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ABSTRACT

We propose in this paper a simple, yet efficient multi-channel fusion

framework for joint acoustic event detection and classification. The

joint problem on individual channels is posed as a regression prob-

lem to estimate event onset and offset positions. As an intermediate

result, we also obtain the posterior probabilities which measure the

confidence that event onsets and offsets are present at a temporal

position. It facilitates the fusion problem by accumulating the pos-

terior probabilities of different channels. The detection hypothe-

ses are then determined based on the summed posterior probabil-

ities. While the proposed fusion framework appears to be simple

and natural, it significantly outperforms all the single-channel base-

line systems on the ITC-Irst database. We also show that adding

channels one by one into the fusion system yields performance im-

provements, and the performance of the fusion system is always

better than those of the individual-channel counterparts.

Index Terms— Acoustic event detection, classification, multi-

channel fusion, regression forests

1. INTRODUCTION

Acoustic event detection and classification (AED/C) [1] recently

draws great attention of audio research community [2]. Its potential

applications are diverse, such as surveillance [3], healthcare [4], and

meeting room transcription [5], among many others. Compared to

AEC [6,7] which performs on isolated AEs, AED on continuous au-

dio recordings [8] is much more difficult due to nonstationary back-

ground noise, duration variance, as well as event overlap. In partic-

ular, temporal localization, i.e. determination of event boundaries

in time, is also important for some applications [5, 9] that require a

good temporal resolution of the detected AEs. However, in recent

AED evaluation campaigns [10–12], it was found that achieving an

accurate AE detection and localization from the continuous audio is

very challenging.

So far, the most commonly used method for AED has been

based on automatic speech recognition (ASR) framework [13]

where AEs are modeled as sequences of frame-level feature vectors

using Hidden Markov Models (HMM) [14,15]. Most of the submis-

sions to the recent AED evaluations, including CLEAR 2006/2007

[10, 11], and AASP DCASE 2013 [12], are of this kind. However,

the performance was not satisfactory as expected due to the natu-

ral difference between speech and AEs. Specifically, AEs exhibit a

wider range of characteristics and non-stationary effects which may

This work was supported by the Graduate School for Computing in
Medicine and Life Sciences funded by Germany’s Excellence Initiative
[DFG GSC 235/1].

not be captured in frame-based features [16]. Furthermore, HMM-

based modelling is inefficient to handle high intra-class variation

which are usually seen in AEs. Another common trend is detection-

by-classification [5, 17, 18] in which classification, e.g. by Support

Vector Machines (SVMs), is performed on long sliding windows.

Nevertheless, this approach faces difficulty in localization due to

large temporal scales of AEs. In general, the ASR framework has

shown more advantages than detection-by-classification [10].

In our previous works [8, 19], we proposed a regression ap-

proach to deal with the joint AED/C problem using random regres-

sion forests [20, 21]. The audio signals are decomposed into su-

perframes [8]. Each event superframe maintains its displacements

to the corresponding event onset and offset. On testing, inputted

with a test superframe, the learned regressors are able to estimate

positions of the AE onset and offset positions relative to it, i.e. the

boundary of the AE is jointly determined. In this paper, we extend

the work in [8] to develop a multi-channel fusion framework for

AED/C.

The majority of works in literature have tackled single-channel

AED mainly due to its simplicity. Very few attempts have con-

sidered to resolve multi-channel fusion. Recording more data with

additional microphones offers multiple views of the same problem

and one would expect an improvement when multiple audio chan-

nels are integrated. Unfortunately, it is mostly not the case for AED.

It has been shown that a naive fusion strategy would deteriorate the

system instead [11, 22, 23]. While treating the joint AED/C as a

regression task is by itself novel, our framework is also very distin-

guishable from the previous works [22–24]. The experimental re-

sults on the ITC-Irst database of non-overlapping events show that

our fusion system outperforms not only the common approaches

but also its single-channel counterparts. Furthermore, when an ad-

ditional data source is added, we obtain a better performance.

