distribution

of carbon values across classes, thus testing tieamyoof the classification process.
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Results

Following our land-cover stratification, 62 % of the emng forest in the
study landscape, comprising 6,031 ha of High Carbon Stock fanesR,120 ha of
Young Regenerating Forest, would qualify for conservation uwcderent HCS
guidelines (Fig. 1). The classes appropriately reflected neatielarbon content,
which was greatest for Dense Forest (45.86 t &, 88% BCl=42.32-49.44) and
significantly lower in the other classes (Young Regenegyaforest: 31.30t C ha
27.85-34.80; Scrub: 29.62 t Cha26.19-33.05; Open Land: 16.09t C*h4d2.59-
19.62). Pairwise comparisons of carbon content reveaggdfisant differences
between all habitat classes with the exception of YoungeRerating Forest and
Scrub. On average, land earmarked for conservation cendtdil% more carbon than
that designated for development (i.e. Scrub and Opendteatd combined) under the

HCS Approach, equating to a net value of 15.72 t €dwoss the landscape.

Discussion

There is a general consensus in the scientific titegathat field-derived
carbon estimates are laborious, costly and time ¢oinguto implement over large
spatial scales (Gibbs et al., 20 B&trokofsky et al., 2012). Consequently, there is a
need for cost-effective, efficient protocols that canfbllowed to delineate high
carbon stock areas. Our results provide empirical suppatidqgurioritisation of high
carbon stock areas for conservation in the humid tsopacthe HCS Approach. High
Carbon Stock Forest (Dense Forest and Young Regenerating Eomgdsined) was

estimated to store 45.86 t Chavhich falls within the range of estimates for highly
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degraded forest habitat in Borneo (40-100 t C ha-1; Lucely kteey et al., 2014),
butis considerably lower than pristine lowland tropical fo(dst7 t C ha-1; Budiharta

et al., 2014b).

Our analyses demonstrate that carbon stocks are simitaredse land
classified as Young Regenerating Forest and Scrub, sugg#siinidpe HCS toolkit
cannot reliably distinguish between these strata. Thisdivast implications for
conservation, as Young Regenerating Forest should bee@taithin the landscape,
yet Scrub can be developed. This reflects the concéwsnisa (2014), who stressed
the difficulties associated with partitioning heterogmuns vegetation into categorical
carbon classes, as habitat transitions are gradualandistrete While the initial
version of the HCS toolkit offered a clear carbon thodss value (35 t C h§ with
which to differentiate between strata suitable for developred conservatiqit has
been omitted in subsequent revisipimsroducing subjectivity and misinterpretation
into the classification process. We recommend theptamo of explicit carbon
threshold values defining each HCS stratum, to improve cadibraand thus
classification accuracy. Threshold values would make th8 H@&thodology more
transparent, objective and comparable across concesbkigmsctice, the thresholds
should be regionally-specific, accounting for the recoghgeographic variation in
standing carbon stock across tropical forests globAltgbile et al., 2016Banin et

al., 2014).
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Table S3.1: Species assignment to grouping categories

Species Threat Status Disturbance Response
Asan elephant Threatened Sensitive
Banded civet Threatened Sensitive
Bearded pig Threatened Tolerant
Binturong Threatened Sensitive
Clouded leopard Threatened Sensitive
Common palm civet Non-threatened  Tolerant
Greater mousedeer Non-threatened  Sensitive
Leopard cat Non-threatened  Tolerant
L esser mousedeer Non-threatened  Sensitive
Long-tailed macaque Non-threatened  Tolerant
Long-tailed porcupine Non-threatened  Tolerant
Malay civet Non-threatened  Tolerant
Malay porcupine Non-threatened  Tolerant
Marbled cat Threatened Sensitive
Masked palm civet Non-threatened  Tolerant
M oonr at Non-threatened  Sensitive
Orangutan Threatened Sensitive
Pig-tailed macaque Threatened Tolerant
Red muntjac Non-threatened  Tolerant
Sambar deer Threatened Sensitive
Short-tailed mongoose Non-threatened  Tolerant
Stink badger Non-threatened  Tolerant
Sun bear Threatened Sensitive
Sunda pangolin Threatened Tolerant
Thick-spined porcupine Non-threatened  Tolerant
Tufted ground squirrel Threatened Sensitive
Y ellow muntjac Non-threatened  Sensitive
Y ellow-throated marten Non-threatened  Tolerant
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S3.3: Model Specification and predictive performacbecks

All analyses were conducted in WinBUGS version 1.4.3 callesugir R version
3.3.0 using the package “R2WinBUGS” (Sturtz et al., 2005). All statistical models
were constructed using uninformative priors. Unless statedvafiee parameter
estimates are presented as means alongside 95% Ba@esdible Intervals (BCIs)
and considered statistically significant if their 95% B@itsnot overlap zero. For the
hierarchical Bayesian multi-species occupancy model, paealel chains were run
for 75,000 iterations, 25,000 of which were discarded during the ibuposterior
chains were thinned by 10. For all Bayesian two-stage linedelsiothree parallel
chains were run for 12,000 iterations, following a burn-ir2 ®00; posterior chains
were thinned by 5. Convergence was assessed using visual mspEdiiace plots
and the GelmaiRubin statistic, values >1.1 indicate failure to converge (Gelman and
Hill, 2007). Model fit was assessed statistically using a@epims predictive check,
which compares model fit for the actual data against a ateull idealised dataset
(Gelman et al., 1996). Bayesiarvalues were extracted as a numerical summary of
the posterior predictive distribution, with quantitieesd to 0.5 indicating adequate
model fit. We identified quantitative and visual support fan@ygence in all models
presented, while obtained Bayes@walues did not provide evidence of lack of fit

(0.43< p<0.52).
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WinBUGS code for hierarchical Bayesian community occupamayel used to assess

spatial concordance between biodiversity and HCS classes.

model
#Define prior distributions for community-level modalameters

omega ~ dunif(0,1)

sigma.vCLF <- 1/sqrt(tau.vCLF)

sigma.vHCS <- 1/sqrt(tau.vHCS)
sigma.vYRF <- 1/sgrt(tau.vYRF)
sigma.vDEV <- 1/sgrt(tau.vDEV)
sigma.vOP <- 1/sgrt(tau.vOP)

for (i1 in 1:(n+nzeroes)) {
# Create priors for species i from the communityegarameters

wl[i] ~ dbern(omega)

ufi] ~ dnorm(a, taul)
alphal[i] ~ dnorm(mu.alphal, tau.alphal)
alpha2[i] ~ dnorm(mu.alpha2, tau.alpha2)

v.CLFJ[i] ~ dnorm(mu.vCLF, tau.vCLF)
V.HCSJ[i] ~ dnorm(mu.vHCS, tau.vHCS)
V.YRFJ[i] ~ dnorm(mu.vYRF, tau.vYRF)
v.DEV]i] ~ dnorm(mu.vDEV, tau.vDEV)
v.OPJ[i] ~ dnorm(mu.vOP, tau.vOP)

#Create a loop to estimate the Z matrix (true occuertarcspecies i
#at point |

for (jin 1:J) {
logit(psi[j,i]) <- u[i] + alphal[i]*carbnl[j] + alpha2[i]*carbon2[j]
mu.psi[j,i] <- psi[j,i]*w[i]
Z[j,i] ~ dbern(mu.psi[j,i])

#Create a loop to estimate detection for species it jpuring
#sampling period k

for (k in L:K[j) {
logit(p[j,k,i]) <- v.CLF[i]*hd1[j] + v.HCSJi]*Ind2[j] +
V.YRF[i]*Ind3[j] + v.DEVJ[i]*Ind4][j] +
v.OP[i]*Ind5[j]

mu.p[j,k,i] <- p[j,ki]*Z]j,i]
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X[j,k,i] ~ dbern(mu.p[j,k,i])
Xnew[j,k,i] ~ dbern(mu.p[j,k,i])

# Create simulated dataset to calculate Bayesialug@ va

d[j,k,i]<- abs(X[j,k,i] - mu.p[j,k,i])
dnew(j,k,i]<- abs(Xnew[j,k,i] - mu.p[j,k,i])
d2[j,k,i]<- pow(d[j,k,i],2)

dnew?2[j,k,i]<- pow(dnew[j,k,i],2)

}

dsumj,<- sum(d2[j, 1:K[j]. )
dnewsum([j,i]<- sum(dnew2[j, 1:K[j].i])
}

}

# Calculate discrepency measure

p.fit<-sum(dsum[1:J,1:n])
p.fitnew<-sum(dnewsum[1:J,1:n])

}

# Sum all species observed (n) and unobserved spetjes (md the
# total estimated richness

no <- sum(w[(n+1):(n+nzeroes)])
N<-n+n0

# Create a loop to determine point level richnesshates for the
# whole community and for threatened, non-threatesisturbance-tolerant
# and disturbance-sensitive species

for(j in 1:J)1
Nsite[j]<- inprod(Z[j,1:(n+nzeroes)],w[1:(n+nzes)p
Nleast[j]<- inprod(Z[j,1:n],least.concern[1:n])
Nthreat[j]<- inprod(Z[j,1:n],threatened[1:n])
Ntolerant[j]<- inprod(Z[j,1:n],tolerant[1:n])
Nsensitive[j]<- inprod(Z[j,1:n],sensitive[1:n])

}
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Figure S3.1: Mammal occupancy relative to HCS-delineated forestasti@pecies-specific posterior
summaries for occupancy as a function of HCS class (Comtgnumgged Forest: CLF; Dense Forest:
DF; Young Regenerating Forest: YRF; Developed Land: DBW;Palm: OP). We visualise mean
predicted posterior distribution values (horizontal linegcompanied by 95% Bayesian Credible

Intervals (vertical lines).
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Figure S3.2: Mammal detection probability relative to HCS-delineafim@st strata. Species-specific

posterior summaries of detection probability as atfanocof HCS class (Continuous Logged Forest:
CLF; Dense Forest: DF; Young Regenerating Forest: YRFeDped Land: DEV; Oil Palm: OP). We

visualise mean predicted posterior distribution values (bioté lines), accompanied by 95% Bayesian
Credible Intervals (vertical lines).
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Figure S3.3: Mammal occupancy relative to continuous carbon (coar@e)s Species-specific
posterior summaries of occupancy as a function of contincanmon derived from a 1 km resolution
dataset (Avitabileet al.2016). We present predicted mean posterior distribution ¥4hiee line) and

95% Bayesian credible intervals (blue shaded region).
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Figure S3.4: Mammal occupancy relative to continuous carbon (finéeyc8pecies-specific posterior
summaries of occupancy as a function of continuous catbowed from a 25 m resolution dataset
(Pfeifer et al. 2016). We present predicted mean posterior distribution valles khe) and 95%

Bayesian credible intervals (blue shaded region).
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Abstract

Zero-deforestation commitments have emerged as a wayprtmtuction
companies to disassociate agricultural expansion fronstfdoss in the tropics.
However, the success of these policies is dependentexntived methodologies that
translate corporate commitment into actual implememmatn the ground. The High
Carbon Stock (HCS) Approach is the dominant tool used to implerero-
deforestation commitments, yet the efficacy of theéhmeology to design ecologically
functional forest networks in production landscapes habe®n assessed. In a highly-
fragmented tropical forest landscape dominated by oil pabrtest the capacity for
HCS designations of conservation-priority to sustain mahuiversity in forest
remnants. Our results found that forest patches affordeditfhest conservation
priority by HCS protocols were indeed important refugia @€ N-threatened species
and megafauna. Moreover, large, less isolated fragmeare found to support larger
mammal populations, though the conservation value of a rgnwas moderated by
forest quality and hunting pressure. Disturbance synerggesaeely accounted for in
fragmentation assessments, but we identify greaterrigaipsupport for models that
included habitat quality and hunting measures together. We finduhvant HCS core
area criteria conserve only a fraction of the mamroaimunity and estimate that an
area of 3,199 ha would be required to sustain the full congrieai mammal species
This figure increased by an order of magnitude when huntfegtefwere accounted
for. Maintaining strategically configured large forest remisatould be the primary
objective for medium-large mammal conservation. Whereishiot feasible a greater

emphasis on landscape-connectivity is essential. Toetids we advocate greater
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recognition of the importance of low-medium consernvatmriority patches and

encourage their integration into restoration objectives.

Keywords. Habitat fragmentation; High Carbon Stock Approach; mghtland-use
planning; tropical mammals; N-mixture modelling; SoutheassiaA zero-

deforestation.
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| ntr oduction

Tropical forests support a large proportion of global ediity, but are
compromised by anthropogenic activities (Barlow et al., 20b8ged, 227 million
ha of tropical forest area has been lost since 1950 (&csa 2016). The remaining
forest exists as 130 million fragments (Taubert et al., 204@% of which is edge
habitat (Haddad et al., 2015). Cumulatively, the processesmtal forest loss and
fragmentation erode biodiversity by reducing effective ladlaitea and quality, as well
as increasing exposure to anthropogenic disturbance (Barlowl.,eR@dl6). If

biodiversity collapse is to be averted in tropical regioie$prestation must be curbed.

Agricultural conversion accounts for up to 78% of tropicaloristation
(Curtis et al., 2018), and iwidely recognised as the primary threat to terrestrial
vertebrates (Tilman et al., 201Curtis et al., 2018). The pantropical expansion of oil
palm Elaeis guineens)ss at the forefront of conservation concerns. Bmiby high
productivity and accelerating demand for palm oil derivatiwkpalm currently
occupies 18.7 million hectares of land (Meijaard et al., 20@8jversion of tropical
forests to oil palm is associated with precipitous bioditserdeclines and biotic
homogenization (Fitzherbert et al., 20U08arn et al., 2016). Since 1970, global palm
oil production has doubled every decade, a trend which isafstrém continue (Austin
et al., 2017). Much of theecdogically suitable land identified to meet future
agricultural expansioaurrently comprises highly biodiverse ecosystems (Pirkat. et
2016) We therefore need to capitsdion all opportunities to reconcile production and
conservation, if we are to safeguard biodiversity against pitodiferation of

commodity agriculture.
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Growing public awareness of the environmental impacts of dih,pand
associated demand for more sustainable production, has pthet emergence of
voluntary standards that aim to eliminate deforestatiomfcommodity supply-
chairs. These “zero-deforestation” pledges feed into corporate social responsibility
strategies that align societal expectations with commewelopment (Lyon and
Maxwell, 2008). Such strategies reduce reputational risk, gerefatourable brand
image, maintain consumer loyalty and circumvent imporstrictions to
environmentally conscious markets (Lambin et al., 20t8}jhe oil palm industry,
80% of producers with dominant market shares and land allosdtare committed
to zero-deforestation (Lyons-White and Knight, 200&ijaard et al., 2018). Zero-
deforestation initiatives have the potential to unceupil palm expansion and
deforestation, though their success is dependent on ieffectethodologies tha

translate corporate commitment into environmentally suebée expansion.

