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Random Regression Forests for Acoustic Event
Detection and Classification

Huy Phan∗, Student Member, IEEE, Marco Maaß, Student Member, IEEE, Radoslaw Mazur, Member, IEEE,

and Alfred Mertins, Senior Member, IEEE

Abstract—Despite the success of the automatic speech recog-
nition framework in its own application field, its adaptation to
the problem of acoustic event detection has resulted in limited
success. In this article, instead of treating the problem similar to
the segmentation and classification tasks in speech recognition,
we pose it as a regression task and propose an approach based
on random forest regression. Furthermore, event localization in
time can be efficiently handled as a joint problem. We firstly
decompose the training audio signals into multiple interleaved
superframes which are annotated with the corresponding event
class labels and their displacements to the temporal onsets and
offsets of the events. For a specific event category, a random-forest
regression model is learned using the displacement information.
Given an unseen superframe, the learned regressor will output
the continuous estimates of the onset and offset locations of
the events. To deal with multiple event categories, prior to the
category-specific regression phase, a superframe-wise recognition
phase is performed to reject the background superframes and
to classify the event superframes into different event categories.
While jointly posing event detection and localization as a re-
gression problem is novel, the superior performance on two
databases ITC-Irst and UPC-TALP demonstrates the efficiency
and potential of the proposed approach.

Index Terms—acoustic event detection, regression forest, ran-
dom forest, superframe.

I. INTRODUCTION

Acoustic event (AE) classification and detection are impor-

tant for many real-world applications such as ambient assisted

living [1], security surveillance [2], meeting room transcrip-

tion [3], [4], human-computer interaction [5]–[7], multimedia

retrieval [8], and “machine hearing” [9] to name a few. It has

been under great attention of the research community with

many recent evaluation campaigns including CLEAR 2006

[10], CLEAR 2007 [11], and AASP CASA 2013 [12]. Acous-

tic event classification (AEC), which performs on segmented

AEs, can be readily addressed with a large number of off-the-

shelf classifiers and acoustic features [5]–[7], [13]. Compared

to AEC, acoustic event detection (AED) is a more interesting,

yet more difficult task, because we need to determine not only

the identity of the sounds but also their positions in time. Up

to now, the AED problem has been still largely unsolved. It is
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challenging due to large intra-class variations in terms of event

durations and sounds, nonstationary background noise, as well

as event overlap. Furthermore, for some applications (such

as content-based multimedia indexing/retrieval, meeting-stage

detection, etc.), it is vital to have a good temporal resolution

of the detected AEs, i.e. localization problem. To the best

knowledge of the authors, this problem has not been explicitly

addressed in the literature.

Inspired by the success of speech recognition, the automatic

speech recognition (ASR) framework [14] has been adapted

for AED [11], [15]–[17]. This method can be divided into

three stages. First, local features, e.g. Mel-frequency cepstral

coefficients (MFCCs) [18], are extracted from small frames.

The local feature vectors are then modeled by Gaussian Mix-

ture Models (GMMs). Finally, the distributions of the feature

vectors are learned given the feature vector sequences and the

state sequences using Hidden Markov Models (HMMs). On

testing, given an unseen feature vector sequence, the event

is recognized with the maximum posterior probability. The

ASR framework works well for speech in practice, but the

results on AED have not been satisfactory [10]–[12]. First,

unlike speech, the underlying sound event information is less

structured, particularly as no sub-word dictionary exists in

the same way as for languages. Moreover, while frame-based

acoustic features are reliable for speech, AEs contain a wider

range of characteristic and nonstationary effects which may

not be captured in such frame-based features. Regarding to

temporal localization, i.e. event boundary determination, the

HMM-based sequence models cannot generalize well over

highly variable durations which are usually the case for audio

events. This is understandable since they rely on limited-

duration models that assume exponentially distributed duration

probabilities of each state.

Another common approach is based on a detection-by-

classification scheme [3], [19]–[21]. This approach extracts

global presentations for isolated events in training data. Clas-

sification models, e.g. Support Vector Machines (SVMs), are

then trained to distinguish the events from background as well

as classify them into different classes. Finally, the learned

classifiers are used to detect AEs in continuous audio signals

by sliding window fashion. Typically, the audio segments need

to be long enough, like one second long, in order to capture

sufficient signal distribution so that they can be recognized

individually. A post-processing step, e.g. median filter [19]

or majority voting [22], is also necessary to smooth the
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intermittent label sequence. Although this approach is intuitive

and straightforward to implement, it confronts one with two

unsolved problems. First, these systems heavily depend on

the quality of the classification models, which are far from

perfect in practice. The noisy segmentation/classification re-

sults are considered as detection hypotheses and contribute

to the detection error. Secondly, for the localization task,

using long windows results in low temporal resolution of the

detected AEs. In general, although this approach shows good

performance on the AEC task, it is less efficient for the AED

task compared to the HMM-based ASR framework [10].

The proposed system is able to overcome the above men-

tioned problems. It differs from the majority of contributions

in the field in that it considers the joint problem of AE

detection and localization as a regression problem and uses

a random forest regression framework [23], [24] to deal with

it. Motivated by the success of regression forests in various

computer vision tasks, we adapt it for the AED task. We take

advantage of the acoustic superframes proposed in [22], [25],

which are able to be recognized independently at an acceptable

accuracy. The training audio signals, containing multiple AE

occurrences of different categories, are firstly divided into

multiple interleaved superframes. Each superframe is associ-

ated with a class label and a two-dimensional displacement

vector to the onset and offset of the corresponding AE.

