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ABSTRACT

The bag-of-audio-words approach has been widely used

for audio event recognition. In these models, a local fea-

ture of an audio signal is matched to a code word according

to a learned codebook. The signal is then represented by

frequencies of the matched code words on the whole sig-

nal. We present in this paper an improved model based on

the idea of audio phrases which are sequences of multiple

audio words. By using audio phrases, we are able to cap-

ture the relationship between the isolated audio words and

produce more semantic descriptors. Furthermore, we also

propose an efficient approach to learn a compact codebook

in a discriminative manner to deal with high-dimensionality

of bag-of-audio-phrases representations. Experiments on the

Freiburg-106 dataset show that the recognition performance

with our proposed bag-of-audio-phrases descriptor outper-

forms not only the baselines but also the state-of-the-art

results on the dataset.

Index Terms— audio phrase, bag-of-words, audio event,

recognition, human activity

1. INTRODUCTION

Machine hearing has recently received great attention [1]. In

particular, recognition of audio events is important for many

applications such as automatic surveillance, multimedia re-

trieval, and ambient assisted living. Apart from speech and

music, audio events can be indicative of natural sounds (e.g.

wind sounds, water sounds, and animal sounds) and artificial

sounds (e.g. laugh, applause, and foot steps) [2]. In this work,

we focus on the recognition of artificial sounds related to daily

human activities which are useful for ambient assisted living,

the new emerging application to tackle the fast aging popula-

tion problem [3, 4].

Many descriptors have been proposed to represent audio

events for recognition. In general, any features that are used

to describe an audio signal are also suited for audio events.

This work was supported by the Graduate School for Computing in

Medicine and Life Sciences funded by Germany’s Excellence Initiative [DFG

GSC 235/1]. We would also like to thank Johannes A. Stork for providing

the Freiburg-106 dataset.

Different hand-crafted representations have been proposed.

Most of them are borrowed from the field of speech recog-

nition, such as mel-scale filter banks [5], log frequency filter

banks [6], and time-frequency features [7, 8]. With the rapid

advance of machine learning, automatic feature learning is

becoming more common [9–11]. Among these techniques,

bag-of-words (BoW) models have been widely adapted to the

field and good performance has been reported [10–12].

Many audio events expose temporal structure, i.e. it is

possible to decompose them into atomic units of sound [13].

For example, the sound of a “using water tap” event may be

further composed of the sounds of the water running in the

tap, then pushing into the air, and finally splashing into the

sink. Therefore, aggregating temporal configurations of audio

events is a promising approach. The problem with the BoW

descriptors is that they are produced by unordered isolated

words, hence do not take the structural information into ac-

count. To model the temporal context for audio events, pyra-

mid BoW models [11] and n-gram extensions [14] have been

proposed.

In this work, we propose to use audio phrases which

are composites of multiple words. By grouping audio words

into phrases, we are able to encode the arrangement between

the words and capture the temporal information at a certain

degree. The idea is similar to the n-gram language mod-

els [14, 15] and the visual phrase concept in computer vision

field [16,17]. However, this class of representations confronts

one with the large induced dimensionality [14, 16, 17]. Our

proposed audio phrase focuses on coping with this problem.

The dimensionality of the bag-of-phrases (BoP) feature space

grows exponentially with the size of the codebook, which

hinders the conventional clustering-based codebook learning

approaches in which the number of audio words needs to be

reasonably large to obtain a good performance. To alleviate

this issue, we alternatively employ a classification model to

discriminatively learn a compact codebook in which the num-

ber of code words is equal to the number of target event cat-

egories. The experiments on the Freiburg-106 dataset show

that: (1) the BoW descriptors with the compact codebook

show superior performance compared to the clustering-based

counterparts, and (2) the recognition with BoP descriptors

outperforms not only the BoW and pyramid BoW baselines
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Fig. 1. Illustration of BoW and order-2 BoP descriptors produced for two different events. The events are simulated as two

sequences of matched code words of the codebook K = {A,B,C}.

but also the state-of-the-art results on the dataset in terms of

the f-score measure.

Our main contributions are two-fold. First, we propose

the concept of audio phrases which are combinations of mul-

tiple words and BoP descriptors for efficient audio event rep-

resentation. Second, we propose to learn a compact codebook

to deal with the large dimensionality of BoP feature space.

