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Learning Representations for Nonspeech Audio

Events through Their Similarities to Speech Patterns
Huy Phan∗, Student Member, IEEE, Lars Hertel, Marco Maass, Student Member, IEEE,

Radoslaw Mazur, Member, IEEE, and Alfred Mertins, Senior Member, IEEE

Abstract—The human auditory system is very well matched to
both human speech and environmental sounds. Therefore, the
question arises whether human speech material may provide
useful information for training systems for analyzing nonspeech
audio signals, for example, in a classification task. In order
to answer this question, we consider speech patterns as basic
acoustic concepts which embody and represent the target non-
speech signal. To find out how similar the nonspeech signal
is to speech, we classify it with a classifier trained on the
speech patterns and use the classification posteriors to represent
the closeness to the speech bases. The speech similarities are
finally employed as a descriptor to represent the target signal.
We further show that a better descriptor can be obtained by
learning to organize the speech categories hierarchically with a
tree structure. Furthermore, these descriptors are generic. That
is, once the speech classifier has been learned, it can be employed
as a feature extractor for different datasets without re-training.
Lastly, we propose an algorithm to select a sufficient subset which
provides an approximate representation capability of the entire
set of available speech patterns.

We conduct experiments for the application of audio event
analysis. Phone triplets from the TIMIT dataset were used as
speech patterns to learn the descriptors for audio events of
three different datasets with different complexity, including UPC-
TALP, Freiburg-106, and NAR. The experimental results on
the event classification task show that a good performance can
be easily obtained even if a simple linear classifier is used.
Furthermore, fusion of the learned descriptors as an additional
source leads to state-of-the-art performance on all the three target
datasets.

Index Terms—feature learning, representation, nonspeech au-
dio event, speech patterns, phone triplets.

I. INTRODUCTION

Besides human speech, the most important audio signal,

computational analysis of other nonspeech audio signals (e.g.

music [1], [2], environmental sounds [3], [4]) is becoming

more and more important [4]–[6]. In this domain, signal

representation remains a fundamental problem for many other

successive tasks such as classification [1], [7] and detection

[2], [8]. Many works have focused on the development of

efficient signal representations [7], [9]–[11]. Although consid-

erable progress has been made in individual problems, more

often than not, these representations are derived based on

analysis of the target signals per se. We still lack a general way

of representing audio signals and specifically lack a universal
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descriptor for them. Such a generic representation would be

very helpful for solving various audio analysis tasks in a

homogeneous way.

In this work, we propose such a generic descriptor for

nonspeech audio events. Using speech patterns as fundamental

acoustic concepts, we measure the closeness between the target

signal and different speech patterns. To accomplish this, given

a set of labeled speech signals of different categories (e.g.

speech words or phonemes), we are able to learn a multi-class

speech classifier. Here we consider a speech category as a

speech pattern, and these two terms will be used interchange-

ably. Inputting the target nonspeech signal into the learned

speech classifier, we obtain the classification posterior proba-

bilities which can be interpreted as the acoustical proximities

between the target signal and the speech patterns. In intuition,

they measure how much the target signal sounds like the

corresponding speech signals. Eventually, we use the speech

classifier as a feature extractor, and the speech posteriors are

used to describe the target audio signal. The idea is illustrated

in Figure 1. The speech signals are obtained from an external

source which is totally unrelated to the target audio signals of

interest. By collecting a sufficiently large set of basic speech

patterns, we are able to cover a wide range of acoustic concepts

of the world. As a result, embedding the target audio signal

into the space spanned by the similarities to these concepts is

expected to produce a good representation.

We investigate random selection of speech patterns and

further propose to automatically organize them hierarchically

on a learned label tree. By this, we tend to recursively group

the similar speech categories into disjoint groups along the tree

so that the speech meta-categories (i.e. the speech clusters)

are separated from one another. Eventually, we learn multiple

binary speech classifiers at the split nodes of the tree and

employ them for feature extraction accordingly. These pro-

posed descriptors are generic in the sense that once the feature

extractors are trained, they can be used to extract features

for any input signal without re-training. This is opposed to

other common feature learning methods [7], [10]–[13] which

usually adapt to a specific target dataset. Finally, we develop an

algorithm to select a sufficient subset from the entire available

speech patterns to learn representations for a target dataset.

This subset can well approximate the representation capability

of the entire set, yet the number of categories is much smaller.

Thus, it is computationally more efficient.

In the experiments, we used phone triplets, which are the

combinations of three successive phonemes, from the TIMIT

dataset [14] as the speech patterns, and audio event signals of
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Figure 1. The general idea can be summarized in five steps. 1) Given a speech database, C speech categories are selected as speech patterns. We study
both random selection and some problem-dependent selection algorithms in this work. 2) A speech classifier is then learned using the C selected speech
patterns. 3) Given different nonspeech audio event instances, we classify them using the learned speech classifier. 4) The vector of posterior probabilities
(ϕi

1
, ϕi

2
. . . , ϕi

C
) is then used to represent the audio event instance i ∈ {1, . . . , N} where the posterior probability ϕi

c is considered as the similarity between
the audio event instance i and the speech pattern c ∈ {1, . . . , C}. 5) The final audio event classification can be conducted, e.g. by Support Vector Machine
(SVM), using the speech-based features.

three different datasets, including UPC-TALP [15], Freiburg-

106 [16], and NAR [17] as target nonspeech signals. We show

that with a random selection of a reasonably large subset of

phone triplets to train the generic feature extractor, we can

obtain very good classification accuracies for all three datasets

of interest. Furthermore, with the small sufficient subset ob-

tained by the proposed selection algorithm, we can achieve a

performance that is very close to the representation capability

of the entire set of phone triplets. Our classification accuracies

with simple linear classifiers outperform the state-of-the-art

accuracies on two out of three datasets while maintaining

marginal gaps to those of the strong baselines (i.e. bag-of-

words and pyramid bag-of-words models). This is impressive

given the fact that with these descriptors alone, we have

not incorporated the features obtained by the target signals

themselves into the models. By considering the proposed

descriptors as external sources and integrating them with

the existing baselines, our fusion systems set state-of-the-

art performance on all datasets, i.e. they outperform all the

baselines and state-of-the-art systems.