Thereafter, using the displacement vectors, category-specific

regression forests are trained to map each event superframe to

the continuous estimates of onset and offset locations of the

events in time, i.e., we consider a multi-variate, continuous

parameter estimation problem. In order to handle multi-class

detection, before category-specific regression is performed,

two classification models are learned using random forest clas-

sification [26]: one of them is to distinguish event superframes

from background superframes and the other is to subsequently

classify event superframes into different categories of interest.

On testing, the learned classifiers are applied to recognize

event superframes which are finally inputted to the category-

corresponding regressor to detect and localize the events from

test audio signals. We will show that our approach significantly

outperforms the common competitive approaches in terms of

detection error rate on two databases ITC-Irst and UPC-TALP.

Besides that, by inducing the continuous estimates of event

boundaries, the proposed system is invariant to event temporal

scales.

In summary, our contributions are three-fold: (i) the formu-

lation of the joint AE detection and localization as a regression

problem; (ii) the development of a category-specific random

forest architecture and learning method that leverages the

random forest regression framework in order to detect and

localize AEs in time; and (iii) advance the state-of-the-art

significantly on the two databases ITC-Irst and UPC-TALP,

decreasing the detection error rate by more than six percent

and ten percent, respectively.

The rest of this paper is organized as follows. Some related

works on AED are briefly presented in Section II. After that,

we describe our algorithm to learn the multivariate regression

forests in Section III and our AE detection and localization

system in Section IV. The experimental setup and results are

presented in Section V followed by the conclusion and future

works in Section VI.

II. RELATED WORKS

The previous works on AED can be mentioned with dif-

ferent aspects. From the algorithmic viewpoint, two dominant

trends have been seen. The first was based on HMMs with var-

ious topologies [4], [15], [16]. The detection task was accom-

plished in two ways: (1) the HMM-based events/background

segmentation followed by the HMM event classification and

(2) merging the segmentation and classification in one step

with the standard ASR framework. The other trend exploits

discriminative classifiers for both events/background segmen-

tation and subsequent event classification [3], [19]. Beside

SVMs, some other classification algorithms were also used,

such as Gaussian Mixture Models (GMM) [27], Adaboost

[28], and random forest [22]. In the recent international

evaluation campaigns [10]–[12] for AED, most of the sub-

mission systems pursued these common directions. In another

approach, by considering an AE as structured sequence of

acoustic units [29] or I-vectors [30], the AE instances can

be directly segmented from the audio signals.
In the work of Stork et al. [7] the events are modeled as

ensembles of event frames. For every event category, the event

instances in the training data are divided into multiple frames

each of which maintains its displacement to the corresponding

event center. The frames are then clustered using k-means

to form category-specific codebooks. On testing, a frame

recognized as event is matched to a learned codebook. Finally,

the displacements of the frames stored in the codebook are

used to vote for the event center. Their goal is to find the

event centers under the assumption that all category-specific

events are equal in duration to ease the localization. Yet, in

practice, some categories experience large variations of intra-

class duration. Furthermore, the model in [7] is data-based,

requiring a large memory for storage. These drawbacks hinder

this approach in many cases.
Regarding the representations, the traditional features for

speech recognition like MFCCs [18] and log frequency filter

bank parameters [3] have been prevalent. Various other fea-

tures have also been developed and found useful for AED,

for instance, spectro-temporal features based on spectrograms

[31], [32], dictionaries induced by non-negative matrix fac-

torization (NMF) [12], event exemplar-based features [33]. It

is also worth mentioning that the works on relevant feature

selection [4], [34] reported significant improvement on AED.
The target environments also get involved. The reason is

that different environments (for example, kitchen rooms [7],

bathrooms [35], car inside space [36], and meeting-rooms [3],

[4]) may significantly vary in background noise characteristics,

event overlapping, overlapping with speech, etc., and require

tailored strategies to deal with. Further, multi-source [11], [37]

and multi-modal fusion [38], [39], when available, can be

utilized to cope with the ambient noise as well as compensate

for low SNR events.
In this article, we tackle the joint AED/L problem with

single-channel non-overlapped AEs in meeting-room environ-

ment using random regression forests. We firstly decompose
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the event instances into superframes which are associated with

their displacements to event onsets and offsets. Following

the common extremely randomized trees framework [40], the

random regression forests are constructed for every category.

In testing, an event superframe, which is inputted into the

corresponding regression forest, provides continuous estimates

for event onset and offset positions. Event temporal scales are

well handled in the proposed approach since we implicitly

capture them in the regression forest models.

III. MULTIVARIATE RANDOM FOREST REGRESSION

A. Random forest regression

A regression forest is an ensemble of different regression

trees. Each of them plays the role of a nonlinear mapping

from complex input spaces into continuous output spaces. The

nonlinearity is achieved by dividing up the original problem

into smaller ones, solvable with simple models. A split node

in the tree maintains a test that is applied to a data sample

to send it toward the left or the right child node. The tests

are picked by some criteria to group the training samples into

clusters where a good prediction can be achieved by simple

models. These models are computed from the annotated data

samples that reached the leaves and were stored there. While

overfitting likely happens for a standard decision tree alone, an

ensemble of randomly trained trees enjoys high generalization

power [40].

B. Training

The training of our regressors is supervised and category-

specific. Given a set of annotated superframes Sc =
{(xi, c,di)} of an event category c ∈ {1, . . . , C}, each

superframe x ∈ R
M is associated with the class label c and

a displacement vector d = (ds, de) ∈ R
2
+. Here, M is the

dimensionality of feature space and C denotes the number of

event categories of interest. The values ds and de, respectively,

represent the displacements (in superframes) of the current

superframe at the time index t to the onset ts and offset te of

the corresponding event, given as:

ds = t− ts, (1)

de = te − t. (2)

The displacement notations are illustrated in Figure 1. Since

we do not use the class label c for training category-specific

regression forests, it can be safely ignored in this section.

