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Abstract

In this paper, we study the efficiency of five different field free point trajectories in two-dimensional magnetic

particle imaging for the compressed-sensing based reconstruction of partially measured system matrices. To show

the suitability of the trajectories, different trajectories with identical repetition times were simulated using the same

scanner setup. We show that for all trajectories, the compressed-sensing based reconstruction approach for the

system matrix is possible and promising for real-world scenarios. Also we validate the already known fact that the

Lissajous trajectory is appropriate for the compressed sensing approach. Furthermore, the results show that there

are still other trajectory choices which show similar and even better performance in the compressed-sensing based

reconstruction.

I. Introduction

Magnetic particle imaging is a tracer-based imaging

method which can visualize the spatial distribution of

super-paramagnetic iron oxid nanoparticels (SPIONs)

[1]. To image the SPIONs’ distribution within a field of

view (FOV) commonly a field free point (FFP) is used.

With the help of a static magnetic field, the so-called se-

lection field, the FFP is generated. Only SPIONs in the

vicinity of the FFP contribute significantly to the mea-

sured voltage signal, because SPIONs far away from the

FFP are in saturation due to their nonlinear magnetiza-

tion behavior. An additional dynamic drive field moves

the FFP along a trajectory to image an area of interest.

For reconstruction, a system matrix based method is

widely used [2]. Even with unchanged scanner setup,

different trajectories result in different system functions.

For most trajectories, no closed-form solutions for the

system function are known. Therefore, in general, sys-

tem matrices need to be measured [2]. Unfortunately,

the measurement of the system matrix with a robot can

take several days for significant resolution inside the FOV.

To address this problem, different approaches have been

published. One method is the reconstruction without

a system matrix directly in the time domain, called x-

space reconstruction [3], but the x-space reconstruction

is not easily transferable to every trajectory. Also, the

reconstruction based on a measured system matrix al-

lows better reconstruction of the particle distribution.

A more recent method to measure the system matrix is

based on magnetic-particle spectrometry. Here, mag-

netic fields of the scanner are emulated and the signal

response near the particle probe is measured. The bene-
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fits are a significantly higher signal-to-noise ratio (SNR)

and a reduced acquisition time compared to the robot-

based measurement. The resulting system matrix is also

known as hybrid system matrix in the literature [4, 5].

Following the idea of compressed sensing (CS) [6], in [7]

a method for a partially measured system matrix based

on a Lissajous trajectory was introduced. Several symme-

try conditions for Lissajous trajectory based MPI system

matrices have been presented [8], and, additionally, a

method which combines the symmetry condition with

the compressed sensing based approach was introduced

[9]. To the best of the authors’ knowledge, no systemati-

cal study of the capability of different trajectories in the

context of CS-based system matrix reconstruction has

been carried out so far. In this paper, we demonstrate

in a simulation study based on system matrices from an

MPI scanner with five different FFP trajectories that all

trajectories are appropriate for CS-based reconstruction.

With two different phantoms we demonstrate the capa-

bility of the CS-based system matrices to reconstruct the

particle distribution.

II. MPI system function

The relationship between the induced voltage signal

uℓ(t ) in the ℓ-th receive channel and the particle con-

centration c (r ) is commonly described by the Fourier

series expansion coefficients

ûℓ,k =

∫

Ω

ŝℓ,k (r )c (r )d r , (1)

where ŝℓ,k (r ) is the k -th system function component of

the ℓ-th receive channel, and Ω⊂Rd denotes the FOV of

dimensionality d . The system function component in

(1) is described by

ŝℓ,k (r ) =−âℓ,k
µ0

T

∫ t0+T

t0

∂

∂ t

�

m (r , t ) ·p ℓ(r )
�

e −2πi k t
T d t ,

(2)

where âℓ,k denotes the transfer function of the ℓ-th re-

ceive chain, µ0 is the vacuum permeability, T is the repe-

tition time of the acceleration field, t0 ∈R is an arbitrary

time offset, m (r , t ) describes the mean magnetic mo-

ment, and p ℓ(r ) denotes the coil-sensitivity profiles. In

a first simplified physical model for isotropic SPIONs

with instantaneous relaxation, the relationship between

the applied magnetic field H (r , t ) of the scanner and the

mean magnetic moment m (r , t ) is given by

m (r , t ) =m (‖H (r , t )‖)
H (r , t )

‖H (r , t )‖
, (3)

with ‖ · ‖ the euclidean norm and m (H ) the magnitude

of the mean magnetic moment, which is proportional

to the Langevin function [2]. The applied magnetic field

Lissajous Flower

Cartesian Radial Spiral

Figure 1: The five different trajectories for NB = 16.

H (r , t ) of the MPI scanner is given by a superposition

H (r , t ) =H S (r ) +H D (t ) of the so-called selection field

H S (r ) and drive field H D (t ), which perform the spa-

tial and temporal encoding, respectively. For the two-

dimensional imaging process (d = 2), the selection field

is given by

H S (r ) =G r with G =

�

G1 0

0 G2

�

. (4)

The temporal encoding by the drive field

H D (t ) =

�

H D
1
(t )

H D
2
(t )

�

(5)

can be performed using different periodic trajectories.

In Tab. 1 the drive fields simulated in this work are intro-

duced, in the following referred to as trajectories. To pro-

duce the different behavior, two different excitation fre-

quencies f1 =ω1/(2π) and f2 =ω2/(2π) are calculated ac-

cording to the rules shown in Tab. 1, with f1 = fB /NB , fB

being a chosen basis frequency and NB ∈N. The repeti-

tion time for all trajectories in Tab. 1 is T =NB (NB −1)/ fB .

All drive fields H D (t ) are simple combinations of sine

and cosine functions and can easily be realized in hard-

ware. In Fig. 1, the resulting trajectories are shown for

NB = 16.

