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{phan, hertel, maass, mazur, mertins}@isip.uni-luebeck.de

Abstract

The human auditory system is very well matched to both hu-

man speech and environmental sounds. Therefore, the question

arises whether human speech material may provide useful in-

formation for training systems for analyzing nonspeech audio

signals, such as in a recognition task. To find out how similar

nonspeech signals are to speech, we measure the closeness be-

tween target nonspeech signals and different basis speech cate-

gories via a speech classification model. The speech similarities

are finally employed as a descriptor to represent the target sig-

nal. We further show that a better descriptor can be obtained by

learning to organize the speech categories hierarchically with a

tree structure. We conduct experiments for the audio event anal-

ysis application by using speech words from the TIMIT dataset

to learn the descriptors for the audio events of the Freiburg-106

dataset. Our results on the event recognition task outperform

those achieved by the best system even though a simple linear

classifier is used. Furthermore, integrating the learned descrip-

tors as an additional source leads to improved performance.

Index Terms: feature learning, audio event, speech model

1. Introduction

Beside human speech, the most important audio signal, compu-

tational analysis of other nonspeech audio signals (e.g. music

[1, 2], environmental sounds [3, 4]) is becoming more and more

important [5]. In this domain, signal representation remains a

fundamental problem for many other successive tasks such as

recognition [1, 6] and detection [7, 2].

Many works have focused on the development of efficient

signal representations. Various hand-crafted descriptors have

been proposed. Most of them are borrowed from speech rep-

resentations, such as mel-scale filter banks [8], log frequency

filter banks [9], and time-frequency features [10, 11]. With the

rapid advance of machine learning, automatic feature learning is

becoming more and more common [12, 13, 14, 15]. Although

considerable progress has been made in individual problems,

more often than not, these representations are derived based on

analysis of the target signals per se. We still lack a general way

of representing audio signals and specifically lack a universal

descriptor for them. Such a generic representation would be

very helpful for solving various audio analysis tasks in a homo-

geneous way.

In this work, we propose such a generic descriptor for non-

speech audio signals by measuring the correlations between the

target signal and different speech signals. The speech signals

are obtained from an external source which is not related to the

target audio signal of interest. To accomplish this, given a set

of labeled speech signals of different categories (e.g. speech

words), we are able to learn a multi-class speech classifier. In-

putting the target signal into the speech classifier, we obtain
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Figure 1: The “microwave door” audio event is represented by

its similarities to different speech words such as “one”, “she”,

and “water”.

the likelihoods that it is classified to different speech categories

modeled by the classifier. These likelihoods can be interpreted

as the acoustical closeness between the target signal and the ba-

sis speech signals. In intuition, they measure how the target

signal sounds like the sounds of the speech signals. Eventu-

ally, we used the speech classifier as a feature extractor and the

speech similarities are used to describe the target audio signal.

The idea is illustrated in Figure 1. By collecting a sufficiently

large set of basis speech categories, we are able to cover a wide

range of acoustic concepts of the world. As a result, embedding

the target audio signal into the space spanned by these bases is

expected to produce a good representation. We will show that

a better representation can be achieved by automatically con-

structing a label tree to organize the speech categories hierar-

chically and learn multiple speech classifiers for feature extrac-

tion along the tree accordingly. The proposed descriptors are

generic in the sense that once the feature extractors are trained,

they can be used to extract features for any input signals without

re-training.

A few works have explored additional data sources (e.g.

multiple channels [16], multiple modalities [17]) to augment

the analysis. However, the main goal is to compensate for low

signal-to-noise-ratio and overlapping signals. Therefore, not

surprisingly, the additional data are of the same signal under

analysis. Differently, our goal is to learn representations for

a target audio signal via external speech signals which are to-

tally unconnected to the target signal. In our experiments, we

learn the descriptors for audio event signals of the Freiburg-106

dataset [18] through speech words of the TIMIT dataset [19].

We show that our event recognition systems outperform those

achieved by the best system even though a simple linear classi-

fier is used. Furthermore, fusing the learned descriptors as an

additional source leads to improved performance of the system

built on the audio signals themselves.
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Figure 2: Similarities between audio events of the Freiburg-106 dataset and 50 speech word categories of the TIMIT dataset. Each row

of the image represents one event of the corresponding class.

2. The approach

In the following, we propose two types of similarity descrip-

tors. In Section 2.1 we look at descriptors that directly measure

similarities between different categories. In Section 2.2 we then

build tree-induced descriptors.