The High Carbon Stock (HCS) Approach has emerged as dhenant
mechanism to realise zero-deforestation commitmentkanoil palm sector. For
example, signatories of the Sustainable Palm Oil Maoifespresenting five of the
largest palm oil producers, have committed to implementing ptfé®cols (Padfield
et al., 2016). HCS directs agricultural conversion towards deglaagadf low carbon
and biodiversity value, where production would be independemtefdrestation
(Rosoman, 2017). HCS comprises two components. Phaserotueols identify
biodiverse forest areas for conservation based ordaesity and structure (Deere et
al., 2018). However, the long-term fate of biodiversityemnant forest depends on
the spatial configuration of remnant hahifahase two HCS protocolherefore, aim

to ensure that the remaining forest extergcologically functional, based on criteria
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such as specific patch sizdsvel of connectivity and an assessment of quality
(Rosoman, 2017)The role these criteria may (or may not) play in prirgc
biodiversity are yet to be fully evaluatetespite this being fundamental to confirming
whether meeting zero deforestation commitments is cabhpawith conservation

objectives.

Synergies between the impacts of anthropogenic distcebaand
fragmentation on biodiversity are rarely addressed, gatlgnnhtroducing significant
systematic bias into conservation recommendationsilifipte drivers of biodiversity
loss cannot be decoupled. Hunting by humans is ubiquitous withical forest
ecosystems, resulting in widespread defaunation (Har2€dri). Despite recognition
that forest fragmentation increases its accessiliditijunters, few studies integrate
hunting indices into fragmentation assessments (buMsg®lski and Peres, 2007
Peres, 2001), due to difficulties detecting and quantifyingspieial signature of
human pressure. Additionally, geographic and taxonomic biakagmentation
research limits the scope of generalisations, due to diviesgenies responses within

and between biogeographic realms (Deikumabh et al.,,2@idath et al., 2017)

Here we quantify forest fragmentation impacts on bioditqeto inform the
HCS methodology underpinning zero-deforestation commitsnédtir study area in
Sabah, Malaysian Borneo, has been subject to sothe tighest deforestation rates
in the tropics (Hansen et al.,, 2013), and remaining fosedistributed across 7.6
million fragments (Brinck et al.,, 2017). Malaysia is at tfheefront of oil palm
cultivation, contributing to 34% of global palm-oil productiat the expense of 2.1
million hectares of forest in Malaysian Borneo al¢@aveau et al., 2016a). Despite
experiencing vast and rapid land-use change, Southeast Asa blan
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underrepresented in global fragmentation assessmenikugizh et al., 2014)
hindering the development of conservation measures for the region’s vulnerable
biodiversity. We develop a modelling framework to understandhtpacts of HCS-
relevant fragmentation metrics on biodiversity, whilecaamting for potential
disturbance synergies. Our appraisal focuses on troprestfmammals because they
are sensitive to habitat fragmentation (Crooks et al., 20&gipnally threatened, and

consistently prioritised by conservation policies (Schiggteal., 2008)

M aterials and methods
Study System

We conducted fieldwork within the Stability of Altered Foresb&stems
(SAFE) project and surrounding oil palm estates in Sabafaydian Borneo. The
study area is nested within Kalabakaordst Reserve (KFR; 4°33’N, 117°16’E)
comprising lowland and hill dipterocarp forest. KFR is a hidgt@terogeneous mosaic
of near pristine old-growth forest, secondary forestaaying stages of recovery and
oil palm plantations. Within the SAFE experimental arealated replicate forest
fragments of standardised sizes (1, 10 and 100 ha) haverdtegred within an
agricultural matrix to better understand the long-termloggeal consequences of

fragmentation (Ewers et al., 2011).

We established 128 sampling locations across the study landpeaiit@®ned
into continuous forest controldl€60) and fragmented forest sit@é=68; Fig. 4.1).

Sampled fragments ranged in size between 1 anch&9thus broadly capturing the
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dominant size classes of Southeast Asian forest rem(agisage fragment size = 52

ha, 13-213 ha depending on forest cover data source; Briatk 2017).

®  Continuous sites

| : Fragmented sites

: - Forest cover

- Low priority patch
Medium priority patch

- High priority patch

|:| SAFE project area

L :: Bantian-Tantulit VJR

Figure4.1: Map of study site, HCS patch prioritisation and camenaédesign. Map of study area (inset
shows broader geographic context), highlighting camera-aeplgg locations partitioned across
continuous- and fragmented forest sites. Sampled foegghénts are colour coded to reflect their HCS

conservation priority designation.

Mammal sampling

To characterise the mammal community, we obtained dmtéadn-detection
data from remotely operated digital camera-traps (Recbi@&00, Wisonsin, USA)
between June 2015 and December 2017. Camera-traps were depl3@ldeations
(Fig. 1, mean distance between sites, 1.4dtayation range, 89708 m). We adopted
a paired design to capture a greater breadth of environimentfitions and maximise

survey effort in topographically challenging terrain. Paicathera-trap units were
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positioned up to 250 m apart (mean distance=207.3 m; range233.3 m). After
malfunction and theft, we retrieved data from 214 units sscal 128sampling

locations, equating to 83.6% of the 256 deployed camera-trags. Whte deployed
for a minimum of 42 consecutive nights and were continuoarsiye, providing a

total sampling effort of 10,09¢amera-trap nights.

Determinants of mammal persistence in fragmentaddeapes

We compiled spatially-explicit fragmentation metricsta¢ patch-scale to
capture key criteria from the HCS prioritisation decidise (Rosoman, 2017): core
area, shape and isolation. These forest metrics wergiftea for all patches witta
threshold carbon value of 35 t Chausing LIDAR-derived above-ground carbon
maps (Asner et al., 2018), as per HCS protocols. We alsedeneasures of forest
guality and hunting pressure. Forest quality was quantified) isio metrics, biomass
(t hat; derived from Asner et al., 2018) and a HCS-specific patale seeasure of the
proportion of dense forest (>75 t ChaWe developed a bespoke hunting variable
based on modified population pressure surfaces conceivelatiy €& al(2012).We
derived hunting pressure using travel-time cost surface modsish integrate
proximity to infrastructure (roads and villages), landcover, gogohy and human
population density (see supplementary section S4.1 foefunithodological details
of covariate processing). We retained commonly adoptetinguproxies (proximity
to infrastructure and population density) to gauge the value ahetric compared to
the disaggregated component variables. We deemed collineadtyganpredictors

confounding if Pearson’s correlation coefficients were |[r|>0.7 and variance inflation
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factors were VIF>3. Prior to analysis, continuous covesiavere centred on their

mean values and standardised to one-unit standard deviation.

Modelling framework

Data from paired camera-traps were combined into singligtacal units prior
to analysis to mitigate issues of Markovian dependence gHihal., 2010). Species-
specific detection histories for each analytical unitey@voled into six-day sampling
occasions (3-7 temporal replicates $jtewhich we summarised for each species
across sites. We excluded two species with fewer thand@tections from the
modelling process (banded linsan@rionodon linsang smooth-coated otter
Lutrogale perspicillatp as it is difficult to uncouple ecological and obsevati

processes when detection data are sparse (Brodie et al.).2015b

We employed hierarchical multi-species Bernoulli/Poigdemixture models
to estimate mammal abundance from detection/non-detetztar{Royle and Nichols,
2003 Yamaura et al., 2011). Throughout, we interpret abundancekdige measure
and restrict inference to spatial comparisons (Wearn.,e2@17). Our hierarchical
models consisted of two components, describing the ecalogimd observation
processes underpinning the data (see supplementary sedidren8 8.3 for further
information on model formulation). Using temporally-repted samples of
detection/non-detection data, our models explicitly acamlifar imperfect detection,
allowing differentiation between true absence and ndeetien (MacKenzie et al.,

2017)
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To determine the influence of HCS-relevant fragmentatioetrics and
secondary disturbance impacts on patterns of mammal aie)dee specified

models of the form.

log(lij) = ag; + ay;Forest Cover; + ay Fragmentation; +

asz;Quality; + ayHunting; + s(Yearj)i
logit(rij) = Po;Habitat; + By;Survey Effort;

Abundance 4;;) and detectionr{;) were modelled using log and logit link
functions respectively, incorporating species-specitipes and intercepts. Species-
specific random effects were drawn from a common digfich with estimable hyper-
parameters (Guillera-Arroita, 2017Yhis formulation permits community-level
inference and provides robust parameter estimates foliccsg#cies rarely detected

during sampling (Zipkin et al., 2009)

Eleven models were constructed to explore the indeperatehtadditive
effects of fragmentation, forest quality and huntingrice on mammal abundance
(Table 1). To decouple fragmentation effects from halbitsd (Fahrig, 2017), we
incorporated a forest cover covariate across all madejsantify habitat availability
in the vicinity of the sampling location. Scale optimisatimethods were used to
ascertain the optimal spatial extents for covariéhaffers of radii: 50, 100, 250, 500,
1000, 2500 and 5000 m). Covariates were aggregated across thditibgsouffers
and calculated as weighted averages between paired units obasedproportion of
survey effort each pair contributed to the sampling lonatide incorporated temporal
random effects (g) in the abundance component of the model to account for inter-
annual variation due to multi-year sampling, assuming populatiomemdgraphic
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closure over a 12-month period. We modelled detection prigigeas a function of
categorical habitat-specific intercepts and survey effaumber of camera-trap
nights). We define three distinct habitat classes ferdigtection model, which were
objectively defined using HCS stratification protocols (densestp >75 t C ha-1,
young regenerating forest: 35-75t C ha-1; non-forestdtabi15 t C ha-1; Rosoman,

2017).

To inform scale-optimisation methods and rank competing rapdeé
calculated Watanabe-Akaike Information Criterion (WAI@)within-sample model
selection tool analogous to AIC (Broms et al., 20Matanabe, 2010). We consider
substantial support for models with AWAIC<2 (Burnham and Anderson, 2003), and
calculate evidence ratios to compare the explanatory poiveoropeting models
(Burnham et al., 2011). We only present findings for modelsnddeto have
substantial support, containing covariates derived from optistales (see

supplementary tables S4.1 and $4.2

To investigate trait-mediated responses to HCS patch gatiain protocols,
we assigned conservation designations to forest remmaatscordance with HCS
core area criteria (High Priority Patch: >100 ha; MediRriority Patch: 10-100 ha;
Low Priority Patch: <10 ha; Fig. 1) and compared their agptx support mammal
populations. We partitioned species (supplementary Table &dcdrding to their
IUCN conservation status (Non-threatened: least concemar-threatened,;
Threatened: vulnerable, endangered, critically endangeredlpgéxal specialism
(generalist, specialist; Wilson et al., 2010), body size {tmed<5 kg; large: 5-25 kg;

mega: >25 kg; derived from the PanTHERIA database, Jones20@9) and trophic
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guild (carnivore, herbivore, frugivore, insectivore, onome; derived from the

PanTHERIA database, Jones et al., 2009)

To determine quantitative recommendations for HCS core @itesia, we
derived predicted species richness estimates from modplteutaccounting for
imperfect detection. Predicted species richness was a@ddulas the sum of
occupancy¥), which is a deterministic function of abundangg: = 1 — exp(—/lij).
To quantify the potential impact of disturbance synergiesa®e area criteria, we
calculate predicted species richness under three scerBricsre area only; 2) core

area and hunting; and 3) core area, hunting and forestyquali

Results
Biodiversity value of HCS priority forest remnants

Pairwise comparison identified an 18.5% (95% BayesiamifQlee Interval,
BCI: 14-20%) increase in mean local mammal abundanceastfemnants compared
to continuous forest when all species were considered (Fig. Bhiy trend was
predominantly driven by substantial increases in gener&@&7% increase, 49.9-
64.2%) and omnivorous species (82.5% increase, 66.0-118/@R&n partitioning
the results according to HCS designations, High Pri®xdtighes of forest consistently
harboured greater levels of abundance than Medium amd Rwority Patches.
Specifically, high priority patches were important for theead (Medium Priority
Patches: 37.2% increase, 33.3-37.7%; Low Priority Patches: 4ck¢ase, 37.3-
47.7%) and mega-bodied species (Medium Priority Patches: idOfgase, 37.4-

44.9%; Low Priority Patches: 46.7% increase, 39.9-49.9%). Medand Low
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Priority Patches supported comparable mammal abundance atirait groups and

guilds.
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Figure 4.2: Local abundance of tropical forest mammals relativeabitat type and HCS patch priority
designation. Abundance is calculated as a relative meagpiresenting the estimated average number
of individuals whose home range overlaps with camera-trapeydepin broad habitat classifications
We quantify mammal abundance across continuous (Cont) and freghferest (Frag), and HCS

designated conservation priority forest patches (HPP: HighrityriPatch; MPP: Medium Priority
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Patch; LPP: Low Priority Patch). We present findingsalbspecies and partitioned according to body

size.

Model performance

We found comparable statistical support for models incatpay
fragmentation and quality measures and those supplementedunitunting pressure
metric (Table 4.1). Evidence ratios suggested that these nmettdsmed 7.5 and 3.9
times better, respectively, than those limited to fragtation metrics alone. When
considered independently, models containing fragmentatietrian had greater
support than those containing hunting or forest quality ogeimiisolation (Table 4.1)
The hunting pressure model had greater explanatory powerthlarcontaining

disaggregated hunting proxies (Table 4.1), performing morelib@nimes better.

Table 4.1: Performance of Bernoulli/Poissditmixture models. Performance of models assessing the
impact of alternative configurations of fragmentatiamting and forest quality on mean local mammal
abundanceModels are presented in descending order of performance bas@¢htanabe Akiake
Information criterion (WAIC), a measure of the relatipglity of statistical models given the data.
WAIC indicates variation in WAIC relative to the top-ramggimodel; WAIC w denotes Akaike weights
and further quantifies strength of evidence between congpetodels.Models were considered to have
comparable statistical support if they were within two AWAIC (presented in bold). Though not
presengd every model contained a forest cover covariatetoudple the effects of forest fragmentation

from habitat loss.

