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ABSTRACT

We propose a multi-label multi-task framework based on a convo-

lutional recurrent neural network to unify detection of isolated and

overlapping audio events. The framework leverages the power of

convolutional recurrent neural network architectures; convolutional

layers learn effective features over which higher recurrent layers per-

form sequential modelling. Furthermore, the output layer is designed

to handle arbitrary degrees of event overlap. At each time step in the

recurrent output sequence, an output triple is dedicated to each event

category of interest to jointly model event occurrence and temporal

boundaries. That is, the network jointly determines whether an event

of this category occurs, and when it occurs, by estimating onset and

offset positions at each recurrent time step. We then introduce three

sequential losses for network training: multi-label classification loss,

distance estimation loss, and confidence loss. We demonstrate good

generalization on two datasets: ITC-Irst for isolated audio event de-

tection, and TUT-SED-Synthetic-2016 for overlapping audio event

detection.

Index Terms— Audio event detection, isolated sound, overlap-

ping sound, multi-label, multi-task, convolutional recurrent neural

network

1. INTRODUCTION

Audio event detection (AED) [1, 2] is an important research area

within the wider machine hearing field [3, 4], aiming at determin-

ing when and which target events occur in continuous audio. This

task has recently attracted significant attention in the research com-

munity, manifested by rapidly increasing numbers of participants in

related international challenges over the past few years [5]. Ideally,

event instances of different categories of interest would occur in iso-

lation so that there is at most one such occurrence at any time point

in the signal [6, 7]. However, in practice, they may occur at the same

time, leading to partial or full temporal overlap [8, 9], sometimes

called polyphonic AED. Due to the mixture of multiple acoustic

sources, detection of overlapping events is much more challenging

than detection of isolated ones.

Isolated and overlapping AED literature often appear to derive

from two separate methodological streams. For the former, there is

a large body of work covering different perspectives: noise robust-

ness [10, 7, 11], multichannel and multimodal fusion [12, 13, 14],

weak labelling [15, 16], early event detection [17, 18, 19], event de-

tection under scarcity scenarios [20, 21], as well as false positive
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reduction [22, 7]. Particularly, the multitasking approach that jointly

performs event detection and event boundary estimation [23, 6, 24]

has demonstrated state-of-the-art performance on different bench-

mark datasets. In the latter stream, overlapping events are either sep-

arated using source separation methods [25, 26] prior to detection,

or recognized via a selection of local spectral features [11, 10, 7].

The most successful approach appears to be to directly classify the

mixtures via multi-label classification [27, 28, 29, 8, 9]. But both

streams have one aspect in common: they are efficient when cou-

pled with underlying deep learning models [8, 30, 6, 20], particu-

larly convolutional recurrent neural networks (CRNN) [8, 30]. This

is partly due to their power in feature learning and partly due to their

capability in performing complex modelling tasks, i.e. multi-label

and multi-task. However, there exists a methodological gap between

them. Audio events intrinsically possess temporal structures, and tai-

loring a network’s output layer and loss functions for structure mod-

elling has been shown to be efficient for the isolated AED [23, 6, 24].

However, this capacity has been uncharted for overlapping AED, and

it remains questionable how to generalize a network’s output layer

and tailor its loss functions [20, 6] to accommodate arbitrary event

overlap, i.e. from one to the maximum number of simultaneous or

partially-simultaneous target events. Bridging this gap would allow

us to unify how isolated and overlapping AED is trained and oper-

ated.

To this end, we present a multi-label multi-task CRNN frame-

work to homogeneously deal with isolated and overlapping events.

The network body makes use of a CRNN architecture as it has been

shown to be efficient for both isolated [30, 8] and overlapping [8]

AED. The idea is to use the convolutional layers to learn good time-

frequency invariant features over which recurrent layers are lever-

aged to incorporate a long temporal context, i.e. hundreds of audio

frames. The network sequential output layer is designed to accom-

modate all possible event overlaps. At each time step of the recurrent

output, we tailor a set of output triplets each of which is dedicated to

one event category of interest. The output consists of three elements:

event activity, event onset distance, and event offset distance, to al-

low the network to determine whether or not an event of this category

is happening at the current time index, and estimate the distances to

its boundary, i.e. event onset and offset position, at the same time.