2. THE APPROACH

2.1. A typical BoW model

The BoW approach is a technique used to model an audio

signal using its local features. Typically, the signal is decom-

posed into multiple segments each of which is described by

a vector of low-level features. The goal is to quantize these

local features using a codebook. The codebook can be built

from the local features obtained by audio events in training

data using a clustering method such as k-means [12] or Gaus-

sian Mixture Model (GMM) [11]. In k-means based methods,

a code word is usually represented by the cluster centroid.

Within a probabilistic clustering framework, code words can

be represented by the GMM . A local feature vector is then

matched to a code word in the learned codebook with a cer-

tain weight. The weight assignment can be “hard” (e.g. with

k-means) or “soft” (e.g. with GMM). The descriptor for the

signal is finally produced by simply accumulating the weights

of the code words.

2.2. Audio phrases and BoP descriptor

While the audio words in a BoW model are unordered, it is

reasonable to group words into phrases which offer a higher

semantic information level to enrich the BoW representation.

Suppose that we have learned a codebook K = {c1, . . . , cK}
of size K from training data. Without loss of generality,

we denote an audio phrase P(ck1
,...,ckN

) of order N ≥ 1 as

an ordered sequence of N code words (ck1
, . . . , ckN

) where

ck1
, . . . , ckN

∈ K. As a result, there are totally KN possible

order-N audio phrases. It reduces to the standard BoW model

when N = 1.

Given an audio signal, we decompose it into a sequence

of S segments (x1, . . . ,xS) where xi is the descriptor of the

segment at the time index i. Each subsequence of N local

segments (xi, . . . ,xi+N−1) is then matched to the order-N

audio phrase P(ck1
,...,ckN

) with the assigned weight given by

W
(

P(ck1
,...,ckN

)|(xi, . . . ,xi+N−1)
)

=

N
∏

m=1

W(ckm
|xi+m−1).

(1)

Here, W(c|x) is the assigned weight by matching the seg-

ment x to the code word c. W can be a probability function

(e.g. using GMM-based clustering) or an indicator function

(e.g. using k-means clustering). The accumulated weight by

matching all possible order-N subsequences of the signal to

the audio phrase P(ck1
,...,ckN

) reads

W
(

P(ck1
,...,ckN

)|(x1, . . . ,xS)
)

=

S−N
∑

i=1

W
(

P(ck1
,...,ckN

)|(xi, . . . ,xi+N−1)
)

. (2)

Eventually, the audio signal is represented by the weights ob-

tained by matching it to all possible order-N audio phrases.

In Fig. 1, we illustrate the BoW and BoP representations for

two simple simulated events.

It has been shown that audio events embed temporal

structure [13]. Descriptors that encode these temporal config-

urations would offer better discrimination. Recently, the ap-

proach using temporal pyramids of BoW representations [11]

has demonstrated state-of-the-art results on several bench-

mark datasets. This model encodes the temporal layouts by

splitting the audio signal into hierarchical cells, then com-

putes BoW representations for each cell, and concatenates all



the representations at the end. Towards this goal, the ratio-

nal behind using phrases is to model the co-occurrences of

the words in local neighborhoods, and therefore encode the

temporal configuration of the events.

Furthermore, the BoP representations also exhibit a de-

noising property. Usually, if there exist sharing features be-

tween audio events [18], in which two events may have sim-

ilar subsequences, they likely occur in patterns of multiple

consecutive segments. The intermittent occurrence of a code

word, which is different from its neighbors, should be consid-

ered as noise, and therefore, filtered out. Let us revisit the ex-

ample in Fig. 1. Two different events have the code word “C”

in common which should be considered as noise. Compari-

son of the BoW descriptors, e.g. histogram intersection, will

result in a positive similarity value due to the positive weights

assigned to “C”. Whereas, the similarity value is zero when

using the BoP descriptors. In other words, using the BoP de-

scriptors has canceled out the noisy “C” and increased the

distinction between two events.

2.3. Discriminative learning of compact codebook

For the BoW models that use clustering methods for code-

book learning, the performance heavily depends on the code-

book size. More often than not, the codebook size is multiple-

order larger than the number of target event categories. To

support our argument, we show in Fig. 2 the performance of

the baseline system using a BoW model (more details in Sec-

tion 3) on the Freiburg-106 dataset [19] as a function of code-

book size. The codebook was constructed using k-means. It

can be seen that a codebook size of 200 is a good choice in

this case. Given the fact that the number of event categories

is 22, the codebook size is about ten times larger. On the

other hand, using this codebook, the feature space induced by

the order-N BoP has the dimensionality of 200N . It is 4×104

with N = 2 and 8×106 with N = 3. This exponential growth

of dimensionality makes clustering-based codebook learning

inappropriate for the BoP models.