Model and covariates WAIC  AWAIC WAI
Cw
Fragmentation + QualityCore + Shape - 4196.14 0.00 0.58

Isolation + Biomass + Prop_HCS
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Fragmentation + Hunting + QualitfCore + 4197.45 131 0.30
Shape + Isolation + Hunt_Press + Biomas

Prop_HCS

FragmentationCore + Shape + Isolation 4200.18 4.04 0.08
Fragmentation + HuntingCore + Shape - 4202.26 6.12 0.03
Isolation + Hunt_Press

Fragmentation + Hunting + QualitfCore + 4206.00 9.86 0.00

Shape + |Isolation + Pop_Density
Dist Roads + Dist_Village + Biomass

Prop_HCS

Hunting + Quality:Hunt_Press + Biomass 4208.25 12.11  0.00
Prop_HCS

Quality: Biomass + Prop_HCS 4208.69 12.55 0.00
Fragmentation + HuntingCore + Shape - 4209.63 13.50 0.00
Isolation + Pop_Density + Dist_Roads

Dist_Village

Hunting: Hunt_Press 4210.13 13.99 0.00

Hunting + Quality: Pop_Density + 4216.10 19.96 0.00
Dist Roads + Dist_Village + Biomass

Prop_HCS

Hunting: Pop_Density + Dist_Roads 4222.68 26.54 0.00
Dist_Village

Core: core area of a forest patch (i.e. area withiohpafter subtracting a 100m internal buffer;
ha); Shape: ratio of patch perimeter and perimeten apimally compact patch of comparable
area; Isolation: distance to nearest continuous foresinédefas patch >10,000 ha; km);
Hunt_Press: bespoke hunting pressure metric combining population couessilitity, distance
from roads and distance to population centres; Pop_Densitylatiopudensity (people kim?);
Dist_Roads: distance to the nearest road (km); Dist_Villages: distanice nearest village (km);
Biomass: aboveground live biomass (tha&Prop_HCS: proportion of High Carbon Stock Forest
(>35t C ha).

An evidence-base for zero-deforestation supporstoo

The influence of fragmentation, hunting and habitat qualit shaping
mammal abundance was evident at the community-level 4Ry. We found strong
positive associations between mean local abundance achl g area (posterior
mean: 0.11, BCI: 0.05-0.21) and the proportion of HCS forestwithinnant forest
patches (0.09, 0.02-0.23). Conversely, we found weak evidence aaimail

population declines relative to our alternative measur@rest quality, biomass (-
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0.09, 90% BCI: -0.18 to -0.01). Moreover, isolation demonstratstiong negative
association with mean abundance (-0.12, -0.24 to -0.01), sumgptst local mammal
abundance diminishes in more isolated fragments. Twasealso weak supportrfo
hunting impacts (-0.16, -0.31 to -0.02), highlighting the seitsitiof mammal

communities to anthropogenic pressure.
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Figure 4.3: Mammal community responses to fragmentation metrimsgst quality and hunting

pressure. Response of the medium-large terrestrial magonahunity to anthropogenic pressure
(hunting), forest quality (biomass and proportion HCS) and fratatien metrics (core area, shape and
isolation). Predicted mean posterior distribution valuegpegsented in red, while the 95% Bayesian

credible interval is shaded in grey.

Only modest gains in mammalian species richness were achievess acro
fragment sizes varying in core area from zero to 500 lta &4). At the threshold

core area of 10 ha, which differentiates Low and Mediuiori® Patches, only 13
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species (10.7-14.9) of the 38 species sampled, equating to 33%3823%3}, were
estimated to be present. At a core area of 100 ha, tfed aniterion for designating
patches high priority, predicted richness was 13 species (102-Thus, for a 10-
fold increase in core area, no additional species wersemexd. Based on
extrapolation, a core area of 3,199 ha (2131-5182) would beeddoiconserve the

38 mammal species constituting our community.

Using the additive influence of habitat area, quality anchrapbgenic
pressure, we developed quantitative recommendations of pakelaea required to
support viable mammal asselades from species richness predictions (Fig. 4.4).
Under a range of patch size configurations, variation mtihg pressure liméd the
conservation gains that can be achieved by increasing patelaea (Fig. 4.4). We
predict that in remnant forest patches subjected tormptiessure, a minimum core
area of 27,498 ha would be required to achieve the full compteafemammal
species. However, the deleterious impacts of hunting eamifbet considerably by

habitat quality, reducing the area required to conserve icbacmunities to 4,531 ha.
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Figure 4.4: Estimated species richness demonstrating secondarybdistg impacts on HCS core area
criteria. Total estimated species richness (top row) pestlicsing core area alone (left), core area and
hunting pressure (middle) and core area, hunting pressdreadiitat quality (right). Interaction plots
(bottom row) demonstrate how hunting pressure (left) amdst quality (middle) modulate the

conservation value of forest patches and interfacet]righ

Discussion

Robust scientific evidence is central to informed enviroriaiedecision
making (Lucey et al., 201 Butherland et al., 2004pur work identifies challenges
and opportunities for HCS implementation in tropical de$tation frontiers. We use
empirical evidence of fragmentation impacts on bioditsets identify HCS-relevant
patch and landscape attributes that make forest remnamts hospitable to
biodiversity. Moreover, we emphasise the importancénodrporating synergistic
disturbance impacts into fragmentation assessments tenpreystematic bias in

guantitative recommendations.
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The biodiversity value of HCS-delineated forest namts

At present, HCS is the only available methodology to suppdérpam
companies meeting their zero-deforestation commitmenterefore, the extent to
which zero-deforestation pledges contribute to biodivecsityservation is dependent
on the capacity of the forest remnants prioritised by H&Sustain wildlife. We
identified marked increases in the abundance of geneaatisbmnivorous species in
fragmented forest sites. This homogenisation processelwepecialist species are
displaced by a few abundant generalists, is well-documeénterest fragments (Beca
et al., 2017Canale et al., 201Magioli et al., 2016). Generalists are able to maintain
populations in forest fragments due to their ecologicaitisigy, which facilitates the
exploitation of a greater breadth of resources (Garmaezical., 2013Michalski and
Peres, 2007)Release from competition and predation in forest fexgsican also

result in increases in abundance by fragmentationaiiespecies (Laurance, 2008)

When we partitioned forest fragments according to HCS pattdria, High
Priority Patches contained significantly larger conaimns of mega-bodied and
threatened species when compared to Low and Mediumtiaiches. Megafauna
and threatened species demonstrate traits associatesewditivity to fragmentation,
including large area requirements, slow reproductive redd; and range restriction
(Keinath et al., 2017). Therefore, forest remnants daségl as the highest priority by
HCS protocols have the potential to act as refugia for thpseies most vulnerable to

fragmentation.
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Low and medium priority fragments supported comparably madastmal
abundance across all species and guilds. This is an empotiservation because Low
and Medium Priority Patches become viable for conversiathin the HCS
framework if they are shown to be negligible for biods#y. Given that Low and
Medium Priority Patches were the dominant size cladsiwour study (91.2%), a
trend which is representative across the tropics, we atiygceater recognition of the
importance of these patches in land-use planning. Thgyplatal conservation roles
caching genetic diversity, maintaining equilibria in predatey systems, sustaining
the regional species pool, and protecting relict habitaloftal endemics (Huffaker,
1958 Ovaskainen, 20QResasco et al., 2013aura et al., 201&truebig et al., 2011)
Consequently, incorporating Low and Medium Priority Patchee long-term
restoration strategies could prove a cost-effective@mation strategy in fragmestt

agricultural landscapes.

A blueprint for ecologically functional forest mossaic

Our multi-modelling framework revealeafehscale fragmentation metrics to
be the strongest determinants of mammalian abundancee Tihémgs explain the
underlying mechanisms dictating mammal abundance in HCS-delinpatedy
patches. At the community-level, mammals were found to betautially more
abundant in forest remnants comprising a large corea@an close proximity to
continuous logged forest. Larger fragments have increassghgecapacity to sustain
larger animal populations. Moreover, fragments with atgrecore area are more
robust to edge effects, which can alter the structure anwchioatic conditions of

fragments (Laurance, 2008). In a pan-tropical assessmembmalaabundance
165



declined by 57% towards forest edges (Pfeifer et al., 20&8} isolated fragments
experience higher colonisation rates, with immigrationviging a demographic
safeguard from local extinction (Brown and Kodric-Browf,7). Our results echo
those from studies elsewhere in Borneo, which idedtiieclines in mammal
populations with increasing distance from forest source ptipot (Yue et al., 2015)
We therefore stress the importance of maintaining coiwitgctn agricultural

landscapes for dispersal-limited taxa, particularly speeidlispecies with limited

tolerance for matrix conditions.

We demonstrate the potential for anthropogenic stregsaraplify the effects
of fragmentation on tropical mammals. We found that modetsrporating measures
of forest quality and hunting had considerably more suppont tin@se containing
fragmentation metrics alone, suggesting that mammaldaimoe is best explained
when accounting additively for disturbance effects. We douhat mammal
communities decreased in abundance in areas predictegddesce high levels of
hunting pressure, though variation at the community levetured pronounced
impacts on ungulates and large rodents, which exhibited pmgpdeclines (see
supplementary figures S4.2 and S4.3). Our species-specifitsrestiéct previous
research showing that these taxonomic groups are tfermece quarry of hunters
(Brodie et al., 2015bFa and Brown, 2009)n the few studies that have explored
hunting within the context of fragmentation, hunting lkesnonstrated substantial
negative impacts on mammal abundance (Cardinale et al., Q0l#n Jr et al., 2090
Kosydar et al., 2014Peres, 2001Sampaio et al., 2010). Our study adds to this body
of evidence and further emphasises the importance ologktvg mitigation measures

that safeguard vulnerable mammal populations from ovesgapbn in fragmented
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landscapes. Moreover, we introduce a valuable spatighijcéxhunting metric that
can be developed from freely available remote-sensing data taifguauman

pressure at scales appropriate to conservation management

We found that forest quality, measured as the proportion &-Hilineated
forest within the patch, demonstrated a positive assogiatith mammal abundance.
This provides further evidence of the biodiversity value aredt prioritised for
conservation by the HCS approach (Deere et al., 2018)n&kaasing proportion of
HCS forest within remnant patches likely corresponds to asang structura
complexity, resulting in a diverse niche space which camracmdate greater
mammal abundanceChapter 3). Maintaining and restoring patch quality should

therefore be central to forest management in produldimdscapes.

Management recommendations

A key obstacle to effective conservation policy in productandscapes is a
poor understanding of the optimal patch sizes needed &irsb&idiversity (Lucey et
al., 2017). Core area is the principal determinant of@wasion designation within
the HCS prioritisation process, and current protocols §padhreshold of 100 ha to
delineate High Priority Patches of conservation vali¥e. demonstrate that these
patches would support only a fraction of the estimatedeapeichness in the mammal
community (35%). Mammals occupy key positions in tropicaks$t ecosystems,
exerting top-down control on primary production and consamich influences the
distribution, composition and structure of vegetatioerfbrgh et al., 2001). The

absence of large mammals can have cascading effecesamystem functioning
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leading to arrested succession (Ripple and Beschta, 206@jps meta-analysis has
suggested that a core area of 200 ha is required to maintaralriarest regeneration
(Lucey et al., 2017), but this would be insufficient to na@mtmammal-mediated
ecological processes. Given that the average fragmeraciass Southeast Asia is 52
ha (Brinck et al., 2017), our results suggest the potentiadegative feedback loops

in forest fragments owing to depauparate mammal communities.

Though an evidence-base for optimal patch size for metiuge- mammals
is lacking, Magioli et al. (2015) found that functionaletisity of mammal populations
was maximised in patches exceeding 2,050 ha (total area). @asled trajectory of
our trendline, a core area of 3,198 ha would be necessargnserge the full
complement of mammal species within a forest fragnatitough we advise caution
when interpreting this figure due to the inherent dangerstododating beyond the
bounds of the data. Given the opportunity costs of forgda@velopment, it is unlikely
that these area requirements can be met at the cancésael, therefore enhancing
and restoring landscape-level connectivity through a neteofosknall forest patches
and riparian margins should be a priority for mammal cmasien in production

landscapes (Zimbres et al., 2017).

The extent to which multiple disturbance impacts inflgetie optimal patch
size has rarely been explored in the scientificditere. Our results suggest that core
area associated gains in species richness are supressetity pressure, increasing
the area required to retain an intact mammal communitgnbgrder of magnitude.
This concurs with Peres (200Who demonstrad that hunting greatly increases the
spatial requirements necessary to sustain viable mamrmalgbions. Thus, without
explicit consideration of hunting, the optimal fragrmhesize required to retain
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appreciable levels of biodiversity can be underestimate24t800 ha according to
our data. We demonstrate that hunting pressure can btk by the maintenance
and restoration of forest quality within forest fragmemhich reduces the area
required to support intact mammal commiunities to 4,531 ha. Neless, if HCS-
designated forest fragments are to avoid functioning as gaputanks, preventative
measures that effectively prohibit illegal timber extracamd hunting are essential in

production landscapes.

Conservation implications

Agricultural land currently occupies 1.53 billion hectaresbglly, with a
projected 18% increase predicted before 2050 (Tilman et 280,7). Zero-
deforestation pledges provide a mechanism to ensure gasgrn will not be met at
the expense of tropical forests. In Malaysia alone madidity pledges would
safeguard 21.14 million hectares of primary and selectiogigdd forest (Padfield et
al., 2016). Our work highlights the potential for zero-deftaon policies to facilitate
environmentally-conscious agricultural expansion across olpécs that aligns with
biodiversity conservation objectives. HCS-delineated highservation priority
patches were identified as important refugia for speciest rat risk from forest
fragmentation, but the current core area thresholeérait of 100 ha des not
adequately safeguard mammal diversity. Maintaining the Hrfgesst remnants
should be the primary objective for medium-large mameoakervation but, given
their spatial requirements, a greater emphasis ondapdsconnectivity is essential to
provide conduits of movement between large tracts ofraomts habitat. To this end,

patch configuration is paramount and we advocate strgiegitioning of fragments
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within the vicinity of continuous tracts of forest, linked d&wyetwork of low priority
patches and riparian zones. We present evidence thabpogienic pressure can
moderate the biodiversity value of forest remnants atidveethis warrants greater
consideration within the HCS framework. Specifically, wersgty recommend the
integration of standardised hunting and habitat quality womeasinto future
fragmentation assessments. Conservation practisomaust work closely with
plantation managers to develop control measures that fioman influences on
residual natural vegetation in production landscapes. Whitedeforestation pledges
demonstrate an encouraging trend, failure to mitigateelbsuto implementation will

ensure that deforestation and agricultural expansionmeentn tandem.
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Supplementary infor mation

Developing fragmentation, quality and hunting megri

Patch size, isolation and shape have demonstrated pdofoyracts on
fragment suitability for biodiversity (Haddad et al., 2015]) are central to the HCS
patch prioritisation process. To calculate patch cora,alefined as habitat within the
remnant impervious to external conditions (Ewers and DidR2&9%), we applied a
negative buffer of 100 m to the forest cover layer. Thigma is based on scientific
evidence suggesting that 75% of edge effects occur within 100 forédst boundary
(Laurance et al., 2002). We determined isolation as theestidcuclidean distance
between the forest patch and tracts of continuous f¢»&€,000 ha; Potapov et al.,
2008). In the context of our study site, this corresponded toSélgama Forest
Reserve, which forms a part of the 1 million ha Yayasape8 forest Management
Area (Reynolds et al., 2011), the largest contiguous blofdk@$t remaining in Sabah.
Shape is traditionally calculated using the perimeter-eatg@ However, this metric
is confounded as it does not reliably decouple shape froanedfects (Ewers and
Didham, 2006). We therefore employed a shape index to cerpptch perimeter (m)

to that of an optimally compact Euclidean shape (i.e. a square

Shape Index =
ape Index Prmin,

Pmin; = 4,/areq;

where Ris the perimeter of patéhPminis the perimeter of the corresponding

optimally compact patch and areathe area of patah
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Forest quality is rarely accounted for in fragmentati@seasments, but
receives explicit consideration within HCS phase twotqrols. Forest quality
measures provide an indication as to the structural integribyest fragments, which
dictates the distribution and concentration of foresburces (Simonson et al., 2014)
Moreover, quality measures quantify the extent to which expo® anthropogenic
stressors (i.e. illegal timber harvesting) and edge sffecide habitat suitability for
mammals. We adopt two forest quality measures, forest b (haa; derived from
Asner et al., 2018) and the proportion of classified dérsst contained within the
patch. We calculated biomass from carbon, based omaghiemption that carbon
constitutes 47% of standing biomass (Martin and Thomas, 2Uh#&)proportion of
dense forest refers to the area of the forest containirtg duglity forest habitat,

defined under HCS guidelines as that exceeding 75 t*GR@soman, 2017).