Our aim is to learn the clustering of superframes based on

their features and their confidence in predicting the onsets and

offsets of the events.

Generally, the tree construction for regression forests fol-

lows the common extremely randomized trees framework [40].

Each tree T in the forest T = {Ti} is constructed from a

subset of superframes Sc
T = {(xi,di)} randomly sampled

from Sc. Starting from the root node, at each split node a

large set of possible binary tests is randomly generated. A

binary test tf,τ on a data sample (x,d) is defined as

tf,τ (x) =

{

1, if x
f > τ

0, otherwise,
(3)

event superframe

background superframe

event onset event offset

ds = 8 de = 7

tts te

Figure 1. Displacements of the superframe at the time index t to the onset
ts and the offset te of an AE.

where x
f indicates the value of x at the feature channel

f ∈ {1, . . . ,M}, and τ is a threshold. During the construction

of the tree, at each split node, a pool of binary tests is

generated with a randomly selected feature channel f and

random values for τ generated in the range of x
f . In our

implementation, 20,000 random binary tests were considered

for each split node. A test is selected from this pool to split

the set of training samples Sl at a split node l into two

sets: S right
l = {(x right

i ,d right
i )} containing those samples

satisfying the test and S left
l = {(x left

i ,d left
i )} containing the

rest of samples not satisfying the test:

S right
l =

⋃

{(x,d) ∈ Sl

∣

∣tf,τ (x) = 1}, (4)

S left
l =

⋃

{(x,d) ∈ Sl

∣

∣tf,τ (x) = 0}. (5)

S right
l and S left

l are sequentially sent to the right child and

the left child, respectively. The data samples arriving at the

nodes are evaluated by all binary tests in the pool, and the

test maximizing a predefined measure is selected and assigned

to the node. In this work, the test is selected to minimize

displacement uncertainty, which is defined as

U =
∑

∥

∥d
left
i − d̄

left
∥

∥

2

2
+
∑

∥

∥d
right
i − d̄

right
∥

∥

2

2
, (6)

where d̄ denotes the mean displacement vectors over all su-

perframes in the set. This measure corresponds to the impurity

of the displacement vectors. A leaf node is created when the

maximum depth Dmax or a minimum number of remaining

superframes Nmin is reached.

After training, each split node remains associated with the

feature channel f and the threshold τ of the selected binary

test. At each leaf node, we store the learned mean offset d̄

and covariance matrix Γ of the displacement vectors, i.e. the

parameters of a multivariate Gaussian distribution N (d̄,Γ):

d̄ = (d̄s, d̄e), (7)

Γ =

(

Γs 0
0 Γe

)

. (8)

However, as it can be seen from the matrix Γ, we do not con-

sider covariance between the onset and offset displacements.

That is, N (d̄,Γ) is equivalent to two univariate Gaussian

distributions N (d̄s,Γs) and N (d̄e,Γe). Figure 2 demonstrates

such a regression tree.

C. Testing

Via the trained regression forest, a test superframe at the

time index t can provide the estimates for the event onset and

offset positions. At each split node, the stored binary test is
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root node

split node

leaf node

Figure 2. Illustration of a random regression tree.

applied to the superframe, sending it either to the right or

left child until ending up at a leaf node. At a leaf node l, the

superframe gives estimates of the displacement vector d̂ to the

onset and offset positions of the corresponding event in terms

of the stored distribution p(d̂|l) = N (d̂; d̄,Γ). The posterior

probabilities are summed up over all trees:

p(d̂) =
∑

l∈L̄

p(d̂|l). (9)

Here, L̄ is a subset of the corresponding leaf nodes. Owing

to the fact that we do not consider covariance between the

onset and offset displacements, p(d̂|l) are explicitly equivalent

to two separate distributions p(d̂s|l) = N (d̂s; d̄s,Γs) and

p(d̂e|l) = N (d̂e; d̄e,Γe), respectively, leading to two separate

posterior probabilities for onset and offset displacements:

p(d̂s) =
∑

l∈L̄

p(d̂s|l), (10)

p(d̂e) =
∑

l∈L̄

p(d̂e|l). (11)

Due to (1) and (2), the estimates of event onset and offset

positions can be computed through the estimates of the dis-

placements:

p(t̂s) = p(d̂s − t) =
∑

l∈L̄

p
(

(d̂s − t)
∣

∣l
)

, (12)

p(t̂e) = p(d̂e + t) =
∑

l∈L̄

p
(

(d̂e + t)
∣

∣l
)

. (13)

The expectations of p(t̂s) and p(t̂e) can indicate the onset

and offset position. That is, the location and duration of the

corresponding AE in time are determined.

IV. EVENT DETECTION AND LOCALIZATION SYSTEM

A. Acoustic superframe and its representation

In our system, it is essential that the AEs are decomposed

into multiple parts, and each individual part is able to be

recognized independently. Therefore, instead of using small

frames, e.g. 30 ms long, we employ superframes as proposed

in [22], [25]. A superframe is defined as a 100 ms long

segment of the acoustic signal. It is a mid-level representation

offering more discriminative power, hence being more reliable

to be recognized independently. Furthermore, the detection

error tolerance is usually set to 100 ms as in the most recent

campaign [12], making its temporal resolution sufficient for

AED in superframe fashion. The temporal resolution can be

further improved by overlapping.

Superframes are divided into multiple interleaved small

frames of 30 ms duration with Hamming window and 20 ms

overlap. We utilize the set of 60 acoustic features suggested by

Temko et al. in [3] to represent a small frame. These features

have already been used in the CLEAR 2006/2007 challenges

[10], [11], where they showed good discrimination power.

