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Improved Audio Scene Classification based on

Label Tree Embeddings and Convolutional Neural

Networks
Huy Phan∗, Student Member, IEEE, Lars Hertel, Marco Maass, Student Member, IEEE, Philipp Koch,

Radoslaw Mazur, Member, IEEE, and Alfred Mertins, Senior Member, IEEE

Abstract—We present in this article an efficient approach for
audio scene classification. We aim at learning representations for
scene examples by exploring the structure of their class labels.
A category taxonomy is automatically learned by collectively
optimizing a tree-structured clustering of the given labels into
multiple meta-classes. A scene recording is then transformed into
a label tree embedding image. Elements of the image represent
the likelihoods that the scene instance belongs to the meta-classes.
We investigate classification with label tree embedding features
learned from different low-level features as well as their fusion.
We show that combination of multiple features is essential to
obtain good performance.

While averaging label-tree embedding images over time yields
good performance, we argue that average pooling possesses an in-
trinsic shortcoming. We alternatively propose an improved classi-
fication scheme to bypass this limitation. We aim at automatically
learning common templates that are useful for the classification
task from these images using simple but tailored convolutional
neural networks. The trained networks are then employed as
a feature extractor that matches the learned templates across a
label tree embedding image and produce the maximum matching
scores as features for classification. Since audio scenes exhibit rich
content, template learning and matching on low-level features
would be inefficient. With label tree embedding features, we
have quantized and reduced the low-level features into the
likelihoods of the meta-classes on which the template learning
and matching are efficient. We study both training convolutional
neural networks on stacked label tree embedding images and
multi-stream networks. Experimental results on the DCASE2016
and LITIS Rouen datasets demonstrate the efficiency of the
proposed methods.

Index Terms—audio scene classification, label tree embedding,
convolutional neural network, multi-stream, template matching.

I. INTRODUCTION

The goal of audio scene classification (ASC) is to recognize

a surrounding environment using acoustic signals. It enables

many applications, such as surveillance [1], context-aware

services [2], [3], and robotic navigation [4]. In addition, the

ability to recognize an acoustic scene can also help to improve

performance of the closely related task of audio event detection

[5]. Therefore, ASC remains to be one of the important

challenges in the field of computational auditory scene analysis

[6], [7].
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the Graduate School for Computing in Medicine and Life Sciences, University
of Lübeck, 23562 Lübeck Germany e-mail: phan@isip.uni-luebeck.de.

L. Hertel, M. Maass, P. Koch, R. Mazur and A. Mertins are with the Institute
for Signal Processing, University of Lübeck, 23562 Lübeck, Germany e-mails:
{hertel,maass,koch,mazur,mertins}@isip.uni-luebeck.de.

An acoustic scene can be thought of as a mixture of

background noise and various foreground sound events. In

order to automatically recognize a scene, a proper feature

representation is needed, which, unfortunately, is not easily

obtained due to the complexity of the content. Different low-

level features have been proposed in prior works, such as

Mel frequency cepstral coefficients (MFCCs) [8], [9] and

Gammatone filterbank coefficients [10]. These features are

usually borrowed from related problems like speech recog-

nition and audio event classification. Besides that, several

features have also been particularly designed for the task and

demonstrated good performance. For instance, Histograms of

Oriented Gradients (HOG) were proposed in [11]–[13] and a

Gabor dictionary was used in [14]. A scene instance can also

be separated into background noise and foreground sounds,

and the features of both parts can be used to characterize the

scene [13], [15]–[18].

Nevertheless, most (if not all) prior works used a “flat”

classification scheme. On the other hand, the inherent structure

of the scene category set, which may be useful for the

feature learning or the classification task at hand, has not been

explored. This work aims at filling this gap for the ASC task.

The objective is to uncover a class hierarchy by automatically

clustering similar scene categories into meta-classes with

the proposed label tree learning algorithm. Afterwards, the

class hierarchy is used to construct an explicit embedding

to transform each segment of an audio scene into a label

tree embedding feature vector. Each element of the feature

vector carries the likelihood with which a given audio segment

belongs to the corresponding meta-class. As a result, the target

scene instance is transformed into a two-dimensional image

via the learned label tree embedding. The image is formed as

the output of classifiers for different subsets of labels (rows)

for each time frame in the sound excerpt (columns). We study

the class hierarchies learned from different low-level feature

sets, including Gammatone cepstral coefficients [10], [19],

MFCCs [20], and log-frequency filter bank coefficients [21],

[22], as well as their fusion. An average pooling over time

can then be applied on a label tree embedding (LTE) image

to yield a global LTE feature vector for classification. These

learned representations are shown to be useful for the ASC

task since a good classification accuracy can be obtained even

with a simple linear classifier [23]. A kernel-based fusion

scheme is further proposed to combine global LTE features

corresponding to different low-level features.
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Despite their complex sound composition, audio scenes of

the same category expose many things in common, i.e. fre-

quent foreground events and background noise. The question

is how to discover and match these patterns to leverage the

classification task. We propose to use a convolutional neural

network (CNN) [24] for this purpose. The proposed CNN

architecture is very simple, as it consists of only three layers.

These are a convolutional, pooling, and softmax layer. The

combination of the former two is targeted for feature extraction

whereas classification is accomplished with the latter one. The

convolutional kernels play the role of the templates that will be

learned by the CNN. Convolving a kernel on a scene instance,

i.e. template matching, results in a feature map which indicates

how well the template is matched to different parts of the

scene. In turn, the pooling layer retains the single maximum

value, i.e. the maximum matching score, of each feature map

as the final feature. These features are finally concatenated

and fed into the softmax layer for classification. The CNN is

trained to maximize the classification accuracy on the training

set. Therefore, the networks are supposed to uncover useful

patterns from the scenes for classification, opposing to the

average pooling over time which tends to blend the foreground

events and background noise. During testing, we do not use

the learned CNN as the final classifier but only as a feature

extractor. The features learned by the network are fed to a

linear Support Vector Machine (SVM) classifier as in [25]–

[27].

We argue that discovering templates from low-level features

would be inefficient due to the rich content of the scenes.