III. The system matrix

An important issue in MPI is the lack of a closed-form

solution for the system function in more than one di-

mension. In one-dimensional MPI with the simplified

model, as defined in the previous section, the system

function components are related to the Chebyshev poly-

nomials of second-kind [11]. However, for two- and three-

dimensional MPI, to this point, no closed-form solution
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Table 1: An overview of different two-dimensional drive fields

H D (t ) and the required frequency-ratios, whereωi = 2π fi . The

table was obtained from [10].

Frequency-

ratio

Trajectory Drive field H D (t )

ω1 =
NB−1

NB

ω2

Lissajous

�

A1 sin(ω1t )

A2 sin(ω2t )

�

Flower

�

A1 sin(ω1t )cos(ω2t )

A2 sin(ω2t )sin(ω1t )

�

ω2 =
ω1

NB−1

Cartesian

�

A1 sin(ω1t )

A2 sin(ω2t )

�

Radial

�

A1 sin(ω1t )cos(ω2t )

A2 sin(ω2t )sin(ω1t )

�

Spiral

�

A1 sin(ω1t )sin(ω2t )

A2 sin(ω2t )cos(ω1t )

�

has been derived and the simplified physical model ex-

cluding the relaxation effects of the particles causes addi-

tional problems for complex trajectories. Therefore, the

system matrix is normally measured for each scanner in

an initial calibration step with a point-like sample, which

results in a spatial discretization of the form

r u
1
=

A1

G1

−
A1

N1G1

(1+2u ) and

r v
2
=

A2

G2

−
A2

N2G2

(1+2v ),

(6)

where u ∈ {0,1, . . . , N1 − 1} and v ∈ {0,1, . . . , N2 − 1} de-

scribe the equidistant spatial sampling of r inside the

FOV in two dimensions. The discrete version ŝℓ,k (r
u

1
, r v

2
)

is, for convenience, denoted by the discrete indices u

and v as ŝℓ,k (u , v ). During our simulations, the integral

in (1) has been numerically approximated with help of

the midpoint quadrature rule. In real-world measure-

ments, the voltage signal uℓ(t ) will be sampled, but if

the Shannon-Nyquist sampling theorem is fulfilled, the

Fourier coefficients ûℓ,k can be calculated from the sam-

pled periodic signal uℓ(tn ) by using the discrete Fourier

transform (DFT), where

tn =
nT

Nt

(n ∈ [0, . . . , Nt −1]) (7)

denotes the sampled time points, T is the repetition

time of the trajectory, and Nt ∈N is the number of sam-

pling points. We finally have in total 2K − 1 different

frequency components, where K <
Nt

2 and K ∈ N. The

existing discrete system function components ŝℓ,k (u , v )

with k ∈ {-K + 1, . . . ,0, . . . , K − 1} can then be reordered

in the system matrix

Ŝ ℓ =∆V









ŝℓ,0(ϕ0) ŝℓ,0(ϕ1) . . . ŝℓ,0(ϕN1N2−1)

ŝℓ,1(ϕ0) ŝℓ,1(ϕ1) . . . ŝℓ,1(ϕN1N2−1)
...

...
...

...

ŝℓ,K −1(ϕ0) ŝℓ,K −1(ϕ1) . . . ŝℓ,K −1(ϕN1N2−1)









,

(8)

where ϕi denotes a bijective map on the coordinates of

the spatial grid and∆V denotes the volume of the voxels.

Because the measured signals are real-valued, the nega-

tive frequency components are only complex conjugates

of the positive ones, so that they can be excluded from

Ŝ ℓ ∈C
K ×N1 ·N2 . For the sake of clarity, we omit the voxel

volume∆V throughout the following.

IV. System Matrix Compression

In [12] it was observed that MPI system matrices for an

MPI scanner using an FFP moving along a Lissajous-

trajectory are highly compressible. The focus in [12] was

to speed up the reconstruction process by using orthog-

onal transforms to compress the system matrices and to

reduce memory usage during the image reconstruction.

In [12], it was mentioned that the discrete cosine trans-

form of second-kind (DCT-II) and the discrete Chebyshev

transform (DTT) showed good compression behavior for

the spatial domain of the system function components in

the system matrix. Additionally, several symmetry condi-

tions on the system function component ŝℓ,k (r ) could be

shown [8] that should be preserved by any compressive

orthogonal transform [8, 13]. Because the DCT-II fulfills

this symmetry conditions for an MPI scanner using a FFP

moving along a Lissajous-trajectory and since it is an or-

thogonal transform that can be efficiently computed, it

will be used in the following.

The compression of the system matrix of the ℓ-th re-

ceive channel is carried out in the form

S̃ ℓ = Ŝ ℓT
T , (9)

where T ∈ RN1 ·N2×N1 ·N2 is an orthogonal matrix. To en-

force zeros inside the compressed system matrix S̃ ℓ,

Lampe et al. [12] compared the magnitudes of the coeffi-

cients in S̃ ℓ to a global threshold and set coefficients with

a magnitude smaller than the global threshold to zero.

Alternatively, in [14] a local thresholding strategy was pro-

posed. Here, for each compressed system function com-

ponent s̃ℓ,k (u , v ), a fixed number of values was selected

based on their magnitudes, and the rest of the coeffi-

cients was set to zero. In [14] and [13] it was shown that

the local thresholding strategy outperforms the global

one.
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V. Compressed Sensing

Compressed Sensing is a method which uses the com-

pressibility of a signal in a sparsity domain to reconstruct

the signal in the original domain, where the Nyquist-

Shannon sampling theorem is not directly fulfilled [6].