As one output triplet is tied to one specific category, inference for all

target event categories can be carried out individually no matter how

many events of different classes occur concurrently. For training,

three types of loss are proposed: sequential multi-label classification

loss, sequential distance estimation loss, and sequential confidence

loss. Combining the three losses, the network is penalized for both

mistakes it makes on event activity determination and event bound-
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Fig. 1. Overview of the proposed multi-label multi-task CRNN.

ary estimation, integrated over all time steps of the recurrent output

layer.

2. THE MULTI-LABEL MULTI-TASK CRNN

The proposed network architecture is illustrated in Fig. 1 and is

described in detail in the following sections.

2.1. Input

An audio signal, sampled at 44100 Hz, is converted into a log Mel-

scale spectrogram using M = 40 Mel-scale filters in the frequency

range of [50, 22050] Hz. In addition, a window (i.e. frame) size of

40 ms with 50% overlap is used. C different event categories are

considered in total. Since events from any of these categories may

happen at a certain audio frame, in order to accommodate all possible

occurrences it is necessary to annotate each audio frame with a set of

C triplets G = {(yc, pc, qc)}, 1 ≤ c ≤ C, one of which is dedicated

for each event category. yc ∈ {0, 1} equals to one if an event of class

c is active at the current audio frame and equals to zero otherwise.

pc, qc ∈ R+ denote the distances from the current frame to the event

onset and offset if it is active and are normalized to [0,1]. pc and qc

are forced to be zero when the event is absent.

As a long context is crucial for audio event detection [8, 30], we

use an audio segment of T = 512 frames as an input to the network.

Hence, one sample, i.e. one audio segment, is represented by a time-

frequency image S ∈ R
M×T and associated with a sequence of

T triplet sets G = (G1,G2, . . . ,GT ) where Gt = {(yc
t , p

c
t , q

c
t )},

1 ≤ c ≤ C, as described above, denotes the annotation of the frame

at the time index t, 1 ≤ t ≤ T . The network therefore plays the role

of mapping: S 7→ G, which is multi-label (i.e. multiple classes may

be active concurrently) and multi-task (i.e. joint modelling of event

activity and event boundary).

2.2. Convolutional layers

The convolutional block of the network essentially consists of

three convolutional layers, each followed by a max pooling layer.

The convolutional layers are commonly designed to have F two-

dimensional convolutional filters of size 5 × 5 with the stride set to

one in both temporal and spectral directions during the convolution

operation. Zero-padding (also known as SAME padding) is used in

order to maintain a temporal size equal to T . After convolution,

batch normalization [31] is applied on the feature maps, followed by

Rectified Linear Units (ReLU) activation [32].

The three max pooling layers aim to improve spectral invariance

while keeping the temporal size unchanged. Their pooling kernel

size are set to 5 × 1, 4 × 1, and 2 × 1 with stride of 5 × 1, 4 × 1,

2 × 1, respectively. With these settings, the spectral dimension is

reduced from an input of M = 40 to 8 → 2 → 1 after the pooling

layers, respectively. Concatenating all F pooled feature maps after

the last pooling layer, we have transformed the original input into a

convolutional image feature X ∈ R
F×T .

2.3. Residual recurrent layer

The above convolutional output X can be interpreted as a sequence

of T convolutional feature vectors, i.e. X ≡ (x1,x2, . . . ,xT )
where xt ∈ R

F , 1 ≤ t ≤ T . A bidirectional recurrent layer is then

used to read the sequence of convolutional feature vectors into the

sequence of recurrent feature vectors Z ≡ (z1, z2, . . . , zT ), where

zt = [hb
t ⊕ h

f
t]Wz + bz, (1)

h
f
t = H(xt ,h

f
t−1), (2)

h
b
t = H(xt ,h

b
t+1). (3)

Here, hf
t,h

b
t ∈ R

H represent the forward and backward hidden state

vectors of size H at recurrent time step t, respectively while ⊕ in-

dicates vector concatenation. Wz ∈ R
2H×2H denotes a weight

matrix and bz ∈ R
2H denotes bias terms. H represents the hid-

den layer function of the recurrent layer and we use Gated Recurrent

Units (GRU) [33] here to realize the function H.