Using the same feature set as the one used in the literature

allows us to obtain a fair comparison between recognition

engines. The feature set consists of: (1) 16 log-frequency

filter bank parameters, along with the first and second time

derivatives, and (2) the following set of features: zero-crossing

rate, short time energy, four sub-band energies, spectral flux

calculated for each sub-band, spectral centroid, and spectral

bandwidth. Eventually, the empirical mean and the standard

deviation of the frame feature vectors are calculated to form

a 120-dimensional feature vector to represent the superframe.

B. System description

Given training audio signals annotated with AEs of C cate-

gories of interest, we decompose each of them into interleaved

superframes with an overlap of 90% of their duration to

obtain the training set S = {(xi, c,di)}. The dense overlap

is to ensure a high level of data correlation. Furthermore,

the computational efficiency of decision trees allows us to

do so. Each superframe, represented by a 120-dimensional

feature vector, as described in Section IV-A, is annotated with

the class label c ∈ {1, . . . , C} and the displacement vector

d = (ds, de). The background superframes are labelled with

the class label 0, and no offset vectors are required.

The system consists of the following classification and

regression models which are trained using the training data

S:

• Mbg: the classifier to distinguish foreground superframes

from background ones. It outputs 0/1 if the input super-

frame is predicted as background/foreground.

• Mev: the classifier to recognize superframes between

different event categories. It outputs c if the predicted

class label of the input superframe is c.
• Rc: the multivariate category-c regressor that estimates

the temporal onsets and offsets of the events of category c
given a test superframe. In total, C regressors are learned

for C event categories.

The classifier Mbg to distinguish between possible events and

background is applied first. Then the events are discriminated

by the second classifier Mev . By this scheme, we can avoid the

problem of highly skewed training data. Both classifiers are

based on random-forest classification [26] to take advantage of

its computational efficiency. More importantly, random forest

classification supports probability output which we will show

to be very useful in our approach. For both classifiers, the

number of random trees is conservatively set to 300. Due to

dense overlapping of superframes, a large amount of data is

generated. For the ITC-Irst database, the training and testing

data contain 614,460 and 156,745 superframes, respectively.
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Mbg Mev

Rc

1
 xixi

 

c

xi ds  ~

de  ~

Figure 3. Pipeline for event detection and localization with the learned
models.

Those for the UPC-TALP database are 397,914 and 196,554

superframes, respectively.

The regressors are trained with the random forest regression

algorithm from Section III with ten random trees each. A

randomly sampled subset containing 50% superframes of the

category c training set Sc is used to train each random tree of

Rc. In addition, we set the maximum depth Dmax = 12 and

minimum number of superframes at leaf nodes Nmin = 10.

This choice of parameters has been found experimentally. It

yields a good compromise between under- and overfitting and

computational cost. For example, for longer events, such as

phone ringing or applause, a larger value for Dmax should

be used than for short events like chair moving. Dmax = 12
allows us to adequately model the longest-duration categories

while not overfitting the short ones. The choice of Nmin = 10
is also large enough to avoid overfitting for short events

and sufficient to approximate the mean and covariance of

displacement vectors.

The pipeline of the AE detection and localization system

is illustrated in Figure 3. Given a test audio signal, we

again divide it into multiple interleaved superframes as in

the training phase. Afterwards, each superframe is fed into

Mbg to test for background. If the superframe is recognized

as foreground by Mbg , it is further fed into Mev to predict the

event class label. After the recognition phase, the superframes

with predicted class label c are pushed through the regressor

Rc to estimate the onset and offset positions of the AEs of

category c in the audio signal.

C. Joint event detection and localization

In order to detect and localize the AEs of category c, for

each superframe at the time index t, we separately calculate the

confidence of being event onset and offset by accumulating the

posterior probabilities in (10) and (11) over the whole audio

signal using the regressor Rc:

Zs(t) =
∑

t

(

I(ĉt = c) · p(d̂s − t)
)

, (14)

Ze(t) =
∑

t

(

I(ĉt = c) · p(d̂e + t)
)

, (15)

where ĉt denotes the predicted class label of the superframe

at the time index t and I is an indicator function given by

I(z) =

{

1 if z is true
0 if otherwise.

(16)

Moreover, we can further weight the scores with the confi-

dence that a superframe’s class label is predicted as c by the

classifier Mev as in (17) and (18), thanks to the probability

output of random forest classification [26]:

Zs(t) =
∑

t

(

wt · I(ĉt = c) · p(d̂s − t)
)

, (17)

Ze(t) =
∑

t

(

wt · I(ĉt = c) · p(d̂e + t)
)

. (18)

Here, wt is the probability that the predicted class label ĉt
equals c. By weighting the scores, the superframes recognized

with higher confidence will contribute more into the scores.

In order to reduce the computation overhead during calculat-

ing the scores, we only evaluate the Gaussian distributions for

the superframes in the displacement range of all superframes

arriving at a leaf node during training. Moreover, we ignore the

leaf nodes with the number of samples less than Nmin = 10.

Eventually, the larger the scores of a superframe are, the higher

confidence we have that the event onset and offset occur at it.

Typically, the audio signals should contain multiple AE

occurrences, resulting in multiple peaks in both score spaces.