The rough idea can be explained by the underdetermined

reconstruction problem

arg min
x

‖x ‖0 s.t. y = Ax , (10)

where A = ΦΨ ∈ RM×N with M ≪ N contains the mea-

surement matrix Φ ∈ RM×N and the sparsity basis Ψ ∈

R
N×N , y ∈ RM the measurement vector, x ∈ RN is the

sparse signal which is to be reconstructed, and ‖ · ‖0
denotes the zero-pseudonorm counting the number of

nonzero entries. The signal in the non-sparse domain is

represented as x Ψ = Ψx . The drawback of the formula-

tion in equation (10) is the NP-hardness, which means

that under the hypothesis that NP6=P there is no deter-

ministic polynomial-time algorithm to solve the problem

exactly, so that in literature different methods have been

established. One widely used possibility is to replace the

non-convex ℓ0-pseudonorm by the convex ℓ1-norm. The

formulation of the problem then becomes

arg min
x

‖x ‖1 s.t. y = Ax . (11)

To answer the question under which condition the con-

vex problem in (11) is equivalent to the non-convex prob-

lem in (10), different measures were introduced. One fa-

mous definition is the so-called restricted isometry prop-

erty (RIP) presented in [15]. However, the evaluation of

the RIP for a given matrix A is as hard as the reconstruc-

tion problem (10) itself. Interestingly, for many classes of

random matrices (e.g. Gaussian, Bernoulli, Rademacher,

etc.) it can be shown that the RIP is fulfilled with high

probability for a wide range of M ≪ N . From a practi-

cal point of view, however, the RIP is not a good tool to

evaluate the equivalence.

For a special group of matrices A a more tractable

approach is based on the mutual coherence [16]

µ(A) = max
k , j∈{0,1...,N−1}:k 6= j

�

�




a k , a j

��

�

‖a k‖ · ‖a j ‖
. (12)

and the inequality

S <
1

2

�

1+
1

µ(A)

�

, (13)

where S = ‖x 0‖0 is the number of non-zero entries in

x 0 ∈RN . If the inequality (13) is satisfied, then x 0 is the

unique solution to the ℓ0-problem (10) and can be found

by solving the ℓ1-problem (11) [17–19]. It becomes obvi-

ous in (13) that a perfect recovery can be guaranteed for

a wide range of S if the mutual coherenceµ(A) =µ(ΦΨ) is

low. Thus, in a practical measurement procedure, Φ and

Ψ should be selected together to ensure a small mutual

coherence.

If white Gaussian noise n ∈ RM is expected in the

measurement process y = Ax +n , different relaxed con-

vex optimization problems can be derived from (11). In

this paper, the relaxation

arg min
x

‖Ax − y ‖2
2
+λ‖x ‖1, with λ> 0 (14)

is used. For the problem (14), different global optimal

solvers exist in the literature [20–23].

V.I. Compressed Sensing based system
matrix reconstruction

In [7] the compressibility of the system matrix was firstly

used to reconstruct the system matrices from only par-

tial measurements. In [9] the compressed sensing based

method was extended by using the symmetry proper-

ties, which were shown in [8] for Lissajous-trajectory

based MPI. The basic idea in [7] is to partially measure

the FOV with point-samples. The partial measurement

of the FOV can be expressed with an undersampling ma-

trix U = (e i )i∈U ∈ R
N1N2×M , where U ⊂ {1,2, . . . , N1N2},

M = #(U ) is the cardinality ofU , and e i ∈R
N1N2 is the i -

th unit vector. The sampled FOV pointsU are normally

chosen as random subselection of all possible FOV points

to enforce incoherence for the CS-based reconstruction

of the system matrix. The sampling of the partially mea-

sured system matrix is then described by

Ŝ
p

ℓ = Ŝ ℓU . (15)

Now let T ∈RN1N2×N1N2 denote an orthogonal compres-

sive transform in the spatial domain (see Section IV), so

that

Ŝ ℓ = S̃ ℓT
T , (16)

where S̃ ℓ is the compressed version of Ŝ ℓ.

The reconstruction problem in (14) is then solved for

each system function component k and receive channel

ℓ for the real parts

s̃ r
ℓ,k =
�

ℜ
�

s̃ℓ,k (ϕ0)
	

, . . . ,ℜ
�

s̃ℓ,k (ϕN1N2−1)
	�T

and imaginary parts

s̃ i
ℓ,k =
�

ℑ
�

s̃ℓ,k (ϕ0)
	

, . . . ,ℑ
�

s̃ℓ,k (ϕN1N2−1)
	�T

individually. Note that these are the real and imaginary

parts of the rows of S̃ ℓ, turned into column vectors. For

the optimization, the partial measurements vector also

has to be split into real ŝ
p,r

ℓ,k =
�

ℜ
�

ŝk ,ℓ(ϕi )
	�

i∈U
and imag-

inary ŝ
p,i

ℓ,k =
�

ℑ
�

ŝk ,ℓ(ϕi )
	�

i∈U
parts. Hereby, the optimiza-

tion problem in (14) is solved as

s̃ t
k ,ℓ = arg min

x∈RN1N2

‖U T T x − ŝ
p,t

k ,ℓ‖
2
2
+λ‖x ‖1, (17)
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where t ∈ {r, i} denotes the real and imaginary parts, re-

spectively, Φ = U T , Ψ = T , and y = ŝ
p,t

k ,ℓ. Therefore, it

becomes recognizable that the random sampling pat-

tern decoded in U should be optimized to enforce in-

coherence for a given T (2D DCT-II). Furthermore, the

sampling pattern seems directly independent from the

choice of the FFP trajectory for the MPI scanner, whereas

it will be shown that the reconstruction error inside the

system matrices for a given uniformly sampled spatial

sampling pattern is region dependent. The optimization

problem is then finally solved by the FISTA algorithm

[23], which was also used in [7] and [9].

