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ABSTRACT

We introduce in this paper a concept of using acoustic su-

perframes, a mid-level representation which can overcome

the drawbacks of both global and simple frame-level rep-

resentations for acoustic events. Through superframe-level

recognition, we explore the phenomenon of superframe co-

occurrence across different event categories and propose an

efficient classification scheme that takes advantage of this

feature sharing to improve the event-wise recognition power.

We empirically show that our recognition system results in

2.7% classification error rate on the ITC-Irst database. This

state-of-the-art performance demonstrates the efficiency of

this proposed approach. Furthermore, we argue that this

presentation can pretty much facilitate the event detection

task compared to its counterparts, e.g. global and simple

frame-level representations.

Index Terms— Acoustic event recognition, superframe,

histogram, co-occurrence

1. INTRODUCTION

Detection of acoustic events is important in various applica-

tions [3–5]. However, building a robust acoustic event de-

tection system, in which the category and the temporal lo-

cation of events are determined, still remains a challenging

task. The difficulty stems not only from how to discriminate

events among different categories but also from the nature of

overlapping events, the large intra-class variations in terms

of event duration and sounds, as well as non-stationary back-

ground noise. Various attempts have been reported to tackle

the problem. Most of them borrow the speech recognition

framework where they employ simple frame-based presenta-

tion of the audio, and individual events are modelled as Hid-

den Makov Models (HMMs) to represent higher-level struc-

ture [1, 2]. However, HMMs require the training-data size

to be large enough to estimate probabilistic distribution. On

the other hand, the systems using discriminative models, e.g.

Support Vector Machines (SVM) [5], and hybrid models, e.g.

This work was supported by the Graduate School for Computing in

Medicine and Life Sciences funded by Germany’s Excellence Initiative [DFG

GSC 235/1].

HMM-SVM combinations [6], have shown superior perfor-

mance. A good-performance classifier telling apart events

of different categories particularly plays an important role in

such detection systems.

In literature, the recognition strategies employ models that

work directly on global feature vectors derived from whole

audio segments of the events [5,7], which fail to capture local

features as well as their temporal structure. Additionally, the

simple frame level characterization, e.g. 30 ms, of audio can

result in significantly inferior performance [8]. The work

of [8] also shows that the events themselves embed tempo-

ral structures of acoustic units, and the occurrence patterns

of these mid-level characterizations can be used for event

recognition. Inspired by this, in this work, we introduce the

concept of acoustic superframe and represent an event as a

collection of superframes. Through studying the ambiguity

of superframe-wise recognition we empirically show that

the co-occurrence of superframes frequently happens among

event categories. That is, different event categories share

some common superframes. To the best knowledge of the

authors, although the phenomenon is typical for acoustic sig-

nals, it has not been explored and utilized to enhance acoustic

event recognition and detection system. We propose a clas-

sification scheme that takes this information into account to

significantly boost the event discrimination power.

The rest of the paper will be organized as following. In

Section 2, we introduce the concept of acoustic superframe

and its presentation, followed by investigation of superframe

co-occurrence phenomena through analysis of superframe-

wise ambiguity. Section 3 will describe how to exploit super-

frame co-occurrence to improve acoustic event recognition.

Next, we present the experimental results in Section 4, fol-

lowed by the discussion and conclusion in Section 5.

2. EVENT SUPERFRAME AND ITS

REPRESENTATION

2.1. The concept of acoustic superframe

The problem with the global presentations of acoustic events

as in [5, 7] is that the local features and their temporal infor-

mation of the events are lost. Also, these global feature pre-



sentations do not facilitate event detection since we need to

search on large temporal scale space due to the high variance

of event duration. On another extreme, although the frame

level presentation offers fine temporal resolution, it appears

to be too noisy for high-accuracy recognition [8]. It is very

common that these frame level presentations are combined to

form a global presentation using some statistical measures,

such as mean and standard deviation as in [5]. It raises a need

for a mid-level presentation that can overcome the disadvan-

tages of both global and frame-level presentations. A such

presentation should: (1) sufficiently capture the signal distri-

bution for the recognition task; (2) preserve the local features

and their temporal structure of the events; (3) offer a satisfac-

tory temporal resolution to ease the detection task.

We define a superframe as a 100 ms segment of acous-

tic signal. And a superframe contains multiple small frames,

hence its name. The rational behind the adoption of this pre-

sentation are numerous:

• It is obvious that local event features are preserved and

their structure can also be kept if we consider their tem-

poral order.

• As can be shown in the next section, 100 ms segments

alone are semantically acceptable for event recognition.

By naively considering an event as a collection of super-

frames, the event-wise recognition can be noticeably im-

proved with a simple voting scheme and close to the state-

of-the-art system on the same dataset.