Furthermore, since classifiers are generally not perfect, Zs

and Ze are likely to be noisy, especially for AEs with low

SNR. However, the peaks are expected to be dominant above

the noise floor. In order to determine them, we normalize the

scores Zs and Ze over all t into [0; 1] by

Z̃s(t) = Zs(t)/max(Zs), (19)

Z̃e(t) = Ze(t)/max(Ze), (20)

and apply a cutoff threshold β ∈ [0; 1] for both Z̃s and Z̃e to

eliminate the noise below it:

Z̄s(t) = Z̃s(t) · I
(

Z̃s(t) ≥ β
)

, (21)

Z̄e(t) = Z̃e(t) · I
(

Z̃e(t) ≥ β
)

. (22)

Eventually, the peaks in Z̄s and Z̄e are determined as the

maximum values in the connected positive regions. This idea

is demonstrated in Figure 4 for three different event categories

in a test audio signal of the ITC-Irst database. The duration

between a pair of peaks, a Z̄s peak followed by a Z̄e peak

in temporal order, is considered as an event hypothesis. We

impose a constraint that duration of the event hypotheses

should not exceed twice the maximum duration of the AEs

in the training audio signals.

V. EXPERIMENTS

A. Evaluation metrics

Following the CLEAR 2006 [10] and CLEAR 2007 [11]

campaigns, we evaluate the proposed approach using three

evaluation metrics: Acoustic Event Error Rate (AEER), AED-

ACC, and AED-ER.



6

0 5000 10000 15000
0

0.5

1

t

(a
)

sc
o
re

0 5000 10000 15000
0

0.5

1

t

(b
)

sc
o
re

0 5000 10000 15000
0

0.5

1

t

(c
)

sc
o
re

 

 

ground truth onset score offset score cutoff threshold

Figure 4. Illustration of applying a common threshold to determine the score peaks on ITC-Irst database: (a) door slam AEs, (b) spoon cup jingle AEs, and
(c) steps AEs.

AEER is computed as

AEER =
Nd +Ni +Ns

N
, (23)

where

• N = the number of ground-truth AEs to detect,

• Nd = the number of unmapped ground-truth AEs,

• Ni = the number of unmapped AE hypotheses,

• Ns = the number of mapped AE hypotheses with mis-

matched class labels.

A ground-truth AE is mapped as long as there exists at

least one AE hypothesis whose center falls inside the interval

of the ground-truth AE, and vice versa. A ground-truth AE

is considered correctly detected if it is mapped by an AE

hypothesis and their labels are matched.

AED-ACC is defined as the F -score measure:

AED-ACC ≡ F -score = 2 ·
Precision ·Recall

Precision+Recall
, (24)

where

Precision =
the number of correct AE hypotheses

the number of AE hypotheses
, (25)

Recall =
the number of correctly detected ground-truth AEs

the number of ground-truth AEs to detect
.

(26)

AED-ER is adapted from the NIST metric for speaker

diarization [41] and is defined as

AED-ER =

∑

s{L(s) ·
(

max
(

N⋆(s), N⊲(s)
)

−N⋄(s)
)

}
∑

s{L(s) ·N⋆(s)}
.

(27)

This metric is evaluated on the audio segments that only

contain event interval, either hypothesized or ground-truth or

both and is computed as the fraction of mismatching duration

between AE hypotheses and ground-truth AEs. In (27), for a

segment s:

• L = the duration of the segment,

• N⋆ = the number of ground-truth AEs,

• N⊲ = the number of AE hypotheses,

• N⋄ = the number of ground-truth AEs matched by AE

hypotheses.

The AEER and AED-ACC metrics focus on the detection

of AE instances, and the temporal coincidence between the

ground-truth and hypothesized AEs is not important. They

are oriented for applications like real-time services for smart

rooms, audio-based surveillance, etc. On the other hand, AED-

ER focuses more on AE localization where a good temporal

resolution of the detected AEs is important, making it suitable

for applications like multimedia indexing/retrieval. AEER was

used in the CLEAR 2006 evaluation whereas AED-ACC and

AED-ER were used in CLEAR 2007. Note that AEER and

AED-ER may exceed 100% because of the additional insertion

errors.

B. Baseline systems

In order to demonstrate the efficiency of the propose ap-

proach, we compare the performance of our systems, with both

weighted and unweighted scores, to the performance of three

baseline systems submitted to the CLEAR 2006 campaign

[10]:

• SVM: this system pursues discriminative SVM classifica-

tion for AED in detection-by-classification fashion with

sliding window of 1 second and a 100 ms shift. The de-

tection task is accomplished by two SVM classifiers: the

first for event/background classification and the second

for subsequent multi-class event classification. A median-

filter of size 17 is applied on the binary sequences of

decisions to eliminate too short silences or non-silences.

Localization is carried out by considering the beginning

and end of each detected event category. This system is

the UPC-D submission in the campaign.

• HMM1: the detection strategy of this system is similar to

the SVM system except that it uses HMMs as classifica-

tion algorithms in lieu of discriminative SVMs. It is the

CMU-D submission implemented by the CMU group.
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• HMM2: different from the above two baseline systems,

this system merges the event/background segmentation

and event classification into a single step, as usually per-

formed by the Viterbi search in common ASR framework.

It is implemented by the ITC group and submitted as

ITC-D system in the campaign.

All the baseline systems are single-channel. The comparison

is only based on the AEER metric on both ITC-Irst and UPC-

TALP databases as what have been done in CLEAR 2006.

To our best knowledge, there have been no reports on the

databases using the AED-ACC and AED-ER metrics. Never-

theless, we will present the results for further improvements

and comparisons.

C. Experimental results on ITC-Irst database

The ITC-Irst database of non-overlapped AEs [42] was

recorded with 32 microphones mounted in seven T-shaped ar-

rays (with four microphones each) and four table microphones.