Alternatively, we employ the LTE images as the input to the

CNN. With LTE features, we have quantized and reduced the

complex content of the scenes into the likelihoods of the meta-

classes on which the template learning and matching can be

performed more easily. We investigate two settings for CNN

training. The first one trains a single CNN on multiple-channel

LTE images, which consist of stacked individual LTE images

learned from different low-level features. The second exploits

a multi-stream CNN which combines single-stream CNNs

learned on different LTE types using probabilistic fusion [28],

[29]. As expected, this method leads to significant accuracy

improvements on the employed datasets. Furthermore, similar

to the case of classification with global LTE features, com-

bining multiple features either by stacking or multi-stream

settings is vital for good performance.

The rest of this paper is organized as follows. Some related

works on audio scene classification are presented in Section

II. After that, we describe our proposed methods at a high

abstraction level in Section III. The learning algorithm for the

label tree embeddings and the classification schemes using

global LTE features are then elaborated in Section IV followed

by the classification using 1-max pooling CNNs in Section V.

Subsequently, Section VI presents experimental results on the

employed datasets, followed by the discussion in Section VII

and conclusions in Section VIII.

II. RELATED WORKS

The previous works on audio scene classification can be

roughly grouped into two main classes.

Low-level feature-based approach. These approaches rep-

resent audio scenes by low-level feature primitives. Time-

domain features (e.g. short-time energy, zero crossing rate),

frequency-domain features (e.g. spectral centroid, spectral

flux), auto-regression based features (e.g. linear prediction

coefficients (LPC)), and cepstral features (e.g. MFCCs, Gam-

matone ceptral coefficients) have been prevalent in the liter-

ature [3], [8], [15], [20]. As an improvement, Roma et al.

utilized recursive quantitative analyzing (RQA) to analyze

the recurrent behaviour in the MFCC coefficients over time

[30]. Time-frequency representations have also been proposed.

Inspired by the HOG representations in the field of image

processing, Rakotomamonjy and Gasso adapted HOG repre-

sentations on constant-Q transform spectrogram images for

audio scene representation [11]. Bisot et al. demonstrated

that a combination of HOG and subband power distribution

(SPD) features can further improve the classification accuracy

[12]. Chu et al. [31] obtained an ensemble of time-frequency

features via a matching pursuit decomposition of the audio

signal. Agcaer [32] made use of amplitude modulation spec-

trum features obtained by two-stage recursive filter banks. A

small subset of features is then optimized by the Covariance

Matrix Adaptation Evolutionary Strategy (CMA-ES) [33].

After the feature extraction step, the classification is finally

accomplished by some back-end classifiers. Various classifiers

have been used, such as Linear Discriminant Analysis (LDA)

[32], Hidden Markov Models (HMMs) [3], Gaussian Mixture

Models (GMMs) [20], [31], SVMs [11], [30], and Deep Neural

Networks (DNNs) [8].

High-level feature-based approaches. These approaches use

a set of high-level features to represent audio scenes. These

features are usually obtained through classifying or clustering

on low-level features. In [34], Aucouturier et al. obtained bag-

of-features (BOF) representations by estimating the distribu-

tion of frame-based MFCC features using a GMM. Lee et al.

used a sparse restricted Boltzmann machine (RBM) followed

by a max-pooling scheme to select the Mel-frequency time-

frequency features that correspond to foreground events [35].

The selected features are then averaged to form a scene-level

feature vector. Bisot et al. demonstrated that time-frequency

features can be learned under an unsupervised setting with

kernel principal component analysis (KPCA) and nonnegative

matrix factorization (NMF). At higher semantic levels, due to

the fact that a scene can be very well characterized by its

foreground sound events [16], [18], Heittola et al. described

a scene by the histogram of foreground audio events which

are outputted by an event detector [17]. In [15], background

noise, extracted by tracking minimum statistics over time-

frequency space [36], has also been shown to be capable

of characterizing a scene. Ye et al. [13] proposed to take

into account both background noise and foreground events

to represent a scene. Two BOF vectors were learned via a

GMM and Fisher Vector encoding, one for background noise

and another for foreground events. The final classification is

accomplished by probabilistic fusion of two SVM classifiers

on two feature channels. More recently, generic features via

similarity to speech patterns [23] and transfer learning from

visual knowledge [37] have been reported to give good gen-
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Figure 1. Overview of scene classification with global LTE features. Via the LTE algorithm, six LTE images with three different low-level feature sets and
background noise subtraction switched on and off, respectively, are obtained for a scene instance. The average pooling over time is then carried out to produce
global LTE feature vectors, which are used for classification with an SVM. Fusion of multiple LTE feature channels is also investigated.

eralization.

Although good performance on different audio scene bench-

mark datasets has been reported for the above mentioned

approaches, they have a common shortcoming. They used a

“flat” classification scheme and do not explore the structured

nature of the scene categories for classification. Our previous

work [23] demonstrated that learned representations that take

into account the structure of scene data can be highly discrim-

inative, as state-of-the-art performance can be obtained even

with simple linear classifiers. The label tree embeddings used

in this work also bear some resemblance with those in [21],

[38] in which label tree embeddings of speech patterns were

learned to extract generic features for audio events.

Deep CNNs have also recently been employed to tackle

the audio scene classification task in the context of the

DCASE 2016 challenge [20], [39], such as those in [40]–

[43]. These CNNs share the same processing pipeline. The

30-second scene snippets are first decomposed into multiple

small segments. Segment-wise classification is then performed

followed by an aggregation step to combine segment-wise

classification results with some voting schemes to yield the

final classification labels. Compared to these deep and large

networks, our CNN architecture is much smaller and simpler,

allowing it to handle the whole signals as input and learn fea-

tures for signal-wise classification. The max pooling scheme

used in our proposed network architecture has also been shown

useful for robust audio event recognition in our previous work

[24] and for text classification [44].

This work extends our previous works in [23], [24] in five

major aspects. (1) We study LTE representation learning with

different low-level feature sets as well as their combination.

(2) We perform audio background subtraction prior to the

LTE representation learning and show that the resulting LTE

representations are useful, particularly for the processing with

the proposed CNN afterward. (3) Instead of employing the

trained CNN for classification with its softmax layer as in

[23], we treat the network as a feature extractor and use the

extracted features to train a linear SVM for classification as in

[25]–[27]. The linear SVM offers better generalization thanks

to its well-known maximum-margin property. (4) We study

training CNNs not only on single LTE types but also on

stacked LTE images learned from different types of low-level

features. The latter allows the network to learn useful patterns

across different LTE channels, leading to better performance

compared to the former one. (5) Last but not least, as multi-

stream CNNs have been successful for many classification

tasks, we also examine and evaluate here a multi-stream CNN

which probabilistically fuses single-channel CNNs trained on

different LTE types.