• For the event detection task, the detection error tolerance

is usually set to 100 ms as in the most recent campaigns

[10–12]. Hence, its temporal resolution is sufficient for

event detection in superframe fashion. The temporal res-

olution can be further improved by overlapped sampling.

Therefore, the superframe representation meets the strict re-

quirements above. By taking into account the superframe co-

occurrence across event categories, our classification system

sets state-of-the-art performance.

2.2. Acoustic features for superframe representation

For a superframe, we divide the audio signal into interleaved

small frames of 20 ms with Hamming window and 50% over-

lap. In order to characterize a frame, we utilize the set of

acoustic features suggested by Temko and Nadeu [5] since

they have been proven to represent speech spectral structure

well in CLEAR Evaluations for acoustic event recognition

and detection task [10, 11]. They consists of: (1) 16 log fre-

quency filter bank parameters, along with the first and sec-

ond time derivatives, and (2) the following set of features:

zero-crossing rate, short time energy, 4 sub-band energies,

spectral flux calculated for each sub-band, spectral centroid,

and spectral bandwidth. It results in a 60-dimensional fea-

ture vector for each frame. In turn, the empirical mean and

standard deviation of frame features are calculated to form a

120-dimensional feature vector to represent a superframe.

3. EVENT SUPERFRAME CO-OCCURRENCE

3.1. ITC-Irst acoustic event database

We use the database ITC-Irst of isolated meeting-room acous-

tic events [14] throughout the experiments of this paper. This

database has originally been collected under the CHIL (Com-

puter in the Human Interaction Loop) project [13]. Event de-

tection and classification using this database have been ex-

tensively examined in recent CLEAR Evaluations [10, 11].

The data consists of 12 sessions each of which is of approxi-

mately 7-minute duration recorded by multiple microphones.

We used only one channel, named TABLE 1, in our experi-

ments.

The database contains 16 semantic classes of variable-

length acoustic events. Each session contains around four rep-

etitions of each of the event classes, resulting in about 36 ex-

amples of each event. The data labels are also provided with

short intervals that contain instances of the labeled sound. We

are only interested in 12 semantic classes that are investigated

as in the CLEAR Evaluations including: door knock, door

slam, steps, chair moving, spoon cup jingle, paper wrapping,

key jingle, keyboard clicking, phone ring, applause, cough,

and laugh. Many of them are subtle (low SNR, e.g. steps,

chair moving, and keyboard typing) making the task more

challenging. Following the setup of event classification in

CLEAR Evaluations, we use the 9 sessions as training files

and 3 remaining sessions as testing files in our experiments.

3.2. Part-wise recognition and part co-occurrence

We empirically study the superframe co-occurrence between

different event categories through superframe-wise event

classification. By analysis of the classification confusion ma-

trix, we are able to show that different event categories share

some common superframes at different levels. Foremost,

the audio signal is down-sampled from 44.1 kHz to 16 kHz.

Given the audio signal of an event, we divided it into multiple

interleaved superframes with 75% overlap. Each superframe

is represented by the features described previously and is

labelled using the label of the event. As a result, an event

is a collection of superframes. For the dataset we use the

produced superframe-wise training, and testing data contains

74,322 and 25,078 samples respectively. This data is large

enough to prevent most popular classification algorithms,

such as non-linear SVM [15], from performing efficiently.

Fortunately, Random Forest [9] is particularly suitable for

this purpose since it has been proven to be efficient for data

with large number of samples and dimensions. The main idea

behind Random Forest is to mitigate over-fitting and lack of

generalization problems of decision-tree classifiers by: (1)

injecting randomness into the training of the trees, and (2)

combining the output of multiple randomized trees into a

single classifier. Random Forests have been demonstrated

to produce lower test errors than conventional decision trees
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Fig. 1. Superframe-wise classification confusion matrix.

and performance comparable to SVMs in multi-class prob-

lems, such as [19], while maintaining high computational

efficiency.

Let {(xi, yi)}i=1,...,Ntr
denote the training data and

{(xi, yi)}i=1,...,Nte
denote the testing data where xi ∈ RD

and yi ∈ {1, . . . ,Y} denote the feature vector and label of

the superframe i respectively. Ntr and Nte correspond to the

cardinality of training and testing data. D = 120 and Y = 12
are the dimensionality and the number of event categories, re-

spectively. We train a random-forest classifier to classify the

event superframes into 12 semantic classes using the training

data and test the model with the testing data. We conser-

vatively set the number of trees to T = 500 and choose a

maximum depth of 30. The event categories are weighted by

their inverse frequencies. The overall superframe-wise clas-

sification error is approximately 23.0%. This suggests that

superframe presentation is informative for event recognition.