Hunting is a pervasive threat to tropical biodiversity (Harrjs2011), yet
spatially-explicit measures of hunting pressure are lackirgvious attempts to
guantify hunting have involved coarse comparisons of biosityen hunted and non-
hunted sites (Cullen Jr et al., 20@Baletti et al., 2009Kosydar et al., 2014) or
direct/indirect hunter encounters (Brodie et al., 20 dmpaio et al., 2010). They
therefore overlook spatial variability in pressure andcaefounded by imperfect
detection. Another approach is to use proxies, with proximitnfrastructure adopted
as a surrogate for anthropogenic pressure (Benitez-Lo@mtz 2017 Michalski and
Peres, 2007) and it is based on these criteria that HC8 pdobritisation protcols
delineate risk of illegal incursion. However, proximity measuaee typically based
on Euclidean distance which greatly simplifies human maveracross a landscape.

In Southeast Asia, the pressure hunters exert a@olssmidscape represents the
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cumulative effect of accessibility and population dengByodie et al., 2015b
Harrison et al., 2016). Simple proximity measures alonehar® unlikely to capture
the complexity of interacting variables. To overconesthlimitations, we developed
a bespoke hunting pressure variable based on spatiallgiexmpulation pressure
surfaces developed by Platts et al. (2012). It assumes tha@apopypressure on
locationi increases with the human populatigrog) of remote population centie

weighted by a distance decay functien
Hunting pressure; = Z?’zlpopj " Wi

where N represents the number of locations across which pressure

accumulates.

We modify the weighted distance decay function to impaseessibility
constraints on the spread of human pressure. Accdgsibds calculated using a
travel time cost surface model (TTCSM; Frakes, 2015plamented in ArcGIS
version 10.3. TTCSMs calculate duration of travel fronertdefined points to
localities while accounting for landscape features (emngiclaver, elevation, slope) or
infrastructure that facilitate or impede human movemantadllaboration with oil
palm plantation managers, we identified 26 population cemtithin the surrounding
production estates, for which we retrieved corresponding depiuigrdata. Given the
isolated nature of our study site and security gates tasgribie influx of hunters from
beyond plantation borders, we assumed that these popuiatires represented the
most likely sources of hunting pressure. We specified a défavel speed of 5 kmph
based on the average walking speed of a human (Browning 20@6). We specified
a non-linear decrease in walking speed witlreasing slope, using Tobler’s Hiking

Function (Tobler, 1993):
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Tobler's Hiking function = 6 * exp (—3.5 abs (tan (Sloi) + 0.05))

57.29578

where slope was derived from 30 m resolution Shuttle Radaography
Mission (SRTM) elevation data (U.S. Geological Suna8i5). Gradients exceeding
31 degrees were specified as absolute barriers to movemeasellEiShaw et al.,
1992). We recognised the potential for landcover to impede spéed/el. Using an
extensive transect dataset (22 transects of 2 km, walketirfeas each), we calculated
movement speed for all major habitat types preseniragtady system, and landcover
resistance was parameterised based on proportionateditfes between average

walking speed and landcover specific values

Our model assumes that an individual will optimise the naoderate of travel,
so roads will take precedence over walking when available. Emgl&€Copernicus
high-resolution satellite imagery, we digitised 6,201 km @&dsoacross our study
landscape. These were recorded as primary and seconddsyand allocated speed
limits of 60 (based on the designated speed limit) and 30 (aduguor speed

limitations on secondary roads within oil palm plantatidasph respectively.

TTCSMs were created for each of the 26 populationresnfTo convert
TTCSMs into weighted distance decay functiom)s (ve inverted each surface to scale
travel time high to low with increasing distance frontleenent. Substituting each
inverted TTCSM forw in our equation, hunting pressure was calculated by
multiplying each TTCSM by the corresponding population cadinbat village and
summing the resulting surfaces (Fig..B4 Given that hunting is predominantly
opportunistic across Southeast Asia (Harrison e2@1.6),we expect hunting pressure

to be equal across all mammals. For comparative purposestaweed traditional
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proxies for anthropogenic pressure (distance to roads, chstanvillages, human
population density; Gaughan et al.,, 2013) to determine the valeerobespoke
hunting metric compared to risk measures adopted by HCS paimtitisation

protocols.

- Forest

- Scrub

g I run

Qil Palm

- Urban

Figure $4.1: Input surfaces for the travel time cost surface modellaadirtal hunting pressure layer.

Covariates used to develop the travel time cost surfackelta: human population counts at oil palm
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estate villages; b: the road network; c: land coveel@lation (m); e: slope (degrees) and the resulting

spatially-explicit hunting pressure layer (f).
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Modelling framework

We modelled the local abundance of spetcissampling locatiop (a;j) as a

Poisson-distributed random variable, described by ratenehes/;:

a;;~ Poisson(4;;)
where 1 denotes the number of individuals of spediassing the habitat
surrounding sampling location Detection probability ;) was assumed to be

functionally dependent on local abundangg:(

py=1—(1-ry)"

whererjj represents the detection probability of an individualpafcgesi at
sampling locatior). The coupling of abundance and per capita detection provides a
modelling framework that is robust to spatial heterogenaityeitection probability
(Tobler et al., 2015). However, this assumption may be udfdifor rare or territorial
species that persist at low densities with negligibleerogieneity in detection
probability between sampling locations (Denes et al., 2015)auised detection

histories ¥;;) were described as realisations from a binomial distobuti

YVij~ Binomial(Pij' kj)

wherek; indicates the number of temporal replicates at sawgpdication;.

We recognise two important assumptions of our modelling éveark. The
first is independence of detection between sampling ocsasiom the second is
independence in the observation of individuals within a samptiegsion. While the
pooling of paired camera-trap units and summation of detebigtories mitigates

between occasion non-independence, we acknowledge that thiea wdcasion
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independence assumption may be violated by gregarious sjWeidiserefore advise

caution when interpreting findings for group living species.
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Model code for hierarchical multi-species Bernd&lbisson N-mixture model, written

in the BUGS language for JAGS.

Multi-speciesN-mixture models were implemented in a Bayesian framework,
specified in the BUGS language and implemented in theststati software JAGS
(Plummer, 2003). We employ uninformative priors throughounguat normal and
wide uniform priors for slope and intercept/variance patara@espectively. Variance
parameters associated with the temporal random effeet specified using a half-
Cauchy distribution to account for potential variance estimation due to few factor
levels (Gelman and Hill, 2006). We ran three Markov chain$50,000 iterations
discarding an initial burn-in of 50,000 and thinned by a rat®0f Convergence was
assessed through visual inspection of trace plots and thea@d&tubin statistic, with
values <1.1 indicating model convergence (Gelman and Rubin, 1982gl Kkt was
assessed usingPzarson y? discrepancy measur@r(()(zobS > Xzsim)) and “lack of

fit” statistic (x*_,./X*s,)» Where values 0.05 to 0.95 and equal to one indicate

adequate model fit (Kéry and Schaub, 2011) (Table S4.1)

model {
# Hyper-priors for abundance and detection intercepts

mu.alphal.psi ~ dnorm(0, 0.01)
sigma.alphal.psi ~ dunif(0, 10)
tau.alphal.psi <- pow(sigma.alphal.psi, -2)

mu.alpha2.psi ~ dnorm(0, 0.01)
sigma.alpha2.psi ~ dunif(0, 10)
tau.alpha2.psi <- pow(sigma.alpha2.psi, -2)

for(h in 1:4){
mu.alpha.p[h] ~ dnorm(0, 0.01)
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sigma.alpha.p[h] ~ dunif(0, 10)
tau.alpha.p[h] <- pow(sigma.alpha.p[h], -2)
}

# Hyper-priors for occupancy and detection covariagfficients

mu.betal.psi ~ dnorm(0, 0.01)
sigma.betal.psi ~ dunif(0, 10)
tau.betal.psi <- pow(sigma.betal.psi, -2)

mu.beta2.psi ~ dnorm(0, 0.01)
sigma.beta2.psi ~ dunif(0, 10)
tau.beta2.psi <- pow(sigma.beta2.psi,

2)

mu.beta3.psi ~ dnorm(0, 0.01)
sigma.beta3.psi ~ dunif(0, 10)
tau.beta3.psi <- pow(sigma.beta3.psi,

2)

mu.beta4.psi ~ dnorm(0, 0.01)
sigma.betad.psi ~ dunif(0, 10)
tau.betad.psi <- pow(sigma.beta4.psi,

2)

mu.beta5.psi ~ dnorm(0, 0.01)
sigma.beta5.psi ~ dunif(0, 10)
tau.beta5.psi <- pow(sigma.beta5.psi,

2)

mu.beta6.psi ~ dnorm(0, 0.01)
sigma.betab.psi ~ dunif(0, 10)
tau.beta6.psi <- pow(sigma.betab.psi,

2)

mu.betal.p ~ dnorm(0, 0.01)
sigma.betal.p ~ dunif(0, 10)
tau.betal.p <- pow(sigma.betald)

# Hyper prior for half-Cauchy scale parameter
Xi.tau <- pow(xi.sd, -2)
xi.sd ~ dunif(0, 10)

# Species-specific parameters drawn as realisations f@oothmunity distributions

I $

for(i in 1:n.sp){
alphal.psi[i] ~ dnorm(mu.alphal.psi, tau.alphal.psi)
alpha2.psi[i] ~ dnorm(mu.alpha2.psi, tau.alpha2.psi)

for(h in 1:4){
alpha.p[h,i] ~ dnorm(mu.alpha.p[h], tau.alpfd)
}
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betal.psi[i] ~ dnorm(mu.betal.psi, tau.betal.psi)
beta2.psi[i] ~ dnorm(mu.beta2.psi, tau.beta2.psi)
beta3.psi[i] ~ dnorm(mu.beta3.psi, tau.beta3.psi)
beta4.psi[i] ~ dnorm(mu.beta4.psi, tau.beta4.psi)
beta5.psi[i] ~ dnorm(mu.beta5.psi, tau.beta5.psi)
beta6.psi[i] ~ dnorm(mu.beta6.psi, tau.betab.psi)
betal.p[i] ~ dnorm(mu.betal.p, tau.betal.p)

}

# Hyperpriors/priors for temporal random effects

for(i in 1:n.sp) {
# Random year effects
for(year in 1:n.year){
eps[year, i] ~ dnorm(0, eps.tauli])

eps.taufi] ~ dgamma(0.5, 0.5)

xi[i] ~ dnorm(0, xi.tau)

sigma.cauchyli] <- abs(xi[i]) / sqrt(eps.tauli])
}

# Ecological process model for abundance of spediesite j
# Continuous forest sites only

for(i in 1:n.sp){
for(j in 1:CLF.sites){
log(lambdalj,i]) <- alphal.psi[i] + betali[&covl.psi[j] +
beta2.fpsipv2.psi[j] + xi[i]*eps[year.counter[j],]
N[j,i] ~ dpois(lambdalj,i])
psi[j,i] <- step(N[j,i]-1)

logit(r[j,i]) <- alpha.p[covl.p[j],i] + dal.p[i]*cov2.p[j]
plj,i] <- 1 - pow(2-r[j,i], N[j,i])
i/[i,i] ~ dbin(p[j,i], n.reps[j])

}

# Fragmented forest sites only

for(i in 1:n.sp){
for(j in (CLF.sites+1):(n.sites)){

log(lambdalj,i]) <- alpha2.psi[i] + betali[j&covl.psi[j] +
beta2.fsipv2.psi[j] + beta3.psi[i]*cov3.psi[j] +
beta4.sipv4.psi[j] + beta5.psi[i]*covs.psi[j]+
beta6.{sipv6.psi[j] + xi[i]*eps[year.counter[j],i]

N[j,i] ~ dpois(lambdalj,i])

psi[j,i] <- step(N[j,i]-1)

logit(r[j,i]) <- alpha.p[cov1.p[j],i] + dal.p[i]*cov2.p[j]
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plj,i] <- 1 - pow(2-r[j,i], N[j,i])
i/[j’i] ~ dbin(p[j,i], n.repsfj])
}

# Calculate Pearson's chi-squared residuals to agssdisess of fit
# Calculate the observed (chi2.obs) and expecteddgp)2residuals
# Add small value to prevent division by zero

for(i in 1:n.sp){
for(j in 1:n.sites){

y.exp[j,i] ~ dbin(p[j,i], n.reps(j])

chi.obsJj,i] <- (Y[},i] - p[j,i] * n.reps]) / sqrt((p[j,i] + 0.0001) * n.reps[j] *
abs(1- p[j,0-0001))

chi.exp[j,i] <- (y.exp[},i] - pl,i] * n.redq) / sqrt((p[j,i] + 0.0001) * n.repslj]
* abs(1- p[jiP.0001))

chi2.obs]},i] <- pow(chi.obs[j,i], 2)

chi2.explj,i] <- pow(chi.explj,i], 2)

}

# Calculate chi-squared discrepency for each species

fit.sp.obs[i] <- sum(chi2.obs[,i])
fit.sp.exp[i] <- sum(chi2.exp[,i])

c.hat.sp[i] <- fit.sp.obsJi}/fit.sp.expli]
bpv.spli] <- step(fit.sp.exp[i] - fit.sp.obs[i])
}

# Calculate overall chi-squared discrepency measure

fit.obs <- sum(chi2.obs[1:n.sites, 1:n.sp])
fit.exp <- sum(chi2.exp[1:n.sites, 1:n.sp])
c.hat <- fit.obs/fit.exp

bpv <- step(fit.exp - fit.obs)
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Table $4.1: Model fit statistics for individual species and the ralemodel. We present two test
statistics, the “lack of fit” statistic and Bayesian P value, values around 1 indicate good model fit for
the lack of fit statistic. Values of 0.5 indicate optimabdel fit for the BayesiaR value while statistics

less than 0.05 or greater than 0.95 indicate under- anditiivey models respectively.