III. APPROACH OVERVIEW

Our approach can be divided into three parts, label tree

embedding, CNNs for template learning and matching, and

classification with linear SVMs, which can be explained at a

high abstraction level as in Figures 1, 2, and 3, respectively.

Using the proposed LTE learning algorithm in Section IV,

a scene instance is mapped into a 2-dimensional LTE image

of size F × T where F is the number of derived features and

T is the time frames. The exact interpretation of F and T
will be described later in Section IV. We investigate three

different low-level feature sets for LTE learning, including

Gammatone cepstral coefficients [10], [19], MFCCs [20], and

log-frequency filter bank coefficients [21], [22]. We also study

how the presence/absence of background noise affects the LTE
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Table I
LTE COMBINATION SYSTEMS.

LTE system Constituents

LTE-Gam LTE0-Gam, LTE1-Gam

LTE-MFCC LTE0-MFCC, LTE1-MFCC

LTE-Log LTE0-Log, LTE1-Log

LTE0-Fusion3 LTE0-Gam, LTE0-MFCC, LTE0-Log

LTE1-Fusion3 LTE1-Gam, LTE1-MFCC, LTE1-Log

LTE-Fusion6
LTE0-Gam, LTE0-MFCC, LTE0-Log,

LTE1-Gam, LTE1-MFCC, LTE1-Log

Table II
SINGLE-STREAM CNN SYSTEMS WITH COMBINED LTE IMAGES.

CNN system LTE image constituents

CNN-Gam LTE0-Gam, LTE1-Gam

CNN-MFCC LTE0-MFCC, LTE1-MFCC

CNN-Log LTE0-Log, LTE1-Log

CNN0-Fusion3 LTE0-Gam, LTE0-MFCC, LTE0-Log

CNN1-Fusion3 LTE1-Gam, LTE1-MFCC, LTE1-Log

CNN-Fusion6
LTE0-Gam, LTE0-MFCC, LTE0-Log,

LTE1-Gam, LTE1-MFCC, LTE1-Log

Table III
MULTI-STREAM CNN SYSTEMS THAT FUSES MULTIPLE SINGLE-STREAM

CNNS.

Multi-stream

CNN system
Single-stream CNN constituents

Fusion

scheme

CNN-Multi-Mean CNN-Gam, CNN-MFCC, CNN-Log mean

CNN-Multi-Max CNN-Gam, CNN-MFCC, CNN-Log max

CNN-Fusion3-
Multi-Mean

CNN0-Fusion3, CNN1-Fusion3 mean

CNN-Fusion3-
Multi-Max

CNN0-Fusion3, CNN1-Fusion3 max

representations. We preprocess the input signals using mini-

mum statistics noise estimation and subtraction [36] whenever

we need to remove background noise. As a result, six LTE

images are obtained for a single scene instance, namely LTE0-

Gam, LTE0-MFCC, LTE0-Log, LTE1-Gam, LTE1-MFCC, and

LTE1-Log where “0” and “1” denote presence/absence of the

background noise. The average pooling over time is then

applied to the LTE images to produce global LTE feature

vectors which are presented to SVM classifiers for classifi-

cation. We study the combinations of complementary LTE

channels derived from the same types of low-level features

(LTE-Gam, LTE-MFCC, and LTE-Log), the combinations of

those LTEs with the presence/absence of background noise

(LTE0-Fusion3, LTE1-Fusion3), and the combination of all

the six LTE feature vectors altogether (LTE-Fusion6). The

summary of these combinations is given in Table I.

Arguing the drawbacks of the above-described average

pooling, we alternatively propose to automatically learn tem-

plates that are useful for the task from the LTE images

using the proposed CNN architecture in Figure 2. We train

different CNNs with different combinations of LTE images as

summarized in Table II. In order to combine multiple LTE

images, we stack them together to make a multiple-channel

LTE image on which 3-dimensional kernels will be learned

by the CNNs. Afterwards, the trained CNNs are utilized to

perform template matching on inputted LTE images for feature

extraction. Finally, the extracted features are classified by

P
-c

h
an

n
el

L
T

E
 i

m
ag

e

 

 

C
o
n
v
o
lu

ti
o
n
al

 

la
y
er

 

1
-m

ax
 p

o
o
li

n
g

la
y
er

 

S
o
ft

m
ax

la
y
er

T

F

P

 
P×F×3

∈Rw  
P×F×5

∈Rw

Figure 2. Illustration of the proposed CNN architecture on a P -channel LTE
image. The network consists of two filter sets with widths w = 3 and w = 5

at the convolutional layer. Each filter set contains two individual filters.

LTE0-Gam

LTE1-Gam LTE1-MFCC

LTE0-MFCC

LTE1-Log

LTE0-Log

SVM

Figure 3. Illustration of classification with linear SVMs using features
extracted from the trained CNNs. Probabilistic fusion with multi-stream CNNs
is also studied.

linear SVMs. We will show that this classification scheme

leads to significant improvements over the one with global

LTE features.

We further study probabilistic fusion of different CNNs in

multi-stream settings. These multi-stream CNN systems either

combine three single-stream CNNs with different feature types

or those two with background noise switched on/off. Table III

illustrates a summary of them. Both mean and max fusion

strategies will be investigated.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. X, MARCH 2017 5

Algorithm 1: Partition algorithm at a split node

Data: ℓ ∈ L, Sℓ ⊂ S
Result: the optimal partition {ℓL, ℓR} and {Sℓ

L,S
ℓ
R}

begin

divide Sℓ into two equal halves Sℓ
train and Sℓ

eval;

train a multi-class classifier Mℓ using Sℓ
train;

classify Sℓ
eval with the classifier Mℓ;

obtain the classification confusion matrix

A ∈ R
|ℓ|×|ℓ|;

symmetrize A by Ā = (A+A
T)/2;

partition ℓ into {ℓL, ℓR} and Sℓ into {SL
ℓ ,S

R
ℓ } to

minimize

E(ℓ) =
∑

i,j∈ℓL

Āij +
∑

m,n∈ℓR

Āmn (1)

end

IV. CLASSIFICATION WITH LTE REPRESENTATIONS

A. LTE representations for audio scenes

1) Learning a label tree: Let us consider a database (e.g.

a scene database) with a label set L = {1, . . . , C} of C
categories. Given the label set and the examples from the

database, we aim at learning a label tree that encodes the

hierarchical structure of the class labels [21], [38]. The idea is

to recursively partition the label set L into disjoint subsets in

such a way that the examples of the obtained subsets can be

easily separated from one another. To explain the procedure,

let the set of examples extracted from the training data be

given by S = {(xn, cn)}
|S|
n=1. Moreover, let x ∈ R

M denote a

low-level feature vector of size M , let c ∈ L be a class label,

and let | · | denote the set cardinality.