2. REGRESSION FORESTS FOR AED

In this section, we describe how to learn a regresssor for event on-

set and offset prediction with the random decision forests frame-

work [8, 20]. The idea is to group the training audio segments,

i.e. superframes [8], into hypercubes of the feature space so that

those superframes in the same hypercube have similar distances

from event onset and offset positions. It turns out that the distances

can be modeled with a simple model. The regressor is specific for a

target event category.

2.1. Training

The isolated events in training data are divided into interleaved su-

perframes [8], which are 100 ms audio segments, to obtain the

set of annotated superframes S = {(xi,di)}. A superframe is
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represented by x ∈ R
M where M is the feature dimensionality.

d = (ds, de) ∈ R
2
+ denotes the displacement vector (in super-

frames) of the superframe to the event onset ts and offset te in-

clusive. The onset displacement ds and offset displacement de are

computed as

ds = t− ts, (1)

de = te − t. (2)

In order to construct a tree of the regression forest F , a subset

of superframes is randomly sampled from S. Starting from the root,

at a split node ℓ a set of binary tests tf,τ defined in (3) is generated.

tf,τ (x) =

{

1, if x
f > τ

0, otherwise.
(3)

Here, xf denotes the value of x at the randomly selected feature

channel f ∈ {1, . . . ,M}. The variable τ is a random threshold

generated in the range of xf . An optimal test is then adopted from

the test set to split the superframe set Sℓ at the split node ℓ into two

sets S right

ℓ and S left
ℓ :

S right

ℓ ={(x,d) ∈ Sℓ

∣

∣tf,τ (x) = 1}, (4)

S left
ℓ ={(x,d) ∈ Sℓ

∣

∣tf,τ (x) = 0}. (5)

S right

ℓ and S left
ℓ are subsequently sent to the right and the left child

nodes, respectively. The adoption criteria is to minimize the dis-

placement uncertainty U :

U =
∑

∥

∥d
left
i − d̄

left
∥

∥

2

2
+

∑
∥

∥d
right
i − d̄

right
∥

∥

2

2
. (6)

Here, d̄ denotes the mean displacement vector of the correspond-

ing superframe set indicated by the superscript. By this, the super-

frames are clustered by both their features and their relative posi-

tions to event onsets and offsets.

The splitting process is recursively repeated until the maximum

depth Dmax is reached or a minimum number of superframes Nmin

is remained. Then a leaf node will be created. The displacement

vectors of the remaining superframes at the leaf node are modeled

and stored as a two-dimensional Gaussian distribution N (d
∣

∣d̄,Γ):

N (d
∣

∣d̄,Γ) =
1

2π
√

det(Γ)
exp

(

− 1

2
(d−d̄)TΓ−1(d−d̄)

)

, (7)

where d̄ = (d̄s, d̄e) and Γ =

(

Γs 0
0 Γe

)

are, respectively, the

mean and the covariance matrix of the displacement vectors. How-

ever, for simplicity we do not consider covariance between onset

and offset displacements. That is, N (d|d̄,Γ) is equivalent to two

univariate Gaussian distributions Ns(d|d̄s,Γs) and Ne(d|d̄e,Γe):

Ns(d
∣

∣d̄s,Γs) =
1√
2πΓs

exp
(

− (d− d̄s)
2

2Γs

)

, (8)

Ne(d
∣

∣d̄e,Γe) =
1√
2πΓe

exp
(

− (d− d̄e)
2

2Γe

)

. (9)

The above algorithm is repeated to grow all the trees in the forest

F .