The rest of this paper is organized as follows. Some related

works on audio event representation are briefly presented in

Section II. After that, in Section III, we describe how to extract

the generic descriptors for a nonspeech audio signal given a

set of speech patterns. Our proposed algorithm to select a

sufficient set of speech patterns is then described in Section

IV. The experimental setup and results are presented in Section

V followed by the discussion in Section VI and conclusions

in Section VII.

II. RELATED WORK

In general, any features that are used to describe an audio

signal will be applicable for an audio event classification task.

Various hand-crafted descriptors have been proposed. The tra-

ditional features for speech recognition like MFCCs [18] and

log frequency filter bank parameters [19] have been prevalent.

Various other features have also been developed and found

useful for audio events, for instance, spectro-temporal features

based on spectrograms [9], [20]–[22], wavelet transforms [23],

and stabilized auditory images (SAI) [24], [25].

With the rapid advance of machine learning, automatic

feature learning is becoming more and more common. Bag-

of-words models have been most widely used for audio event

representation [10]–[13], [26]. Other codebook-based repre-

sentations have also been employed, such as sparse coding

[27], [28], non-negative matrix factorization (NMF) [29], and

exemplar-based coding [30]. There have also been several

attempts to encode the structural information of audio events.

An audio event can be considered as a sequence of atomic

units of sound [31] or symbols [32], [33], and the patterns of

occurrences can be used as the signatures in the classification

task. Alternatively, the structural information can also be

captured with pyramid bag-of-words model [12] and Self-

Organizing Maps (SOM) [34]. There is also a trend of applying

deep neural networks [10] for automatic feature learning,

where the structures are captured on different layers of the

network. However, while it has been shown a breakthrough for

speech recognition [10], [35], [36], the application on audio

events is mainly to gain the robustness [37], [38] under noisy

conditions.

The hand-crafted and learned features are different in some

aspects. Firstly, the hand-crafted features (e.g. MFCCs, spec-

trograms) are generic. That is, the feature extraction process

is the same for different datasets. On the contrary, the goal

of the feature learning methods is to induce feature spaces

that are empirically most discriminative for the audio events

under analysis. Therefore, they are data-specific. Secondly,

the learned features are usually built on top of hand-crafted

features, hence, they are of higher semantic level and often
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enjoy better recognition accuracy [7], [12] or better robustness

[37]. Our proposed learning approach, on the other hand,

fundamentally differs from these conventional learning ap-

proaches. Instead of producing a data-specific feature space,

we make use of the existing feature space that is formed

by speech patterns and just need an appropriate method to

discover. Finally, our learned features remain generic as is the

hand-crafted case rather than specific for a certain dataset.

Once the feature extractors are learned, we can use them

to extract representations for any inputted audio signal such

as music, audio events, etc. They are different from other

features learned in a conventional way, such as bag-of-words

representations [11], [12], [39], which are task-specific and

data-specific.

Our work is also linked to enhanced posteriors for speech

recognition in the field of automatic speech recognition (ASR)

[40]–[42]. In order to improve the speech recognition task,

the posterior probabilities (i.e. phone or word levels) obtained

by a first discriminative classification layer (for example,

using Multi-Layer Perceptrons (MLPs) [40], Deep Neural

Networks (DNNs) [35], and Convolutional Neural Networks

(CNNs) [43]) are then used either as local acoustic scores to

estimate the emission probabilities required in Hidden Markov

Models (HMMs) [35], [40], [42], [43] or as acoustic features

in the Tandem approach [41]. Our approach makes use of

discriminately trained speech classifiers to derive posterior

probabilities as representations for nonspeech audio events.

Finally, our work bears some resemblances to those ex-

ploring additional data sources (e.g. multiple channels [44],

multiple modalities [45]) to augment the nonspeech audio

event analysis. However, their main goal is to compensate for

low signal-to-noise-ratio and overlapping signals. Therefore,

not surprisingly, the additional data are of the same kind as

the target signals under analysis. Our goal, however, is to learn

representations for a target audio signal via external speech

signals that are totally unconnected to the target signal.

This is an extension of our preliminarily work [46] in which

we showed that human speech signals at the word level can be

used to learn representations for nonspeech audio events. The

extension includes using phone triplets as an alternative for

words which is experimentally shown more appropriate, the

generalization of the results on different nonspeech audio event

datasets, further analysis in greater detail, and the selection

algorithm for a sufficient subset of speech patterns.

III. LEARNING SPEECH-BASED DESCRIPTORS FOR

NONSPEECH AUDIO SIGNALS

In the following, we first describe the low-level features

that are employed to represent an audio signal (i.e. both

speech and nonspeech). Afterward, we propose two types of

generic speech-based descriptors for nonspeech audio signals,

flat descriptors in Section III-B and tree-induced descriptors in

Section III-C, that are built on top of the low-level features. Fi-

nally, we also compare our proposed approach to conventional

speech models under the perspective of the field of ASR.

administration   /ax  d  m  ih2  n  ix  s  t  r  ey1  sh  ix  n/

ax_d_m d_m_ih2 m_ih2_n

Figure 2. An example of phone triplets. The word “administration” is
decomposed into its constituent monophones. Phone triplets, such as ax_d_m,
d_m_ih2, and m_ih2_n, are combinations of three consecutive phones.

A. Phone triplets and low-level acoustic features

There exist different speech levels (e.g. phonemes, words)

that may be considered for speech patterns. Whereas the

number of single phones is limited, combining them would

create more diverged speech patterns, and hence enrich the

representation capability. We propose to use phone triplets in

this work. We demonstrate some examples of phone triplets in

Figure 2. Note that phone triplets are different from triphones

that have been commonly adopted in speech recognition

task [47]–[50]. A triphone is a single phone that takes into

account the previous and successive phones as the context.

In contrast, a triplet is the combination of three consecutive

phones as a whole. Furthermore, the temporal order of the

constituent phones in a triplet is not important. For example,

all combinations of three single phones {ax, d, m}, such as

d_ax_m, ax_d_m, m_ax_d, etc. belong to the same class in

our setup.

There are also other reasons why using phone triplets is

more appropriate than the short phone units. Nonspeech audio

events are usually long signals (in the order of some hundred

miliseconds up to several seconds), which are much longer

than phone units. Phone triplets, which are longer speech

segments (i.e. a phone triplet is about three times longer than a

triphone), are more compatible to long nonspeech signals than

the single phones alone. Higher orders of combination would

also be appropriate but they require more data. Furthermore,

we also need long signal segments to obtain a good estimation

of feature standard deviation which is described below.

