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Abstract

This paper proposes an approach for the efficient automatic joint

detection and localization of single-channel acoustic events us-

ing random forest regression. The audio signals are decom-

posed into multiple densely overlapping superframes annotated

with event class labels and their displacements to the temporal

starting and ending points of the events. Using the displacement

information, a multivariate random forest regression model is

learned for each event category to map each superframe to con-

tinuous estimates of onset and offset locations of the events. In

addition, two classifiers are trained using random forest clas-

sification to classify superframes of background and different

event categories. On testing, based on the detection of category-

specific superframes using the classifiers, the learned regressor

provides the estimates of onset and offset locations in time of

the corresponding event. While posing event detection and lo-

calization as a regression problem is novel, the quantitative eval-

uation on ITC-Irst database of highly variable acoustic events

shows the efficiency and potential of the proposed approach.

Index Terms: acoustic event detection, regression forest, ran-

dom forest, superframe

1. Introduction

Acoustic event detection (AED) finds many applications such

as ambient assisted living [1], security surveillance [2], meet-

ing room transcription [3], and “machine hearing” [4] to name a

few. It has been under great attention of the research community

with many recent evaluation campaigns including CLEAR 2006

[5], CLEAR 2007 [6], and AASP CASA 2013 [7]. AED prob-

lem is challenging due to large intra-class variations in terms of

event duration and sounds, non-stationary background noise, as

well as event overlapping.

A variety of techniques have been proposed. The most pop-

ular approaches often attempt to adapt the Automatic Speech

Recognition (ASR) framework to deal with the problem. That

is, they are based on frame-based features, such as Mel-

frequency cepstral coefficients (MFCCs) and log Frequency Fil-

ter bank parameters, and Hidden Markov Models (HMMs) for

recognition [8] [9]. Other systems employ discriminative ap-

proaches, e.g. Support Vector Machines (SVMs), to detect the

events in detection-by-classification fashion [3] [10]. In gen-

eral, the HMMs based ASR framework works better for the de-

tection task while discriminative approaches are more success-

ful for the classification task. Furthermore, for some applica-

tions it is necessary to have a good temporal resolution of the

detected events. To be able to localize the events in time, dis-

criminative approaches need to perform classification in multi-

ple temporal scales, leading to tremendous computational bur-

den.

In this work, we tackle the AED problem by jointly dealing

with detection and localization as a regression problem. Moti-

vated by the success of regression forests [11] [12] in various

computer vision tasks, we adapt it for the AED task. Although

the idea is plausible, the extension for reliable AED is not triv-

ial since we need to decompose the events into multiple parts,

and individual parts are able to be recognized independently at

an acceptable accuracy. Fortunately, the acoustic superframe

proposed in [13] satisfies this criteria and makes the idea prac-

tical. The training audio signals, containing multiple event oc-

currences of different categories, are divided into multiple inter-

leaved superframes. Each superframe is associated with a class

label and a 2-dimensional displacement vector to the onset and

offset of the corresponding event. Thereafter, two classification

models are learned using random forest classification [14]: one

of them is to distinguish between event superframes from back-

ground superframes and the other is to subsequently classify

event superframes into different categories of interest. Using

the displacement vectors, category-specific regression models

are built to map event superframes to estimates of onset and off-

set location of the events in time, i.e. we have a multi-variate,

continuous parameter estimation problem, based on the random

forest regression framework [11] [12]. On testing, the learned

classifiers are applied to recognize event superframes which are

finally inputted into the category-corresponding regressor to de-

tect and localize the events from test audio signals.

In the domain of AED, our approach is most closely related

to the work of Stork et al. [15] who use 40 ms frames stored

in a codebook learned beforehand to vote for the event centers.