2.2. Testing

Given a test superframe x, we aim at estimating its displacements

from the onset and offset of a target event using the learned regres-

sion forest F . We input x into a tree Ti of F . At each split node, the

stored binary test is evaluated on x, directing it either to the right or

left child until ending up at a leaf node ℓi. From (8) and (9), esti-

mates of the onset and offset displacements are obtained in terms of

the Gaussian distributions stored at ℓi:

pds(d|ℓi,x) = Ns(d
∣

∣d̄
ℓi
s ,Γℓi

s ), (10)

pde(d|ℓi,x) = Ne(d
∣

∣d̄
ℓi
e ,Γℓi

e ). (11)

The posterior probabilites are finally computed by summing up

pds(d|ℓi,x) and pde(d|ℓi,x) over all trees of the forest F :

pds(d|x) =
1

∣

∣F
∣

∣

∑

i

Ns(d
∣

∣d̄
ℓi
s ,Γℓi

s ), (12)

pde(d|x) =
1

∣

∣F
∣

∣

∑

i

Ne(d
∣

∣d̄
ℓi
e ,Γℓi

e ). (13)

Here
∣

∣F
∣

∣ denotes the number of trees of the forest F . The expecta-

tions of pds(d|x) and pde(d|x), respectively, indicate the onset and

offset displacements estimated by the superframe x.

3. MULTI-CHANNEL FUSION FRAMEWORK

3.1. The proposed fusion framework

We want to estimate where in time an event starts and ends in a

continuous audio signal. Let t and t′ both denote the time index.

From (12) and (13), an event superframe xt′ at the time t′ gives

estimates of the onset and offset displacements as

pds(d|xt′) =
1

∣

∣F
∣

∣

∑

i

Ns(d
∣

∣d̄
ℓi
s ,Γℓi

s ), (14)

pde(d|xt′) =
1

∣

∣F
∣

∣

∑

i

Ne(d
∣

∣d̄
ℓi
e ,Γℓi

e ). (15)

From (1) and (2), estimates for the onset and offset positions are

then obtained by placing Nds(d
∣

∣d̄ℓis ,Γℓi
s ) in (14) at d̄ℓis backward

from t′ and Nde(d
∣

∣d̄ℓie ,Γℓi
e ) in (15) at d̄ℓie forward from t′:

pts(t|xt′) =
1

∣

∣F
∣

∣

∑

i

Ns(t
∣

∣t
′ − d̄

ℓi
s ,Γℓi

s ), (16)

pte(t|xt′) =
1

∣

∣F
∣

∣

∑

i

Ne(t
∣

∣t
′ + d̄

ℓi
e ,Γℓi

e ). (17)

The estimates by all superframes are accumulated to yield the con-

fidence scores that the onset and offset positions of the target event

coincide at a time t:

fs(t) =
∑

t′

pts(t|xt′), (18)

fe(t) =
∑

t′

pte(t|xt′). (19)

When multiple sources are available, data fusion can be done

very naturally by accumulating the confidence scores:

fs(t) =
∑

c

∑

t′

p
c
ts(t|xc

t′), (20)

fe(t) =
∑

c

∑

t′

p
c
te(t|xc

t′). (21)
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Here, c indicates the channel index. The regressors are learned

separately for different channels. Ideally, if there exists only one

event instance in the signal, its onset and offset positions can be

determined as:

t̂s = argmax
t

fs(t), (22)

t̂e = argmax
t

fe(t). (23)

However, an audio stream typically contains multiple event occur-

rences, one after another, which must be detected sequentially. To

accomplish this, we determine a threshold for the confidence scores.

For simplicity, we employ a common threshold β for both onset and

offset confidence scores fs and fe. As soon as both accumulating

scores reach the threshold, the event is considered detected.