VI. Test setup

We simulated five different system matrices for the MPI-

scanner based on the trajectories in Tab. 1. For each

scanner, a system matrix in x - and y -receive-channel

was simulated. The base frequency was chosen as

fB = 2.5/3 MHz. With NB = 33 being selected as fre-

quency divider, it follows that f1 = fB /33. The second fre-

quency f2 can then be calculated as described in Tab. 1.

In this case, the frequency ratio for the Lissajous and

flower trajectories is f1/ f2 = 32/33. The repetition time

for all trajectories is 1.27 ms. Currently, within one repe-

tition, 1632 time-points are sampled, which corresponds

to 1632 frequency components in Fourier space and a

sampling frequency of 1.3 MHz. The FOV has a size of

5×5 cm2 and is discretized into 250×250 pixels. The max-

imal gradient strengths of the selection field in x - and y -

directions are 1.25 Tm−1. The particle diameter is 30 nm,

and the upper noise resistance in a patient is 0.185 mΩ

according to [24]. The resulting noise is included in the

simulated system matrix and voltage signal, respectively.

The particle temperature was chosen as the body temper-

ature in a patient. The voltage signals for the phantoms

were calculated on a finer 300× 300 grid related to the

simulated system matrices in this work.

To simulate the partial sampling of the grid, we per-

formed a uniform random permutation of all possi-

ble grid indices. The random undersampling is then

achieved by systematically using only the first given in-

dices in the permutation vector. To clarify our procedure,

an example is given: If only 5% of the coefficients are

used in the first test, and in a second test 10% of the

coefficients are used, then the 10% test also includes

all coefficients of the 5% test. We created ten different

sampling patterns and repeated all experiments for the

CS-based system matrix reconstruction ten times. Inside

the system matrix reconstruction, no assumptions on

symmetric structures were used, like in [9]. To make a fair

comparison, it is necessary that all system matrices are re-

constructed in the same manner. However, for all trajec-

tories, the system matrices show highly symmetric struc-

tures, and we expect that the symmetries can be proofed

(a) (b)

Figure 2: The two test phantoms. Here, the areas with particle

concentration equal to one are shown in white. Black is used

for areas without particles. In the phantom (a), a circle has a

diameter of 2 mm. In the phantom (b), a circle has a diameter

of 3 mm.

by similar techniques as in [8]. For all system matrices,

we observe only even- and odd-symmetric system func-

tion components along the x - and y -direction inside

the spatial domain. Because the results in [7–9, 12, 13]

show that it is preferable to use a transform for compres-

sion that exploits the symmetries, we decided to use the

two-dimensional DCT-II for this purpose.

Inside the FISTA reconstruction, all system function

components were separately reconstructed. Each system

function component was additionally split into real and

imaginary parts for the reconstruction. The ℓ1-constraint

parameter was handcrafted as λ = 10−8 inside the re-

construction and the reconstruction was run until the

change of the coefficients between different iterations

was lower than a threshold or the objective function did

not change significantly anymore.

To show the efficiency of the reconstructed system

matrices, the following reconstruction problem was

solved for the resolution phantoms shown in Fig. 2:

c ∗ = arg min
c∈R

N1 ·N2
+





Ŝ c − û






2

2
+µ‖c ‖2

2
. (18)

The parameter µ was chosen for all trajectories hand-

crafted as µ = 10−9, so that visually best results over all

trajectories were reached. To simplify the paper, we ex-

cluded the study of finding optimal µ’s for all trajectories.

Inside the reconstruction, no deletion or normalization

of system function components was performed. The re-

construction was performed by the regularized Kaczmarz

method with setting the negative and imaginary parts in

c l during each iteration l to zero [25]. Furthermore, we

also performed the reconstruction with the FISTA algo-

rithm by making use a proximity operator with respect

to the nonnegativity constraint and the ℓ2-regularization

term [23, 26, 27].
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VII. Results

The result section is subdivided into subsections to inves-

tigate different aspects of the CS-based system-matrix re-

construction. The first subsection investigates the ques-

tion of the compressibility of the different system matri-

ces by the DCT-II. The second subsection investigates

the mutual coherence of sampling patterns and the in-

fluence on the image reconstruction with the CS-based

system matrices. Then we look at the spatial distribu-

tion of errors on CS-recovered system matrices. Finally,

the last subsection investigates the image reconstruc-

tion performance of CS-based MPI system matrices for

different FFP trajectories.

VII.I. Compressibility of the
system-matrix coefficients

w

In this section, the compressibility of the different

simulated system matrices will be investigated with help

of the two-dimensional DCT-II as compressive orthogo-

nal transform. It should be noted here that a systematic

study of different other compressive transforms was not

performed. However, the compressibility of the different

system matrices is a necessary condition for compressed-

sensing reconstruction techniques to work. To demon-

strate that the DCT-II is a suitable compressive transform

for all system matrices, two different measures obtained

from [28]will be introduced. In [28], different commonly

used sparsity measures were investigated with regard to

their suitability under different manipulations of the co-

efficients. The two sparsity measures for x ∈ RN used

here are

ℓnorm
0,ε (x ) =

#
�
�

i ∈ {0, 1, . . . , N −1}
�

� |xi |> ε
	
�

N
and

ℓ1

ℓ2

(x ) =
‖x ‖1

‖x ‖2
,

(19)

where #( · ) denotes the cardinality of a set. Both mea-

sures decrease with increasing sparsity. The variable ε

for ℓnorm
0,ε ( · ) is chosen in such a way that 99 % of the en-

ergy is recovered from the original x . In Tab. 2 the global

compression performances are shown. By global com-

pression performance we mean that the two measures

are evaluated for each vectorized system matrix before

and after the application of the 2D DCT-II to the spatial

dimension. It is clearly visible that system matrices can

be highly compressed by the DCT-II. Here, according

to both measures, the system matrices for an MPI scan-

ner with the FFP traveling along a Lissajous trajectory

have the best compression performance. The Cartesian

FFP trajectory system matrix shows a better compression

ratio for one receive channel than for the other. Both

completely symmetric FFP trajectories (flower and ra-

dial) have the same compression performance for both

receive-channel system matrices, which is due to the or-

thogonal setting of the receive coils. It should be noted

that these symmetries might be useful for further com-

pression. In a second test, the local compression ratio

for each system function component k was investigated.

