
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 

for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research

The version in the Kent Academic Repository may differ from the final published version. 

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: 

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Koch, Philipp and Phan, Huy and Maass, Marco and Katzberg, Fabrice and Mertins, Alfred  (2017)
Early Prediction of Future Hand Movements Using sEMG Data.    In:   39th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2017).  IEEE,
Jeju Island, South Korea  pp. 54-57.

DOI

https://doi.org/10.1109/EMBC.2017.8036761

Link to record in KAR

https://kar.kent.ac.uk/72674/

Document Version

Author's Accepted Manuscript



Early Prediction of Future Hand Movements Using sEMG Data

Philipp Koch, Huy Phan, Marco Maass, Fabrice Katzberg, and Alfred Mertins

Abstract— We study in this work the feasibility of early
prediction of hand movement based on sEMG signals to
overcome the time delay issue of the conventional classification.
Opposed to the classification task, the objective of the early
prediction task is to predict a hand movement that is going
to occur in the future given the information up to the current
time point. The ability of early prediction may allow a hand
prosthesis control system to compensate for the time delay and,
as a result, improve the usability. Experimental results on the
Ninapro database show that we can predict up to 300 ms ahead
in the future while the prediction accuracy remains very close to
that of the standard classification, i.e. it is just marginally lower.
Furthermore, historical data prior the current time window is
shown very important to improve performance, not only for
the prediction but also the classification task.

I. INTRODUCTION

Surface electromyogram (sEMG) based hand movement

recognition is a key element in upper limb prostheses [1],

[2], [3]. The main goal of those prostheses is to restore most

of the functionalities of a human hand as well as to simplify

daily routine for an amputee. Consequently, a variety of hand

motions as well as an intuitive usage of the prostheses have

to be enabled.

Most of previous works in the field of control systems of

prostheses focused on classifying hand movements during

data acquisition [4], [5], [6], [7]. They shared the common

approach to perform the classification task. Features are first

extracted for a segment of the sEMG signal around the

current time point. The corresponding movement is then

determined by a pre-trained classifier given the extracted

features. The classification task has been widely adopted

due to its simplicity. However, we argue that this scheme

causes a significant problem, i.e. time delay, which results

in reduced responsiveness of the control system, and subse-

quently, downgrades the naturalness of the hand movements.

There are two factors contributing to this time delay. First,

in order to extract the features, a context window around

the current time point of the sEMG signal is required. That

is, the system needs to wait for a duration corresponding to

half of this window for feature extraction. The second factor

is the time needed for data acquisition, feature extraction,

and classification. Furthermore, considering the classification

task, one also is confronted with the unavoidable trade-off

problem between the window length and the classification.
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Fig. 1. Illustration of (a) the hand movement classification, (b) early
prediction, and (c) early prediction with history data. Windows with shaded
background are those used for classification/detection while arrows denote
the time points of the target windows.

As shown by Smith et al. [8], a larger window size will lead

to a better classification accuracy. Therefore, to guarantee

a good classification performance for reliable control, the

window length needs to be sufficiently large. This makes the

problem of time delay even worse.

In this work, instead of classification, we study the early

prediction of hand movements. By early prediction, we aim

at determining the label for a segment in the future using

information of the sEMG signal up to the current time as

shown in Fig. 1. The ability of early prediction will overcome

the time delay problem caused by the classification task since

it allows the control system to foresee the hand movements

and actively plan for controlling responses. Furthermore,

with the time delays having been compensated, it is possible

for one to enlarge the window size to extract more reliable

and complex features as well as utilize more advanced

classifiers to enhance the prediction accuracy. There is a

strong reason that makes early prediction of hand movements

feasible. Firstly, the sEMG signal is sequential by nature.

That is, there are strong dependencies between consecutive

windows, and a certain window should convey information

about the future and, therefore, should be able to tell about

their labels. Apart from the current window, earlier ones in

the past, called history in the following, can also be leveraged

to improve the accuracy of the prediction task. While the

majority of prior works focused on the classification task,

to the best of the authors knowledge, this is the first work



studying early prediction of sEMG-based hand movements.

Experiments on the Non-Invasive Adaptive Prosthetics

(NinaPro) dataset [9] show that we are able to obtain very

good accuracy with prediction up to 300 ms ahead in the

future. Furthermore, the early prediction accuracy, even with

300 ms in advance, is just marginally lower than that of

classification. On the other hand, they also show that history

plays an important role in the prediction task. Significant

improvements are seen on the prediction accuracy when

history windows are combined with the current window.

II. EARLY PREDICTION VS CLASSIFICATION OF

HAND MOVEMENTS

A. Typical Classification System

Let us assume the sEMG signal is acquired by a hand pros-

thesis control system sequentially window by window. Let

x ∈ R
D denote the D-dimension feature vector representing

an sEMG window and y ∈ L with L = {1, . . . , C} represent

a label of all possible C hand movements. Furthermore, it is

assumed that a segment-wise classifier F has been learned

beforehand using the training data. The goal of the typical

system that considers the classification task is to determine

the latest hand movement as soon as a new windowed

signal is available. Formally, the classifier will perform the

following mapping:

F : xn ∈ R
D 7−→ yn ∈ L, (1)

where n denotes the current time index.