We propose to learn a compact codebook in a supervised

manner to alleviate the high-dimensionality problem. While

the conventional clustering methods ignore the labeling infor-

mation, integrating them into the codebook construction of-

fers more discrimination power [20]. Inspired by this, rather

than using clustering, we employ classification models for

codebook matching. As a result, the codebook size is equal

to the number of target event categories, and the dimension-

ality of the BoP descriptors will be magnificently reduced.

Although multiple one-vs-rest binary classifiers would suite

this goal, we use random-forest classification [21] to learn a

multi-class classifier at once. Moreover, random forest natu-

rally supports probability outputs. Therefore, both hard and

soft codebook matching can be explored simultaneously.

Suppose that we have C event categories of interest, and

hence, the number of code words is K ≡ C. Furthermore,
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Fig. 2. Performance variation of the BoW model on the

Freiburg-106 dataset as a function of codebook size.

suppose that we have learned the random forest classifier M
for codebook matching from training audio segments. The

soft assigned weight by matching an unseen audio segment x

to a code word c ∈ {1, . . . , C} reads

W(c|x) = P (c|x). (3)

Here, P (c|x) is the probability that x is classified as class c.

On the other extreme, the hard assignment yields the weight

W(c|x) = I(c = ĉ|x), (4)

where

ĉ = argmax
c∈{1,...,C}

P (c|x), (5)

and

I(c = ĉ) =

{

1, if c = ĉ

0, otherwise.
(6)

It will be shown in the experiments that the hard assign-

ment scheme produces much sparser descriptors compared to

those obtained with the soft assignment scheme at the cost of

lower recognition accuracies.

3. EXPERIMENTS

3.1. Experimental setup

Test datasets. We tested our approach on the Freiburg-106

dataset [19]. This dataset was collected using a consumer-

level dynamic cardioid microphone. It contains 1,479 audio-

based human activities of 22 categories. Several sources of

stationary ambient noise were also present. As in [19], we

divided the dataset so that the test set contains every second

recordings of a category, and the training set contains all the

remaining recordings1.

Parameters. Each audio signal was decomposed into a

sequence of 50 ms segments with a step size of 10 ms. We

trained a classifier M using random-forest classification [21]

1This is based on unofficial communication with the authors of [19].



with 200 trees for codebook matching. For the purpose of

classification, an audio segment was labeled with the label of

the event from which it originated.

Audio event classification models. Our event recogni-

tion systems were trained on the BoP descriptors using one-

vs-one support vector machine classification (SVM) with his-

togram intersection kernel. To extract the descriptors for the

training events, we conducted 10-fold cross validation on the

training data. The hyperparameters of the SVMs were tuned

via leave-one-out cross-validation.

Baseline systems. We compare the performance of our

systems with two baseline systems:

1. Bag-of-words system (BoW): this system used a BoW

model which has been widely used for audio event recog-

nition [10, 12]. Using this model, an audio event is repre-

sented by a histogram of codebook entries.

2. Pyramid bag-of-words system (pBoW): We extracted

BoW descriptors on different pyramid levels [22] to en-

code temporal structure of audio events. This approach

has recently achieved state-of-the-art results on different

benchmark datasets [11].

For all baselines, we used k-means for unsupervised code-

book learning. The entries were obtained as the cluster cen-

troids, and codebook matching was based on Euclidean dis-

tance. We used different codebook sizes {50, 75, . . . , 250}.

In particular, we tried 2, 3, and 4 pyramid levels for the pBoW

systems. In addition to standard SVM, nonlinear SVMs with

radial basis function (RBF), χ2, and histogram intersection

kernels were also implemented. All the hyperparameters were

tuned by cross-validation. Finally, the systems which ob-

tained the best performance were compared with our systems.

Evaluation metrics. For evaluation, we used the f-score

metric, which considers both precision and recall values, to

compare recognition accuracies:

f-score = 2×
precision × recall

precision + recall
. (7)

3.2. Experimental results

Efficiency of the discriminative codebook. Let us denote

an order-N BoP system as BoP-N . To show the advantage

of the discriminative compact codebook, we compare the per-

formance achieved by our BoP-1 systems (both hard and soft

assignment schemes) with those of the baselines as in Ta-

ble 1. It is worth emphasizing that no structural information

was introduced in the model with the order-1 BoP descrip-

tors, thus, they are essentially bag-of-words descriptors with

the discriminative codebook. For the baselines, the best per-

formances were obtained with the χ2 kernel and a codebook

size of 200. On the other hand, a pyramid level of two is

found optimal for the pBoW baseline. It can be seen that our

systems consistently outperform all baselines. Individually,

our BoP-1 systems achieve equivalent or higher f-score on 17

Table 1. Recognition performance comparison in terms of

f-score (%) of the BoP-1 systems and the baselines. We

marked in bold where the BoP-1 systems give equal or bet-

ter performance than both BoW and pBoW baselines.