Therefore, a plot of the ratios ℓnorm
0,ε (s̃ ℓ,k )/ℓ

norm
0,ε (ŝ ℓ,k ) of the

compressed s̃ ℓ,k to the uncompressed ŝ ℓ,k system func-

tion components is presented. Fig. 3 shows that the sys-

tem matrices transformed by the 2D DCT-II are generally

more sparse than the untransformed ones. For some

compressed system function components, the number

of remaining coefficients is by a factor of 10−4 smaller

than for the uncompressed system function components.

While there are several system function components with

a low compression ratio of ℓnorm
0,ε (s̃ ℓ,k )/ℓ

norm
0,ε (ŝ ℓ,k ) being

approximately equal to one, the ratio does not become

higher than one, which is a good indicator for system

function components with a low signal-to-noise ratio. It

should be noted that a low compression ratio in this test

can have two reasons. The first reason is that a system

function component has a low signal-to-noise ratio due

to the corruption with simulated white Gaussian noise,

and white noise cannot be compressed. The second rea-

son is a high number of spatial frequencies inside the

system function component ŝ ℓ,k , as for such structures,

the 2D DCT-II cannot be a compressive transform. To

this point, it has been shown that all system matrices are

highly compressible by the 2D DCT-II and compressed-

sensing based reconstruction of several system function

components should be possible from a partial number

of calibration scans.

VII.II. Mutual Coherence

For the evaluation of the ten different sampling patterns,

where the coordinates are taken from a uniform dis-

tribution, the mutual coherence is calculated accord-

ing to Eq. (12). Specially, for the CS-based recovery of

the system matrix, the measurement matrix A is a com-

position of the undersampling matrix U and the two-

dimensional DCT-II matrix. The calculation of µ(A) is

quite time consuming for large M and N . Obviously, the

number of scalar products
�

�




a i , a j

��

� to be calculated is

given by (N 2−N )/2, because
�

�




a j , a i

��

�=
�

�




a i , a j

��

�. For

each scalar product, M multiplications and M − 1 ad-

ditions have to be performed. Since multiplication is

the computationally more challenging calculation, only

the multiplications are counted in the following. Over-

all, M (N 2−N )/2 multiplications have to be performed,

and the computational complexity is in O (M N 2). Within

the parameter ranges in this article, M (2504−2502)/2=

1953093750 ·M multiplications have to be performed.

Even if M is small, the process of calculating the mu-

tual coherence is highly time consuming and, in general,

not practical for large scenarios. Due to this reason, the

mutual coherence is only determined for "high" under-
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Figure 3: The compression ratio of ℓnorm
0,ε
(s̃ ℓ,k )/ℓ

norm
0,ε
(ŝ ℓ,k ) as function of the system function components k for both receive

channels of the system matrices from an MPI scanner with different FFP trajectories. Here s̃ ℓ,k denotes the DCT-II transformed

system matrices, whereas ŝ ℓ,k denotes the uncompressed system matrix. The plot is shown in logarithmic scale to the base 10.

Table 2: Global compression measure (mes) calculated for simulated system matrices of an MPI scanner with the FFP traveling

along different trajectories for both receive channels (chan). The measure ℓnorm
0,ε

is given in percentage of necessary coefficients

to cover 99 % of the energy. The measure
ℓ1
ℓ2

is round to integer numbers.

chan mes Lissajous Flower Cartesian Radial Spiral

org DCT-II org DCT-II org DCT-II org DCT-II org DCT-II

x
ℓnorm

0,ε 37.74 0.0084 20.90 0.0238 44.50 0.0112 28.11 0.0321 31.67 0.0488
ℓ1

ℓ2
2874 106 2280 112 2939 114 2471 146 2577 170

y
ℓnorm

0,ε 34.13 0.0079 20.90 0.0238 65.28 0.0384 28.11 0.0321 31.75 0.0489
ℓ1

ℓ2
2797 104 2280 122 4285 227 2471 146 2579 169

sampling factors (i.e., small M ), so that only {2, 2.5, . . . , 5}

percent of the original spatial coefficients are sampled.

In Tab. 3 it is observable that all patterns are more or less

on the same level in terms of mutual coherence. Addi-

tionally, the so called Welch bound as lower limit of the

mutual coherence is given for each sampling ratio. The

Welch bound is computed as

µ(A)≥

√

√ N −M

M (N −1)
. (20)

The upper bound is given by µ(A)≤ 1.

With help of a first phantom reconstruction test, the

image reconstruction with the CS-based system matri-

ces for the sampling patterns will be compared with the

mutual coherence given in Tab. 3. Exemplarily, here the

sampling pattern 5 and the sampling pattern 4 will be

compared. For the image reconstruction test, the 3 mm

phantom from Fig. 2 (b) is taken. The results are shown in

Fig. 4. We evaluate the reconstruction by the normalized

root mean square error, which is given by

NRMSE=
‖c ∗− c org‖2

p

N1N2

�

max(c org)−min(c org)
� , (21)

where c ∗ denotes the reconstructed particle distribution,

c org is the original particle distribution, and max(c org)

and min(c org) are the highest and smallest values in c org,

respectively. It is recognizable that for all FFP trajectories,

sampling pattern 4 (solid lines) outperforms sampling

pattern 5 (dashed lines) when the system matrices are

obtained within a CS framework. By the mutual coher-

ence as measure (see Tab. 3) a different outcome would

be expected, because pattern 5 has most often a smaller

mutual coherence than pattern 4. It becomes clear that

the mutual coherence can only be understood as a rough

indication of possible performance, not as a strict perfor-

mance measure. A source of the problem could be the
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Table 3: The mutual coherence calculated by (12) for ten sampling patterns uniformly sampled form all possible pixels inside

the FOV. The number of sampled position (Pos.) is given in %. Additionally, the Welch Bound (WB) is given as lower boundary.