In order to measure the similarities between speech and

nonspeech signals, it is necessary to represent them in a

common feature space. The signals (i.e. audio events and

speech triplets) were firstly downsampled to 16 kHz. Each

audio event was decomposed into 50 ms frames with a step

size of 10 ms, whereas the frame length used for speech signals

was 25 ms as usual. For speech, 20-30 ms segmentation is

common because the signal in a segment is more or less

stationary, and the shortest phones (some plosives) have a

duration of around 20 ms. However, nonspeech audio events

exhibit a wider range of characteristics [8], [51], and for the

event recognition task it is important to recognize the event as

a whole and not every single 20 ms fragment of it. Therefore,

longer frames appear to be more appropriate than traditional

short ones.

Although any arbitrary low-level features are feasible to

describe a frame, we extracted a set of very basic acoustic

features for every audio frame: 16 log-frequency filter bank co-

efficients [19], their first and second derivatives, zero-crossing

rate, short-time energy, four sub-band energies, spectral cen-

troid, and spectral bandwidth. Totally, there were 53 features

for each frame. In turn, a whole segment, either a phone triplet



4 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. X, NO. X, FEBRUARY 2016

or the signal corresponding to one event, is represented by a

106-dimensional feature vector computed from the mean and

standard deviation over its frames.

B. Flat descriptor via speech similarities

Given a database of labeled phone triplet signals

S = {(x1, c1), . . . , (xN , cN )}, where xi denotes the low-

level feature vector for the i-th signal as described in Section

III-A, and ci ∈ {1, . . . , C} indicates the class label where

C indicates the number of triplet categories. The number of

categories should be as large as possible and ideally include

all possible acoustic concepts of the world.

Let us further denote the low-level feature vector of the

target nonspeech audio signal as xe. Our goal is to represent

the target signal in terms of its acoustical closeness to the set

of C basis speech patterns. We accomplish this using some

classifiers trained on the speech patterns. For convenience,

we jointly learn a multi-class speech classifier MS at once

using random forest classification [52]. Other classification

algorithms, e.g. DNNs, may be alternatively used.

After training the speech classifier, the target event xe is

then inputted into MS to obtain the classification posterior

probabilities ϕ = [ϕ1, . . . , ϕC ] ∈ R
C
+ where

ϕc = P (c|xe). (1)

Each entry ϕc quantifies how likely the target event is to the

speech category c of S , i.e. ϕc can be interpreted as a similarity

measure.

Traditionally, the posterior probabilities produced by the

classifier MS are used to make decisions, such as in a

recognition task. Here, we employ the classifier MS as a

feature extractor, and the vector ϕ is used as a descriptor

for the event xe. As a result, the audio event is embedded

in the space spanned by the speech similarities. In Figure 3,

we illustrate the similarities of audio events in the Freiburg-

106 dataset [16] to 50 categories of phone triplets of the

TIMIT dataset [14]. The phone triplet categories were selected

randomly and we trained the classifier MS with 200 trees.

We will further describe the experiments in Section V. Al-

though the similarity responses appear to be noisy, different

event categories exhibit distinguished patterns, except for the

“background” class which shows random responses since it

contains many different kinds of sounds.

C. Tree-induced descriptor using a label tree of speech cate-

gories

We argue that in order to learn good descriptors, we need to

choose a set of varied speech patterns. Armed with expertise,

one can carefully select such speech categories by hand. Here,

we propose to discover them from a pre-determined set S .

We collectively partition the speech categories into disjoint

subsets in such a way that they are easy to distinguish from one

another. For this purpose, we learn a label tree for the speech

categories similarly to [53]. This algorithm was originally

proposed to learn a tree structure of classifiers (the label tree).

Instead, we use it to form the sets of speech categories that

can be easily distinguished from one another. By doing so,

we have reduced the complex flat multi-class classification

problem into multiple simpler binary classification problems.

Training the binary classifiers is easy. Furthermore, we gain

the average classification performance which is an important

factor to achieve a good representation for nonspeech audio

events as shown in Section VI-C.

Let ℓS = {1, . . . , C} denote the label set of the speech

database S . The label tree is constructed recursively so that

each node is associated with a set of class labels. Let us

consider a node with a label set ℓ (and therefore, the root

node is assigned with the label set ℓS ). We want to split the

set ℓ into two subsets ℓL and ℓR so that

ℓL 6= ∅, (2)

ℓR 6= ∅, (3)

ℓL ∪ ℓR = ℓ, (4)

ℓL ∩ ℓR = ∅. (5)

There are totally 2|ℓ|−1−1 possible partitions {ℓL, ℓR} where

|·| denotes the cardinality. We want to select the partition such

that a binary classifier to separate ℓL and ℓR makes as few

errors as possible. An exhaustive search for such a partition

would be prohibitively expensive especially when |ℓS | is large.

Alternatively, we rely on the confusion matrix of a multi-

class classifier to determine a good partitioning. Our goal is

to include classes that tend to be confused with each other

in the same subset. Let Sℓ ⊂ S denote the set of speech

signals corresponding to the label set ℓ. Furthermore, suppose

that we have changed and sorted the label set ℓ so that ℓ =
{1, . . . , |ℓ|}. To obtain the confusion matrix, we divide Sℓ into

two halves: Sℓ
train to train the classifier and Sℓ

val for validation.

Again, we train the multi-class classifier using random forest

classification. Let A ∈ R
|ℓ|×|ℓ| denote the confusion matrix of

the classification on the validation set Sℓ
val. Each element Aij

is given by:

Aij =
1

|Sℓ
val,i|

∑

x∈Sℓ

val,i

P (j|x) (6)

where Sℓ
val,i ⊂ Sℓ

val are the speech signals with label i. Aij

expresses how likely a speech sample of class i is predicted to

belong to class j by the classifier. Since A is not symmetric,

we symmetrize it as

Ā = (A+A
T )/2. (7)

Eventually, the optimal partitioning {ℓL, ℓR} is selected to

maximize:

E(ℓ) =
∑

i,j∈ℓL

Āij +
∑

m,n∈ℓR

Āmn. (8)

By this, we tend to group the ambiguous speech categories

into the same subset, as a result, produce two meta-classes

{ℓL, ℓR} that are easy to separate from each other. We apply

spectral clustering [54] on the matrix Ā to solve a relaxed

version of the optimization problem in (8).