3.2. Handling multi-class event categories

Our regression forests are specific for a target event category. In

general, it is common that multiple event types are targeted. Out of

Y event categories of interest and C available channels, we trained

a regression forest Fy,c for a category y ∈ {1, . . . ,Y} on a chan-

nel c ∈ {1, . . . , C}. Due to the fact that the regression forests

were trained with class-specific data, it is necessary to provide

them with class-specific data to make proper estimates. We per-

form a superframe-wise classification step before regression. The

superframes are firstly passed to the binary classifier Mc
bg which

filters out the background and only allows event superframes pass-

ing through. Subsequently, these event superframes are classified

as one of the event categories of interest by the multi-class classi-

fier Mc
ev . Finally, a superframe recognized as class y is inputted to

the regression forest Fy,c for estimation. We trained the classifiers

Mc
bg and Mc

ev specifically for each channel c with random forest

classification [25]. Moreover, we take advantage of the probability

outputs Mc
ev to weight the contribution of a superframe to the final

confidence scores. As a result, (20) and (21) are re-written as:

fs(t) =
∑

c

∑

t′

δŷc

t′
,y · p(ŷc

t′ = y) · pcts(t|xc
t′), (24)

fe(t) =
∑

c

∑

t′

δŷc

t′
,y · p(ŷc

t′ = y) · pcte(t|xc
t′). (25)

Here, ŷc
t′ denotes the predicted label of xc

t′ and δ is Kronecker delta

function. p(ŷc
t′ = y) is the probability that the predicted class label

ŷc
t′ equals y. By weighting, a superframe recognized with higher

confidence will reasonably contribute more into the estimation.

4. EXPERIMENT

4.1. Experiment setup

Database: we conducted experiments on the ITC-Irst database [26]

which does not contain event overlap. It was recorded with multiple

microphone arrays and consists of twelve recording sessions. There

are totally 16 semantic event categories including door knock, door

slam, steps, chair moving, spoon cup jingle, paper wrapping, key

jingle, keyboard typing, phone ring, applause, cough, laugh, mimo

pen buzz, falling object, phone vibration, and unknown. To agree

with CLEAR 2006 challenge [10] and our previous work [8], we

evaluate the first twelve classes while the rest is considered as back-

ground. Nine recording sessions were employed as training files
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Figure 1: Single-channel detection performance over the parameter

β for ITC-Irst database.

and three remaining sessions were employed as test files. Four mi-

crophones, including: T0 1, T0 2, T4 1, and T5 1, with respect to

four side-walls of the room [26], were selected for use in the exper-

iments. A similar setting was attempted by Temko et al. [22], but

their experiments showed a deterioration on the performance.

Features and Parameters: the audio signals were decomposed

into interleaved superframes, which are 100 ms long, with an over-

lap of 90%. The dense overlap is to ensure a high level of data

correlation. To represent a superframe, we divide it into small 30

ms frames with Hamming window and 20 ms overlap. We utilize

the set of 60 acoustic features suggested in [8, 10] to represent a

small frame. They consist of: (1) 16 log-frequency filter bank pa-

rameters, along with the first and second time derivatives, and (2)

the following set of features: zero-crossing rate, short time energy,

four sub-band energies, spectral flux calculated for each sub-band,

spectral centroid, and spectral bandwidth. In turn, a superframe

consisting of multiple small frames is represented by the empirical

mean and the standard deviation of the frame feature vectors.

The classifiers Mc
bg and Mc

ev were trained using random forest

classification, and we set the number of trees to 300. The regres-

sors were trained with ten random trees each. For a category y, a

randomly sampled subset containing 50% superframes of the train-

ing set was used to train each random tree. During training, 20,000

binary tests were generated for a split node. In addition, we set the

maximum depth to Dmax = 12 and the minimum number of super-

frames at leaf nodes to Nmin = 10. The threshold β can be selected

by cross validation and it should be adapted for different categories

since their posterior probabilities show different characteristics [8].

However, for simplicity, we utilized a common threshold β for all

event categories and we set β = 0.25 in the performance compari-

son in Section 4.2.