Pos. Sampling pattern

in % 1 2 3 4 5 6 7 8 9 10 WB

5.0 0.1120 0.1153 0.1114 0.1165 0.1136 0.1207 0.1157 0.1132 0.1132 0.1103 0.0174

4.5 0.1163 0.1173 0.1189 0.1184 0.1199 0.1235 0.1183 0.1163 0.1224 0.1160 0.0184

4.0 0.1305 0.1247 0.1286 0.1217 0.1254 0.1236 0.1292 0.1259 0.1330 0.1293 0.0196

3.5 0.1360 0.1370 0.1374 0.1450 0.1298 0.1339 0.1339 0.1317 0.1340 0.1357 0.0210

3.0 0.1557 0.1492 0.1537 0.1497 0.1463 0.1469 0.1374 0.1494 0.1502 0.1465 0.0227

2.5 0.1633 0.1611 0.1716 0.1624 0.1573 0.1610 0.1506 0.1545 0.1600 0.1593 0.0250

2.0 0.1745 0.1815 0.1870 0.1817 0.1781 0.1946 0.1808 0.1830 0.1833 0.1797 0.0280

1 2 3 4 5 6 7 8 9 10
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Figure 4: An example of an image reconstruction of the 3 mm

phantom with CS-based system matrices for two different sam-

pling patterns. The pattern 5 (dashed line) has mostly a lower

mutual coherence than pattern 4 (solid line).

usage of the CS-based system matrices for estimation of

the particle distribution, and in the moment this is not

covered inside the CS-based framework.

When comparing Tab. 2 and Fig. 4, one can see that a

larger compression ratio generally corresponds to a bet-

ter reconstruction performance. However, establishing

an exact numerical relationship between the compres-

sion ratio and the reconstruction error is quite difficult,

because not only the trajectory and the sparsifying trans-

form, but also the sparsity parameter λ influence the

result.

VII.III. Spatial distribution of error on
system matrices

To validate the spatial distributions of the reconstruction

error on the CS-based system functions, we consider the

absolute spatial error given by

ASE(u , v ) =

√

√

√

2
∑

ℓ=1

K −1
∑

k=0

�

�ŝ
org

ℓ,k (u , v )− ŝ CS
ℓ,k (u , v )
�

�

2
(22)

with ŝ
org

ℓ,k (u , v ) being the original system function com-

ponent without any compression or modification from

a full calibration scan in each pixel and ŝ CS
ℓ,k (u , v ) being

the CS-based system function component. For each of

the trajectories and ten different randomly generated

sampling patterns, the mean ASE (MASE) was calculated.

To enable a comparison between the spatial error distri-

butions and the spatial sensitivities, also the sensitivity

profiles

SP(u , v ) =

2
∑

ℓ=1

K −1
∑

k=0

�

�ŝ
org

ℓ,k (u , v )
�

�

2
(23)

have been computed. In Fig. 5, the top row shows the

sensitivity profiles (SP) for the different trajectories. The

middle row shows the MASE for CS-based system matri-

ces derived from only 5% of the full number of calibra-

tion scans, whereas the lower row shows the MASE for

CS-based system matrices recovered from only 2% of a

full calibration scan. The CS-based system matrices for

trajectories with rectangular envelopes become worse

firstly in the border regions of the FOV, where the FFP

travels slow and the spatial sensitivity is low. In addition,

for the CS-based system matrix for an MPI scanner with a

Cartesian FFP trajectory and 2 % of a full scan, an increas-

ing MASE related to the distance of the FFP trajectory can

be observed in the center. The CS-based system matrix

from the flower and radial trajectories have a lower MASE

in the FOV than the CS-based system matrix from the

spiral trajectory. However, both show a high-error spot

directly in the center of the FOV. For the CS-based system

matrix from the flower trajectory, the border region has a

smaller mean absolute error than the one from the radial

trajectory. The MASE of the CS-based system matrix from

a spiral FFP-trajectory shows concentric higher-error re-

gions around the center and very large errors along the

boundaries.
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Cartesian Lissajous Flower Radial Spiral

Figure 5: Sensitivity profiles for different trajectories and the corresponding MASE results for the CS-based system matrices as

heat map (blue=small value / red=high value). The top row shows the spatial energy distribution inside the system matrices

from full calibration scans (i.e., the sensitivity profiles). The middle row shows the MASE for only 5 % of calibrations scans. The

bottom row shows the MASE for only 2% of calibrations scans. The heat maps of the spatial energy distributions are scaled

between the highest spatial energy component over all fully scanned system matrices. For the middle and bottom row, the

full-calibration-scan system-matrix coefficients were normalized to have a unit Frobenius norm, where, in a first step, both

receive channels were merged into one system matrix. The heat-map color is scaled between 0 and the highest spatial error over

all trajectories from the system matrix reconstruction from only 2 % of calibration scans.

The observations on the spatial error distributions

for Cartesian and Lissajous trajectories give rise to the

assumption that the travel velocity of the FFP is an im-

portant parameter that governs the absolute error and

determines in which region the largest error occurs in CS-

based system matrices derived under uniform random

sampling. For the spiral trajectory, it is most obvious

that the distance of several pixels to the trajectory is a

second important parameter. For the flower and radial

trajectories, a higher error level occurs in a small region

around the center of the FOV. With these trajectories, the

center is crossed by the FFP from all directions, resulting

in a particularly high sensitivity for this point. However,

this rapid change of sensitivity toward the center could

be occasionally missed by uniform random sampling.