Once the optimal partition {ℓL, ℓR} is determined, we

learn another binary classifier Mℓ
S using the whole set Sℓ

as training data. The samples with their labels in ℓL are
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background bag blender cornflakes bowl cornflakes eating cup

dish washer electric razor flatware sorting food processor hair dryer microwave run

microwave bell microwave door plates sorting stirring cup toilet flush tooth brushing

vacuum cleaner washing machine water boiler water tap

Figure 3. Similarities between audio events of the Freiburg-106 dataset and 50 phone triplet categories of the TIMIT dataset. Each row of the image represents
one event instance of the corresponding class while the columns represent the indices of the speech categories.
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10-Class Speech Classifier
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Figure 4. Speech label tree construction. On the left, the learned label tree for 10 randomly selected TIMIT word categories is shown. The white and shaded
nodes represent the split and leaf nodes respectively. On the right, the splitting process at a split node (the root) is illustrated. First, the multi-class speech
classifier is learned. The confusion matrix is then obtained using cross validation. Finally two clusters of speech labels are formed using spectral clustering
and assigned to the child nodes. The words in the same cluster usually contains similar phones, such as the two closely related phones l (in “OILY” and
“ALTHOUGH”) and el (in “TROUBLE”).

considered as negative examples and others with their labels

in ℓR are considered as positive examples. The classifier Mℓ
S

is eventually associated with the node and used as a feature

extractor afterwards. We recursively repeat the process until

a single class label remains at a leaf node. This procedure

produces totally |ℓS | − 1 binary classifiers associated with the

split nodes of the tree. Evaluating them on the target audio

signal xe will produce a feature vector of size 2(|ℓS | − 1).
It is noticed that the tree construction and evaluation can be

done in parallel, therefore, it is computationally efficient.

In Figure 4, we portray a label tree constructed for ten ran-

domly selected speech word categories of the TIMIT dataset

using the proposed algorithm. For the sake of simplicity,

we use speech words for demonstration. Note that, unlike

WordNet [55], this tree does not need to capture any semantic

information of the words.

D. Comparison with conventional speech models

Although it appears plausible to employ the conventional

speech models known from the field of ASR, e.g. frame-

based acoustic modeling followed by temporal sequencing by a

HMM [18], for speech classification, there are various reasons

for not doing so. Firstly, human speech is temporally well-

structured, where it is possible to decompose it into constituent

phonemes. Hence, HMMs that explicitly model temporal de-

pendencies are able to capture the development of the speech

signals very well. However, the characteristics of nonspeech

audio events differ from those of speech. That is, no sub-word
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dictionary exists for nonspeech audio events, and compared to

speech alone, they expose a much wider variety in frequency

content, duration, and profile. As a result, a HMM that assumes

independence between adjacent observations in time may be

inefficient to capture this information. Secondly, in practice, in

the audio event classification/detection challenges so far, such

as CHIL CLEAR 2006/2007 [56], [57], and IEEE AASP [58],

the ASR-like systems were shown inferior compared to the

classifiers trained on global features extracted from the whole

signals for the event classification task. These findings form

a basis for our choice of the simple random-forest classifiers

trained on global features of speech signals. Nevertheless, we

also study the effects of preserving temporal information of

the signals in the experiments in Section VI-B.

While decision-tree based clustering has been proposed

in the field of ASR, such as for triphone clustering [59]–

[62], our proposed clustering approach can be distinguished

from them in different aspects. Firstly, compared to the rule-

based clustering in [59], [62], which usually require linguistic

expertise to design the splitting rules, our proposed technique

is data-driven and absolutely automatic. Secondly, with the

data-driven principle, the hierarchical clustering in [60]–[62]

is unsupervised, and the clustering is performed on the original

Euclidean feature space with the assumption that the clusters

are well defined and partially separated. The idea of spectral

clustering [54] used in our approach is different from them in

essence. The data is first transformed into the similarity space

where the clustering takes place. Furthermore, we enforce the

transformation to handle nonlinearity, i.e., regardless of the

geometrical shape of the clusters, by discriminatively training

the nonlinear random-forest classifiers at the split nodes of the

label tree and, subsequently, considering the confusion matrix

of the classification as similarity measure.

IV. SELECTION ALGORITHM FOR A SUFFICIENT SUBSET OF

SPEECH BASES

Given a target dataset of Y categories of nonspeech audio

events, among the whole world of diverse speech patterns,

some of them are more relevant and contributive for repre-

sentation learning than others. If we can somehow select the

most relevant and contributive ones, we will gain different

benefits: reduced computational cost of training classifiers,

smaller dimensionality in speech-based representations for au-

dio events, and, finally, reduced computational cost of training

final event classifiers. Intuitively, a concept producing a flat

proximity distribution on different event categories would not

be helpful to tell apart the events and should not be included.

In contrast, adding a concept that has a skewed distribution,

peaking on a certain event category, would gain discrimination

between the events of this class from the others. Therefore, the

question arises how to select a subset of most relevant speech

categories from the entire set of available ones. In this section,

we propose a simple yet effective method to identify a small

set of discriminative speech patterns that is sufficient to learn

the representation for a target dataset at hand.

To accomplish this, we measure how close the speech

category c is to a single audio event category y ∈ {1, . . .Y}.

It is similar, but in a reversed manner, to the way we mea-

sure the similarities of a nonspeech audio event to different

speech categories. From the training data of Y target event

categories, we are able to learn a multi-class event classifier

ME . Inputting a speech signal xs of the class c into ME ,

we obtain its closeness to the nonspeech event category y as

P (y|xs). The closeness κ of the speech category c and the

nonspeech event category y is then computed as

κ(c, y) =
1

|Sc|

∑

xs∈Sc

P (y|xs). (9)

Here, Sc denotes the set of speech signals of the speech

category c. A higher closeness implies that the speech signals

of the speech category c sound more similar to the events of

the event category y.

After ranking the speech categories based on their closeness

with respect to the event category y, we can easily obtain a

subset of the speech categories that are closest to the event

category y. The selection of the sufficient subset of speech

patterns is as follows. The subset is firstly initialized with the

closest speech categories selected for all Y event categories.

We then repeatedly add the next M top speech categories

for each nonspeech audio event category. At every step, we

learn the tree-induced descriptors for the audio event signals

using the current subset and evaluate the cross-validation

classification accuracy. The process is continued as long as

we obtain a better or equal accuracy of the cross-validation

classification. Note that nothing prevents a single speech

category to be selected by several audio event categories. This

is expected due to sharing features between them [7].