A learning algorithm is used to grow the label tree in a

recursive manner so that each of its nodes is associated with a

label subset of the entire set L. The algorithm starts with the

root node which is linked to L. Without loss of generality, let

us consider a current split node with a label subset ℓ ⊂ L. We

then want to split ℓ into two smaller subsets ℓL and ℓR that

fulfill the following conditions: ℓL 6= ∅, ℓR 6= ∅, ℓL ∪ ℓR = ℓ,
and ℓL ∩ ℓR = ∅. Among 2|ℓ|−1 − 1 such possible partitions

{ℓL, ℓR}, we then select the optimal one such that ℓL and ℓR

can be separated with as few errors as possible using a binary

classifier. Afterwards, the subsets ℓL and ℓR are forwarded to

the left and right child nodes of the current node, respectively.

The recursive splitting procedure is terminated as soon as a

leaf node with a single class label is reached.

Let us denote the sample subset corresponding to a label

subset ℓ as Sℓ ⊂ S . The algorithm for partitioning Sℓ into

{SL
ℓ ,S

R
ℓ } is presented as Algorithm 1. In the algorithm,

the multi-class classifier Mℓ is trained using random forest

classification [45] with 200 trees. The elements Aij of the

matrix A are computed by

Aij =
1

|Sℓ
eval,i|

∑

x∈Sℓ

eval,i

P (j|x,Mℓ), (2)

busy_streetcafe
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market metro-paris

pool_hall quiet_street

pedestrian_streettubestation

busy_street

cafe train_station

market

metro-paris pool_hall
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Figure 4. A part of the label tree learned from the LITIS Rouen dataset with
Gammatone cepstral coefficients.

where Sℓ
eval,i ⊂ Sℓ

eval is the set of samples with the label i.

P (j|x,Mℓ) denotes the probability that the classifier Mℓ

predicts the sample x as class j. Aij with i 6= j expresses

how likely a sample of class i is wrongly predicted to belong

to class j by the classifier.

With the partition criterion in (1), categories that are difficult

to separate from one another are clustered into the same subset.

As a result, we can expect to obtain meta-classes ℓL and ℓR

that can be easily separated from each other. Since it is hard to

solve the optimization problem in (1) directly, we alternatively

solve a relaxed version of it using spectral clustering [46]

applied on the matrix Ā.

We demonstrate in Figure 4 a part of the label tree learned

from the LITIS Rouen dataset [11] with Gammatone cepstral

coefficients (more details in Section IV-B).

2) LTE representations: After completion of the learning

process, the obtained label tree consists of (C−1) split nodes

in total. Furthermore, the original label set L has been divided

into (C − 1)× 2 disjoint subsets. Let us consider a split-node

index i with 1 ≤ i ≤ C − 1. We then want to derive the label

tree embedding Ψ : R
M → R

(C−1)×2 where

Ψ(x) =
(

ψL
1 (x), ψ

R
1 (x), . . . , ψ

L
C−1(x), ψ

R
C−1(x)

)

. (3)

In the above expression, ψL
i (x) and ψR

i (x) represent the

likelihoods with which the test sample x belongs to two meta-

classes associated with the left and right child nodes of the

split node i. That is, using the embedding, we transform x

into a vector Ψ(x) containing meta-class likelihoods. Finally,

the vector Ψ(x) is used as a high-level representation for x.

At the split node i associated with the label subset ℓi and

the optimal partitioning {ℓLi , ℓ
R
i }, the likelihoods ψL

i (x) and

ψR
i (x) can be computed as follows. Considering the samples

with their labels in ℓLi and ℓRi as negative and positive exam-

ples, respectively, we train a binary random-forest classifier

Mℓi using the sample set Sℓi as training data. The number

of trees is set to 200. The likelihoods ψL
i (x) and ψR

i (x) then

read

ψL
i (x) = P (negative|x,Mℓi), (4)

ψR
i (x) = P (positive|x,Mℓi), (5)

where P (negative|x,Mℓi) and P (positive|x,Mℓi) denote the

posterior probabilities for classifying the test sample x into the
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negative and positive class, respectively, given the classifier

Mℓi . These posterior probabilities can be obtained easily, as

the random forest classification naturally supports probability

output [45].

B. Recognition using LTE representations

Using the above framework, we derived the following

LTE representations with different low-level feature sets: (1)

Gammatone cepstral coefficients (LTE0-Gam and LTE1-Gam),

(2) MFCCs (LTE0-MFCC and LTE1-MFCC), log frequency

filter banks (LTE0-Log and LTE1-Log), and their fusion (LTE-

Gam, LTE-MFCC, LTE-Log, LTE0-Fusion3, LTE1-Fusion3,

and LTE-Fusion6). An overview of the LTE representations

was given in Section III. In the experiments, we did not use

the whole 30-second audio snippets as data samples in the

label tree embedding algorithm. Instead, the snippets were

decomposed into T = 238 segments of length 250 ms with a

hop size of 125 ms. Furthermore, the segments were labeled

with the label of the snippet. These segments were then used as

data examples in the algorithm. By doing this we try to capture

meaningful foreground events occurring in the long recordings,

whose lengths are typically in the order of some hundreds of

milliseconds. With each audio segment being represented by

an LTE feature vector, we obtain an F ×T LTE image for the

30-second scene instance where F = (C − 1)× 2.

LTE0-Gam and LTE1-Gam. In this case, we characterize

an audio segment by M = 64 Gammatone ceptral coefficients.

To accomplish this, the audio segment is decomposed into

50 ms frames with a hop size of 25 ms. 64 Gammatone cepstral

coefficients are then extracted for each frame [19]. The feature

vector for the whole segment is finally computed by averaging

the frame-wise feature vectors.

LTE0-MFCC and LTE1-MFCC. For these LTE features,

we employ M = 60 MFCC features in replacement for Gam-

matone cepstral coefficients in LTE0-Gam and LTE1-Gam.