It consists of twelve recording sessions with the AEs created

by nine participants under the CHIL project [43]. There are

totally 16 semantic event categories including door knock

(kn), door slam (ds), steps (st), chair moving (cm), spoon

cup jingle (cl), paper wrapping (pw), key jingle (kj), keyboard

typing (kt), phone ring (pr), applause (ap), cough (co), laugh

(la), mimo pen buzz, falling object, phone vibration, and

unknown. Many of them are subtle (low SNR, e.g. steps,

chair moving, and keyboard typing), making the task more

challenging. Approximately 50 events were recorded for most

of the event categories. The statistics for each event category

are summarized in Table I. The database has been extensively

examined in the CLEAR evaluations. Following the CLEAR

2006 setup, we only evaluate the first twelve classes. Nine

recording sessions were employed as training files and three

remaining sessions were employed as test files. Only one

channel named TABLE 1 was used.
First of all, the audio signals were downsampled to 16

kHz. Using training files, we trained the classifier Mbg to

separate background superframes from event ones and Mev

to classify superframes among 16 semantic event categories.

Twelve category-specific regressors were also trained for each

of the twelve event categories of interest. The superframe-

wise testing accuracies for Mbg and Mev were 87.0% and

70.3%, respectively. The testing results of event detection and

localization are shown in Figure 5 with different values for

cutoff threshold β from 0.1 to 0.7 with a step size of 0.05.

For simplicity, we utilized the same cutoff threshold across all

categories.
It can be seen from Figure 5 that all the metrics show a

similar behavior in both unweighted and weighted systems

with increasing β. As expected, AED-ACC soars to the peak

when β reaches the most appropriate value. After the peak,

we saw a slow decline of AED-ACC. It is caused by fast

decreasing of recall due to missed AEs although the quality

of the AE hypotheses is improved. The AEER and AED-ER

show the reversed patterns to AED-ACC because they are in

the opposite sense of performance.
The highest performance in terms of overall detection error

is obtained with AEER = 18.5% at β = 0.35 and AEER

Table I
ITC-IRST DATABASE OF NON-OVERLAPPED AES

Event category
#events #superframes

Training Testing Training Testing

door knock (kn) 35 12 5,977 1,983

door slam (ds) 39 12 6,263 2,076

steps (st) 38 12 17,866 4,810

chair moving (cm) 35 12 11,556 3,812

spoon cup jingle (cl) 36 12 21,989 7,065

paper wrapping (pw) 36 12 18,519 7,149

key jingle (kj) 36 12 23,655 8,421

keyboard typing (kt) 35 12 21,603 7,647

phone ring (pr) 66 23 38,824 12,316

applause (ap) 9 3 5,345 1,894

cough (co) 36 12 7,233 3,046

laugh (la) 36 12 7,003 2,459

door open 36 13 6,386 1,715

falling object 36 12 5,127 1,613

phone vibration 10 3 5,052 1,474

mimo pen buzz 36 12 24,144 9,528

unknown 17 9 2,647 2,033

Total 572 195 229,189 79,041
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AEER Precision Recall AED−ACC AED−ER

Figure 5. Evaluation metrics over the parameter β for ITC-Irst database: (a)
unweighted system, (b) weighted system.

Table II
AED PERFORMANCE COMPARISON WITH THE BASELINE SYSTEMS ON

ITC-IRST DATABASE.

Our systems
SVM HMM1 HMM2

unweighted weighted

AEER (%) 18.5 17.1 64.6 45.2 23.6

AED-ACC (%) 90.7 91.8
N/A N/A N/A

AED-ER (%) 38.5 34.2

= 17.1% at β = 0.25 for unweighted and weighted systems,

respectively. These results consistently outperform the baseline
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Table III
AED PERFORMANCE FOR DIFFERENT CATEGORIES OF THE ITC-IRST DATABASE: THE UNWEIGHTED AND WEIGHTED SYSTEMS CORRESPOND TO

β = 0.35 AND β = 0.25.

kn ds st cm cl pw kj kt pr ap co la

AEER (%)
unweighted 0.0 16.7 16.7 58.3 0.0 0.0 8.3 16.7 39.1 0.0 25.0 16.7

weighted 0.0 16.7 8.3 58.3 0.0 0.0 16.7 8.3 34.8 0.0 16.7 16.7

AED-ACC (%)
unweighted 100.0 90.9 91.7 81.5 100.0 100.0 95.7 91.7 75.7 100.0 87.0 90.9

weighted 100.0 90.9 95.7 81.5 100.0 100.0 91.7 95.7 78.9 100.0 91.7 90.9

AED-ER (%)
unweighted 17.3 45.1 32.5 43.6 23.9 27.9 31.1 22.4 27.5 7.9 60.5 41.2

weighted 17.6 44.6 26.6 40.7 27.8 29.3 30.7 24.4 28.7 9.8 59.5 41.1
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x 10
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kn ds st cm cl pw kj kt pr ap co la wrong detection

Figure 6. Alignment of the AE localization results to the ground-truth AE durations on a test audio file of ITC-Irst database: (a) waveform and ground-truth
AE durations, (b) localization results with unweighted system, and (c) localization results weighted system.

systems and some with a large margin, as is illustrated in Table

II. Noticeably, this is also the case with a wide range for β in

Figure 5. Compared to the best baseline system HMM2, the

reductions of 5.1% and 6.5% were seen.

The detection and localization performances for different

individual categories are reported in Table III. In Figure 6,

we also show the alignment of the localization results against

the ground-truth duration on one of three test audio signals.

We also found that the main reason for wrong detection and

localization is low SNR.

D. Experimental results on UPC-TALP database

The UPC-TALP database of non-overlapped AEs [44] was

recorded in a meeting-room environment using 84 micro-

phones: one array of 64 Mark III microphones, three T-

shaped clusters (four microphones per cluster), four tabletop

directional and four omni-directional microphones. It consists

of three recording sessions performed by the same ten actors.