V. EXPERIMENTS

A. Final audio event classification

After obtaining the speech-based descriptors (e.g. the flat

and tree-induced descriptors) for nonspeech audio events,

we trained our final event classification systems using one-

vs-one SVMs. Different kernels were considered, including

linear, radial basis function (RBF) kernel, χ2, and histogram

intersection (hist. for short) kernels. The hyperparameters of

the SVMs were tuned via 10-fold cross-validation.

The random forest classifiers used for speech classification

described in Sections III and IV were trained with the algo-

rithm in [52] with 200 trees each and ten randomly selected

features for each split. We also discuss in Section VI-C how

varying the number of trees will affect the learned descriptors.

B. Datasets

We extracted and used the phone triplet categories from the

TIMIT dataset [14]. The corpus contains about five hours of

speech with 6,300 utterances in total. Overall, 630 speakers

from eight major dialect divisions of the United States spoke

ten sentences. The phonetic set consists of 61 phones which is

then reduced into 39 phones following the standard procedure

[48]. With 39 base phonemes, there exists a vast number

of triplet categories. However, in order to build a reliable

speech classification model, we only kept those categories that
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have at least ten samples. Consequently, 2,256 of such triplet

categories were retained and used as basic acoustic concepts.

Lastly, for each category, we only kept at most 100 speech

samples which were randomly selected. The intention of this

is to make an even distribution of training data and, hence,

a balanced classification problem. Larger speech corpora will

allow for a larger number of speech samples.

We used audio events of three independent datasets, in-

cluding UPC-TALP [45], Freiburg-106 [16], and NAR [17],

as the target nonspeech signals. These datasets are recorded

in different environments, and hence, differ in reverberation

characteristics. The summary of the datasets is shown in Tables

I, II, and III respectively.

• The UPC-TALP dataset [45] was recorded in a meeting-

room environment. This dataset is multi-channel and

multimodal (i.e. audio and video), and contains recording

sessions of both isolated and spontaneous audio events.

However, we only made use of recordings with iso-

lated events and a single audio channel (channel 10).

Correspondingly, there are 8 recording sessions where

6 different participants performed 10 times each event.

Totally, there are 1,418 instances of 11 event categories.

Following the setting in [63], we alternatively used 7

sessions for training and the remaining session for testing.

The leave-one-session-out cross-validation accuracy is

finally reported.

• The Freiburg-106 dataset [16] was collected using a

consumer-level dynamic cardioid microphone in kitchen

and bathroom environments. It contains 1,476 audio-

based human activities of 22 categories. Particularly,

several sources of ambient noise (e.g. PC fans whirring)

were also presented. As in [16], we divided the dataset

so that the test set contains every second recording of a

category and the training set contains all the remaining

recordings1.

• The NAR dataset [17] was recorded using the frontal

300Hz - 18kHz bandpass microphone of a NAO robot

with different positions in both home and office environ-

ments. The recording process also suffered from robot-

head fan noise. Interestingly, this dataset includes some

speech categories and they are also treated as audio

events in general. Each event class has 20 event instances,

except for the classes in the “Kitchen” scenario (cf. Table

III), which has 21 instances. Overall, it consists of 852

sound signals of 42 classes, both speech and nonspeech,

with different temporal and spectral characteristics. As in

[17], we randomly divided the dataset into 10 parts and

conducted 10-fold cross-validation. The cross-validation

performance accuracy is then reported.

C. Baseline systems

We implemented the following baseline systems for com-

parison:

• Bag-of-words (BoW) system: The implemented BoW

model has been widely used for audio classification

1This is based on unofficial communication with the authors of [16].

Table I
SUMMARY OF THE UPC-TALP DATASET [45].

Event Type
# event instance

S1 S2 S3 S4 S5 S6 S7 S8 Total

knock (door, table) 9 8 10 10 10 8 11 13 79

door slam 17 15 19 20 40 37 56 52 256

steps 10 10 8 23 43 34 28 50 206

chair moving 19 37 32 22 23 38 34 40 245

spoon (cup jingle) 10 11 13 11 10 15 11 15 96

paper work 9 11 10 8 17 12 12 12 91

key jingle 11 11 11 8 0 13 10 18 82

keyboard typing 10 10 13 12 10 13 10 11 89

phone ringing 11 18 11 14 8 11 13 15 101

applause 9 5 9 11 12 9 14 14 83

cough 10 10 12 13 9 13 11 12 90

Total 125 146 148 152 182 203 210 252 1,418

Table II
SUMMARY OF FREIBURG-106 DATASET [16].

Event Type
# event
instance

Event Type
# event

instance

background 47 microwave 92

food bag opening 80 microwave bell 24

blender 60 microwave door 86

cornflakes bowl 36 plates sorting 135

cornflakes eating 43 stirring cup 59

pouring cup 22 toilet flush 124

dish washer 89 tooth brushing 29

electric razor 83 vacuum cleaner 79

flatware sorting 40 washing machine 67

food processor 35 water boiler 65

hair dryer 66 water tap 115

Total 1,476

Table III
SUMMARY OF NAR DATASET [17].

Scenarios Taxonomy Event Type

Kitchen

“Mouth” sound eating, choking

Cooking cuttlery, fill a glass, running the tap

Moving
open/close a drawer, move a chair,

open microwave, close microwave

Alarms microwave, fridge, toaster

Office
Door close, open, key, knock

Others ripped paper, zip, (another) zip

Nonverbal fingerclap, handclap, tongue clic

Speech
Numbers

one, two, three, four, five, six,

seven, eight, nine, ten

Orders
hello, left, right, turn, move, stop,

Nao, yes, no, what
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recently [11], [12], [26], [39], [64]. Using this model, an

audio event is represented by a histogram of codebook

entries.

• Pyramid bag-of-words (pBoW) system: We extracted

BoW descriptors on different pyramid levels [65] to

encode the temporal structure of audio events. This

approach has recently achieved state-of-the-art results on

different benchmark datasets [12].

For all baselines, we used k-means for codebook learning.

The entries were obtained as the cluster centroids, and code-

book matching was based on Euclidean distance. In fact, the

performance of these systems highly depends on the codebook

size and the pyramid level. Although an appropriate setting can

be sought for each dataset using cross-validation, we com-

monly perform analysis with different settings for all datasets.

We used different codebook sizes of {50, 100, 150, 200, 250}.