MFCCs are calculated for each 50 ms frame with a Hamming

window and 40 mel bands. Beside the first 20 coefficients

(including 0th order coefficients), 20 delta coefficients, and

20 acceleration coefficients are also calculated using a window

length of nine frames.

LTE0-Log and LTE1-Log. Here, we utilize 20 log-

frequency filter bank coefficients, their first and second deriva-

tives in frequency direction, zero-crossing rate, short-time

energy, four sub-band energies, spectral centroid, and spectral

bandwidth, similar to our previous works [21], [22]. The total

number of features is M = 65.

In order to perform classification with the LTE features, we

use average pooling on each F × T LTE image over time to

obtain the global F -dimensional feature vector for each scene

instance. Note that in order to extract LTE images for the

training instances, we conducted 10-fold cross-validation on

training data.

LTE-Gam, LTE-MFCC, LTE-Log, LTE0-Fusion3,

LTE1-Fusion3, and LTE-Fusion6. In order to take

advantage of representations from different perspectives (i.e.

the different low-level feature types and the presence/absence

of background noise), we combine different global LTE

feature vectors using the extended Gaussian-χ2 kernel [47]

given by

K(xi,xj) = exp
(

−
∑

k

1

D̄k
D
(

Ψk(xi),Ψ
k(xj)

)

)

(6)

where D
(

Ψk(xi),Ψ
k(xj)

)

is the χ2 distance between the

global LTE feature vectors of the embedded scene instances

Ψk(xi) and Ψk(xj) with respect to the k-th channel where

k ∈ {LTE0-Gam,LTE1-Gam}, (7)

k ∈ {LTE0-MFCC,LTE1-MFCC}, (8)

k ∈ {LTE0-Log,LTE1-Log}, (9)

k ∈ {LTE0-Gam,LTE0-MFCC,LTE0-Log}, (10)

k ∈ {LTE1-Gam,LTE1-MFCC,LTE1-Log}, (11)

k ∈ {LTE0-Gam,LTE0-MFCC,LTE0-Log,

LTE1-Gam,LTE1-MFCC,LTE1-Log}, (12)

for LTE-Gam, LTE-Gam, LTE-Gam, LTE0-Fusion3, LTE1-

Fusion3, and LTE-Fusion6, respectively. D̄k denotes the aver-

age χ2 distance between the embedded scene instances in the

training data for the k-th channel.

V. LTE TEMPLATE LEARNING AND MATCHING WITH

CNNS

A. Potential issues with the average pooling

We argue that the average pooling on the LTE images

results in global feature vectors that are not optimal. Beside

background noise, an audio scene typically contains different

kinds of foreground events, which are sparsely and irregu-

larly distributed. It can be interpreted as foreground events

embedded in background noise. Although foreground events

[16]–[18], [35] and background noise [15] have been used

as signatures for audio scenes, they should be considered

separately [13]. Unfortunately, with the average pooling, we

tend to mix up the sparse foreground events into the dom-

inating background noise. To overcome this issue, we alter-

natively propose to discover templates that are useful for the

classification task from the LTE images. The proposed CNN

architecture designed for this purpose is relatively simple. It

consists of one convolutional layer, one pooling layer, and

one softmax layer as illustrated in Figure 2. Different from

typical CNN architectures, the size of the convolutional filters

at the convolutional layer is not fixed. We allow multiple filters

with different sizes to be learned simultaneously. In addition,

since our intention is to perform pattern matching, we do not

pursue subsampling at the pooling layer as usual but reduce

each feature map to the most prominent matching score.

The learned templates potentially correspond to discriminative

foreground events as well as background noise.

B. CNNs for pattern learning and matching

1) Multi-channel LTE images: The inputs to the networks

are the entire LTE images. Our experiments reveal that differ-

ent low-level features (e.g. Gammatone cepstral coefficients,

MFCCs, and log-frequency filter banks) used to derive LTE
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images are good for different scene categories. In addition,

background noise is also shown to be useful. Therefore, it

is reasonable to let the CNNs look at multiple LTE images

at the same time to discover the most useful templates across

different channels. To accomplish this, we stack the individual

LTE images to produce a multi-channel LTE image of size

P × F × T for the scene instance when P is the number of

single LTE images. We train the following CNNs: CNN-Gam,

CNN-MFCC, CNN-Log, CNN0-Fusion3, CNN1-Fusion3, and

CNN-Fusion6 as described in Section III.

2) Convolutional layer: Let S ∈ R
P×F×T denote an input

LTE image and let w ∈ R
P×F×w be the impulse response

of a 3-dimensional linear filter with a temporal width of

w. We convolve the filter with the LTE image in the time

direction. Let S[i : j] further denote the audio segments (i.e.

the adjacent LTE image slices) from i to j. Convolving a

filter w with the LTE image S results in an output vector

O = (o1, . . . , oT−w+1) whose elements are given by

oi = (S ∗w)i =
∑

k,l,m

(S[i : i+ w − 1]⊙w)k,l,m. (13)

Here ∗ and ⊙ indicate the convolution and element-wise

multiplication operations, respectively. After that, an activation

function h is applied to the output vector to yield the feature

map A = (a1, . . . , aT−w+1) where

ai = h(oi + b). (14)

In (14), b ∈ R denotes a bias term. We use Rectified Linear

Units (ReLU) [48] as the activation function due to their low

computational cost:

h(x) = max(0, x). (15)

To encourage the network to learn multiple complementary

templates, we design the network to have Q different filters

of the same temporal width concurrently. Moreover, since

patterns in a scene (e.g. foreground events) may have different

durations, we include R such filter sets with different temporal

widths, to be able to to capture them more efficiently. The total

number of filters is therefore Q×R.

3) Max pooling layer: The feature map obtained by con-

volving a filter over an LTE image indicates how well the

template is matched to different parts of the images. We

then employ max pooling on the feature map to obtain a

single most dominant feature [24], [44] which corresponds to

the maximum matching score. This pooling strategy offers a

unique advantage. Despite the varying dimensionalities of the

feature maps (due to different widths of the filters and variable

lengths of the input signals), the pooled feature vectors always

have the same size [24], [44], [49]. Therefore, the signals can

be of any arbitrary size. There is no need to fix them to a

uniform duration (e.g. 30 seconds), as in the common setting

for the task.