However, our approach is different from their work in many per-

spectives. First, instead of unsupervised learning of codebooks

with k-means, we use extremely randomized trees [16] to learn

more meaningful discriminative codebooks. Second, their sys-

tem allowed the frames stored in a codebook to vote backward

and forward for the event centers, which are wildly uncontrol-

lable (due to unsupervised learned codebooks). On the contrary,

we model superframes in a codebook, i.e. a leaf node, as a con-

tinuous distribution and properly provide backward estimates

for the onset and forward estimates for the offset. Last but not

least, their goal is to find the event centers with assumption that

all category-specific events have an equal duration. Yet, some

categories experience large variation of intra-class duration in

practice. Alternatively, our approach is able to provide scale-

invariant continuous estimates of event onset and offset posi-

tion.

The rest of this paper is organized as follows. We describe

our algorithm to learn the multivariate regression forests in Sec-

tion 2 and our event detection and localization system in Sec-

tion 3. The experimental setup and results are presented in Sec-

tion 4 followed by the conclusion in Section 5.



2. Multivariate Random Forest Regression

2.1. Random forest regression

A regression forest is an ensemble of different regression trees.

Each of the trees implements a nonlinear mapping from com-

plex input spaces into continuous output spaces. The non-

linearity is achieved by splitting the original problem into

smaller ones, solvable with simple predictors. Each split node

in the tree consists of a test that is applied to a data sample to

send it toward the left or the right child node. The tests are

picked by some criteria to group the training samples into clus-

ters where a good prediction can be achieved by simple models.

These models are computed from the annotated data samples

that reached the leaves and were stored there. While overfitting

likely happens for standard decision trees alone, an ensemble of

randomly trained trees saw high generalization power [16].

2.2. Training

The training of our regressors is supervised and category-

specific. Given a set of annotated superframes Sc =
{(xi, c,di)} of an event category c ∈ {1, . . . , C}, each su-

perframe x ∈ R
M is associated with the class label c and a dis-

placement vector d = (ds, de) ∈ R
2. M is the dimensionality

of feature space and C denotes the number of event categories

of interest. ds and de, respectively, denote the displacements (in

superframes) of the current superframe to the onset and offset

of the corresponding event as illustrated in Figure 1. Our aim is

to learn to cluster superframes based on their features and their

confidence in predicting the onsets and offsets of the events.

Generally, the tree construction for regression forests fol-

lows the common extremely randomized trees framework [16].

Each tree T in the forest T = {Tt} is constructed from a sub-

set of superframes Sc
i = {(xi, c,di)} randomly sampled from

Sc. Starting from the root node, at each split node a large set

of possible binary tests is randomly generated. A binary test is

defined as tf,τ :

tf,τ =

{

1, if x
f > τ

0, otherwise,
(1)

where x
f indicates the value of x at the feature channel f ∈

{1, . . . ,M}, and τ is a threshold. During the construction of

the tree, at each split node, a pool of binary tests is generated

with a random selected feature channel f and random values for

τ generated in the range of xf . In our implementation, 20,000

random binary tests were considered for each split node. A test

is selected from this pool to split the training samples into two

sets: those satisfying the test are sent to the right child and the

rest are sent to the left child. The data samples arriving at the

node is evaluated by all binary tests in the pool and the test

maximizing a predefined measure is selected and assigned to the

node. In this work, the test is selected to minimize displacement

uncertainty which is defined as:

U =
∑

∥

∥d
left
i − d̄
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∥

∥

2

2
+

∑
∥
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right
i − d̄

right
∥

∥

2

2
, (2)

where d̄ denotes the mean displacement vectors over all super-

frames in the set. This measure corresponds to the impurity

of the displacement vectors. A leaf node is created when the

maximum depth Dmax is reached or a minimum number of su-

perframes Nmin is remained.

After training, each split node remains associated with the

feature channel f and the threshold τ of the selected binary

test. At each leaf node, we store the learned mean offset

event superframe

background superframe

event onset event offset

ds = 8 de = 7

t

Figure 1: Displacements of the superframe at the time index t

to the onset and the offset of an event.

d̄ = (d̄s, d̄e) and covariance matrix Γ =

(

Γs 0
0 Γe

)

, i.e.

the parameters of a multivariate Gaussian distribution N (d̄,Γ).
However, as it can be seen from the matrix Γ, we do not con-

sider covariance between the onset and offset displacements.