The superframe-wise classification confusion matrix is il-

lustrated in Fig. 1. Each row of the matrix shows the test-

ing probabilities in classifying the superframes of the corre-

sponding event category as other categories. It can be seen

that for every event categories, a certain amount of super-

frames are wrongly classified as other event categories. This

suggests that different event categories show overlap in the

feature space and have similar superframes. While the event

duration is in the order of seconds, the ambiguity is under-

standable since it is not evident enough to tell apart between

event superframes in a short duration of 100 ms. It is even

more difficult for low SNR events such as ‘steps’ and ‘chair

moving’. It is also interesting to notice that ‘door slam’ and

‘chair moving’ superframes are most confused with ‘steps’

superframes because they are similar in short time. Further-

more, most of the events are regularly wrongly classified as

‘phone ring’, especially the periodic events like ‘cough’, and

‘laugh’, owing to not only the periodicity of ‘phone ring’ au-

dio signal but also to its high variance of sounds.

3.3. Integration of superframe co-occurrence: from ma-

jority voting to accumulated histogram

The question now is how to fuse the superframe-wise recog-

nition to accomplish the event-wise recognition. To combine
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Fig. 2. Procedure to produce superframe histogram represen-

tation.

the superframe-wise recognition results, we employ majority

voting:

ŷevent = argmax
y∈{1,...,Y}

P
∑

p=1

I(ŷp = y). (1)

In (1), ŷevent and ŷp denote the predicted labels of the final

event and the superframe i where P is the number of super-

frames belonging to the event. I(ŷp = y) is the indicator

function given by:

I(ŷp = y) =

{

1 if ŷp = y

0 if ŷp 6= y.
(2)

As a result, the predicted label of the event is determined

by the majority of its superframes’ predicted labels. It mag-

nificently reduces the overall classification error from 23.0%

superframe-wise to 7.5% event-wise.

However, this voting scheme is efficient for the event

categories with minor superframe sharing like ‘applause’

but not for those with relatively serious ambiguity such as

‘laugh’ and ‘chair moving’. Instead of ignoring superframe

sharing, we can take advantage of it to gain the evidence for

event recognition. Intuitively, it is more informative to say “a

‘chair moving’ event should contain a percent of ‘chair mov-

ing’ superframes and b percent of ‘steps’ superframe and so

on” rather than “a ‘chair moving’ event should only contain

a percent of ‘chair moving’ superframes”.

The idea of taking event superframe co-occurrence into

account is illustrated in Fig. 2. For each event consisting

of P superframes {xp}p=1,...,P with respect to the predicted

labels {ŷp}p=1,...,P outputted by the superframe classifier, we

accumulate all ŷp into a label histogram z ∈ RY
+ with each

element zi given by

zi =

P
∑

p=1

I(ŷp = i). (3)



By this, we can keep all information about superframe co-

occurrence in the event representation. Eventually, the ob-

tained histogram vectors are used as feature vectors for the

events. We will exploit them to learn an event-wise classifier

for the event recognition task in the following section.

4. EXPERIMENTS

4.1. Creation of event-wise training and testing data

We need somehow to generate event-wise training and testing

data using the procedure of forming histogram presentation

in Fig. 2. For testing data, it is straightforward to use the

random forest superframe classifier as in Section 3.2 to run

over all the event audio signals in the testing files. However,

it is more tricky for training data since they do not readily

exist. We cannot simply run the superframe classifier learned

from the training files to run over them again, because they are

prone to overfitting. To overcome this, we conducted 9-fold

sub-training on the 9 training files. Each time, we used 8 out

of 9 files to train a superframe-wise classifier using the Ran-

dom Forest algorithm and conducted superframe classifying

with the remaining file. The superframe predicted labels are

used to form the event-wise histogram representations for all

events contained in that file as in Fig. 2. Finally, we concate-

nate event-wise histogram representations in all 9 runs and

use them as training data.

4.2. Experiment

The histogram vectors are firstly normalized by l1-norm. Us-

ing the event-wise trainining data, we employ the C-SVM

classification algorithm [15] to learn two event-wise classi-

fiers, SVMhist+chi and SVMhist+int, with Chi-square and

histogram intersection kernels [17], respectively. For normal-

ized histogram based feature vectors x, z ∈ RY
+, Chi-square

kernel Kχ2(x, z) and histogram intersection kernel Kint(x, z)
are defined as

Kχ2(x, z) =

Y
∑

i=1

2xizi

xi + zi
, (4)

Kint(x, z) =

Y
∑

i=1

min(xi, zi). (5)

While these kernels are very fast to evaluate, they are also

particularly proven to be the best-suited kernels and most

frequently used for histogram presentations [17]. We used

libSVM [16] in our experiments. The parameter C of the

SVM classifier was set to 1.0 for both SVMhist+chi and

SVMhist+int since we found that the leave-one-out cross-

validation error is always minimized around this value.
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Fig. 3. Event-wise classification confusion matrix.