With its feature map reduced to a single most dominant

feature by the 1-max pooling function, each filter in the

convolutional layer is expected to be optimized to capture a

useful pattern that could occur at any time in a scene. Pooling

all feature maps of Q×R filters results in a feature vector of

size Q×R.

4) Softmax layer: Classification is accomplished by a stan-

dard softmax layer. Being presented with the fixed-size feature

vector obtained after the pooling layer, the softmax layer

computes the posterior probability over the class labels. The

network parameters θ are eventually tuned to minimize the

cross-entropy error for N training samples:

E(θ) = −
1

N

N
∑

i=1

yi log(ŷi(θ)) +
λ

2
||θ||22. (16)

By doing this, the KL-divergence between the predicted poste-

rior distribution ŷ and the one-hot encoded groundtruth distri-

bution y will be minimized. In (16), λ is the hyper-parameter

that trades off the error term and the ℓ2-norm regularization

term. For further regularization, we exploit dropout [50] by

randomly setting zeros to the entries of the weight vector with

a predefined probability. The network training is performed

using the Adam optimizer [51].

C. Classification with CNN features

Instead of using a trained CNN directly for classification,

we evaluate it on a scene instance and extract the feature vector

behind the pooling layer to represent the scene instance. The

feature vectors extracted from the training scene examples are

then used to train a linear SVM classifier which is finally

employed to classify the feature vectors extracted from the

unseen examples in the test set.

Using SVMs (especially linear ones) in combination with

convolutional nets as part of a multistage process has been

proposed in the literature [25]–[27]. A CNN is first trained to

learn good invariant representations which are then treated as

input and fed into SVMs for classification. The rationale of

using support vector machines as an alternative to softmax for

classification is their maximum margin property which usually

leads to better generalization [52].

To benefit from CNN features learned from different LTE

types (e.g. CNN-Gam, CNN-MFCC, and CNN-Log), we

perform classification with multi-stream CNNs which have

been shown efficient for different classification tasks [28],

[29]. We fuse the classification probabilities outputted by

the linear SVMs on individual CNN streams using mean

and max strategies. The raw SVM scores are first converted

and calibrated into a proper posterior probability as in [53],

[54]. It should be noted that one can alternatively use the

posterior probabilities outputted by the softmax layer for this

purpose, but in our experiments, the use of SVMs turned out

to be superior. Let us denote the classification probabilities

from the k-th out of K streams on a test scene instance as

P
k = (P k

1 , P
k
2 , . . . , P

k
C) ∈ R

C
+ with C being the number

of classes. The mean classification probability is then P̄ =
(P̄1, P̄2, . . . , P̄C) where

P̄i =
1

K

K
∑

k=1

P k
i for 1 ≤ i ≤ C. (17)

The predicted label ĉ is determined by

ĉ = argmax
i

P̄i. (18)



8 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. X, MARCH 2017

For the max strategy, the fused classification probability is

given by P̆ = (P̆1, P̆2, . . . , P̆C) where

P̆i = max(P k
i ) for 1 ≤ k ≤ K. (19)

Likewise, the predicted label ĉ is determined as in (18).

A similar procedure is conducted for CNN-Fusion3-Multi-

Mean and CNN-Fusion3-Multi-Max which combine two

streams CNN0-Fusion3 and CNN1-Fusion3.

VI. EXPERIMENTS

A. Datasets

We employed the following two datasets in our experiments:

DCASE2016 dataset. The setup is based on the devel-

opment data as described in Task 1 of the DCASE 2016

challenge [20], [39]. The signals were recorded with a sam-

pling frequency of 44100 Hz. The development data consists

of 15 scene classes with 78 30-second audio signals per

class. The data is divided into 4 folds for cross-validation

purpose. The average classification accuracy over all folds

will be reported in our experiments. Since it was found by the

challenge organizers that there exist errors in some recordings,

we simply removed erroneous segments from the signals. This

error removal resulted in some LTE images with T < 238
columns. We performed circular padding to make them 238

columns.

LITIS Rouen dataset. This dataset includes 19 urban

scene classes with 3026 30-second-long examples in total

[11]. Its overall duration is 1500 minutes, which is, to our

knowledge, the largest publicly available ASC dataset so far.

The audio signals were recorded at a sampling frequency of

22050 Hz. Each scene category is associated with a specific

location, for example a train station, an airplane, or an open

market. The dataset is provided with 20 training/testing splits.

Our experiments obey this standard setting and the average

performance will be reported. Opposed to the DCASE2016

dataset, F1-score will be used as the main evaluation metric

since this dataset exhibits significant imbalance in the number

of samples per class.

B. Experimental setup

For classification with the global LTE features (i.e. LTE0-

Gam, LTE0-MFCC, LTE0-Log, LTE1-Gam, LTE1-MFCC, and

LTE1-Log), we trained the final scene classifiers using one-vs-

one χ2-kernel SVMs. For LTE-Gam, LTE-MFCC, LTE-Log,

LTE0-Fusion3, LTE1-Fusion3, and LTE-Fusion6, the classifi-

cation was accomplished using nonlinear SVMs with the ker-

nel given in (6). We conducted 10-fold cross-validation to tune

the hyperparameters of the SVMs. For the CNNs, different hy-

perparameters are involved and specified in Table IV. The filter

width w was set to 3, 5, and 7 segments, which is equivalent to

durations of 0.5, 0.75, and 1 seconds, respectively. We set the

number of filters to Q = {100, 200, 300, 400, 500, 1000} in

order to study its influence on the classification performance.

The CNNs were trained for 500 epochs with a minibatch size

of 50. The hyperparameters of the final linear SVMs that

classify the CNN features were also tuned via 10-fold cross-

validation.

Table IV
HYPER-PARAMETERS OF THE PROPOSED CNN NETWORKS.

Hyper-parameter Value

Filter width w {3, 5, 7}
Learning rate for the Adam optimizer 0.0001

Dropout rate 0.5

Regularization parameter λ 0.001

Table V
PERFORMANCE OBTAINED BY LTE-BASED CLASSIFIERS. CLASSIFICATION

ACCURACY (%) IS USED FOR THE DCASE2016 DATASET AND F1-SCORE

(%) IS USED FOR THE LITIS ROUEN DATASET.