When the current hand movement is determined, the

system will respond correspondingly to control the hand

prosthesis. The classification accuracy is therefore very im-

portant for reliable control. However, in order to improve the

classification, a large window size is required [8], resulting

in an increased time delay until the subsequent steps can take

place. The additional delay induced by other steps, e.g. signal

acquisition, feature extraction, and classification, needs to

be taken into account as well. In general, more complex

features and more advanced classification algorithms will

offer better accuracy at the cost of increased computational

overhead which is especially critical for this application at

hand where computational resources are scarce. Concretely,

there exist various factors deteriorating responsiveness of

the classification-based control system and one needs to

compromise in practical applications.

B. Early prediction system

Instead of determining the hand movement given the cur-

rent signal window as in the classification task, the objective

of the early prediction is to predict the hand movement of an

unseen signal window in the future. Formally, the mapping

of the prediction reads

Q : xn ∈ R
D 7−→ yn+L ∈ L, (2)

where L > 0 denotes the window offset between the current

window to the target window in the future. The prediction

is accomplished by the predictor Q which can be trained in

the same manner as the classifier F in Section II-A except

that the training data needs to be constructed properly for

prediction rather than classification. Via the predictor Q, we

produce a duration so that the system knows in advance the

hand movement that is going to take place and can actively

prepare the control plan for it. As a result, we are able to

get rid of the time delay experienced with the classification

task and have a chance to make the hand movements more

responsive and natural.

In addition to the current window, we also make use

of previous windows to improve the prediction accuracy.

The feature vectors of consecutive windows are simply

concatenated to form the overall feature vector for predic-

tion. Due to the sequential nature of the sEMG signal, the

history windows prior to the current one should also carry

information about the future one and, therefore, be useful for

the prediction task although the dependency becomes weaker

with a longer offset. When H > 0 history windows prior to

the current one are taken into account, the mapping of the

prediction task becomes

Q : (xn−H ⊕ . . .⊕ xn) ∈ R
D(H+1) 7−→ yn+L ∈ L. (3)

In (3), ⊕ denotes the concatenation operation. As alter-

native, one can employ a single large window which covers

both the current and H history windows. The larger window

is expected to bring up the prediction accuracy as it does

in the classification task [8]. However, we argue that the

concatenation strategy offers several advantages over the

large window strategy. First of all, since the feature vectors

have been computed for the history windows, we can avoid

the computational cost induced by feature extraction over

the long window except for the small current one. More

importantly, by concatenation we are able to encode the

temporal development of the signal which are ignored with

the global feature vector of the large window. Furthermore,

the concatenation results in higher-dimensional feature space

which enriches the signal representation.

III. EXPERIMENTS

In the experiments, we will evaluate the performance of

the early prediction of hand movements and compare it with

that of the standard classification. We also study how the

prediction performance varies with different prediction time

offsets and the influence of history data on the prediction

performance.

A. Ninapro Dataset

For evaluation of the early prediction approach, we con-

ducted the experiments on the second version of the database

from Ninapro project [7], [9]. The database includes sEMG

signals of 50 different hand movements (including rest)

for 40 abled healthy subjects. The subjects performed six

repetitions of each type of hand movement (except rest). For

signal acquisition twelve electrodes were placed around the

subjects’ forearms.



To be consent to the previous works on the dataset in [9],

we follow the same preparation steps and use the same data

splits in our experiments. Specifically, the repetitions 2 and 5

were used for evaluation while the remaining repetitions were

used as training data. The performance for both classification

and early prediction was evaluated individually for each

subject. The performance average over all subjects is finally

reported.

B. Preprocessing and Features

The processing scheme proposed by Englehart and Hud-

gins [10] was employed. The steps of this scheme include

preprocessing, segmenting the signal into windows followed

by extracting features on window level. For preprocessing

the signals were channel-wise normalized to achieve zero

mean and unit standard deviation. The necessary statistics

were calculated using train data exclusively. Afterwards, the

signals were segmented into overlapping windows of length

200 ms with 95% overlap (equivalent to 10 ms). We also

vary the overlapping degree in the experiments to study its

influence to the prediction accuracy.

A feature vector then needs to be extracted to represent

each window. Although different features can be used, we

made use of the root mean square (RMS) for this purpose.

The RMS is calculated channel-wise. For a windowed signal

s(n) of length N on a single channel the RMS can be

computed as

RMS =

√

√

√

√

1

N

N
∑

n=1

|s(n)|2 . (4)

The RMS is arguably one of the most commonly used fea-

ture for sEMG representation. Furthermore, for the Ninapro

dataset, the RMS features alone were shown to achieve

comparable performances compared to those obtained with

combinations of different feature types (including the RMS)

while being of lower dimensionality [9].

C. Classifiers and Predictors

Any classification framework can be used to train the

classifiers and predictors in the experiments. However, our

goal is not to seek for the best algorithm for the task at

hand. Therefore, we adopted random forest classification

[11], which exhibited very good performance for the clas-

sification task on the experimental dataset [9], to train both

the classifiers and predictors. The number of trees was set

to 100.