Category Model Fit Statistic  Species Value
Species-specific fit  Lack of fit statistic ~ Asian Elephant 1.00
Banded Civet 1.12
Banteng 1.39
Bearded Pig 1.03
Binturong 0.95
Bornean Yellow Muntjac 1.23
Common Palm Civet 1.05
Greater Mouse-deer 1.36
Leopard Cat 1.07
Lesser Mouse-deer 1.64
Long-tailed Macaque 1.39
Long-tailed Porcupine 1.50
Malay Civet 1.18
Malay Porcupine 1.22
Marbled Cat 1.15
Masked Palm Civet 0.83
Moon Rat 1.21
Orangutan 0.99
Pig-tailed Macaque 1.19
Red Muntjac 1.22
Sambar Deer 1.11
Short-tailed Mongoose 1.21
Sun Bear 1.26
Sunda Clouded Leopard 0.91
Sunda Pangolin 1.16
Sunda Stink Badger 1.61
Thick-spined Porcupine 1.59
Tufted Ground Squirrel 1.04
Yellow-throated Marten 1.01
Bayesian P value  Asian Elephant 0.65
Banded Civet 0.36
Banteng 0.15
Bearded Pig 0.50
Binturong 0.66
Bornean Yellow Muntjac 0.22
Common Palm Civet 0.70
Greater Mouse-deer 0.12
Leopard Cat 0.49
Lesser Mouse-deer 0.08

183



Long-tailed Macaque 0.25
Long-tailed Porcupine 0.13
Malay Civet 0.31
Malay Porcupine 0.18
Marbled Cat 0.50
Masked Palm Civet 0.76
Moon Rat 0.50
Orangutan 0.58
Pig-tailed Macaque 0.18
Red Muntjac 0.15
Sambar Deer 0.33
Short-tailed Mongoose 0.43
Sun Bear 0.15
Sunda Clouded Leopard 0.69
Sunda Pangolin 0.59
Sunda Stink Badger 0.20
Thick-spined Porcupine 0.10
Tufted Ground Squirrel 0.59
Yellow-throated Marten 0.56
Overall model fit Lack of fit statistic 1.11
Bayesian P value 0.38
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Table $4.2: Scale optimisation outputs for fragmentation, quality amdihg covariates. We determine
optimal spatial-sclaes based on the lowest WAIC valesegnted here in bold.
M odel Scale DIC Ippd pD  WAIC
Biomass 50 7067.66 3623.15 92.60 3808.35
100 6908.52 3620.78 90.98 3802.75
250 6882.77 3607.24 89.40 3786.03
500 6880.43 3610.47 90.89 3792.25
1000 6883.94 3621.96 90.74 3803.44
1500 6952.12 3625.55 91.78 3809.12
2500 6990.17 3622.11 93.56 3809.24
5000 6969.65 3640.17 93.49 3827.14
Distance to continuous 50 3660.60 1643.59 113.09 1869.78
logged forest 100 3582.63 1654.20 101.99 1858.18
250 3607.47 165491 102.36 1859.64
500 3613.70 1653.69 100.59 1854.86
1000 3623.14 1654.41 101.73 1857.86
1500 3597.17 1655.49 101.02 1857.53
2500 3540.06 1655.75 101.12 1857.99
5000 3624.63 1660.39 99.87 1860.14
Distanceto roads 50 7062.42 3627.42 9451 3816.45
100 7089.48 3628.23 95.13 3818.50
250 6936.20 3627.38 95.11 3817.60
500 6920.55 3627.94 94.44 3816.82
1000 6897.28 3624.28 93.84 3811.97
1500 6981.96 3627.37 93.33 3814.03
2500 694843 3618.01 95.64 3809.28
5000 6837.97 3630.24 95.13 3820.50
Distance to villages 50 7092.55 3643.14 95.34 3833.81
100 7078.73 3642.11 94.16 3830.43
250 7053.11 3643.12 95.92 3834.95
500 7017.13 3644.02 94.19 3832.40
1000 6938.98 3641.90 96.07 3834.03
1500 7019.17 3643.07 95.64 3834.35
2500 6939.23 3640.92 96.92 3834.77
5000 6875.88 3636.82 95.53 3827.87
Forest cover 50 6934.52 3623.97 95.11 3814.19
100 7099.05 3602.22 97.87 3797.96
250 6965.47 3591.65 95.93 3783.51
500 6901.33 3599.94 91.85 3783.64
1000 6976.34 3594.76 92.24 3779.25
1500 6863.68 3588.16 94.27 3776.70
2500 6958.89 3607.13 94.17 3795.47
5000 6920.69 3638.43 93.11 3824.65
HCSclass 50 6958.209 3611.972 99.28788 3810.547
100 6856.968 3626.993 96.04671 3819.086
250 7091.005 3618.916 98.69391 3816.304
500 6885.917 3628.756 93.99001 3816.736
1000 6947.921 3646.376 90.25862 3826.894
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1500 6921.314 364242 83.32021 3809.06
2500 6928.466 3714.251 76.27908 3866.81
5000 7318.008 3767.166 73.58192 3914.33
Hunting Pressure 50 6826.40 3618.54 94.46 3807.46
100 6918.47 3619.62 94.84 3809.30
250 6952.19 3614.49 94.08 3802.66
500 6922.27 3622.08 92.42 3806.91
1000 7039.11 3619.76 95.35 3810.46
1500 6867.57 3618.84 94.08 3807.01
2500 6950.36 3627.85 93.85 3815.55
5000 6953.00 3636.60 94.17 3824.95
Population density 50 7064.62 3645.59 90.22 3826.02
100 6979.68 3651.67 90.55 3832.78
250 6867.11 3646.11 90.65 3827.41
500 6923.30 3637.30 93.19 3823.68
1000 6976.54 3626.67 93.56 3813.79
1500 6902.97 3629.71 92.56 3814.84
2500 6910.16 3631.10 91.47 3814.03
5000 6988.24 3636.51 91.60 3819.72
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Table $4.3: Mammal life-history characteristics and group assignni@eiiails of group assignment for

modelling guild responses to fragmentation, forest tuahd hunting pressure. We classify a species

as threatened if it has an IUCN red-list status of vublerév/U), endangered (EN) or Critically

Endangered (CR). Species were considered non-threateneglwdtreassociated with a least concern

(LC) or Neat-threatened (NT) status. Ecological specialisendegermined by information provided in

(Wilson et al., 2010). We define three body classesdbaséody mass information derived from the

PanTHERIA database (Jones et al., 2009): medium- (<5&gkg-(5-25 kg) and mega-bodied (>25

kg).

Common Name IUCN  Conservation Ecological Body Size  Trophic
Status  Status Specialism Guild

Asian elephant EN Threatened Specialist Large Herbivore
Elephas maximus
Banded civet VU Threatened Specialist  Small Insectivore
Hemigalus derbyanus
Banteng EN Threatened Specialist Large Herbivore
Bos javanicus
Bearded pig VU Threatened Generalist Large Omnivore
Sus barbatus
Binturong VU Threatened Specialist  Medium Frugivore
Arctictis binturong
Bornean yellow muntjac LC Non-threatened Specialist Medium Herbivore
Muntiacus atherodes
Common palm civet LC Non-threatened Generalist Small Frugivore
Paradoxurus
hermaphroditus
Greater mouse-deer LC Non-threatened Specialist Small Frugivore
Tragulus napu
Leopard cat LC Non-threatened Generalist Small Carnivore
Prionailurus bengalensi
Lesser mouse-deer LC Non-threatened Specialist Small Frugivore
Tragulus kanchil
Long-tailed macaque LC Non-threatened Generalist Small Frugivore
Macaca fascicularis
Long-tailed porcupine  LC Non-threatened Generalist Small Frugivore
Trichys fasciculata
Malay civet LC Non-threatened Generalist Medium Carnivore
Viverra tangalunga
Malay porcupine LC Non-threatened Generalist Medium Frugivore
Hystrix brachyura
Marbled cat VU Threatened Specialist  Small Carnivore
Pardofelis marmorata
Masked palm civet LC Non-threatened Generalist Small Frugivore
Paguma larvata
Moon rat LC Non-threatened Specialist Small Insectivore
Echinosorex gymnura
Orangutan EN Threatened Specialist Large Frugivore
Pongo pygmaeus
Pig-tailed macaque VU Threatened Generalist Medium Frugivore
Macaca nemestrina
Red muntjac LC Non-threatened Generalist Medium Herbivore
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Muntiacus muntjak
Sambar deer

Rusa unicolor
Short-tailed mongoose
Herpestes brachyurus
Sun bear

Helarctos malayanus
Sunda clouded leopard
Neofelis nebulosa
Sunda pangolin

Manis javanica

Sunda stink badger
Mydaus javanensis
Thick-spined porcupine
Hystrix crassispinis
Tufted ground squirrel
Rheithrosciurus
macrotis
Yellow-throated marten
Martes flavigula
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LC
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VU

CR
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Threatened

Threatened

Threatened

Non-threatened

Non-threatened
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Specialist
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Specialist
Specialist
Generalist
Generalist
Generalist
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Large
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Small
Small
Small

Small

Small

Herbivore
Carnivore
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Insectivore
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Carnivore
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Figure S4.2: Species-specific effects of fragmentation, quality and ihgnimetrics on mammal

abundance. This plots provide species-specific complsrierthe community-level trends presented in
Fig 4.3. Effect sizes are presented as posterior meamgs)pand 95% Bayesian credible intervals
(BCI). Effects were considered substantial if the 95% BCI dicbmerlap zero (vertical black dashed

line). Responsive species are presented in blue.
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Figure $4.3: Numerical response of mammals to hunting pressure. nd&emt outputs for the 29
species of mammal encountered during sampling. Predicézoh posterior distribution values are

presented in dark blue, while uncertainty, as indicatedgu8b% Bayesian credible intervals, is

visualised in light blue.
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Figure S4.4: Numerical response of mammals to biomass {) H&/e present outputs for the 29 species
of mammal encountered during sampling. Predicted mean iposiestribution values are presented
in dark blue, while uncertainty, as indicated using 95% Bagegiedible intervals, is visualised in light

blue.
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Figure $4.5: Numerical response of mammals to patch-scale foradityj\WWe define patch scale forest
quality according to HCS methods as the proportion of HCQiBe#ged forest within a forest fragment.
We present outputs for the 29 species of mammal encounderedy sampling Predicted mean
posterior distribution values are presented in dark blueewlhikertainty, as indicated using 95%

Bayesian credible intervals, is visualised in light blue.
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Figure $4.6: Numerical response of mammals to fragment core are\(fmpresent outputs for the 29
species of mammal encountered during sampling. Predicted posgerior distribution values are
presented in dark blue, while uncertainty, as indicatedgu8b% Bayesian credible intervals, is

visualised in light blue.
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Figure $S4.7: Numerical response of mammals to patch shape. Wenprasgiputs for the 29 species of

mammal encountered during sampling. Predicted mean poddestidbution values are presented in

dark blue, while uncertainty, as indicated using 95% Bayeasiedible intervals, is visualised in light

blue.
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Figure $4.8: Numerical response of mammals to isolation (km). We deBolation as distance in
kilometres, from continuous (>50,000 ha). We present outputshi®r29 species of mammal
encountered during sampling. Predicted mean postertabdisn values are presented in dark blue,

while uncertainty, as indicated using 95% Bayesiadilole intervals, is visualised in light blue.

Asian Elephant Banded Civet Banteng Bearded Pig
o s . "
o B -
o = | = |
B2 - b = .
m 3 n
O -7
=< , = - o
m @ 5 _\__ "
g [ . ]
o
=] T T T = T T T 2 T T T =7 T T T
a 5 1 5 A a i i} 5 20 a 5 ia 15 20 a 5 ta 5 20
Binturong Bornean Yellow Muntjac Common Palm Civet Greater Mouse-deer
o Rl a4 o
[+H]
e g
mi = - -
L= =24 =4 24
e 1y
m 3
@ O
= 34 . -, -
m = _—‘_"‘—--_.______ =1 =2
e
o = 7
3 \_‘
= 2.4 = =
- T T T - T T T - T T T - T T T
i} 3 10 15 20 a 5 10 15 2 L1} 5 10 15 2 a 3 1 15 20
Leopard Cat Lesser Mouse-deer Long-tailed Macague Long-tailed Porcupine
@ = B - 7
o 24 -
J 4
o = =
el g | =g =] Tz |
m 3 ™ =
@ 0
=< = S 4
= 2 \\\ " 2 _\
g ks
o = 7
i Al
= 2.4 g = |
b T T T T T T - T T T - T T T
Q 5 10 15 20 a s a 15 20 a 5 a 15 2 a 5 10 i 20

Malay Civet Malay Porcupine Marbled Cat Masked Palm Civet
= : _ | 2
o 41
m- — - - —
= & b=
=
m 3 w -
oo =] a ]
=< = 2
= _\ = _\ o w |
S w | —— | L """"-—-—..._________
= 5
= T T T 57 T T T = T T T o) T T T
[} 5 10 15 2 a -1 10 13 Fri) i] 5 10 15 2 aQ 5 10 15 20
Isolation (km) Isolation (km) Isolation (km}) Isolation (km)

201



COrangutan Pig-tailed Red Muntjac

Moonrat

o

WD OBD FOED 0D

23UEPUNQY [B307]
LEayy

Sambar Deer

Sun Bear

Short-tailed Mongoose

Sunda Clouded Leopard

e i [E38

‘BIUEPUNGY B0
uealy

[Ee)

Thick-spined Porcupine Tufted Ground Squirrel

Sunda Stink Badger

Sunda Pangolin

wL ED ED ¥R EZD 0D

¥0 ¥D ED D 1D 0D

§ |

43 ol g0 (b

FIUBPUNGY B30T
uea

15

Isolation {km)

0

Isolation (km)

Iz olation (km)

Yellow-throated Marten

[

43 [} 0]

a3UBpUNGY (B30T
uBay

L]

15

Isolation (km)

10

202



Figure $4.9: Numerical response of mammals to the proportion astocover. We present outputs for
the 29 species of mammal encountered during sampling. ®ckdiean posterior distribution values
are presented in dark blue, while uncertainty, as inslicasing 95% Bayesian credible intervals, is

visualised in light blue.
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Figure $4.10: Influence of habitat type on mammal detectability. Wineehabitat type as a function

of carbon using HCS phase one protocols (dense forest;Gha-1; young regenerating forest: 35-75
t C ha-1; non-forest habitat: 0-15 t C ha-1; Rosoman, 20¥&)present outputs for the 29 species of
mammal encountered during sampling.Predicted mean post&tobution values are presented as
points, while uncertainty, as indicated using 95% Bayesiedible intervals, is visualised using vertical

lines.
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Figure $4.11: Influence of survey effort on detection. We define surveyefi®the number of camera-
trap nights units were operational. We present outputthéoP9 mammal species encountered during
sampling Predicted mean posterior distribution valuepr@sented in dark blue, while uncertainty, as

indicated using 95% Bayesian credible intervals, is visuhliséght blue.
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Chapter 5. Discussion

This thesis explored the ecological consequences ofuasadchange on
medium-large terrestrial mammals in Southeast Asia, ggomecharacterised by
unsustainable levels of anthropogenic habitat modifioatiwhile providing a
valuable evidece-base on the determinants of occurrence, abundance aridsspec
richness of little-known tropical mammals, this reseaemonstrates the efficacy of
remote technologies and contemporary statistical iatnvs to monitor and assess
threatened and cryptic species, which would otherwise pntraeiable. Collectively,
this evidence can be practically applied to inform environmeuubdies and local
management strategies that recognise the value of homdified landscapes in

biodiversity conservation efforts in the tropics.