Classifier Type DCASE2016 LITIS Rouen

LTE0-Gam 73.4 90.0

LTE0-MFCC 73.9 87.4

LTE0-Log 72.7 89.9

LTE1-Gam 71.1 94.0

LTE1-MFCC 71.4 92.0

LTE1-Log 73.1 92.8

LTE-Gam 75.9 94.7

LTE-MFCC 73.6 93.3

LTE-Log 75.5 94.5

LTE0-Fusion3 75.3 92.4

LTE1-Fusion3 75.3 95.7

LTE-Fusion6 77.6 95.0

C. Experimental results

1) Performance of global LTE features: The classification

performance obtained by the global LTE systems are shown

in Table V for the two datasets. In terms of individual

LTE features, as can be seen, the three employed low-level

feature sets perform differently. For example, while LTE0-

MFCC performs best on DCASE2016, LTE1-Gam dominates

others on LITIS Rouen. Overall, the LTE features derived

from low-level features in the absence of background noise

offer better performance than those with background noise

on the DCASE2016 dataset, except for LTE0-Log. However,

opposite results can be seen on the LITIS Rouen dataset. As

expected, the combination of complementary LTE features,

i.e. both cases of the presence and absence of background

noise, of the same low-level feature types significantly boosts

the performance. For instance, LTE-Gam outperforms the

best single LTE systems on both datasets (i.e. LTE0-Gam

on DCASE2016 and LTE1-Gam on LITIS Rouen by 2.5%

and 0.7% absolute, respectively). These results confirm that

background subtraction preprocessing before feature learning

is useful for the task. LTE0-Fusion3 and LTE1-Fusion3 also

show significant improvements over their individual ingre-

dients. Particularly, LTE1-Fusion3 lead to 2.2% and 1.7%

absolute gains compared to its best single LTE constituents

on the DCASE2016 and LITIS Rouen datasets, respectively.

However, LTE-Fusion6, which integrates all six single LTE

features, experiences performance drops by 0.7% absolute on

LITIS Rouen compared to LTE1-Fusion3. A possible reason

is that the fusion kernel given in (6) is suboptimal for this

case.
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Figure 5. DCASE2016 dataset. Performance obtained by CNNs in terms of classification accuracy with different values of Q.
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Figure 6. LITIS Rouen dataset. Performance obtained by CNNs in terms of F1-score with different values of Q.

2) Performance of CNN features: The performances ob-

tained by classification with CNN features with different

values of Q are shown in Figures 5 and 6 for DCASE2016

and LITIS Rouen, respectively.

The previous findings with the global LTE classification

can also be seen here. The performance of different low-

level features varies depending on datasets. While CNN-Gam

outperforms two others on LITIS Rouen, CNN-Log is found

the best on DCASE2016. However, their performance differ-

ences become much smaller than those in the classification

with the global LTEs. Background noise is still essential

under this classification scheme. This can be seen from a

better classification performance of CNN1-Fusion3 compared

to CNN0-Fusion3 on the LITIS Rouen dataset. Removal of

background noise, however, plays an even more important role

than before. It is not only because CNN0-Fusion3 outperforms

its counterpart CNN1-Fusion3 on the DCASE2016 dataset,

but also because it helps to leverage the performance of

CNN-Fusion6 over both datasets. We actually saw negative

results previously with LTE-Fusion6 in Section VI-C1. CNN-

Fusion6 outperforms all other single-stream CNNs under this

classification scheme. The reason is that stacking all six LTE

images enforces the CNNs to learn more robust templates

across all LTE channels.

Multi-stream CNN fusion schemes lead to performance

gains compared to their individual constituents in most of

the cases, but their performance is not comparable with that

of CNN-Fusion6. Nevertheless, the rule of thumb is that

combination of various feature types is necessary, if not vital,

to guarantee good performance.

Although the performance fluctuates for different numbers

of filters Q, the variation is small. For instance, with CNN-

Fusion6 on the LITIS Rouen dataset, the difference between

the peak (96.5% at Q = 500) and the worse case (96.1% at

Q = 100) is only 0.4%. This implies that an arbitrarily chosen

Q can guarantee a good classification accuracy. In general, for

more complex datasets, we need larger number of filters to

achieve the best performance. For example, Q = 400 seems
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to be reasonable for the DCASE2016 dataset while Q = 500
is most suitable for the LITIS Rouen dataset. A Q larger than

these optimal values results in redundancy of the filter set

which brings up little help if not degenerating the performance.

3) Performance comparison: For the sake of compari-

son, we present the performance of our systems on the

DCASE2016 (Q = 400) and LITIS Rouen (Q = 500) datasets

together with other results reported in the literature in Tables

VI and VII, respectively. Note that we only include those

of our systems with multiple LTE features for clarity. The

results for our classification systems are marked in bold when

all competitors are outperformed. Since prior works reported

their performances on the LITIS Rouen dataset with different

metrics (i.e. average class-wise precision [8], [11], F1-score

[12], [55], and overall accuracy [12], [13]), the performances

of our systems are also provided on all of these metrics for a

proper comparison. Note that the state-of-the-art performance

on the LITIS Rouen dataset is reported in our recent work [23].

However, it was achieved with the augmentation of external

speech data. Here, we focus on studying the representative

power of the scene audio signals per se. For the case of

DCASE2016, we employ the baseline provided by the chal-

lenge for comparison [20].

As can be seen, while our LTE fusion systems surpass

the competitors in most of the cases, the CNN systems even

perform better, being superior over all the opponents on both

datasets. For the DCASE2016 dataset, our systems consis-

tently achieve better accuracies than that of the DCASE2016

baseline. The accuracy gains range from 2.8% with LTE0-

Fusion3 to 8.7% with CNN-Fusion6. A similar system sub-

mitted for Task1 of the DCASE2016 challenge achieved an

accuracy of 83.3% on the test data, which is ranked 14 of

35 submissions. Note that, different from the classification

scheme described here, this submission system directly used

the softmax layer of the trained CNNs for classification. For

the LITIS Rouen dataset, our systems show better performance

than most of, if not all, the compared systems. Moreover,

CNN-Fusion6 yields top performance on all evaluation metrics

and outperforms the best reported results by 3.0%, 0.9%, and

0.6% absolute in terms of precision, F1-score, and accuracy,

respectively.