As a recurrent output vector zt is expected to have context in-

formation from the entire sequence, to allow the network to explore

possible combinations of local convolutional features xt and contex-

tual recurrent features zt, we aggregate them via a residual connec-

tion. As xt ∈ R
F and zt ∈ R

2H may have different sizes in prac-

tice, we transfer xt through a fully-connected layer with a weight

matrix Wx ∈ R
F×2H and bias term bx ∈ R

2H to make their sizes

compatible. The final residual feature vector at time step t is

at = ReLU(xtWx + bx)⊕ zt. (4)

Batch normalization [31] is also applied to the fully-connected layer

of the residual connection.

2.4. Output layer

The output layer consists of T × C × 3 entries in total which are

orderly arranged in the output sequence Ĝ = (Ĝ1, Ĝ2, . . . , ĜT ). At

time index t, Ĝt = {(ŷc
t , p̂

c
t , q̂

c
t )}, 1 ≤ c ≤ C, is the set of C output

triplets, one dedicated to each event category. ŷc
t indicates how likely

an event of class c is occurring at t while p̂ct and q̂ct estimate the

distances to its onset and offset from t. To obtain the output Ĝt at

time index t, the residual output at is transferred through a single

fully-connected layer with sigmoid activation:

o
Ĝt

= sigmoid(atWa + ba), (5)

where Wa ∈ R
2H×3C and ba ∈ R

3C . o
Ĝt

∈ [0, 1]3C is the

flattened vector including the entries of Ĝt in a pre-determined order.

2.5. Losses

Similar to [20, 6], for network training, we want to penalize the net-

work on both tasks: event activity determination and event bound-

ary estimation. Assume output sequence Ĝ = (Ĝ1, Ĝ2, . . . , ĜT )
is obtained from the network given an input S associated with

groundtruth G = (G1,G2, . . . ,GT ). Since the event activity deter-

mination task is addressed as a multi-label classification problem,



i.e. multiple events of different classes may be present at the same

time, the multi-class cross-entropy loss cannot be used here. There-

fore, we interpret the multi-label classification problem as multiple

binary classification problems and employ binary cross-entropy loss

penalization. Furthermore, integration over the network’s output at

different time steps is necessary to take into account all possible

misclassifications. The sequential multi-label classification loss is

Eclass(G, Ĝ)=
1

T

T
∑

t=1

C
∑

c=1

(

−y
c

t log(ŷ
c

t )−(1−y
c

t ) log(1−ŷ
c

t )
)

. (6)

Similarly, the sequential distance loss induced by errors in event

onset and offset distance estimation is given by

Edist(G, Ĝ) =
1

T

T
∑

t=1

C
∑

c=1

(

‖pct − p̂
c

t‖
2
2 + ‖qct − q̂

c

t‖
2
2

)

. (7)

The event boundary estimation errors can also be quantified as the

{intersection : union} ratio of the truth boundary and the esti-

mated boundary [20, 6] and further penalized using the sequential

confidence loss:

Econf(G, Ĝ)=
1

T

T
∑

t=1

C
∑

c=1

∥

∥

∥
y
c

t−
intersection(G, Ĝ)

union(G, Ĝ)

∥

∥

∥

2

2

=
1

T

T
∑

t=1

C
∑

c=1

∥

∥

∥
y
c

t−
min(pct , p̂

c
t)+min(qct , q̂

c
t )

max(pct , p̂
c
t)+max(qct , q̂

c
t )

∥

∥

∥

2

2

. (8)

Note that we do not use the event activity likelihood to weight the

{intersection : union} ratio as in [20, 6], in to order to more

aggressively penalize the network. Finally, the network is trained

to minimize the accumulated unweighted multi-task losses over all

training examples:

E =
∑

i

Eclass(Gi, Ĝi) + Edist(Gi, Ĝi) + Econf(Gi, Ĝi). (9)

3. INFERENCE

Inference for joint event detection and boundary estimation can be

carried out individually for different event categories of interest sim-

ilar to [18]. However, we need to extend this to handle the sequential

output of the network.