In particular, we opted {2, 3, 4} pyramid levels for the pBoW

systems. For convenience, let us denote a level-n pBoW

system as pBoW-n where n ∈ {2, 3, 4}. The final classifica-

tion systems were implemented using one-vs-one SVMs with

four kernels, including linear, RBF, χ2, and hist. Again, the

hyperparameters of the SVMs were also tuned via 10-fold

cross-validation.

D. Experimental results

1) Flat descriptors vs. tree-induced descriptors: The per-

formance of the flat and tree-induced descriptors on audio

event classification are shown in Figures 5, 6, and 7 for three

target datasets (those without temporal information) respec-

tively. From the whole set of 2,256 phone triplet categories, we

randomly selected {50, 100, . . . , 1000} categories and evalu-

ated them. Note that the flat and tree-induced descriptors were

always built upon the same subsets of phone triplets. It is also

worth emphasizing again that at each time we learned the

speech-based feature extractor and commonly applied it to the

three different datasets. We repeated the experiments ten times

and report the mean and standard deviation of the classification

accuracies. Obviously, with the same speech patterns, the tree-

induced descriptors consistently perform much better than the

flat counterparts. Specifically, the average accuracy gains are

summarized in Table IV for different kernels and datasets.

It can be seen that the performance curves appear to saturate

at some points after which adding more speech patterns

results in little improvement. In addition, more often than not,

random selection of a set of speech bases yields a reasonable

performance provided that the number of speech categories

is large enough, i.e. after the saturation points. Last but not

least, the performance of the linear classifiers is comparable

with the other nonlinear classifiers while linear classifiers are

computationally much cheaper to train and evaluate.

The rational behind the performance improvement of tree-

induced descriptor against the flat ones is that when we decom-

posing the original complex speech classification problem into

simple binary classification problems, we are able to classify

the speech patterns more correctly. As a results, the similarities

between a target nonspeech signal and the speech patterns

can be more accurately measured. All of this leads to better

Table IV
AVERAGE ABSOLUTE ACCURACY GAIN (%) OF THE TREE-INDUCED

DESCRIPTORS COMPARED TO THE FLAT DESCRIPTORS.

Linear RBF χ2 Hist.

UPC-TALP 6.50 5.60 4.95 5.07

Freiburg-106 7.99 7.88 5.93 6.87

NAR 7.19 7.49 5.57 6.00

representations with the tree-induced descriptors compared to

the flat descriptors. We further discuss about the importance

of the underlying speech classifiers in Section VI-C.

2) Sufficient subset of speech patterns vs. the whole set: As

mentioned above, when the number of speech patterns reaches

some certain saturation points, adding more categories only

leads to marginal improvements. It is preferable to somehow

obtain a small subset of speech patterns that produces a low-

dimensional feature space without losing the accuracy too

much. In this experiment, we used the algorithm described

in Section IV to select such a sufficient speech subset. At

every step of the algorithm, we collectively add the next

M = 5 top speech patterns for each event class into the current

subset. Note that this algorithm is deterministic, therefore, the

resulting subset is fixed rather than random. Finally, these

subsets are specific for different datasets and kernels.

The performance of these sufficient subsets is indicated by

the red star in Figures 5, 6, and 7. It can be seen that in most of

the cases their performances are above the performance curves

of the random settings. Furthermore, their positions are likely

in the saturation regions of the performance curves.

In order to show that the sufficient subsets are actually

representative for the entire set of all speech patterns (i.e. 2,256

phone triplet categories), we compare their representation

capabilities. The representation capability is defined as the

accuracy of the classification task. In Figure 8, we show

the sizes and the accuracies achieved by the efficient subsets

against those obtainable with the entire set. As can be seen,

the differences in accuracy are negligible whereas the sizes of

the efficient subsets are significantly smaller compared to the

entire set.

3) Using the proposed descriptors as additional features:

In this experiment, we investigate how the proposed speech-

based descriptors improve the final event classification with

some fusion schemes when we consider them as additional

features. We employed the descriptors induced by the sufficient

subsets with respect to the χ2 kernel to integrate with the

descriptors obtained by the baseline systems: BoW, pBoW-2,

pBoW-3, and pBoW-4. We then analyzed results with different

codebook sizes of the baseline systems.

Different descriptors (i.e. the baseline descriptors and the

proposed ones) are combined in a multi-channel approach

[66]:

K(ei, ej) = exp
(

−
∑

k

1

D̄k
D(eki , e

k
j )
)

(10)

where D(eki , e
k
j ) is the χ2 distance between the audio events
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Figure 5. UPC-TALP dataset. Performance of the flat and tree-induced descriptors on audio event classification with different kernels.
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Figure 6. Freiburg-106 dataset. Performance of the flat and tree-induced descriptors on audio event classification with different kernels.
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Figure 7. NAR dataset. Performance of the flat and tree-induced descriptors on audio event classification with different kernels.
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Figure 8. Sufficient subsets vs. the whole set. Sizes and representation
capability of the efficient subsets compared to those of the entire set of all
speech patterns.

ei and ej with respect to the k-th channel. D̄k is the mean

χ2 distance of the training samples for the k-th channel.

For classification, we used nonlinear SVMs with the RBF-χ2

kernel [67].

The fusion results are shown in Figures 9, 10, and 11

for the UPC-TALP, Freiburg-106, and NAR datasets, respec-

tively. The results make clear that by augmenting the baseline

Table V
AVERAGE ABSOLUTE ACCURACY GAIN (%) OF THE FUSION SYSTEMS

COMPARED TO THE BASELINE SYSTEMS.

BoW pBoW-2 pBoW-3 pBoW-4

UPC-TALP 0.58 0.34 0.30 0.23

Freiburg-106 2.51 2.54 2.54 2.57

NAR 3.76 2.68 2.35 2.46

systems with the proposed descriptors, we consistently boost

their performance to higher levels. We averaged the accuracy

gains over different codebook sizes and summarized them in

Table V. While the used fusion scheme is very simple, other

better alternatives can also be used, such as multiple kernel

learning framework [68], [69].