Mammal ecology in human-modified landscapes

Effective environmental governance in the tropics iguently compromised
by a paucity of biodiversity data due to financial restritdiand logistical constraints
(Balmford et al., 2005Gardner et al., 2008.awton et al., 1998)These data
deficiencies often necessitate broad geographic extrapwatof biodiversity
information based on geographically restricted subsetsoal faxa, which runs the
risk of purporting false ecological narratives and misleadongervation paradigms
(Gardner et al., 2009). Consequently, primary, locally-spebibidiversity data are
essential to develop an understanding of the capacityddified systems to support
viable populations of species and guide management adt@mnsromote biodiversity

persistence (Balmford et al., 2005). This is fundamentaifany tropical mammal
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specieswhich are often poorly represented in protected area net\Or&sks et al.,
2017), and have inherent ecological characteristics thi&e rtieem vulnerable to
anthropogenic habitat modification (Hughes, 208&inath et al., 201, /Newbold et
al., 2014). This thesis addressed these shortcomings bydexean evidence-base,
derived from primary data, of mammalian diversity in ahljghreatened tropical
region. The results o€hapters 2-4 indicate that mammal persistence in human-
modified landscapes follows an established trajectory afirdeg occurrence,
abundance and species richness when habitat structural gdynjsleroded (Barlow
et al.,, 2007 Edwards et al., 20145ibson et al., 2011 Mammal diversity declines
along a gradient of land-use intensity (Burivalova et2014 Wearn et al., 2017)
which could in part be ameliorated by retaining and maintairatgral features that

facilitate ecological processes and resource acquistEaers and Didham, 2006)

At the species-level, | identify winners and losers mheopogenic land-use
change, confirming the tendency towards biotic homogenizatibmman-modified
landscapes (Tabarelli et al., 2012). Ecological genesaidigh broad dietary niches,
particularly bearded pigsS(s barbatys and pig-tailed macaquesMécaca
nemestrina (Plumptre and Johns, 200Vong et al., 2005), dominated structurally
impoverished, disturbed environments (supporting earlier work mdi® and
Giordano, 2013Brodie et al., 20154ranados et al., 2016), often displacing obligate
forest species, which were infrequently detected as landhesesity increased. This
response may be mediated by trophic release, which refeas increase in prey
abundance following the extirpation of predatfFerborgh et al., 2001). The apex
predator in the system, the Sunda clouded leopéedfélis diard), was restricted to

infrequent, sporadic encounters in structurally impovedshabitats, indicating a
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negative correlation with bearded pig and pig-tailed macaxpeerrence. Formal
testing of co-occurrence patterns to substantiate thim elas beyond the scope of
my modelling framework, thumy explanation is merely speculative and in contrast

to previous findings (Brodie and Giordano, 2013).

My findings provide novel ecological insights into Southdesan mammals
that can be used to inform targeted conservation campéaigr example, much of the
limited ecological information on the Sunda clouded leopasilieen derived from
anecdotal evidere (Rabinowitz et al., 1987), captive specimens, and chance
encounters (Hearn et al., 2Q018atsuda et al., 2008). While intensive monitoring
efforts are contributing to conservation assessnudnltss species (Hearn et al., 2016
Hearn et al., 2013Vacdonald et al., 201&ollmann et al., 2014Vilting et al., 2012)
documented habitat associations are limited to elevajmwadrences and a tendency
towards areas of high forest cover (Hearn et al., 204&arn et al., 2018bMy work
in Chapter 2 has extended this body of evidence considerably by idemgifthe
specific structural features of forest cover assodiatéh Sunda clouded leopard
occurrence. These insights represent a refined appoeca habitat preference that
can directly inform the designation of conservatiority areas for a wide-ranging,
conservation priority species. Moreov€&hapter 2 provided the first documented
habitat associations for the cryptic tufted ground squiRbeithrosciurus macrodis
and uncovered valuable ecological associations for a muohbeyptic taxa, including

the binturong Arctictis binturong and marbled caP@rdofelis marmoraja

My findings also demonstrate potential complications arisingm
aggregating indistinguishable ungulate species into a sanglgtical unit. | document
diverging habitat associations for mouse-de€&raqulussp.) and, to a lesser extent,
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muntjac speciesMuntiacus sp.), which are frequently lumped into genera-level
designations as they have been difficult to distinginstamera images (Brodie and
Giordano, 2013Brodie et al., 2015aBrodie et al., 2015b)This aggregation masks
important differences in habitat selection for the varispeces which, without
recognition, could result in unintended recommendations donservation
management. Consequently, | advocate stringent taxondemtification and caution

against indiscriminate aggregation.

The extent to whicimy findings can inform biodiversity provisions in human-
modified landscapes at regional, national and pan-trogicales remains open to
guestion. The sensitivity of biodiversity to habitat nficedtion has been shown to be
scale-dependent, idiosyncratic and contextual (de Andraade 2014 Gardner et al.,
2009 Lindenmayer and Likens, 2011). Consequently, cross taxonoomgruence
represents the exception rather than the rule (de Aneétaale 2014Gardner et al.,
2008 Yong et al., 2016). For mammals in particular, wide-rangetgaviour and long
generation times may give a false impression as toahsecvation value of human-
modified landscapes due to spill-over effects or extinctionsd@moh, 2008 Wearn
et al., 2012). Moreover, considerable structural and tawandifferences in
vegetation within and between tropical biogeographic realmsslitie spatial
transferability of findings (Deikumah et al., 2Q14wis et al., 2015Slik et al., 2018)
While this thesis makes a valid contribution to the undedgtgrof mammal ecology
across the human-modified landscapes of Southeaat ésilerstanding the broader
ecological significance of these systems must bedmidtoordinated regional research

to inform global strategies while accounting for biogeograpbhances.
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Despite the substantial scientific advances made bythbsis, there remains
some uncertainty in our understanding as to how arboreainmats respond to
landscape change. Tropical forests are inherently thireensional environments that
accommodate greater species diversity through vepaditioning of niche space
(Corlett and Primack, 2011Oliveira and Scheffers, 2018). Arboreality is an
evolutionary adaptation to structural complexity facilitgtiaccess to canopy
resources and microclimatic conditions (Scheffers.ef@ll3 Scheffers et al., 2017)
It is estimated that 75% of forest-dwelling vertebrates demairssome degree of
arboreality (Kays and Allison, 2001), yet multidimensiowaikt rarely accounted for
in conservation assessments of tropical ecosystems duethiodological constraints
associated with sampling canopy elements (Whitworth e2@L6). Throughout this
thesis, | excluded exclusively arboreal species fromsassent as they cannot be
reliably monitored using terrestrial methods. Arboreal cartiepping has emerged
as a reliable method to quantify the arboreal commuBioyvier et al., 201,/Malhi
et al., 2014Whitworth et al., 2016), though applications to assessrtpact of human
modification on vertically-stratified mammal communitiare lacking. Given that
arboreality is an adaptation to the structural environraedtanthropogenic habitat
modification directly disrupts canopy elements, aglabmammals are likely to be
disproportionately affected by human disturbance. Assestss that embrace
methodological advances to determine prospects for abor@mmals in human-

modified landscapes are a clear research prioritypidal forests.
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Technological considerations for biodiversity monitoring

Monitoring of threatened species and ecosystems is stillened by
technological and logistical challenges, resulting idisparity between the required
scale of conservation effort and the accessibilitye@dlogical data (Fraser et al.,
2013). This thesis demonstrates how remote technologid®eagplied to circumvent
sampling issues associated with rare or cryptic spec@slevelop unprecedented
insights into biodiversity patterns and processes d&seppropriate to conservation
management. This is particularly evidenOhapter 2 which combined camera-traps
and airborne multispectral remote-sensing (LIDAR) to quatié three-dimensional
properties of tropical forests across multiple spatales to inform the conservation
management of a high conservation priority speciee @halytical framework
presented in this chapter could have practical applicationsSoutheast Asian
conservation policy. Recent proposals by the Sabahigmest to increase protected
area coverage by 5%, coupled with the state-wide availabfliyDAR data (Asner
et al., 2018), provides an unparalleled opportunity to mobilisélabooative network
of camera-trap data and fully integrate biodiversity conatters into the
conservation agenda. Moreover, the launch of NASAs &l&bosystem Dynamics
Investigation (GEDI; https://gedi.umd.edu/), promises to incrimesscope of LIDAR
coverage to global scales. Capitalising on these developroeuald greatly enhance
the limited ecological understanding of mammals across aopécal gradient of
forest modification. At a broader scale, achieving amibdiglobal conservation
objectives through practical application of remote techgiefis dependent upon

explicit recognition of current limitations.
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The use of camera-trap methods to monitor wildlife has/grexponentially
over the last decade, with applications doubling across ye@eintervals (Burton et
al., 2015). Conservative estimates suggest that up to 20,08Qiés are currently
being sampled using camera-traps (Burton et al., ,281€enweg et al., 2017)
providing the scope and scale necessary to address gtmimdrvation challenges.
However, such aspirations are hindered by poorly coordinatedrcbseffort and a
reluctance to collaborate, which results in fragmentéal diaveloped from contrasting
methodologies that can be challenging to incorporate antmhesive analytical
framework to inform broader management objectives (Meek,e2Gd4) To match
the extent of data available through remote-sensingjveisity monitoring requires
a paradigm shift from disparate, localised assessment toalgdsintegrated global
monitoring (Steenweg et al., 2017). The Tropical EcologlyAssessment Monitoring
Network (TEAM; Jansen et al., 2014) demonstrates the valgerwerted camera-
trap efforts to address a range of environmental concérssakes that can support
regional and global conservation targets (Ahumadh, & 1, Beaudrot et al., 2016b
Rovero and Ahumada, 201 Rovero et al., 2014). Consequently, camera-trap
biodiversity monitoring should strive for globally standaed! protocols to facilitate
collaborative research between regional and intermatiactors (Steenweg et al.,

2017).

The proliferation of remote-sensing has afforded ecolgistl conservation
practitioners a mechanism to expand their spatio-tempsmape of inference,
unveiling patterns and processes that had previously provedee(barvin et al.,
2016). However, the expense, and accessibility of remotelgesl data products

limits their widespread application in ecology and managéenk@r example, while
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this thesis has demonstrated the value of LIDAR, thecs&g®d financial costs may
prove financially prohibitive, particularly for conservationtiatives that typically
operate under budgetary restrictions (Hummel et al., ,20tCarthy et al., 2012)
Associated costs extend much further than data acquojdigistical requirements for
data analysis also represent a significant financial o(fagtorelli et al., 2014 urner
et al.,, 2015). Moreover, data accessibility, referring & dapacity to retrieve and
manipulate ecologically-relevant metrics from rematasing data, is hindered by
limitations in distribution strategy, software availabilignd the technological
proficiency of end users (Turner, 2014). For developing tropigabns with limited
capacity, partnerships with existing operators and acadestitutions may represent
the only feasible option to mobilise remotely-sensed gaidducts, thus sacrificing a
degree of autonomy over environmental decision making. Tontbisledvocate the
availability of free/low-cost, pre-processed data on usendly online platforms to
prevent the proliferation of technological colonialisreeping into the conservation

agenda.

Statistical considerations for evidence-based mammal conservation

Previously, evidence-based conservation has proved miakgfor rare and
cryptic species due to insufficient records for reliabléstteal inference. This thesis
demonstrates that hierarchical modelling provides an analgticghliment to remote
technologies to increase statistical precision for isgemost vulnerable to land-use
change. However, interpretation ofy outputs should be informed by an explicit
understanding of the principal caveatrmay underlying modelling framework. The

aggregation of data at the community-level, shifts spesgesific parameter estimates
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towards the community mean, thus environmental impacts maynbterstated for
species with few detections (Broms et al., 2016). Paeifial. (2014) highlighted that
species-specific parameter estimates were strondlyeimfed by how species were
grouped within the community-level component of the model; wbdenmunity
aggregation provided the most precise estimates, altegrdaissifications, based on
dietary specialisation or body size, offered unique insighto species responses to
ecological covariates. While the precision of parameséimates was of overarching
importance in this thesis, | acknowledge that some spsp@sfic effects may have

been overlooked as a result of the grouping criteria adopte

From a broader perspective, this thesis highlights theevaf Bayesian
statistical methods for applied ecological assessmeamtronmental decision making
and conservation management. The hierarchical modellingguoes | adopted are
analytically intractable within a classical framework (Bmo et al.,, 2011), thus
Bayesian methods provide an important statistical tool verocome sampling
constraints associated with monitoring tropical mammalsreldver, Bayesian
methods provide an intuitive expression of confidence iivelgiquantities, allowing
conservation practitioners and policy-makers to accoumt uacertainty in
management actions and environmental decisions (Ellison, ).2(Bdyesian
frameworks also follow the principles of adaptive managerng seeking to integrate
uncertainty and current knowledge of a system into an iikerptocess in order to
continuously inform, modify and strengthen interventig&dlison, 1996). In the
context of long-term ecological monitoring, the outpptesented throughout thi

thesis can be incorporated as prior information into fuaseessments of biodiversity
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trends in human-modified landscape to reduce uncertainty develop robust

management and policy recommendations.