2.1. Nonspeech audio signal representations via speech sim-

ilarities

Given a database of speech signals

S = {(x1, c1), . . . , (xN , cN )}, where xi denotes the

low-level descriptor for the i-th signal (e.g. MFCCs [8] or log

frequency filter bank parameters [9]) and ci ∈ {1, . . . , C}
indicates the class label. The C speech classes are used as

our bases and they should ideally include all possible acoustic

concepts.

Let us denote the target audio signal as xe. Our goal is

to represent the target signal in terms of its acoustical close-

ness to the set of C basis speech classes. We accomplish this

using some classification models. Intuitively, one can learn C
1-vs-the-rest binary classifiers each of which recognizes the c-

th speech category. Such a classifier is trained using the c-th

category as positive examples and the other C − 1 classes as

negative examples. Alternatively, for convenience, we jointly

learn a multi-class speech classifier MS at once using ran-

dom forest classification [20]. The target event xe is then in-

putted into MS to obtain the classification posterior proba-

bilities φ = [φ1, . . . , φC ] ∈ R
C
+ where φc = P (c|xe) and

c ∈ {1, . . . , C}. Each entry φc quantifies how likely the tar-

get event belongs to the event category c of S, i.e. it can be

interpreted as a similarity measure.

Traditionally, the posterior probabilities produced by the

classifier MS are used to make decisions, e.g. in a recognition

task. In this work, we use the classifier MS as a feature ex-

tractor, and the vector φ is used as a descriptor for the event xe.

As a result, the audio event is embedded in the space spanned

by the speech similarities. In Figure 2, we illustrate the sim-

ilarities of audio events in the Freiburg-106 dataset [18] to 50

speech word categories of TIMIT dataset [19]. The word cate-

gories were selected randomly and we trained the classifier MS

with 200 trees. We can see distinguished patterns on different

categories, for example “cornflakes eating”. In particular, the

“background” class shows random response since it contains

different diverged sounds. Overall, the audio events are distin-

guishable by representations through the speech basis classes.

2.2. Learning a label tree of basis speech categories

We argue that in order to learn for good descriptors, we need

to choose a set of varied speech categories. With expertise, one

can carefully select such speech categories by hand. Here, we

propose to discover them from a randomly pre-determined set

S. We collectively partition the speech categories into subsets

such that they are easy to distinguish from one another. For this

purpose, we learn a label tree for the speech categories similarly

to [21]. This algorithm was originally proposed to learn a tree

structure of classifiers (the label tree). Instead, we use it to form

the sets of speech categories that can be easily distinguished.

Let ℓS ≡ {1, . . . , C} denote the label set of the speech

database S. The label tree is constructed recursively so that

each node is associated with a set of class labels. Let us con-

sider a node with a label set ℓ (and therefore, the root node is

with the label set ℓS ). We want to split the set ℓ into two sub-

sets ℓL and ℓR where ℓL 6= ∅, ℓR 6= ∅, ℓL ∪ ℓR = ℓ, and

ℓL ∩ ℓR = ∅. There are totally 2|ℓ|−1 − 1 possible partitions

{ℓL, ℓR} where | · | denotes the cardinality. We want to se-

lect the partition such that a binary classifier to distinguish ℓL

and ℓR makes as few errors as possible. The exhaustive search

for such a partition would be prohibitively expensive especially

when |ℓS | is large. Instead, we rely on the confusion matrix of a

multi-class classifier to determine a good partitioning. Our goal

is to include classes that tend to be confused with each other in

the same subset. Let Sℓ ⊂ S denote the set of speech signals

corresponding to the label set ℓ. Furthermore, suppose that we

have changed and sorted the label set ℓ so that ℓ = {1, . . . , |ℓ|}.

To obtain the confusion matrix, we divide Sℓ into two halves:

Sℓ
train to train the classifier and Sℓ

val for validation. Again,

we train the multi-class classifier using random forest classifi-

cation. Let A ∈ R
|ℓ|×|ℓ| denote the confusion matrix of the

classification on the validation set Sℓ
val. Each element Aij is

given by:

Aij =
1

|Sℓ
val,i|

∑

x∈Sℓ
val,i

P (j|x) (1)
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Figure 3: The learned label tree for 10 randomly selected

TIMIT word categories. The white and shaded nodes represent

the split and leaf nodes respectively.

where Sℓ
val,i ∈ Sℓ

val are the speech signals with label i. Aij

expresses how likely a speech sample of class i is predicted to

belong to class j by the classifier. Since A is not symmetric, we

symmetrize it as

Ā = (A+A
T )/2. (2)

Eventually, the optimal partitioning {ℓL, ℓR} is selected to

maximize:

E(l) =
∑

i,j∈ℓL

Āij +
∑

m,n∈ℓR

Āmn. (3)

By this, we tend to group the ambiguous speech categories into

the same subset, as a result, produce two meta-classes {ℓL, ℓR}
that are easy to separate from each other. We apply spectral

clustering [22] on the matrix Ā to solve (3).