VII. DISCUSSION

A. Influence of the segment size

In the experiments in Section VI, we fixed the segment

size to 250 ms with a step size of 125 ms. It is worth

studying how the segment size influences the overall classi-

fication performance, taking LTE-Fusion6 and CNN-Fusion6

for example. We doubled the segment size, i.e. 500 ms and

a step size of 250 ms, and repeated experiments on these

systems. We compare the performance obtained with two

different segment sizes in Table VIII. It can be seen that with

the shorter segment sizes we achieve better performance than

with the larger ones, except for the LTE-Fusion6 system on

the LITIS Rouen dataset, most likely due to the drawback

of the average pooling. The performance gains obtained by

LTE-Fusion6/CNN-Fusion6 on DCASE2016 and LITIS Rouen

Table VI
DCASE2016 dataset. PERFORMANCE COMPARISON.

Systems Accuracy

LTE-Gam 75.9

LTE-MFCC 73.6

LTE-Log 75.5

LTE0-Fusion3 75.3

LTE1-Fusion3 75.3

LTE-Fusion6 77.6

CNN-Gam 76.9

CNN-MFCC 76.7

CNN-Log 77.6

CNN-Multi-Mean 79.5

CNN-Multi-Max 79.0

CNN0-Fusion3 79.1

CNN1-Fusion3 78.3

CNN-Fusion3-Multi-Mean 78.5

CNN-Fusion3-Multi-Max 78.5

CNN-Fusion6 81.2

DCASE2016 baseline [20] 72.5

Table VII
LITIS Rouen dataset. PERFORMANCE COMPARISON.

Systems Precision F1-score Accuracy

LTE-Gam 94.5 94.7 94.9

LTE-MFCC 93.0 93.3 93.5

LTE-Log 94.3 94.5 94.5

LTE0-Fusion3 92.2 92.4 92.6

LTE1-Fusion3 95.5 95.7 95.8

LTE-Fusion6 94.7 95.0 95.2

CNN-Gam 95.5 95.8 95.8

CNN-MFCC 93.4 93.7 94.0

CNN-Log 94.7 95.0 95.1

CNN-Multi-Mean 95.7 96.0 96.0

CNN-Multi-Max 95.5 95.8 95.9

CNN0-Fusion3 92.2 92.6 92.9

CNN1-Fusion3 96.1 96.3 96.3

CNN-Fusion3-Multi-Mean 95.3 95.7 95.8

CNN-Fusion3-Multi-Max 95.5 95.8 95.8

CNN-Fusion6 96.3 96.5 96.6

HOG [11] 91.7 − −
DNN+MFCC [8] 92.2 − −
HOG+SPD [12] 93.3 92.8 93.4

Sparse NMF [55] − 94.1 −
Convolutive NMF [55] − 94.5 −
Kernel PCA [55] − 95.6 −
FisherHOG+ProbSVM [13] − − 96.0

are 0.6%/1.0% and -0.3%/0.5%, respectively. The benefits

of using shorter segments are two-fold. Firstly, we have

more training examples which benefit the LTE representation

learning algorithm. Secondly, they will result in larger LTE

images which leverage the following averaging/max pooling.

However, the segment size should not be too short since then

we focus on too much detail of the signals, causing unreliable

estimation of the posterior probabilities by the random forest

classifier used during LTE feature learning.

B. Early recognition

We also study the possibility that a scene instance can be

recognized early, i.e. when a recording less than 30 seconds

of the scene is observed. Such early recognition ability is an

important property to guarantee the quality-of-service, espe-

cially for safety-related applications. Although audio signals
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Table VIII
PERFORMANCE WITH DIFFERENT SEGMENT SIZES.

Systems 250 ms 500 ms

DCASE2016
LTE-Fusion6 77.6 77.0

CNN-Fusion6 81.2 80.2

LITIS Rouen
LTE-Fusion6 95.0 95.3

CNN-Fusion6 96.5 96.1

are usually provided with a fixed length of 30 seconds [9],

[11], [20], we think this should not be strict. With a long signal

we expect to accumulate more statistics about the scene and

hence gain reliability in recognition, however, this observation

relaxes for different kinds of scenes. For instance, for “office”

scenes where foreground events are sparse and irregular, the

recordings should be long. In contrast, for “busy street” ones,

shorter signals may be advantageous. Since investigating this

aspect for every scene category would be too demanding

and out of scope of this work, we study here the overall

classification performance for simplicity.

We, again, employed the LTE-Fusion6 and CNN-Fusion6

systems in this study. We utilized the systems trained on

full 30-second long signals to evaluate on test signals with

different lengths of {5, 10, 15, 20, 25, 30} seconds. We show

variations of the classification accuracy in Figure 7. Note that

the duration difference of the training and test signals is not a

problem here since the average pooling produces fixed-size

global feature vectors for them all in the LTE-Fusion6. In

addition, the CNNs can handle input signals with varying

lengths thanks to the 1-max pooling scheme [24]. As expected,

the overall trend can be clearly seen that the accuracy grows

with the signal length. It is due to the fact that with longer

signals the systems not only know more about the scenes but

also experience less mismatch between training and test data.

At 15 seconds, we are able to obtain an accuracy of more

than 75% on DCASE2016 and an F1-score of more than 92%

on LITIS Rouen. The good thing is that these performances

are better or on par with previous works tested on full 30-

second long signals (c.f. Tables VI and VII). That is, using

our systems, one can recognize a scene 50% faster with only

a small penalty in classification accuracy.

VIII. CONCLUSIONS

We presented an efficient approach to tackle the audio

scene classification task. Our systems relies on label tree

embedding image features automatically learned to encode

the structure of the data. We studied scene classification

using global feature vectors obtained from these images and

analyzed the performance of different variants of these features

learned from different low-level feature sets as well as their

combination. An improved classification method was then

introduced. Simple CNNs were trained on LTE images to

learn templates that are useful for the classification task.

Afterwards, the learned templates were matched on an input

LTE image for feature extraction and the final classification

was accomplished by linear SVMs. Two different settings were

investigated: single-stream CNNs with stacked LTE images as

well as multi-stream CNNs followed by probabilistic fusion.
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Figure 7. Classification performance as a function of the length of the test
signals.

Experiments on the DCASE2016 and LITIS Rouen datasets

show that the classification accuracies obtained by our sys-

tems outperform all the reported results in previous works.

Furthermore, combination of various features with and without

background noise is essential for a good performance. Finally,

in this work we used random forest classifiers in the LTE

learning algorithm. Alternatively, stronger classifiers, such as

DNNs, can be further explored for this purpose. A high-quality

classifier that is able to estimate the meta-class posterior

probability more precisely is expected to improve the learned

LTE features and, as a result, the subsequent processing steps.
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