The database includes 14 semantic classes: door knock (kn),

door slam (ds), steps (st), chair moving (cm), spoon cup jingle

(cl), paper wrapping (pw), key jingle (kj), keyboard typing (kt),

phone ring (pr), applause (ap), cough (co), laugh (la), door

open, and unknown. A summary of the dataset is shown in

Table IV. About 60 sounds per class were recorded. Although

this database is quite similar to the ITC-Irst database, it differs

in the room arrangement, microphone setup, and acting posi-

tions. Therefore, it is useful to confirm the consistent efficiency

of the proposed approach. Alike to the experiment on the ITC-

Irst database, we evaluated the detection performance on the

first twelve classes and considered the rest as background. The

audio signals of the first two recording sessions were used for

training, and testing was conducted on the remaining recording

session. Only the third channel of the Mark III array was used

for analysis.

The training procedure for the classifiers Mbg , Mev , and

twelve regressors Rc was repeated. Mbg was trained to rec-

ognize and reject background superframes from event ones

and Mev is to classify superframes among 14 semantic event

categories. The superframe-wise testing accuracies for Mbg

and Mev are 91.7% and 74.1%, respectively. The overall

detection and localization results are shown in Figure 7 as

functions of the common cutoff threshold β.

From Figure 7, we can see a similar behavior of the AEER,

AED-ACC, and AED-ER metrics as in the experiment with

the ITC-Irst database. However, the optimal cutoff thresholds

are noticeably different. With respect to the unweighted and

weighted system, the optimal β is around 0.5 and 0.4 with

AEER = 24.7% and AEER = 22.9%. This dissimilarity will

be discussed later in Section V-E. For the sake of comparison,

AED results are given in Table V. As one can see, our systems

enjoy the improvements of approximately 9% and 10.8% over

the best baseline system HMM2.

The performance on individual categories with respect to

the optimal cutoff-threshold values are further demonstrated

in Table VI. Apart from the observation that the typical errors
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Table IV
UPC-TALP DATABASE OF NON-OVERLAPPED AES.

Event category
#events #superframes

Training Testing Training Testing

door knock (kn) 33 17 4,038 2,455

door slam (ds) 40 20 5,207 2,585

steps (st) 52 21 14,850 10,150

chair moving (cm) 51 25 14,590 7,054

spoon cup jingle (cl) 44 20 12,636 6,162

paper wrapping (pw) 60 24 19,432 10,617

key jingle (kj) 36 23 10,224 4,407

keyboard typing (kt) 46 20 13,190 6,255

phone ring (pr) 73 43 20,999 10,540

applause (ap) 40 20 13,834 7,459

cough (co) 44 21 5,445 3,123

laugh (la) 43 21 7,507 4,376

door open 40 20 4,552 2,142

unknown 83 42 5,284 3,571

Total 691 337 151,788 80,896
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Figure 7. Evaluation metrics over the parameter β for UPT-TALP database:
(a) unweighted system, (b) weighted system.

Table V
AED PERFORMANCE COMPARISON WITH THE BASELINE SYSTEMS ON

UPC-TALP DATABASE.

Our systems
SVM HMM1 HMM2

unweighted weighted

AEER (%) 24.7 22.9 58.9 52.5 33.7

AED-ACC (%) 89.1 90.4
N/A N/A N/A

AED-ER (%) 38.14 39.79

were caused by low-SNR events, in both experiments, the

largest detection errors were seen with the ‘phone ring’ cate-

gory, blaming to its high variance of sounds. For completeness,

in Figure 8, we also illustrate the alignment of the localization

results against the ground-truth AEs on one of test audio

signals.

E. Discussion

The rationale behind the state-of-the-art performance of

the proposed approach can be explained by looking at some

of its individual advantages over other approaches. First,

while the common approaches, e.g. the HHM-based ASR

framework and detection-by-classification approach, transfer

the noisy segmentation/classification results into the final

detection hypotheses, we can reject unreliable hypotheses

by the cutoff threshold β. Second, longer frames can ap-

proximate nonstationary effects of audio events better than

traditional short frames. One may argue that we then can

use HMM models on sequences of superframes. However,

on that viewpoint, our regression forests are even stronger.

While HMMs can only capture dependencies between two

consecutive frames, our approach can capture higher degrees

of dependency (i.e. temporal structure) between superframes

by maintaining displacements of a superframe to the event

onset and offset. Last but not least, when the localization task

is involved, unlike the detection-by-classification approach, the

regression forests provide continuous estimates of event onset

and offset positions, hence, implicitly capture event temporal-

scale variations in the models.

Regression forests are different from other regression meth-

ods such as Support Vector Regression (SVR) [45]. While

other methods model the mapping function as a whole, re-

gression forests hierarchically split the regression problem into

simpler smaller problems which are then modeled easily by

simple models at the leaf nodes. With the tree construction

algorithm proposed in the paper, we aim at clustering the

training superframes into multiple clusters at the leaf nodes

based on their features and their relative positions to event

onsets and offsets. This means that we split the feature

space into small regions whose relationships can be modelled

easily. As already seen, we modeled the superframes in the

same leaf node as Gaussian distributions. Another important

aspect is that, unlike other regressors, which output point

estimates, the output of regression forests is a probability

density function. It is much easier and more natural to sum up

predicted probability densities obtained by all superframes to

make predictions, while this cannot be done easily for point

estimates.