Once the optimal partition {ℓL, ℓR} is determined, we learn

another binary classifier Mℓ
S . We use the set Sℓ as training

data. The samples with their labels in ℓL are considered as neg-

ative examples and others with their labels in ℓR are considered

as positive examples. The classifier Mℓ
S is then associated with

the node and used as a basis classifier for feature extraction. We

recursively repeat the process until a single class label remains

at a node.

This procedure produces totally |ℓS | − 1 basis classifiers

associated with the split nodes of the tree. Evaluating them on

the target audio signal xe will produce a feature vector of size

2(|ℓS | − 1) to describe it. It is noticed that the tree construction

and evaluation can be done in parallel, therefore, it is computa-

tionally efficient. In Figure 3, we show a label tree constructed

for ten randomly selected speech word categories of the TIMIT

dataset using the algorithm. Note that, unlike WordNet [23],

this tree does not need to capture any semantic of the words.

3. Experiments

The descriptors derived in Section 2 are generic rather than spe-

cific for a certain application. That is, once the feature extrac-

tors are learned, we can use them to extract representations for

any inputted audio signal such as music, audio events, etc. They

are different from other features learned by a conventional way,

such as bag-of-words representations [24, 13, 14], which are

task-specific and data-specific.

3.1. Experimental setup

Test datasets. We used the Freiburg-106 dataset [18] and

TIMIT dataset [19] to test our approach. The Freiburg-106 au-

dio events are considered as nonspeech target signals, and the

basis speech categories were extracted from the TIMIT dataset.

The Freiburg-106 dataset was collected using a consumer-

level dynamic cardioid microphone. It contains 1,479 audio-

based human activities of 22 categories. As in [18], we divided

the dataset so that the test set contains every second recording of

a category and the training set contains all the remaining record-

ings1.

Using the TIMIT speech database, different representation

levels (e.g. phonemes, words, and sentences) may be consid-

ered. To demonstrate the proposed concept, we use word cat-

egories here. We randomly selected C word categories with

C = {50, 100, . . . , 500} for the experiments. Only speech

words that occur more than ten times in the dataset were used,

and we only kept at most 50 samples per class.

Low-level features to represent a signal. The signals (i.e.

audio events and speech words) were firstly downsampled to

16 kHz. Each audio event was decomposed into 50 ms seg-

ments with a step size of 10 ms. Whereas, those used for a

speech signal were 25 ms and 10 ms respectively as usual use

for speech. A longer segment size was used for audio event to

better capture their nonstationary effects [7].

Although any arbitrary low-level features are feasible to de-

scribe a segment, we extracted a set of very basic acoustic fea-

tures for every audio segment: 16 log-frequency filter bank co-

efficients [9], their first and second derivatives, zero-crossing

rate, short-time energy, four sub-band energies, spectral cen-

troid, and spectral bandwidth. Totally, there were 53 features

for each segment. In turn, a whole signal is represented by the

106-dimension feature vector computed the mean and standard

deviation over its segments.

Other parameters. For the random forest classifiers used in

Sections 2.1 and 2.2, we trained them with the algorithm in [20]

with 200 trees each.

Audio event classification models. We trained our event classi-

fication systems using one-vs-one SVMs with different kernels,

including linear, RBF, χ2, and histogram intersection (hist. for

short). Except for the RBF kernel, the hyperparameters C of

the SVMs were tuned via leave-one-out cross-validation. For

the one with the RBF kernel which is usually computationally

expensive , we conducted 10-fold cross-validation to search for

the hyperparameters and the kernel parameters.

Evaluation metrics. For evaluation of classification per-

formance, we make use of the f-score metric, which considers

both precision and recall values:

f-score = 2×
precision × recall

precision + recall
. (4)

3.2. Experimental results

Flat descriptors vs. tree-induced descriptors. Let us denote

the descriptors described in Section 2.1 as flat descriptors op-

posing to the tree-induced descriptors in Section 2.2.

The performance of these two descriptors for the audio

event recognition task is shown in Figure 4. Obviously, with the

same speech bases, the tree-induced descriptors perform much

better than the flat counterparts. Specifically, the average im-

provements are 5.87%, 5.69%, 3.45%, and 4.81% with respec-

1This is based on unofficial communication with the authors of [18].