That is, N (d̄,Γ) is equivalent to two univariate Gaussian dis-

tributions N (d̄s,Γs) and N (d̄e,Γe).

2.3. Testing

Each superframe classified as category c is passed through all

the trees in the regression forest. At each split node, the stored

binary test is applied to the superframe, sending it either to the

right or left child until reaching a leaf node. At a leaf node

l, the superframe gives estimates for onset and offset positions

of the corresponding event in terms of the stored distribution

p(d|l) = N (d; d̄,Γ). The posterior probabilities are summed

up over all trees:

p(d) =
∑

l∈L̄

p(d|l). (3)

Here, L̄ is a subset of the corresponding leaf nodes.

3. Event Detection and Localization System

3.1. Acoustic superframe and its representation

In our system, it is essential that audio signals are decomposed

into multiple parts, and each individual part is recognized in-

dependently. Therefore, instead of using small frames, e.g. 30

ms, we employ superframes, which are 100 ms long segments

of acoustic signal, as proposed in [13]. It is a mid-level repre-

sentation offering more discriminative power, hence being more

reliable to be recognized independently. Furthermore, its tem-

poral resolution is sufficient for event detection in superframe

fashion since the detection error tolerance is usually set to 100

ms as in the most recent campaigns [7]. The temporal resolution

can be further improved by overlapping.

A superframe is divided into interleaved small frames of 30

ms with Hamming window and 20 ms overlap. We utilized the

set of 60 acoustic features suggested in [3] to represent a small

frame. They consists of: (1) 16 log frequency filter bank pa-

rameters, along with the first and second time derivatives, and

(2) the following set of features: zero-crossing rate, short time

energy, four sub-band energies, spectral flux calculated for each

sub-band, spectral centroid, and spectral bandwidth. Eventu-

ally, the empirical mean and the standard deviation of the frame

feature vectors are calculated to form a 120-dimensional feature

vector to represent the superframe.

3.2. System description

Given training audio signals annotated with events of C cate-

gories of interest, we decompose them into interleaved super-

frames with an overlap of 90% of their duration to obtain the

training set S = {(xi, c,di)}. The dense overlap is to ensure

a high level of data correlation, where the computational effi-

ciency of decision trees allows us to do so. Each superframe,

represented by a 120-dimensional feature vector as described in
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Figure 2: Pipeline for event detection and localization with the

learned models.

Section 3.1, is annotated with the class label c ∈ {1, . . . , C}
and the displacement vector d = (ds, de). The background su-

perframes are labelled as 0, and no offset vectors are required.

The system consists of the following classification and re-

gression models which are trained using the training data S:

• Mbg: the classifier to distinguish foreground superframes

from background ones. It outputs 0/1 if the input super-

frame is background/foreground.

• Mev: the classifier to recognize superframes between

different event categories. It outputs c if the input su-

perframe is of category c.

• Rc: the multivariate category-specific regressor to esti-

mate the temporal onsets and offsets of the events of cat-

egory c. C regressors are learned for C event categories.

Since the background noise can be easily distinguished from

the events, it is reasonable to recognize and discard them first.

Therefore, we learned two classifiers Mbg and Mev for cas-

cading classification rather than dealing with all the events and

background at once. Due to dense overlapping of superframes,

a large data is generated. For the dataset we use, the training

and testing data contain 614,460 and 156,745 samples respec-

tively. We adopt random forest classification [14] to train the

classifiers to take advantage of its computational efficiency. For

both classifiers, the number of random trees is conservatively

set to 300. The regressors are trained with the random forest re-

gression algorithm from Section 2 with ten random trees each.

A randomly sampled subset containing 50% superframes of the

category c training set Sc is used to train each random tree of

Rc. In addition, we set the maximum depth Dmax = 12 and

minimum number of superframes at leaf nodes Nmin = 10.

On testing, the pipeline of the event detection and localiza-

tion system is illustrated in Figure 2. Given a test audio signal,

we again divided it into multiple interleaved superframes as in

the training phase. Afterwards, each superframe is inputted into

Mbg to test for background. If the superframe is recognized

as foreground by Mbg , it is further fed into Mev to predict the

event class label. After the recognition phase, the superframes

with predicted class label c are pushed through the regressor Rc

to estimate the onset and offset positions of the events of cate-

gory c in the audio signal.