Policy options for biodiversity in human-modified landscapes

Protected areas are considered integral to global c@tser strategies
(Gaston et al., 200& aurance et al., 2012).dwever, 90% of the world’s terrestrial
surface area falls beyond the bounds of formal protestegds, with the distributions
of 20% of all threatened species demonstrating little apatwerlap with the reserve
network (Rodrigues et al., 2004). ThroughQiiapters 2-4 | have demonstrated the
sensitivity of tropical mammals to anthropogenic land-wesignations, thus
persistence will ultimately be determined by the effectivenals environmental
policies in making human-modified landscapes more hddpiteo biodiversity.
Reflecting on conclusions drawn from this thesisabetate on potential applications

of interventions and discuss barriers to implementatio

Capitalising on the conservation value of loggeae $bs

Logged forests comprise a significant proportion of theaiaing forest estate,
thus mobilising their inherent conservation potential is fomelstal to securing
biodiversity persistence in the tropics. However, idemt@yivhich logged forests to
prioritise for conservation is challenging given limitednservation budgets. To
optimise conservation spending, interventions must lgeted to where they will
have the greatest impact. The results present€hapter 2 emphasize that logged

forests that retain structural characteristics ofotvth forests could be optimal areas
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for conservation interventions as they representepeafial habitat for high
conservation value species. Acrasyg study site these areas corresponded to lightly
logged forests where timber extraction has been lese=s¢lieugh, at a broader scale,
these could encompass sustainably managed forests. be@agproposed that high
conservation value forests in logged areas provide a ffestiee option to expand
and connect the existing protected area network or delineatgeserves (Fisher et
al., 2011bh Giam et al., 2011Struebig et al., 2015). Complementing the reserve
network with a mosaic of protected logged forests increaasasapacity of landscapes
to support viable populations of mobile, wide-ranging mammgaiijadions (Meijaard
and Sheil, 2008Struebig et al., 2015). Studies suggest that logged forests 76

of their carbon stocks and sequester carbon at five timeesite of undisturbed forest
(Berry et al., 2010Putz et al., 2012), indicating that this strategy wabaleed into
climate change mitigation. Moreover, integrating loggedsksrevithin a protectionist
strategy is financially self-sustaining, generating inconegjaim opportunities, which
would offset some of the economic drivers of land-usegdand garner local support
for conservation (Gaveau et al., 2013). Given that theeteason value of logged
forests is likely to increase as they recover, integgatogged forests into the
conservation agenda can be viewed as a long-term invddomaaintain populatios

of obligate forest species (Fisher et al., 2QMéijaard and Sheil, 2008)

Averting the agricultural conversion of heavily degraded tsrissparamount
to enhancing species representation at landscape- arwhakgicales. Heavily
degraded forests retain up to 75% of their biodiversity (Edwetrdl, 2011 Struebig
et al., 2013), yet reductions in the standing value of timizan they can be procured

at a modest cost (US$2,010 ha-1; Fisher et al., 2011b). In helaghaded forests
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subjected to sustained extraction and secondary disturbancetsmeaological
restoration may be required to reinstate biodiversity galpeevent a permanent state
shift, and improve human well-being in adjacent lands (Chazdwl Guariguata,
2016 Wilson et al.,, 2011). It is estimated that 130 million hafayest may be
amenable to rehabilitation in Southeast Asia alone, atitig considerable scope for
restoration efforts (Kettle, 2010). Consequently, theran urgent need to direct
restoration to regions with the highest likelihood of essChazdon and Guariguata,
2016 Budiharta et al., 2014a). Withi@hapter 2 of this thesis, | delineate priority
restoration areas as those with compromised structtegkity exhibiting the highest
rate of change in species occurence, indicating thabgement actions that enhance
the structural environment will optimise biodiversity outcontasichment planting,
is considered a cost-effective approach to landscapefesit restoration that can
be achieved at 30% of the price of restoring fully degraded Vahile providing
employment for local people (Chazdon, 20R8ttle, 2010 Lamb, 1998). However,
regional restoration efforts have been hindered by ldntechnical capacity to
propagate dipterocarp trees and impediments posed by theenghad) reproductive
ecology (Kettle, 2010). Moreover, even low-cost restoragicojects may require
long-term financial and political support to achieve desiredamgs (Kettle, 2010)
Consequently, long-term financial commitments withguarantee of success may
limit the application of forest restoration to enhancadbviersity values in heavily

degraded landscapes.
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Challenges and opportunities of a coupled carbod aiodiversity approach:

implications for REDD+

Carbon sequestration in tropical forest ecosystenseidricably linked to
biodiversity (Poorter et al., 2015), thus effective mitigatmust acknowledge tire
inherent interdependencies. Consequently, policy optiatsctiuple climate change
mitigation and species conservation have gained tractioredgant decades. In
Chapter 3, | demonstrate a positive relationship between abovegrarbdic and the
diversity of IUCN threatened species, however, lack ofseasus in the scientific
literature indicates that these patterns may be inflaerhge underlying drivers.
Tropical forests are subjected to a suite of anthropogeegsures (Barlow et al.,
2016) that, if unmeasured could potentially confound the carbonvbisdy
relationship. For example, mammals are acutely sensditeinting (Benitez-Lopez
et al., 2017Ripple et al., 2016}hus distribution patterns in heavily exploited regions
may reflect the spatial signature of anthropogenic pressather than associations
with forest properties. IIl€hapter 4, | identified that forest quality was a stronger
determinant of species persistence than hunting pressuggesting that win-win
conservation outcomes may be possible in areas wherathtgutors rather than
anthropogenic pressure drives biodiversity patterns. Asrgments demonstrate
greater commitment to climate change mitigation, an uratetstg of confounding
factors in the carbon-biodiversity relationship is esaéto advance coupled policy

options.

In light of ongoing uncertainty in the scientific lisgure, conservation
practitioners and policy makers must acknowledge thatgaoptimally for carbon

within a REDD+ framework may induce ecological trade-offishwbiodiversity
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(Barlow et al., 2018). Acknowledging such trade-offs requiresleaision to
compromise carbon in favour of biodiversity or vicesgerWhile forest carbon is
amenable to trade-offs due to its spatial transferabilityetaee inherent practical and
ethical complications concerning ecological compromisefadditate net gains in
biodiversity (Phelps et al., 2011Biodiversity blind” implementation of REDD++ has
the potential to cause unintentional species loss, byewtohig land-use change
towards unprotected, low carbon but highly biodiverse aread @eab, 2010Phelps
et al., 2012). Moreover, biodiversity is central to estey functioning (Cardinale et
al., 2006), thus trade-offs in heterogeneous landscapestepotential to disrupt
community structure and ecological processes with unpated consequences for
long-term carbon storage capacity (Brodie, 2018). Farmrial. (2018) found that
minimal compromises in carbon equated to significant biodiyegsiins, indicating
that biodiversity outcomes could be optimised with littgact on protected carbon.
In tropical regions, where the most biodiverse areamtloecessarily correspond with
high carbon forests, | advocate explicit recognitiorbioidiversity values to direct

REDD+ applications.

Developing tropical countries typically prioritise econongrowth over
conservation (Giam, 2017), thus, interventions that ingatpdfinancial incentives
are more likely to result in successful outcomes. Prewoark has indicated that
REDD+ does not provide sufficient recompense to offset foregenenues from
logging or oil palm (Butler et al., 2008isher et al., 2011a). Consequently, averting
land-use change and forest modification may not represdiniaacially optimal
implementation strategy. Alternatively, REDD+ will financjateward a number of

forest interventions that restore and enhance cartmokss while simultaneously
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promoting species conservation, though these are oftenlooked (Miles and
Dickson, 2010). Thus, biodiversity actors must reconglur priorities to capitalise
on carbon-based mechanisms. Elsewhere in Southeast98% of REDD+ projects
mobilise financial support to strengthen protected area netwofksese degraded
lands and promote reduced-impact logging (Graham et al., 2@d®pnstrating an
implicit recognition that avoided deforestation does not reptes profitable
application. To ensure that REDD+ has maximum impact afiJgosity conservation
and rural livelihoods, greater emphasis needs to be placethemrange of

implementation models available to stakeholders.

Supply chain initiatives

The emergence of supply-chain initiatives is an encongagolicy
development to integrate sustainability criteria into fisyesand agricultural
production. However, the long-term success of sectoraddatds and corporate
pledges is dependent on effective methodologies to igeamid protect ecologically
valuable tropical forests from convam and modification. Througho@hapters 3
and 4, | provide the first scientific appraisal of the HighrBan Stock (HCS)
Approach, the principal tool to realise zero-deforestatiommitments, which has
now been formally adopted by the RSPOChepter 3, | find that the HCS Approach
is an effective tool to delineate tropical forests ohHigpdiversity value using freely
available remote-sensing data. However, | identify somaetsomings in the patch
prioritisation algorithm inChapter 4. While HCS-delineated priority patches
provided refugia for mammal species that are most vulrettabland-use change,

current core area criteria only sustain 35% of the marmomamunity, with potentially
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deleterious ecological consequences. Given the spagiairements of medium-large
mammals it can be argued that conserving patches of soffisize to support
sustainable populations is not economically viable. lngetion of this, | advocate a
shift in emphasis towards patch configuration and landscapé-dewinectivity to
ensure that production landscapes maintain a network ot foresr to facilitate the
movement of wide-ranging vertebrates between contiguougslof forest. This
connectivity will be essential to safeguard vulnerable malsragainst projected
environmental change (Struebig et al., 20T%) this end, riparian reserves, defined
as protected forest margins around river habitats (Luke .et2@l8), have an
instrumental role to play at the landscape scale, thowyhddypacity to contribute to
landscape connectivity is dependent upon corridor width (éaah, 2016) and the
maintenance of forest quality (Zimbres et al., 2Qimbres et al., 2018). While the
value of riparian reserves is recognised in the HCS Apprdagupport calls for the

adoption of minimum width criteria (Luke et al., 2018).

Recent evaluations of the HCS Approach have been essieaging. Austin
et al. (2017) found that HCS-delineated forest coincided withtlesn 50% of rare
species distributions identified using High Conservatue (HCV) criteria in
Gabon. Recognising such limitations is important to ensureafigications do not
result in perverse outcomes. Conservation practitsosieould regard HCS and HCV
as complimentary tools. Combined applications provide safegti@rdailnerable
species that overcome the limitations associated \piplyag each tool in isolation.
This is explicitly acknowledged within the HCS toolkit ancegnated within the patch
prioritisation decision tree to ensure that rare speceadequately considered during

the design of forest mosaics (Rosoman et al., 2012)eder the HCS Approach has
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been criticised as being economically restrictive forettgvng nations that have
retained a high proportion of their primary forest@gwsuch as Papua New Guinea or
Gabon (Senior et al., 2015). However, assessment of a Hayklsted nation found
that national oil palm targets could be addressed withoupmomsing HCS- or
HCV-delineated forests, indicating that compliance witdero-deforestation
commitments could be achieved alongside development ghadsirf et al., 2017)
Taken as a whole, the HCS Approach is still in its iojaand likely to be refined
following scientific appraisal, | recommend that the H&sproach should be viewed
as one of a suite of tools available to land-use plannergsdiese sustainability

commitments.

In the policy arena, supply-chain initiatives face sigaifit implementation
barriers due to competing stakeholder values. Low adopties end compliance
costs restrict the extent to which aspirational goadsilt in sustainable production
(Lambin et al., 2018). While zero-deforestation commitmenése received
considerable uptake, only 25% of associated companies havepil/¢éime-bound
action plans to realise sustainability pledges (Bregrhah,&016). Moreover, RSPO-
certified palm oil accounts for only 19% of global prodoeti(RSPO, 2015)
Ultimately, adoption is dependent on the degree of ecanbemefit derived from
involvement (Giam et al., 2016). Compliance with sustairtgbdtandards and
avoided deforestation comes at a significant cost to prosluet commensurate price
premiums are rarely realised (Edwards and Laurance,, 2@t@bin et al., 2018)
Incentives are further undermined by Indian and Chinesketsawhich represent two
of the top three global palm oil importers (Meijaard let 2018), but place greater

emphasis on competitive pricing than environmental susigitygLyons-White and
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Knight, 2018). Smallholders account for 40% of global oihpptoduction (Azhar et
al., 2017) and typically adopt environmentally damaging agullpractices due to
weak economies of scale (Padfield et al., 2016). Howeswmwallholders are
particularly disadvantaged by supply-chain initiatives amthroonly excluded from
market access due to complex enrolment protocols and filignpi@hibitive

compliance procedures (Brandi et al., 20Garrett et al., 201,35lasbergen, 2018)

While voluntary sustainability standards are consideretkgial to
environmental policy in developing nations lacking the gowental capacity to
effectively regulate commodity production (Tayleur et 2017), there is growing
scepticism that supply-chain initiatives can achievé stated objectives (Curtis et
al., 2018 Lyons-White and Knight, 2018). There is a growing body of exadeto
suggest that ancillary public governance is an effectivehamsm to overcome
current shortcomings in private-sector sustainability stalsddrambin et al., 2014
Larsen et al., 2018)urisdictional regulations, such as Sabah’s commitment to 100%
certified oil palm before 2025 demonstrates how state invawerrould expand the
scope of supply-chain initiatives and should provide a tat@gbr the evolution of

hybrid governance structures in agricultural commodity chains.

Mitigating secondary disturbance impacts

The effectiveness of the policy instruments discussenlighout this thesis is
contingent on the suppression of secondary disturbamgacts in human-modified
landscapes. lllegal encroachment affects biodiversigctly through unsustainable

exploitation and indirectly by compromising habitat <hility via illegal timber
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extraction (Peres et al.,, 2006). Ghapter 4, | found that secondary disturbance
impacts are important determinants of mammal abundanceghhihey are often
neglected in conservation policy. Consequently, intgiwas should be augmented
with management actions and state regulations that safefpuast integrity as well
as cover (Barlow et al., 2016). Evidence suggests logging apdloi concessions
provide important refugia for biodiversity when managemerategies explicitly
consider hunting (Berry et al., 201Clark et al., 2009 Laurance et al., 2008)
Important management actions at the concessionifelatie site-based enforcement
(Harrison, 2011), the implementation of security gates,destruction of redundant
transportation infrastructure and the provision of suppléangmprotein to workers
(Rosin, 2014). Management actions can be strengthened Byplaoit @ecognition of
illegal encroachment mitigation measures within sustainalsi@andards. Moreover,
actions at the concession-level need to be underwrittea bironger regulatory
framework. Legislation to control the sale and possesHitwinting implements and
severe judicial penalties are central strategies tier decondary disturbance impacts

in human-modified landscapes (Harrison et al., 2016).

Conclusions: the biological value of human-modified landscapes

Across the world’s remaining tropical forests, 76% are considered fragmented
or otherwise degraded (Lewis et al., 2015). Such are thatshtkat face global
biodiversity, these modified systems cannot be disregarmded the conservation
agenda. This paradigm shift has been opposed by some fadtiche scientific
community, who suggest that aggressive pursuit of the bi@bgaue of human-

modified landscapes narrative undermines and destabilizes tcwwaservation
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efforts (Didham, 2011). There are also concerns thatasifar limited financial
resources to degraded habitats compromises the preservaitibecoprimary forests
(Betts et al., 2017). Safeguarding primary forests shouldjaeded as the top priority
for conservation practitioners, yet this must alsodagpted with explicit recognition
that the fate of biodiversity in these ecosystemsnextricably linked to the
management of adjacent human-modified lands. In thgegt dichotomising the
conservation agenda is unlikely to be a worthwhile strategyeraictors should seek
new partnerships with industry, governments and local aomitras to capitalise on

progressive environmental policies.