Evaluation metrics: we used three metrics for evaluation:

Acoustic Event Error Rate (AEER) [10], AED accuracy (AED-

ACC), and AED error rate (AED-ER) [11]. The AEER and AED-

ACC metrics focus on the detection of AE instances. On the other

hand, AED-ER focuses more on AE temporal localization. These

metrics were used in CLEAR 2006/2007 challenges [10, 11] and
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Figure 2: Multi-channel fusion results: (a) improvements on the evaluation metrics when adding channels one-by-one in order of Channel

1,2,3, and 4, (b) performance comparison of the all-channel fusion system (Channel *) with CLEAR 2006 systems and its single-channel

counterparts.

Table 1: Superframe classification accuracies on the selected chan-

nels of ITC-Irst database.

Channel 1 Channel 2 Channel 3 Channel 4

Mbg 84.1 % 85.1 % 86.4 % 86.6 %

Mev 70.4 % 70.7 % 71.2 % 71.7 %

their details can be found in [10, 23].

Baseline systems: we compare the system’s performance with

three systems submitted to CLEAR 2006 [10]: SVM, HMM1, and

HMM2. They correspond to UPC-D, CMU-D, and ITC-D submis-

sions in the challenge. SVM and HMM1 pursued the detection-by-

classification approach for the event/background segmentation and

event classification. However, while SVM employed SVM classi-

fiers with RBF kernel, HMM1 used HMM for classification. HMM2

merged segmentation and classification in one step as performed in

common ASR frameworks.

4.2. Experiment results

The superframe classification accuracies on four selected channels

are listed in Table 1. In Fig. 1, the event detection results on AEER,

AED-ACC, AED-ER for each individual channel are shown with

different values of cutoff threshold β from 0.1 to 0.7 with a step

size of 0.05. We can see that all four channels illustrate a compara-

ble performance. On comparison with three systems SVM, HMM1,

and HMM2 on AEER, it is clear that using any one of the selected

channels, our detection system always beats SVM and HMM1 with a

large margin over all β, and it also outperforms HMM2 with a wide

range of β from 0.2 to 0.45. These results are consistent with the

results in our previous work [8]. The threshold value corresponding

to the best results is approximately 0.25.

The results of multi-channel fusion are illustrated in Fig. 2

with the fixed β = 0.25. As we can see in Fig. 2a, when we

add an additional channel in order of Channel 1, 2, 3, and 4, we

obtain better results. Specifically, AEER and AED-ER are decreas-

ing whereas AED-ACC is increasing when the channels are added

one-by-one. Fig. 2b shows the performance comparison. The

multi-channel fusion system not only maintains a large margin with

all the CLEAR 2006 systems but also enjoys significant improve-

ment over the single-channel counterparts. Compared to HMM2,

the best system of CLEAR 2006, the improvement is of 10.6% on

AEER. Moreover, compared the best single-channel counterpart on

the Channel 2, multi-channel fusion leads to 0.7%, 1.7%, and 4.5%

improvements on AEER, AED-ACC, and AED-ER, respectively.

4.3. Discussion

It is reasonable that an event can take place at any location in the

room and the power of the recorded signals would be inversely pro-

portional to the distances to the microphones. The closer micro-

phones will most likely produce more powerful signals, allowing

event recognition with higher confidence. Multi-channel fusion acts

as a sum over the microphones to take advantage of the high-SNR

signals and compensate the low-SNR ones. From the experiment

results, one may argue that using only Channel 2 with a little bit

lower performance can avoid computational overhead caused by

multi-channel fusion. However, in practice we are not able to de-

termine in advance which single channel is the best, and the events

can happen at any location within the room, not favoring a specific

placement of a microphone.

5. CONCLUSIONS

We proposed a multi-channel fusion framework for joint AED/C.

On each individual channel, the joint problem is treated as a re-

gression problem and subsequently addressed by class-specific ran-

dom regression forests to estimate onset and offset positions of AEs

in time which are measured by posterior probability output. The

data fusion can be done very naturally by accumulating the poste-

rior probabilities over all channels. The experimental results on the

ITC-Irst database show that the fusion system outperforms not only

the single-channel systems using common approaches in CLEAR

2006 challenge but also its single-channel counterparts.
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