Some observations about the importance of weighting scores

can be inferred from the experimental results. First, in the

experiments, the performance of the weighted systems are reg-

ularly better than those of the unweighted counterparts. Thus,

favoring the superframes recognized with higher confidence

can yield better results. This is a strong advantage of using

the random forest classification [26] in our systems. Second,

for the system with weighting, it is obvious that the optimal

cutoff thresholds are significantly smaller than those for the

unweighted systems. That means the performance converges

faster to the optimum as the cutoff threshold increases. This

observation suggests that the weighted systems produce a

lower noise floor in the score spaces facilitating the peak

determination.
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Table VI
AED PERFORMANCE FOR DIFFERENT CATEGORIES OF THE UPC-TALP DATABASE: THE UNWEIGHTED AND WEIGHTED SYSTEMS CORRESPOND TO

β = 0.5 AND β = 0.4.

kn ds st cm cl pw kj kt pr ap co la

AEER (%)
unweighted 17.7 5.0 33.3 36.0 0.0 20.8 30.4 10.0 46.5 0.0 19.0 33.3

weighted 0.0 5.0 47.6 40.0 0.0 25.0 30.4 10.0 58.1 0.0 9.5 38.1

AED-ACC (%)
unweighted 97.0 97.4 88.9 91.4 100.0 90.9 87.8 97.4 73.3 100.0 89.5 85.0

weighted 100.0 97.4 80.0 91.5 100.0 90.9 95.5 97.4 71.5 100.0 95.0 85.7

AED-ER (%)
unweighted 23.2 30.6 33.7 41.0 27.3 21.0 27.7 17.4 63.8 13.7 15.7 44.8

weighted 21.0 30.5 60.3 29.8 22.0 31.1 26.5 12.2 51.9 15.2 8.1 59.19
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kn ds st cm cl pw kj kt pr ap co la wrong detection

Figure 8. Alignment of the AE localization results to the ground-truth AEs on one of the test audio files of UPC-TALP database: (a) waveform and ground-truth
AE durations, (b) localization results with unweighted system, and (c) localization results weighted system.

It can be seen that the optimal cutoff thresholds were sig-

nificantly different for the ITC-Irst and UPC-TALP databases.

This is not about the approach itself but the data-dependency.

In the ITC-Irst database, the audio files are much longer

and contain more AE instances compared to the UPC-TALP

database. This leads to the high variation of the maximum

scores per file between two databases. As a result, this

variation is transformed into dissimilarity in normalized score

spaces via the normalization process. In practice, the opti-

mal cutoff threshold value can be determined through cross-

validation on the training data. Furthermore, in real-time AED

scenarios where the score normalization becomes inappropri-

ate, the cutoff threshold can be defined based on the absolute

values of the scores which, again, can be found beforehand

by cross-validation.

For the sake of simplicity, we utilized a common cutoff

threshold for all event categories. However, it is more rea-

sonable that different threshold values should be adapted for

different event categories since their scoring spaces behave

differently as illustrated in Figure 4. Short events (like door

slam) produce isolated peaks, periodic events (such as phone

ring) lead to high-value plateaus, and low-SNR events (like

steps) experience a significant noise floor. To be more specific,

we show in Figures 9 and 10, for ITC-Irst and UPC-TALP

respectively, the variations of twelve event categories on three

evaluation metrics that correspond to different cutoff threshold

values.

As the results indicate, our system is robust to short-term

noise in form of wrongly recognized superframes. As reported,

the recognition accuracies of the classifiers Mbg and Mev are

only at acceptable level and, in fact, they do not need to be

perfect since we only need a portion of event superframes

to be correctly recognized to estimate the onset and offset

positions. In contrast, the performance of commonly adopted

approaches strongly relies on the quality of the classifiers. In

addition, this property also leads to the robustness to partial

event overlapping and missing data, which are often the case in

practice. Explicit background noise, such as the noise present

in outdoor urban environments, may significantly degrade the

performance of the algorithm. Thus, the proposed algorithm

in its present form is mainly suitable for situations with

reasonably low background noise, such as indoor recordings.

To enhance the robustness, noise reduction techniques and

source separation may be applied prior feature extraction, and

more noise-robust features may be sought in future works.

It is also worth mentioning again the independence to event

temporal scales of the proposed approach. Clearly, AEs in one

category and across different categories can largely vary in

their durations. Other approaches, like sliding windows [10]

and event center detection [7], need to search on a huge

temporal scale space to be able to localize the AEs. Our

approach provides the continuous estimates for the onset and

offset locations of the AEs. Therefore, we implicitly deal with

this issue.
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Figure 9. Variation of category-specific results on the ITC-Irst database with
respect to the parameter β in the weighted system.
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Figure 10. Variation of category-specific results on the UPC-TALP database
with respect to the parameter β in the weighted system.

VI. CONCLUSIONS AND FUTURE WORKS

We proposed a novel approach for efficient automatic AE

detection and localization based on regression forests. Using

the concept of acoustic superframes, we trained two classifiers

to recognize the superframes of background and different event

categories of interest. Based on the random forest regression

framework, we further learn category-specific regressors using

the event superframes annotated with their displacements to

the onsets and offsets of the events. On testing, after an event

superframe is recognized, the corresponding regressor will

provide the estimates of the onset and offset of the event

hypothesis in time. The performance on the ITC-Irst and UPC-

TALP databases exceeds those of three baseline systems by a

large margin. This superior results demonstrate the efficiency

and potential of the proposed approach.

The proposed method can be extended in different ways,

offering room for further improvement. First, evaluation on

databases with different degrees of event overlapping and

speech-overlapping [3], [36] would be valuable for many

applications. It is also useful for another evaluation for real-

time AED scenarios. Second, this framework can be easily

extended for multi-source fusion to account for low-SNR

events. Third, the criteria used for selecting the binary tests

at the split nodes of the decisive trees can be designed

for the classification purpose. Consequently, both multi-class

superframe classification and multi-class regression tasks can

be done in the same decisive trees as in [23], [24], unifying

all the tasks in the same forest model. This is especially

meaningful when the number of event categories is significant

large.
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and is a research associate at the Institute for Sig-
nal Processing, University of Lübeck. His research
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