Moreover, the rapid change cannot be well represented

by the DCT-II with only a few coefficients. Thus, the

combination of low-density sampling and the inability

of the sparsifying transform to properly approximate the

system function components with very few coefficients

seem to be another cause of error. To illustrate this more,

Fig. 6 shows two examples of the obtained error distri-

butions. The left image corresponds to a poor recon-

struction of the center, whereas the right image is an

example of a good reconstruction. In the lower detail

plot it is visible that the configuration of the sampled

points (dark blue) around the center is the reason for the

poor reconstruction, because the center is not covered

by the sampling points. In the right image, the sampling

points are distributed closer to the center of the FOV, and

a better reconstruction of the CS-based system matrix

becomes possible. Thus, for such trajectories, it seems

appropriate to adapt the sampling density to the spatial

variation of the sensitivity. However, a full optimization

of the sampling densities for all possible trajectories is

out of the scope of this paper and will be addressed in

future work.

VII.IV. Image reconstruction

In Fig. 7, we show the reconstruction results for the phan-

tom in Fig. 2 (a) with a circle diameter of 2 mm for dif-
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Figure 6: The absolute spatial error of the CS-based system

matrix of an MPI scanner with a FFP that travels along the flower

trajectory for two different sampling patterns, when only 2%

of calibration scans are performed. On the left, the result for

sampling pattern 1, and on the right, the sampling pattern 7 is

shown. The upper plot shows the absolute spatial error over

the whole FOV, whereas the lower plot shows a detailed zoom

of the center. The dark blue points in the lower plot correspond

to the sampled spatial positions.

ferent trajectory choices. This experiment has been re-

peated 10 times with different randomly generated spa-

tial sampling patterns and the mean over all trials was cal-

culated. The standard deviation of the obtained RMSE-

values turned out to be not more than one-tenth of the

RMSE in the worst-case scenario. However, it could be

observed that with a higher degree of undersampling the

standard deviation increased. In Fig. 7 (a), we observe

that the reconstruction with help of the partially mea-

sured system matrix works well for all trajectories when

at least 5% of coefficients are retained. In this case, the

reconstruction results seem to depend only on the reso-

lution properties of the trajectory choices. We observe

that the trajectories with a circular envelope (flower, ra-

dial, spiral) offer similar performance with respect to the

NRMSE. For the trajectories with a rectangular envelope

the Lissajous trajectory based system matrix yields about

1 dB better performance than the Cartesian trajectory

based system matrix. The difference between the trajec-

tories with a circular and rectangular envelope for the

CS-based system matrices is about 3 dB. To see what hap-

pens when less than 5 % of coefficients are observed and

the CS-based system matrices start to fail to reconstruct

the particle distribution, we plot in Fig. 7 (b) the NRMSE

for the interval from 1 % to 5 % of remaining coefficients.

Here we can observe that the trajectories with rectan-

gular envelope seem to be more robust against a higher

degree of information loss on the system matrix than
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Figure 7: The mean over ten trials of the NRMSE for the recon-

structed phantom in Fig. 2 (a) as function of the percentage of

measured spatial grid points inside the calibration scan. One

trial corresponds to the reconstruction from one random sam-

pling pattern. The results are presented for five different tra-

jectories. The upper plot shows the interval from 0 % to 100 %.

The lower plot shows the interval from 1 % to 5 % in detail.

the circular variants. Comparing the trajectories with

a rectangular envelope among one another, it becomes

obvious that the Cartesian trajectory is more robust than

the Lissajous trajectory to the loss of information in the

system matrix.

Because the spatial resolution seems to be the lim-

iting factor for the Lissajous and Cartesian trajectories,

the previous experiment was repeated for the phantom

in Fig. 2 (b), where the diameter of one circle filled with

particles is now 3 mm. The results of this experiment

are shown in Fig. 8. In Fig. 8 (a) it can been observed

that the flower, Lissajous, spiral, and radial trajectories

have similar resolution performance, whereas the Carte-

sian one is about 2 dB lower in the reconstruction result.

For this phantom a small loss of reconstruction perfor-

mance starts at about 90 % of undersampling. Therefore,

in Fig. 8 (b), the interval up to 10 % remaining coefficients

is shown. As for the first phantom, it can be observed

that the rectangular-envelope CS-based system matrices

seem to be more robust against a higher loss of informa-

tion through the CS-based reconstruction of the system
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Figure 8: The mean over ten trials of the NRMSE for the recon-

structed phantom in Fig. 2 (b) as function of the percentage of

measured spatial grid points inside the calibration scan. One

trial corresponds to reconstruction from one randomly selected

sampling pattern. The results are presented for five different

trajectories. The upper plot shows the interval from 0% to

100%. The lower plot shows the interval from 1% to 10% in

detail.

matrix than the ones with circular envelope. Addition-

ally, the Cartesian trajectory is the most robust trajectory

against a high level of undersampling.

The reconstructions from CS-based system matri-

ces for MPI scanners with a spiral and radial trajectory

show no significant differences in the performance in

the highly undersampled case. Interestingly, in the ex-

tremely undersampled case, the flower trajectory yields

worse reconstruction results than the rest of the trajecto-

ries. Quite obviously and not surprisingly, the temporal

acceleration frequencies f1 and f2 have a significant ef-

fect on the robustness of the compressed sensing based

approach. The reason is that f2 in the second group in

Tab. 1 (Cartesian, radial, spiral) is by a magnitude smaller

than in the first group (Lissajous, flower). The second

important contribution seems to be the rotation param-

eter in radial, spiral, and flower against the other two

trajectories (Lissajous, Cartesian).