Event Type ID BoW pBoW
hard

BoP-1

soft

BoP-1

background 1 76.9 80.0 82.9 88.9

food bag opening 2 96.3 96.3 98.7 98.7

blender 3 100 100 100 100

cornflakes bowl 4 92.3 92.3 97.3 97.3

cornflakes eating 5 97.7 100 100 100

pouring cup 6 100 100 95.7 100

dish washer 7 96.7 97.8 97.8 98.9

electric razor 8 98.8 98.8 100 100

flatware sorting 9 91.9 91.9 92.3 92.3

food processor 10 91.9 91.9 100 97.1

hair dryer 11 100 100 100 100

microwave 12 97.9 96.8 100 100

microwave bell 13 100 100 100 100

microwave door 14 96.5 96.5 96.4 93.8

plates sorting 15 100 99.3 97.8 98.5

stirring cup 16 100 100 100 100

toilet flush 17 95.9 95.0 95.3 96.8

tooth brushing 18 96.3 96.3 100 100

vacuum cleaner 19 98.7 98.7 100 100

washing machine 20 100 100 100 100

water boiler 21 100 100 100 100

water tap 22 98.2 98.2 97.3 99.1

Average 96.6 96.8 97.8 98.3

out of 22 and 20 out of 22 event categories with the hard and

soft assigment schemes, respectively. They also outperform

the state-of-the-art results on the dataset reported in [19] with

5.4% and 5.9% relative improvements on average f-score, re-

spectively.

Increasing the order of the BoP descriptors. In this ex-

periment, we studied how the recognition performance and

the sparseness of the BoP descriptors change with increasing

orders. With a higher order, we are able to encode higher-

level dependency between the isolated words in the BoP de-

scriptors. We show in Table 2 the recognition performance of

the BoP descriptors with different orders N = {1, 2, 3, 4} for

both hard and soft assignment schemes. One can clearly see

the upward trend in f-score of the soft-assignment BoP sys-

tems when the order increases. The BoP-4 system achieves

an improvement of 0.6% on f-score compared to the BoP-1

system. Given the high-level accuracy of the BoP-1 system,

this improvement is very meaningful. When comparing the

BoP-4 system to the pBoW baseline which takes into account

the temporal structure of the events, an improvement of 2.1%

on f-score is seen. Nevertheless, the upward trend is not clear

on the system with the hard assignment scheme, most likely



Table 2. Recognition performance and sparseness of the BoP

descriptors with different orders.

BoP-1 BoP-2 BoP-3 BoP-4

hard f-score

(%)

97.8 97.8 98.0 97.8

soft 98.3 98.7 98.7 98.9

hard sparseness

(%)
81.53 97.74 99.81 99.99

soft 8.57 23.23 38.74 52.29

due to higher quantization errors. It is also expected that the

performance will level off at a certain order.

It is also worth analyzing the sparseness of the BoP de-

scriptors. We measure the sparseness by the percentage of

zeros in all descriptors. It can be seen in Table 2 that when

the order increases, the descriptors become sparser. In addi-

tion, the hard-assignment descriptors are much sparser than

the soft-assignment counterparts, especially at high orders.

Therefore, although the dimensionality of the BoP feature

space grows fast with increasing orders, computation and

storage can be very efficient due to the sparseness.

4. CONCLUSIONS

We introduced in this paper the idea of bag-of-audio-phrases

descriptor to represent audio events. An audio phrase is de-

fined as a sequence of multiple words. By using phrases

instead of isolated words, we are able to capture temporal

structure information of the events. We also proposed to

employ classification models to discriminatively learn a com-

pact codebook to cope with the high dimensionality induced

by high-order audio phrases. The empirical results on the

Freiburg-106 show that recognition with the discriminative

codebook achieves much better performance compared to

conventional clustering-based codebook. Furthermore, using

bag-of-audio-phrases descriptors, our recognition systems

outperform all baselines and the state-of-the-art results in

terms of the f-score measure.
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