50 100 150 200 250 300 350 400 450 500
80

82

84

86

88

90

92

94

96

98

number of basis speech categories

f−
sc

o
re

 (
%

)

 

 

χ 2
hist. kernelkernel

linear kernel RBF kernel

Figure 4: Performance of the flat descriptors (solid lines) and

the tree-induced descriptors (dash lines) on audio event recog-

nition with different kernels.

Table 1: Average performances on f-score (%) of the proposed

descriptors compared to the state-of-the-art on the Freiburg-106

dataset (92.4% [18]).

Descriptors Linear RBF χ
2 Hist.

Flat 88.55 89.63 91.27 90.62

Tree-induced 94.42 95.31 94.73 95.43

tive to linear, RBF, χ2, and hist. kernels. It is also worth notic-

ing that the performance of the linear classifiers are comparable

with the other nonlinear classifiers while they are computation-

ally much cheaper to train and evaluate.

Compared to the state-of-the-art performance on the

Freiburg-106 dataset (92.4% on f-score [18]), the average per-

formances of our systems are shown in Table 1. While the flat

descriptors underperform, the tree-induced descriptors outrun

the state-of-the-art even with a simple linear classifier. These

results are impressive given the fact that we have not used the

low-level features of the audio events in the models.

Using the descriptors as additional features. In this exper-

iment, we studied how the proposed descriptors improve the

recognition with some fusion schemes when we considered

them as additional features. We implemented a bag-of-words

(BoW) model, which has been widely used for the audio event

recognition task [24, 13, 25, 14], using low-level frame-based

features of the audio events.

We used k-means for codebook learning. The entries were

obtained as the cluster centroids, and codebook matching was

based on Euclidean distance. After obtaining BoW representa-

tions, the classifier was learned using SVM with a χ2 kernel.

Again, the hyperparameters were tuned via leave-one-out cross

validation. Since the performance of such BoW models heav-

ily depends on the codebook size, we conduct the analysis with

different codebook sizes {50, 75, . . . , 250}.

Different descriptors (i.e. the BoW descriptors and the pro-

posed descriptors) are then combined in a simple multi-channel

approach [26]:

K(ei, ej) = exp
(

−
∑

k

1

Mk
D(eki , e

k
j )
)

(5)

where D(eki , e
k
j ) is the χ2 distance between the audio events

ei and ej with respect to the k-th channel. Mk is the mean

χ2 distance of the training samples for the k-th channel. For

classification, we used a nonlinear SVM with an RBF-χ2 kernel

[27].

50 75 100 125 150 175 200 225 250
90

91

92

93

94

95

96

97

98

codebook size

f−
sc

o
re

 (
%

)

 

 

BoW

BoW + Flat descriptor

BoW + Tree−induced descriptor

Figure 5: Recognition performance by fusing the proposed de-

scriptors with BoW descriptors.

The fusion results are shown in Figure 5. The fusion sys-

tems lead to 1.43% and 2.19% average improvement with the

flat and tree-induced descriptors, respectively, compared to the

BoW descriptors.

4. Discussion

The fact is that more than 6900 languages in the world [28] and

many annotated corpuses are available such as TIMIT [19] and

GlobalPhone [29]. It opens enormous opportunities to explore

for learning representations from speech. Using different levels

(e.g. phonemes, words) and different languages would result in

different representations. Their combinations would offer even

more opportunities.

It can be seen from Figure 4 that the number of basis speech

categories needs to be sufficiently large to guarantee a good per-

formance. This is understandable since with more basis speech,

we are likely to cover more acoustic concepts. However, just

increasing the number of bases does not guarantee a better per-

formance. The reason is quite obvious. For example, when the

bases are randomly selected, many similar categories (e.g. “be-

come”, and “becomes”) are likely to exist. This results in cor-

relation in some dimensions of the induced feature space which

worsen the model. As shown, organizing the bases in a tree

structure is efficient to alleviate this problem. However, it is

worth further studying how to deal with it.

5. Conclusions

We present in this paper the idea to represent a target nonspeech

audio signal by its similarities to different basis speech signals.

We further proposed to learn to organize the basis speech cate-

gories within a tree structure to achieve a better representation.

Our experiments on the audio event recognition task show that

the proposed descriptors are efficient even with a simple linear

classification model. They can also act as additional features

to augment an existing system to obtain a better performance.

The use of the word level was quite arbitrary in our study. Fur-

ther work will be directed toward defining optimally suited cat-

egories, for example, in form of triphones and other speech seg-

ments.
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