In the following, we investigate directly the recon-

structed particle distributions for the phantoms and

differently strong undersampled FOVs. In Fig. 9, the

resolution phantom with a circle diameter of 2 mm is

shown. Because the trajectories with rectangular en-

velopes (Cartesian, Lissajous) were not really able to re-

construct this phantom, they will be excluded from the

following discussion. We obverse that the trajectories

with circular envelopes offer a sufficiently high spatial

resolution for the reconstruction of this phantom. For

5 % of sampled spatial points, the visual impression of the

phantom reconstruction is similar to the fully sampled

system matrices. Some small differences can be observed

around the center axis in the image reconstructed with

the CS-based system matrix from an MPI scanner with a

radial and spiral trajectory, whereas the reconstruction

from a CS-based system matrix with an FFP that travels

along a flower trajectory does not show significant dif-

ferences. However, if only 2% of the grid points of the

FOV are measured, peak-like noise of salt-and-pepper

type appears in the images obtained from trajectories

with circular envelopes. This noise seems to be related to

nearly singular values inside the CS-based system matrix

for some single pixels. The flower trajectory based sys-

tem matrix equally distributes the noise over the whole

reconstruction. The radial trajectory has a tendency to

result in most noise at the borders of the FOV and in a re-

gion near to the center, the spiral case shows most noise

in the center and around the center axes.

Because the system matrices for an MPI scanner with

an FFP that travels along a Lissajous or Cartesian trajec-

tory did not allow for a proper reconstruction of the phan-

tom in Fig. 9, we also investigated the reconstruction of

a different phantom with a circle diameter of 3 mm. The

results are shown in Fig. 10. Here, the reconstruction

from a Cartesian trajectory still fails in the center of the

image, but the system matrices for an MPI scanner with

the FFP traveling along a Lissajous trajectory work suf-

ficiently. For the image reconstruction with a CS-based

system matrix obtained from only 5 % of sampled pixels

the FFP trajectories with rectangular envelopes show no

difference, whereas the ones with circular envelopes re-

sult in slight deformations of the circles. When only 2 %

of spatial points are sampled and the system matrices

are reconstructed in a CS-based framework, all image

reconstructions of the second phantom include salt-and-

pepper like noise. For the Cartesian trajectory only in the

border regions the salt-and-pepper like noise appears,

whereas in the center of the image, the included noise

looks more Gaussian like. For the Lissajous trajectory

a similar behavior can be observed. The flower trajec-

tory distributes the salt-and-pepper like noise over the

whole FOV. For the radial trajectory, similar observations

as for the flower trajectory can be made, however the salt-

and-pepper like noise is more observable in the border

regions and directly in a small area around the center

of the FOV, where the trajectory is crossing from all di-

rections. For the radial trajectory the noise level seems
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Figure 9: The reconstruction results of the particle phantom in Fig. 2 (a) for different trajectories shown for values in the interval

[0, 1]. The top row shows the reconstruction results for the system matrices with full calibration scans. The middle row shows the

reconstruction results from CS-based system matrices obtained from 5% of calibration scans. The bottom row shows results

from CS-based system matrices obtained from 2 % of calibration scans. Note that some individual errors may be larger than the

figures suggest, because the estimated particle distributions had to be clipped for visualization in order to fit the given grayscale.

overall lower than for the flower trajectory. As with the

previous phantom, for the reconstruction from the spiral

trajectory we have an increased noise level in the center

and along the axes of the image.

VIII. Conclusions

We studied in this paper different magnetic particle

imaging trajectories for system matrices obtained via

a compressed sensing framework. Within the simulation

model, our results show that all trajectories offer highly

compressible spatial structures, so that system matrices

corresponding to all five trajectories can be recovered

from only 5 % to 10 % of measured spatial positions with-

out significant loss of quality for the reconstructed parti-

cle distribution. Additionally, we observed a correlation

between the velocity of the FFP in the trajectory, the dis-

tance of pixels to the trajectory, and the reconstruction

error of particle phantoms that occurs when using CS-

based system matrices. A more complicated situation

appears in the spatial center region of the system matrix

for a scanner with radial or flower trajectory. Here the

sampling pattern in the center has to be chosen more

carefully than for the other trajectories. The results show

that the Cartesian trajectory is the most stable choice

if a very high level of undersampling is the goal. The

Lissajous trajectory can be set between the Cartesian

trajectory and the ones with circular envelope. The spa-

tial resolution of the Lissajous trajectory is more limited

than for trajectories with the circular envelope, but it is

still better than for the Cartesian trajectory. In particular,

it offers a higher stability to information loss than the

trajectories with circular envelope. To make a decision

within the group of trajectories with circular envelope is

difficult. They all offer a higher spatial resolution than

the two rectangular ones, but they have their individual

pros and cons. Therefore, and because we only investi-

gated uniform random spatial sampling, the question

of which is the best trajectory for CS-based MPI still re-

mains. Additionally, it should be noted here that the Lis-

sajous and Cartesian trajectories are technically easier to

realize than the circular ones. Also the step from the two-

dimensional setting to the three-dimensional MPI is for

some trajectories more challenging than for others. Our

results will hopefully help to improve the sampling pat-

terns for CS-based system matrix reconstruction. In an

upcoming study, we will validate our simulation results

with help of the hybrid system matrix approach.
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Cartesian Lissajous Flower Radial Spiral

Figure 10: The reconstruction results of the particle phantom in Fig. 2 (b) for different trajectories shown for values in the

interval [0, 1]. The top row shows the reconstruction results for the system matrices with full calibration scans. The middle row

shows the reconstruction results from CS-based system matrices obtained from 5 % of calibration scans. The bottom row shows

results from CS-based system matrices obtained from 2 % of calibration scans. Note that some individual errors may be larger

than the figures suggest, because the estimated particle distributions had to be clipped for visualization in order to fit the given

grayscale.
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