3.3. Event localization

To detect and localize the event of category c, we separately

score each superframe at the time index t with the confidence

of being event onset and offset using the regressor Rc:

Zs(t) =
∑

d

p(ds) and Ze(t) =
∑

d

p(de). (4)
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ground truth onset score offset score cutoff threshold

Figure 3: Alignment of the score peaks to the ground truth of

the events: (a) door slam, (b) spoon cup jingle, and (c) steps.

In order to reduce the computation overhead during calcu-

lating the scores, we only evaluate the Gaussian distributions for

the superframes in the displacement range of all superframes ar-

riving at a leaf node during training. Moreover, we ignore the

leaf nodes with the number of samples less than Nmin = 10.

Eventually, the larger the scores of a superframe are, the higher

confidence we have that the event onset and offset occur at it.

Since the audio signals contain multiple event occurrences,

in order to localize them, we need to determine the pairs of

peaks in the Zs and Ze spaces. Furthermore, since our classi-

fiers are not perfect, Zs and Ze are likely to be noisy, especially

for events with low SNR. However, the peaks are expected to

be dominant above the noise floor. We normalize the score to

[0; 1] and employ a cutoff threshold β for both Zs and Ze to

discard the noise below it. Thereafter, the peaks in Zs and Ze

are determined as the maximum values in the connected posi-

tive regions. These ideas are demonstrated in Figure 3. A pair

of peaks, a Zs peak followed by a Ze peak in temporal order,

is considered as a detection hypothesis. We impose a constraint

that event duration should not exceed twice of the maximum

duration of the events in the training audio signals.

4. Experiments

4.1. ITC-Irst acoustic event database

We use the database ITC-Irst of isolated meeting-room acous-

tic events [17], which has been extensively examined in re-

cent CLEAR evaluations [5] [6], throughout our experiments.

This database includes twelve recording sessions with 32 mi-

crophones and nine participants under the CHIL project [18].

It contains 16 semantic classes of events including door knock

(kn), door slam (ds), steps (st), chair moving (cm), spoon cup

jingle (cl), paper wrapping (pw), key jingle (kj), keyboard typ-

ing (kt), phone ring (pr), applause (ap), cough (co), laugh (la),

mimo pen buzz, falling object, phone vibration, and unknown.

Many of them are either subtle (low SNR, e.g. steps, chair

moving, and keyboard typing), or/and overlapping with speech,

making the task more challenging. Following the CLEAR 2006

setup, we only evaluate the first twelve classes. Nine recording

sessions were employed as training files and three remaining

sessions were employed as testing files. Only one channel TA-

BLE 1 was used.

4.2. Experimental setup and results

First of all, the audio signals were downsampled to 16 kHz. Us-

ing training files, we trained the classifier Mbg to separate back-

ground superframes from event ones and Mev to classify super-

frames among 16 semantic event categories. Twelve categories-

specific regressors were also trained for each of the twelve event

categories of interest.



Table 1: Event detection performance for different categories with β = 0.35.

kn ds st cm cl pw kj kt pr ap co la

F -score (%) 100 90.9 91.7 81.5 100 100 95.7 91.7 75.7 100 86.9 90.9

Eloc (%) 17.3 45.1 32.5 43.6 23.9 27.9 31.1 22.4 27.5 7.9 60.5 41.2
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Figure 4: Event detection and localization results as a function

of β.