D. Experimental Results

We show in Fig. 2 the obtained early prediction accuracies

as functions of the prediction time offset. The time offset

is counted from −100 ms which is the offset from the

center to the end of the current window. Furthermore, to

study the influence of the history, we explore different

history values H = {0, 5, 10, 15, 20}, which is equivalent

to {200, 450, 700, 950, 1200} ms of the signal. It should be

noted that with H = 0 and the time offset of −100 ms, the

setup will become the standard classification as in [9].
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Fig. 2. Early prediction accuracy (%) as a function of the prediction time
offset for different number of history windows H = {5, 10, 15, 20} with
an overlap of 95%.
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Fig. 3. Early prediction accuracy (%) with different overlapping degree of
consecutive windows. The results have been obtained with the number of
history windows H = 5.

As can be seen from Fig. 2, the prediction accuracy

gradually downgrades with the increase of the prediction

time offset. This tendency is generalized for all studied

values of H as well. This result is expected since the

temporal dependency between the current window and the

target window becomes weaker with a larger time offset.

The reduction of accuracy, however, is not significant. For

instance, even with the prediction offset time of 300 ms the

prediction accuracies are lower than those of the standard

classification only by 1.23%, 1.41%, 1.48%, 1.52%, and

1,57% with H = {0, 5, 10, 15, 20}, respectively. Practically,

given that we have compensated 400 ms for the delay, these

small accuracy drops should be accountable since the delay

could be more important than the overall accuracy for the

outstanding usability of hand prosthetic [12].

On the other hand, positive contribution of the history

data can also be seen from Fig. 2 not only for the early



prediction but also the standard classification. The evidence

is that the accuracy curves are lifted up as long as more

history windows are integrated. Average improvements of

0.08%, 0.52%, 1.11%, and 1.70% absolute are obtained for

H = {5, 10, 15, 20} compared to the case without history

(H = 0).

In order to investigate the effects of the overlapping

degree between consecutive windows, we fixed the num-

ber of history windows to H = 5 and repeated the

experiments with the overlapping degree of 95%, 75%,

50%, 25%, and 0% (corresponding to the covered times of

250, 450, 700, 950, 1200 ms). The early prediction accura-

cies obtained with different studied overlapping degrees are

shown in Fig. 3. As can be seen, the overlapping degree

is inversely proportional to the prediction accuracy as a

lower overlapping degree leads to a better performance.

More specifically, the average accuracy gains of 3.02%,

5.67%, 7.52%, 9.01% absolute are obtained with 75%, 50%,

25%, and 0% overlap compared to the original setting of

95% overlap. The possible explanations for these results are

twofold. First, with less overlapping windows, we are able

to cover a larger duration of the signal. As a result, different

levels of temporal dependency, i.e. both long-term and short-

term, are taken into account to train more reliable predictors.

Second, with the same dimensionality of the feature space

(5×12 in this case), highly overlapping windows more likely

result in strong correlations between the features which is

counter-productive for the predictor training. Reduction of

overlapping degree in this experiment can be interpreted as

a decorrelation procedure which is expected to improve the

quality of the predictors at the end. It should be emphasized

that this finding is also applied for the standard classification

setting (i.e. the prediction time offset of −100 ms). For

the sake of comparison, the best classification accuracy

obtained with our experiments (i.e. 82.06% with H = 5
and 0% window overlap) outruns that reported in [9] (i.e.

approximately 73%) by more than 9% absolute.

E. Discussion

In the experiments, we only focused on prediction for

a single future window at the offset L from the current

window n. However, as the prediction can be done for

the window at n + L, it should be practically possible to

predict contiguous hand movements for the window sequence

ranging from n+ 1 to n+ L− 1. This prediction sequence

can not only be used to prepare the control plan but also

to smooth out spurious prediction labels, for example using

median filtering. Furthermore, although we have investigated

the prediction time offset up to 300 ms, it should be possible

to extend it further. However, the prediction accuracy is

expected to level off at some time point in the future when the

link between the current window and the target one becomes

too weak for reliable prediction. These open issues are worth

further studying in the future work.

Considering the history, the character of the analysed data

is probably important for the choice of history length and

overlap of history windows. When the time covered by the

history is disproportionately large, the further information

causes no increase of the accuracy since there is no substan-

tial dependency between the past and the current movement.

IV. CONCLUSIONS

This paper has presented a preliminary study on the early

prediction of sEMG-based hand movements for hand pros-

thesis, which helps to compensate for time delays induced by

the conventional classification approach. The experimental

results on the Ninapro database revealed that while early

prediction of future hand movements is practical (up to 300

ms) the prediction accuracy is nearly as good as that of the

classification task. Furthermore, it was shown to be important

to integrate history windows prior to the current one to lever-

age different degrees of temporal dependencies to further

improve prediction performance. An average accuracy gain

of up to 9.01% absolute was obtained for the prediction task

with 5 additional nonoverlapping history windows.
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