4) Performance comparison: We provide in this section an

overall picture of the performance of different systems: our

proposed systems, the baseline systems, our proposed fusion

systems, and the state-of-the-art systems. The performance

of our systems are reported using those obtained by the

sufficient subsets with different kernels. For the baselines

BoW, pBoW-2, pBoW-3, and pBoW-4, we used their best

performance amongst different codebook sizes and kernels

for comparison. The fusion systems were implemented by

integrating our proposed descriptors with the corresponding

best baseline systems. Finally, the state-of-the-art performance

of UPC-TALP, Freiburg-106, and NAR datasets were reported
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Table VI
PERFORMANCE COMPARISON (%) BETWEEN DIFFERENT SYSTEMS: OUR PROPOSED SYSTEMS, THE BASELINE SYSTEMS, OUR FUSION SYSTEMS, AND THE

STATE-OF-THE-ART SYSTEMS. WE MARK IN BOLD WHERE OUR SYSTEMS OUTPERFORM ALL THE COMPETITORS (I.E. THE BASELINES AND THE

STATE-OF-THE-ART SYSTEMS).

Our system Baseline system Our fusion system State-of-the-art

Linear RBF χ2 Hist. BoW pBoW-2 pBoW-3 pBoW-4 BoW+ pBoW-2+ pBoW-3+ pBoW-4+

UPC-TALP 94.20 94.34 94.34 94.77 96.32 96.11 96.11 95.83 96.46 96.11 96.25 95.76 87.60

Freiburg-106 95.69 95.46 96.28 96.77 96.64 96.43 96.17 95.87 97.77 97.77 97.39 97.25 92.40

NAR 93.54 94.13 93.66 93.78 94.83 96.13 96.48 96.01 97.08 98.36 97.89 97.89 97.00

50 100 150 200 250
94.5

95

95.5

96

96.5

codebook size

ac
cu

ra
cy

 (
%

)

 

 

50 100 150 200 250
94.5

95

95.5

96

96.5

codebook size

ac
cu

ra
cy

 (
%

)

 

 

50 100 150 200 250
94.5

95

95.5

96

96.5

codebook size

ac
cu

ra
cy

 (
%

)

 

 

50 100 150 200 250
94.5

95

95.5

96

96.5

codebook size

ac
cu

ra
cy

 (
%

)

 

 

BoW
BoW +

pBoW−2
pBoW−2 +

pBoW−3
pBoW−3 +

pBoW−4
pBoW−4 +

Figure 9. UPC-TALP fusion systems. Performance of the fusion systems
compared to the baseline systems. Note that the fusion systems are denoted
with the additional ‘+’ symbol.
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Figure 10. Freiburg-106 fusion systems. Performance of the fusion systems
compared to the baseline systems. Note that the fusion systems are denoted
with the additional ‘+’ symbol.

in the works of Nadeu et al. [63], Stork et al. [16], and Maxime

et al. [17] respectively. The performance comparison is shown

in Table VI. Note that, to agree with the results in [16], the

performances on the Freiburg-106 dataset were reported in

terms of f-score instead of accuracy.

It can be seen that the performance of our proposed descrip-
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Figure 11. NAR fusion systems. Performance of the fusion systems compared
to the baseline systems. Note that the fusion systems are denoted with the
additional ‘+’ symbol.

tors with linear kernels significantly outperform the state-of-

the-art results on two datasets, UPC-TALP and Freiburg-106,

while they are just marginally lower than those of the baselines

given by BoW and pBoW. These baselines are actually very

strong models as they are recently reported as state-of-the-

art results on benchmark datasets [12]. We would also like to

point out that our linear systems are computationally much

cheaper to train and evaluate compared to nonlinear baseline

models. These results are impressive given the fact that, with

the speech-based descriptors, we have not incorporated the

features from the audio events themselves in the models.

When taking into account these features, the fusion systems

not only improve the performance of the baseline systems

to higher levels but also set the state-of-the-art performance

on all datasets. Specifically, the performance improvements

obtained by the best fusion systems compared to the state-of-

the-art systems are 8.86%, 5.37%, and 1.36% for UPC-TALP,

Freiburg-106, and NAR datasets, respectively.

VI. DISCUSSION

A. Phone triplets vs. words

In our previous work [46], we showed that speech signals

at word levels can also be used as speech patterns. We analyze

in this section the difference between using words and phone

triplets.
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Figure 12. Words vs. phone triplets. The final event classification accuracies
of the tree-induced descriptors on the Freiburg-106 dataset when words and
phone triplets are used for speech patterns.

We extracted speech words from the TIMIT database. There

are totally about 500 such word categories with at least ten

samples per class. This number is much smaller than the

number of phone triplets since speech words in general are

high-order combinations of phones (the order is more than

three in most of the cases) which require more data to cover.

Therefore, phone triplets offer us more speech patterns for

analysis. For comparison of the representation power, we

repeated the experiments in [46] ten times on the Freiburg-106

dataset and show in Figure 12 the final classification accuracies

of the tree-induced descriptors when using words and phone

triplets as speech patterns, respectively. As can be seen,

with the same number of speech patterns, the classification

accuracies obtained with phone triplets are consistently better

than those obtained with words. Specifically, the absolute

average accuracy improvements are 0.51%, 0.97%, 0.54%, and

0.76% with linear, RBF, χ2, and hist. kernels, respectively. A

possible explanation is that the words are usually much longer

than the audio events and that they are special combination of

phones. As a result, the audio events are often better matched

with phone triplets than with words.

B. Retaining temporal information of the signals

In the field of ASR, it is well known that the temporal

dynamic is useful for speech modeling. Although we argue

in Section III-D that speech and nonspeech signals are very

different in temporal characteristics, the question arises of

what happens when we incorporate the temporal information

of the signals.

In order to retain a certain degree of the temporal informa-

tion, a phone-triplet segment is divided into three constituent

phonemes. Each phoneme is then decomposed into frames

and described by a 53-dimensional feature vector which is

the mean of frame-wise features. Three feature vectors of

the three individual phonemes are finally concatenated to

Table VII
FLAT DESCRIPTORS: AVERAGE ABSOLUTE ACCURACY GAIN (%) WHEN

THE TEMPORAL INFORMATION OF THE SIGNALS IS PRESERVED.

Linear RBF χ2 Hist.

UPC-TALP −2.63 −2.59 −2.52 −2.60

Freiburg-106 −0.10 0.36 −0.21 0.04

NAR

Overall 2.77 2.73 2.81 2.90

Speech 8.31 8.15 7.50 7.81

Nonspeech −2.13 −2.07 −1.45 −1.44

Table VIII
TREE-INDUCED DESCRIPTORS: AVERAGE ABSOLUTE ACCURACY GAIN (%)

WHEN THE TEMPORAL INFORMATION OF THE SIGNALS IS PRESERVED.