The work presented in this thesis demonstrates that theglual value of
human-modified landscapes is dictated by the intemdityre underlying land-use.
Logged forests generally provide favourable habitat for baydity, while oil palm
plantations are often accompanied by severe ecologistd.d?olicy and management
are essential tools to encourage and enhance the bi¢logjioas of modified systems.
Provided interventions are directed to where they wilehthe greatest impact, they
can be financially self-sustaining and engage local comresriiti mitigate the social
and economic dimensions of land-use change. Based dimdiveys of this thesis, |
provide recommendations for policy implementation actbesdominant land-use
change trajectories of the tropics. Given the ingbilftREDD+ to financially compete
with selective logging and oil palm, associated revemikde best placed if they
support the expansion of the protected area network to addrelss Tairget 11
(increase protected area coverage to 17% of terrestdafrashwater areas before
2020). Moreover, REDD+ finances can be used to procure loggest fooen the

permanent timber estate when standing timber stocks maéeiasies costs more
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agreeable. In the most heavily degraded areas, REDD+ carsdok to support
ecological restoration efforts. Supply-chain initiaBvprovide a safety net to the

system to ensure that future agricultural expansion is indepeatideforestation.

Throughout this discussion | have provided recommendatastsengthen the
scope and implementation of these policies to ensuyecirehave maximum impact.
Specifically, | advocate targeted REDD+ projects thabrawe applications beyond
avoided deforestation, the coupling of privately-led suppB#t initiatives with state
regulations and stronger recognition of secondary disteebenpacts in sustainability
criteria, underwritten by severe judicial penalties. Wttike geographic focus of this
thesis was on Southeast Asia, the policy insights getkefeom it are equally as
relevant to other parts of the tropics, particularly @gions where commodity

production is placing pressure on forest ecosystems amadbgient biodiversity.
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Appendix: Co-authored publications

Peer-reviewed journal articles supplementary to the relseaanuscripts presented
within the main thesis, to which | contributed throughout ip Programme. Each
publication is broadly relevant to the main themes predemitéin this thesis. Here |
present the abstracts for reference in reverse clugioal order, full text copies are

available online.
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Research article: Larger gains delivered by improved management over sparing-
sharing for tropical forests

Nature Sustainability (in press)

Rebecca K. Runting, Ruslandi, Bronson Griscom, Matthe®trliebig, Musnanda

Satar, Erik Meijaard, Zuzana Burivalova, Susan M. Cheyre|a J. Deere, Edward
T. Game, F.E. Putz, Jessia A. Wells, Andreas Wilting, Marcrenaz, Peter Ellis,

Faisal A.A. Khan, Sara M. Leavitt, Andrew J. Marshall, HEgHPossingham, James
E.M. Watson, Oscar Venter.

Abstract: Tropical forests are globally significant for both bieglisity conservation
and the production of economically valuable wood products. Twatrasting
approaches have been suggested to simultaneously produce éintbeonserve
biodiversity; one partitions forests to deliver these oljestseparately (sparing), the
other integrates both objectives in the same location (sharing). To date, the ‘sparing or
sharing’ debate has focused on agricultural landscapes, with scant attepich to
forest management. Here we explored the spddrgharing continuum through
spatial optimisations with set economic returns for firests of East Kalimantan,
Indonesia- a global biodiversity hotspot. We found that neither siganor sharing
extremes are optimal, although the greatest consenvedioe was attained towards
the sparing end of the continuum. Critically, improved aggament strategies, such
as reduced-impact logging, accounted for larger consenvgains than altering the
balance between sparing and sharing, particularly fdaregered species. Ultimately,
debating sparing versus sharing has limited value while larges gamain from
improving forest management.
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Research articles Addressing human-tiger conflict using socio-ecological
information on tolerance and risk

Nature CommunicationsAugust 2018

Volume: 9; Article Number: 3455; DOI: 10.1038/s41467-018-05983-y

Matthew J. Struebig, Matthew Linkie, Nicolas J. Deddeborah J. Martyr, Betty
Millyanawati, Sally C. Faulkner, Steven C. Le CombecHhfaddin M. Mangunjaya,
Nigel Leader-Williams, Jeanne E. McKay, Freya A.V. Stnlo

Abstract: Tigers are critically endangered due to deforestation arsq@aion. Yet
in places, Sumatran tigeBdnthera tigris sumatraeontinue to coexist with people,
offering insights for managing wildlife elsewhere. Here,omeaple spatial models of
encounter risk with information on tolerance from 2386 Stenatto reveal drivers
of human-tiger conflict. Risk of encountering tigers wasatgr around populated
villages that neighboured forest or rivers connecting tigbitat; geographic profiles
refined these predictions to three core areas. Peopleantdefor tigers was related
to underlying attitudes, emotions, norms and spiritual beliefank@ong this
information into socio-ecological models yielded prédits of tolerance that were 32
times better than models based on social predictore.aRreemptive intervention
based on these socio-ecological predictions could heerteal up to 51% of attacks
on livestock and people, saving 15 tigers. Our work provides fuethdence of the
benefits of interdisciplinary research on conservationflicts.
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Research paper: Estimating above-ground carbon density and its uncertainty in
Borneo’s structurally complex tropical forests using airborne laser scanning

BiogeosciencesJune 2018

Volume: 15; Issue 12; Pages: 3811-3830; DOI: 10.5194/bg-15-3811-2018

Tommaso Jucker, Gregory P. Asner, Michele Dalphonte, PhilipB®derick,

Christopher D. Philipson, Nicholas R. Vaughn, Yit Arn T@eaig Brelsford, David
F.R.P. Burslem, Nicolas J. Deere, Robert M. Ewers, Jdkabnica, Simon L. Lewis,
Yadvinder Malhi, Sol Milne, Reuben Nilus, Marion Pfeiferdjv@r L. Phillips, Lan

Qie, Nathan Renneboog, Glen Reynolds, Terhi Riutta, MattheStruebig, Martin
Svatek, Edgar C. Turner, David A. Coomes.

Abstract: Borneo contains some of the world's most biodiversk aarbon-dense
tropical forest, but this 750 000 knsland has lost 62% of its old-growth forests
within the last 40 years. Efforts to protect and restoredimaining forests of Borneo
hinge on recognizing the ecosystem services they provide, imgltickir ability to
store and sequester carbon. Airborne laser scanning (AL&) rismote-sensing
technology that allows forest structural properties todpured in great detail across
vast geographic areas. In recent years ALS has been atgdginto statewide
assessments of forest carbon in Neotropical and Afriegioms, but not yet in Asia.
For this to happen new regional models need to be developegtiorating carbon
stocks from ALS in tropical Asia, as the forests oftlegion are structurally and
composition-ally distinct from those found elsewherdhia tropics. By combining
ALS imagery with data from 173 permanent forest plots spanningothiand
rainforests of Sabah on the island of Borneo, we dpwelsimple yet general model
for estimating forest carbon stocks using ALS-derived cartogight and canopy
cover as input metrics. An advanced feature of this new n®tlee propagation of
uncertainty in both ALS- and ground-based data, allowingmainty in hectare-scale
estimates of carbon stocks to be quantified robustly. Wevsthat the model
effectively captures variation in aboveground carbon stoakeoss extreme
disturbance gradients spanning tall dipterocarp forestsemdlyrlogged regions and
clearly outperforms existing ALS-based models calibratedhiertropics, as well as
currently available satellite-derived products. Our model providesimple,
generalised and effective approach for mapping forest eastoxks in Borneo and
underpins ongoing efforts to safeguard and facilitate the etgtorof its unique
tropical forests.
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Review article: Driversand trajectoriesof land cover changein East Africa: Human
and environmental interactions from 6000 years ago to present

Earth-Science Reviewddarch 2018
Volume: 178; Pages: 322-378; DOI: 10.10164/.earscirev.2017.12.010

Rob Marchant, Suzi Richer, Oliver Boles, Claudia @apj Colin J. Courtney-
Mustaphi, Paul Lane, Mary E. Prendergast, Daryl Stump B&ij€ort, Jed O. Kaplan,
Leanne Phelps, Andrea Kay, Dan Olago, Nik Petek, Philip JisPIRaramita
Punwong, Mats Widgren, Stephanie Wynne-Jones, Cruz Ferro-Vazipceepiiline
Benard, Nicole Boivin, Alison Crowther, Aida Cuni-Sanchezcdols J. Deere,
Anneli Ekblom, Jennifer Farmer, Jemma Finch, Dorian Fullemigvidose Gaillard-
Lemdabhl, Lindsey Gillson, Esther Githumbi, Tabitha Kaboehd®ca Kariuki, Rahab
Kinyanjui, Elizabeth Kyazike, Carol Lang, Julius Lejju, Kaen D. Morrison,
Veronica Muiruri, Cassian Mumbi, Rebecca Muthoni, Alfred Mwzukmmanuel
Ndiema, Chantal KNzabandora, Isaya Onjala, Annemiek Pas Schrijver, Stephen
Rucina, Anna Shoemaker, Senne Thornton-Barnett, Geert vataderElizabeth E.
Watson, David Williamson, David Wright.

Abstract: East African landscapes today are the result of the ctnaulaffects of
climate and land-use change over millennial timescalethisrreview, we compile
archaeological and palaeoenvironmental data from EastaAfd document land-
cover change, and environmental, subsistence and landanséions, over the past
6000 years. Throughout East Africa there have been a séniefatively rapid and
high-magnitude environmental shifts characterised by changohglogical budgets
during the mid- to late Holocene. For example, pronouncedoemaental shifts that
manifested as a marked change in the rainfall amount orrsgifgg@nd subsequent
hydrological budget throughout East Africa occurred around 4000, 890B@H
radiocarbon years before present (yr BP). The past 6@@ésyhave also seen
numerous shifts in human interactions with East Afrieanlogies. From the mid-
Holocene, land use has both diversified and increased exgalyerhis has been
associated with the arrival of new subsistence systemamgs,c migrants and
technologies, all giving rise to a sequence of signifipduaises of land-cover change.
The first large-scale human influences began to ocowmna 4000 yr BP, associated
with the introduction of domesticated livestock and the@aesion of pastoral
communities. The first widespread and intensive forest aieas were associated
with the arrival of iron-using early farming communitieso@nd 2500 yr BP,
particularly in productive and easily-cleared mid-altitudiaa¢as. Extensive and
pervasive land-cover change has been associated with piopgleowth, immigration
and movement of people. The expansion of trading route&ba the interior and the
coast, starting around 1300 years ago and intensifying inghteenth and nineteenth
centuries CE, was one such process. These caravas post&bly acted as conduits
for spreading New World crops such as maize (Zea maysj¢col{Nicotiana spp.)
and tomatoes (Solanum lycopersicum), although the prexesxl timings of their
introductions remains poorly documented. The introductionsaitheast Asian
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domesticates, especially banana (Musa spp.), @&zé spp.), taro Colocasia
esculenty, and chicken@allus gallu}, via transoceanic biological transfers around
and across the Indian Ocean, from at least around 1300 ymamP potentially
significantly earlier, also had profound social and egioll consequences across the
region.

Through an interdisciplinary synthesis of informatiom anetadatasets, we explore
the different drivers and directions of changes in deoder, and the associated
environmental histories and interactions with various cedtutechnologies, and
subsistence strategies through time and across spacetirAfdea. This review
suggests topics for targeted future research that focuseas and/or time periods
where our understanding of the interactions between pettygleenvironment and
land-cover change are most contentious and/or poodivest The review also offers
a perspective on how knowledge of regional land-use chamgkecased to inform
and provide perspectives on contemporary issues such astecland ecosystem
change models, conservation strategies, and the aoteavef nature-based solutions
for development purposes.
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Research article: Tropical forest canopies and their relationships with climate and
disturbance: results from a global dataset of consistent field-based measurements

Forest Ecosystemdanuary 2018
Volume: 5; Article: 7; DOI: 10.1186/s40663-017-0118-7

Marion Pfeifer, Alemu Gonsamo, William Woodgate, Luis Cagueéhndrew R.
Marshall, Alicia Ledo, Timothy C.E. Paine, Rob MarchaAndrew Burt, Kim
Calders, Colin Courtney-Mustaphi, Aida Cuni-Sanchez, d&al. DeereDereje
Denu, Jose Gonzalez de Tanago, Robin Hayward, Alvaro Lau, MarMatia, Pieter
[. Olivier, Petri Pellikka, Hamidu Seki, Deo Shirima, Relzedcevithick, Beatrice
Wedeux, Charlotte Wheeler, Pantaleo Munishi, Thomasih@bdul Mustari, Philip
J. Platts.

Background: Canopy structure, defined by leaf area index (LAl), tioal
vegetation cover (FCover) and fraction of absorbed phiotbstically active radiation
(faPAR), regulates a wide range of forest functions andystem services. Spatially
consistent field-measurements of canopy structurdé@never lacking, particularly
for the tropics.

Methods: Here, we introduce the Global LAl database: a global davd$ield-based
canopy structure measurements spanning tropical forestsiircéntinents (Africa,
Asia, Australia and the Americas). We use these measotsrte testfor climate
dependencies within and across continents, and to testhé potential of
anthropogenic disturbance and forest protection to modlase tdependencies.

Results: Using data collected from 887 tropical forest plots, we shotwntlaximum
water defecit, defined across the most arid months gighe is an important predictor
of canopy structure, with all three canopy attributeslimiag significantly with
increasing water defecit. Canopy attributes also incnebeminimum temperature,
and with the protection of forests according to bothvadivithin protected areas) and
passive measures (through topography). Once protectionancheranéffects are
accounted for, other anthropogenic measures (e.g. humarapoputio not improve
the model.

Conclusions. We conclude that canopy structure in the tropics is piiynar

consequence of forest adaptation to the maximum watercitdefhistorically

experienced within a given region. Climate change, and iticpar changes in
drought regimes may thus affect forest structure and ibmdbut forest protection
may offer some resilience against this effect.
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Article: A new speciesin the tree genus Polyceratocarpus (Annonaceae) from the
Udzungwa Mountains of Tanzania

PhytoKeys:April 2016
Volume: 63; Pages: 63-76; DOI: 10.3897/phytokeys.63.6262

Andrew R. Marshall, Thomas L.P. Couvreur, Abigail L. SummBlisplas J. Deere,
W.R. Quentin Luke, Henry J. Ndangalasi, Sue Sparrow, David ihsam

Abstract: Polyceratocarpus askhambryan-iringae@n endemic tree species
of Annonaceadrom the Udzungwa Mountains of Tanzania, is described and
illustrated. The new species is identified as a member bf t
genusPolyceratocarpuby the combination of staminate and bisexual flowers,
axillary inflorescences, subequal outer and inner petadsjraulti-seeded monocarps
with pitted seeds. Froiolyceratocarpus schefflemvith which it has previously been
confused, it differs in the longer pedicels, smaller anchi petals, shorter bracts,
and by generally smaller, less curved monocarps that heleamastipe and usually
have fewer seeds. Becal®elyceratocarpus askhambryan-irindses a restricted
extent of occurrence, area of occupancy, and ongoing déigradéits forest habitat,
we recommend classification of it as Endangered (ENhehdCN Red List.
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