4.3. Results

We tested the classifiers SVMhist+chi and SVMhist+int on

the event-wise testing data. The event-wise classification er-

rors were significantly reduced to 2.7% and 3.4%, respec-

tively, which significantly outperforms the majority voting

scheme. This result quantifies the usefulness of the super-

frame sharing in event recognition. We tabulate the event-

wise classification confusion matrix with the best classifier

SVMhist+chi in Fig. 3. To demonstrate the efficiency of our

approach, we further compare the performance in terms of

recognition error rate of SVMhist+chi and SVMhist+int with:

• SVMhist+linear, the event-wise SVM classifier learned

from histogram presentations using linear kernel;

• SVMhist+RBF , the event-wise SVM classifier learned

from histogram presentations using non-linear RBF ker-

nel;

• SVMglobal+RBF , the event-wise SVM classifier trained

on the global presentations with non-linear RBF kernel.

The linear and nonlinear RBF kernels [15] are given by (6)

and (7), respectively:

Klinear(x, z) = xTz, (6)

KRBF (x, z) = e−γ||x−z||2 . (7)

The setting and parameter search for SVMhist+linear

are similar to what has been done for SVMhist+chi and

SVMhist+int. For SVMglobal+RBF , to extract the event

global presentation, we divide each event signal into 30 ms

frames with Hamming window and 50% overlap. We utilize

the same set of 60 features described in Section 2.2 to char-

acterize each frame. The global feature vector of an event

is produced by calculating empirical mean and standard de-

viation of its frame feature vectors. In addition, the global

feature vectors are normalized into the range [-1;1]. The

same grid parameter search is done for both SVMhist+RBF

and SVMglobal+RBF with leave-one-out cross validation for

the parameters C and γ. The coarse grid search, correspond-

ing to logC ∈ [−5; 8] and log γ ∈ [−8; 3] with a common

step of 1.0, is first performed, followed by the fine grid search

over logC ∈ [−1; 1] and log γ ∈ [−1; 1] with a common step



Table 1. Comparison of classification error rates (in %) for different event classifiers.

SVMhist+chi SVMhist+int SVMhist+linear SVMhist+RBF SVMglobal+RBF UPC-C CMU-C1 ITC-C1

Error rate 2.7% 3.4% 4.8% 4.8 % 3.4% 4.1% 7.5% 12.3%

of 0.1 around the optimal coarse parameters. The classifiers

are finally trained with the found optimal parameters on the

training data and evaluated on the testing data. In addition,

we also compare the performance with the systems submitted

to CLEAR 2006 campaign [18] on the same dataset, includ-

ing UPC-C, CMU-C1, and ITC-C1. The comparison results

are shown in Table 1.

As can be seen, SVMhist+chi outperforms all the other

systems and some with a large margin. The results also show

that linear and RBF kernels are equally efficient for super-

frame histogram representation in our experiments while Chi-

square kernel is the most efficient for this. We argue that the

use of global features, which are deteriorated by averaging

operator, explains the inferior result of SVMglobal+RBF com-

pared to SVMhist+chi.

5. DISCUSSION AND CONCLUSION

Although our approach achieves state-of-the-art performance

on the event-recognition task by accumulating the superframe

predicted labels into histogram representations, we believe

that the performance can be further improved by considering

the temporal order of the superframes. As argued, the super-

frame representation offers a satisfactory temporal resolution

for the event-detection task, and superframe-wise detection

would simplify the detection process, especially in real-time

scenarios. However, we need to deal with the question of

how to use superframe-wise detection results to determine the

boundaries of the target event in time. These are worth further

studying.

In conclusion, we presented in this paper the concept

of acoustic superframe and study the phenomena of super-

frame co-occurrence across event categories. We empirically

showed that taking advantage of this phenomenon into event-

wise recognition can significantly improve the recognition

model. Our classification system with histogram representa-

tion and Chi-square kernel yields state-of-the-art performance

in terms of classification error rate on the ITC-Irst database.

REFERENCES

[1] K. Lee, D. Ellis, and A. Loui, “Detecting local semantic con-

cepts in environmental sounds using markov model based clus-

tering,” in ICASSP, 2010.

[2] A. Mesaros, T. Heittola, A. Eronen, T. Virtanen, “Acoustic

event detection in real life recordings,” in EUSIPCO, 2010.
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