We evaluated our system using two metrics: an F -score

measure of detection accuracy, and an error rate Eloc which

focuses more on localization error. Both of them were used in

the CLEAR 2007 challenge [6]. They are defined as follows:

F -score = 2×
Precision×Recall

Precision+Recall
, (5)

Eloc =

∑

seg
{L× (max(N⋆, N⊲)−N⋄)}

∑

seg
{L×N⋆}

, (6)

where in (5), Precision denotes the ratio of the number of cor-

rectly outputted events over the number of all outputted events,

and Recall is the ratio of correctly detected ground-truth events

over the number of all ground-truth events. In (6), Eloc is com-

puted on the audio segments which only contain event duration,

either ground-truth or system outputted. For each of such seg-

ment seg, L is the duration. N⋆, N⊲, and N⋄ denote the number

of ground-truth events, the number of outputted events, and the

number of ground-truth events which coincides with outputted

events in the segment seg, respectively. Note that Eloc may be

larger than 100%.

The testing accuracies for Mbg and Mev were 87.0% and

70.3% superframe-wise, respectively. The testing results of

event detection and localization are shown in Figure 4 with dif-

ferent values of cutoff threshold β from 0.1 to 0.6 with a step

size of 0.05. For simplicity, we used the same cutoff thresh-

old across all categories. β = 0.35 appears to be a good choice

where the F -score reaches the optimal value of 90.3%, and Eloc

becomes stable with a value of 48.5% as β is decreasing. The

detection performances for individual categories with β = 0.35
are shown in Table 1.

We compare our system performance with three submis-

sion systems to CLEAR 2006 [6] on the same dataset as in Ta-

ble 2. The UPC-D and CMU-C1 share the same idea in that

they first perform segmentation and then classification. How-

ever, while UPC-D employs sliding window with discriminative

SVM, CMU-C1 relies on HMM models. The ITC-C1 merges

the segmentation and classification in one step with ASR frame-

work. Since these systems were only evaluated on Acoustic

Event Error Rate (Edet) defined in the CLEAR 2006 challenge

[19], we only use this metric for comparison. From Table 2, we

see that our system outperforms all other systems and some with

a large margin. Noticeably, this is also the case with most of the

values of β in Figure 4. The rational is that these systems bring

Table 2: Performance comparison with CLEAR 2006 systems.

Our system UPC-D CMU-D1 ITC-D1

Edet (%) 18.5 64.6 45.2 23.6

the noisy segmentation results into the final detection hypothe-

sis, whereas we use them to further estimate the boundaries of

the events with high confidence. As a result, the unreliable hy-

potheses outside the event boundaries are rejected by the cutoff

threshold β.

4.3. Discussion

In our experiments, we utilized a common cutoff threshold β

for all event categories for the sake of simplicity. However,

it is more reasonable that different threshold values should be

adapted for different event categories since their scoring spaces

behave differently as illustrated in Figure 3. Short events (like

door slam) produce isolated peaks, periodic events (such as

phone ring) lead to high value plateaus, and low-SNR events

(like steps) experience a significant noise floor.

We argue that our system is robust to short-term noise. The

recognition accuracies of the classifiers Mbg and Mev are only

at acceptable level and, in fact, they do not need to be perfect

since we only need a portion of event superframes to be cor-

rectly recognized to estimate the onset and offset. In contrast,

the performance of commonly adopted approaches, like sliding

window with SVM and adapted ASR framework [19], strongly

relies on the quality of the classifiers. In addition, this property

also lead to the robustness to partial event overlapping, which is

usually the case, although we have not discussed it in this paper.

Clearly, events in one category and events cross differ-

ent categories can differ largely in their durations. Other ap-

proaches, like sliding windows [19] and event center detection

[15], need to search on a huge temporal scale space to be able to

localize the events. Our approach provides the continuous esti-

mates for the onset and offset locations of the events. Therefore,

we implicitly deal with this issue.

5. Conclusions

We proposed a novel approach for efficient automatic detection

and localization of acoustic events based on regression forests.

With the concept of acoustic superframe, we trained two classi-

fiers to recognize the superframes of background and different

event categories of interest. Based on the random forest regres-

sion framework, we further learn category-specific regressors

using the event superframes annotated with their displacements

to the onsets and offsets of the events. On testing, after an event

superframe is recognized, the corresponding regressor will pro-

vide the estimates of the onset and offset of the event hypoth-

esis in time. The excellent results on ITC-Irst acoustic event

database demonstrate the efficiency and potential of our pro-

posed approach.
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