Linear RBF χ2 Hist.

UPC-TALP −0.74 −0.12 −0.49 0.01

Freiburg-106 −2.24 −1.45 −2.02 −1.74

NAR

Overall 1.81 1.20 2.81 2.01

Speech 4.96 4.07 4.83 5.41

Nonspeech −0.98 −1.34 −0.93 −1.00

make a 159-dimensional feature vector for the phone triplet.

Note that the order of the constituent phonemes does matter

here to categorize the phone triplets, therefore, the phone

triplet categories in this case are different from the previous

experiments. For the nonspeech signals, as there exists no such

phone components in the same way as for speech, we simply

divide each of them into three equal-length segments. The

feature-extraction step is similar to that for speech.

We additionally show in Figures 5, 6, and 7 the performance

curves when the temporal information is retained in order to

compare with those without the temporal information. As can

be seen, the temporal information does not bring up a big

advantage. It even worsens the results for the UPC-TALP and

Freiburg106 datasets. The NAR dataset is an exception due

to the fact that it consists of 20 speech categories out of 42

classes. It turns out that retaining the temporal information

unsurprisingly benefits these speech categories but degenerates

the nonspeech categories. It is further clarified in Table VII

and VIII for the flat and tree-induced descriptors, respectively,

where we summarize the average performance gain when

temporal information is preserved.

Concretely, integrating the temporal dynamics of the signals

does not invigorate the final representations for nonspeech

signals, at least by the way presented above.

C. The importance of the underlying speech classifiers

We study in this section how the quality of the random-

forest speech classifiers affects the speech-based descriptors,

and hence, the performance of the final nonspeech audio

event classification. To accomplish this, we varied the num-

ber of trees in the random forest classifiers in the range

{25, 50, . . . , 200} and recorded their out-of-bag (OOB) errors
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Figure 13. OOB error. The average OOB errors of random forest speech classifiers with different number of trees. Note that the scales are different.
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Figure 14. Event classification performance. Average event classification performance as functions of the number of trees in the random forest speech
classifiers.

[52] which are estimated internally during the forest construc-

tion. The random forest classification is very robust against

overfitting [52] and, in general, it is expected to bring a

performance gain when increasing the number of trees at the

cost of increasing computation.

We show in Figure 13 the OOB errors of the speech

classifiers for both flat and tree-based cases. For the tree-

based cases, we report the average of the OOB errors of the

binary classifiers at the split nodes of the label trees. As can be

seen, the OOB error curves show similar patterns. Firstly, the

error curves escalate, as expected, as the speech classification

problem becomes more complex with the increasing number

of speech categories. Secondly, the entire error curves expose

a trend of moving down, i.e. better performance, when we

increase the number of trees in the forests. However, the im-

provement becomes incrementally slower with the increasing

number of the trees. When the number of trees is large enough,

e.g. at 150 trees, adding more trees leads to insignificant

performance gain. Note that the error scales in the tree-based

cases are significantly smaller than those of the flat cases.

It is due to the fact that we have transferred a complex flat

multi-class classification problem into multiple simpler binary

classification problems in the tree-based cases. This reflects

the differences in the final event classification performance

between the flat and tree-based cases as discussed below.

The random-forest speech classifiers with different number

of trees were then used to extract descriptors for the nonspeech

audio events. The final event classification performance is

shown in Figure 14 as a function of the number of trees.

Note that, at each number of trees, we computed and averaged

the performance over different number of speech categories

in {50, 100, . . . , 1000}. Two different patterns are shown for

the flat and tree-based cases over all datasets. For flat cases,

increasing the number of trees leads to a performance gain al-

though the improvement is gradually diminishing as expected.

In contrast, for the tree-based cases, the performance curves

are almost flat, indicating very small difference in classifica-

tion accuracy. This result implies that the number of trees of

the speech classifiers is more important for the flat descriptors

than than for the tree-induced descriptors. This is reasonable

since the complex multi-class classification problems in the

flat cases needs strong classifiers, i.e. large number of trees,

while the simple binary classification problems in the tree-

based cases can be easily coped with by simpler classifiers.

D. Future work

More than 6,900 languages exist in the world [70] and

many annotated corpora are available such as TIMIT [14],
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SWITCHBOARD [71], Wall Street Journal [72], and Glob-

alPhone [73] to mention a few. This opens up enormous

opportunities to explore for learning representations from

speech. Using different levels and different languages would

result in different representations. Their combinations would

offer even more opportunities.

It can be seen from Figures 5, 6, and 7 that the number of

speech categories needs to be sufficiently large to guarantee

a good performance. This is understandable since with more

speech categories, we are likely to cover more acoustic con-

cepts. Interestingly, this observation is generic, that is, it is

achievable for different datasets. However, just increasing the

number of categories does not guarantee a better performance.

The reason is quite obvious. For example, when the categories

are randomly selected, many similar categories are likely to

exist. This results in correlation in some dimensions of the

induced feature space which worsens the model. As shown,

organizing the categories in a tree structure is efficient to

alleviate this problem. However, it is worth further studying

how to deal with it.

Last but not least, our proposed method is not limited to

audio event representations. Since the learned speech-based

feature extractors are generic, they can be applied to any other

variants of audio signals such as music and even speech. At

least, the induced descriptors can act as additional sources to

improve performance of existing systems.

VII. CONCLUSIONS

We presented in this paper an approach for feature learning

that uses speech phone triplets as acoustic concepts to rep-

resent a target nonspeech audio signal. The representation is

produced by measuring the similarities of the target signal to

different speech patterns via a speech classifier. We further

propose to learn to organize the speech patterns within a

label tree and subsequently achieve a better representation.

These descriptors are generic. Once the feature extractor has

been learned, it can be used to extract features for different

datasets. While the entire set of available speech categories

may be redundant, we proposed an algorithm to extract a

sufficient subset. This subset can approximate the entire set

in terms of representation capability while its size is much

smaller. In the experiments, we employed phone triplets from

the TIMIT dataset as speech patterns to learn representations

for audio events of different datasets, including UPC-TALP,

Freiburg-106, and NAR. Our experimental results on the audio

event classification task show that the proposed descriptors

are efficient even with a simple linear classification model.

Furthermore, using our proposed descriptors as additional

features can help to significantly boost performance of an

existing system. We showed that we are able to obtain state-

of-the-art on all three audio event datasets with a simple fusion

scheme.
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