Let m,n > 0 both denote the time indices of a continuous test

signal. Given a test audio segment S(m) of length T frames starting

at the time index m and assuming its output sequence Ĝ(m), its

contribution to the confidence score that a target event of class c

occurs at time index n is given by

fc
(

n |S(m)
)

=
T
∑

t=1

ŷ
c

t (m)1
(

ŷ
c

t (m)>αc

)

1

(

n∈Ω
(

p
c

t(m), qct (m)
)

)

,

where αc denotes a class-specific threshold on event activity likeli-

hood, Ω
(

pct(m), qct (m)
)

represents the region of interest (ROI) de-

termined by pct(m) and qct (m), and 1(·) is the indicator function. In

essence, we iterate over the output sequence Ĝ(m) and collectively

integrate the event activity likelihoods into a confidence score. In

addition, the event activity likelihood ŷc
t (m) at time step t of the se-

quence is only counted if it is greater than the likelihood threshold

αc and where n lies inside the ROI Ω
(

pct(m), qct (m)
)

, meaning

m+ t− p̂
c

t(m) ≤ n ≤ m+ t+ p̂
c

t(m). (10)

Note that the estimated onset and offset distances need to be denor-

malized to their original range before inference.

The confidence score obtained from all test audio segments sam-

pled from the test signal is

fc(n) =
∑

m

fc
(

n |S(m)
)

. (11)

A second class-specific detection threshold βc is applied to the con-

fidence score for joint event detection and segmentation. Although

we do not study early detection of an ongoing event [17, 18] in this

paper, the inference scheme described has such a capability.

4. EXPERIMENTS

4.1. Datasets

We conducted experiments on two datasets:

ITC-Irst [34] —created for studying isolated AED, this database

consists of twelve recording sessions with 16 annotated event

categories. Following the standard split used in previous works

[34, 23, 18], nine out of twelve recordings were used for training

and the remaining three were used for evaluation. In addition, eval-

uation was based on twelve out of 16 categories with the others

considered as background sounds. For relevant parameter search

(cf. Section 4.2), leave-one-recording-out cross-validation was con-

ducted on the nine training recordings. The channel TABLE 1 [34]

was chosen for the experiments.

TUT-SED-Synthetic-2016 [8] —created for studying overlap-

ping audio event detection, this database consists of 100 mixtures of

994 isolated event instances from 16 event categories. Further detail

on the dataset creation procedure can be found in [8]. Out of 100

created mixtures, 60 were used for training, 20 for evaluation, and

20 for validation [8].

4.2. Network training and parameters

To form the training data, we sampled all possible audio segments

of length T frames from the training recordings. The network was

trained with a minibatch size of four for 100 and 10 epochs for ITC-

Irst and TUT-SED-Synthetic-2016, respectively. F = 256 convolu-

tional filters were used for the convolutional layers and the size of

hidden state vectors of the recurrent layer was H = 256. The net-

work was trained using the Adam optimizer [35] with learning rate

10−4. For regularization, a dropout rate of 0.25 was applied to the

convolutional layers, the recurrent layer, and the residual connection.

Following training, the network was exercised on audio seg-

ments sampled from a test signal without overlap to compute the

confidence scores as described in Section 3. Particularly, for ITC-

Irst, we utilized the cross-validation models for this purpose. The

final confidence score on the test signal was averaged from the in-

dividual ones resulting from the cross-validation models. The de-

tection confidence score was normalized to [0,1] and the category-

specific thresholds αc and βc were selected to maximize the average

F1-score on the validation set. αc and βc were searched in the range

[0, 1] with a step size of 0.01 and 0.05, respectively.

4.3. Evaluation metrics

With the proposed multi-label multi-task CRNN coupled with the in-

ference algorithm in Section 3, we are interested in detecting entire

events and segmenting them from a continuous test signal. There-

fore, we evaluated the detection performance based on two event-

wise metrics: F1-score and detection error rate (ER).

4.4. Baseline

In addition to prior works, we implemented a multi-label CRNN

baseline for comparison, as it has been demonstrated to achieve

state-of-the-art performance on several similar AED datasets [21, 8,

30]. The baseline body architecture and parameters were maintained

to be the same as the proposed network, except that its output layer

only includes multi-label event activity output. As post-processing
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Fig. 2. The confidence scores for three different categories produced

by the proposed network on one test recording of the TUT-SED-

Synthetic-2016 dataset. (a) event activity, (b) “alarms and sirens”,

(c) “bus”, and (d) “rain”.

is important in assisting such a baseline system to yield good per-

formance [21, 9, 29], category-specific likelihood threshold αc was

firstly applied to produce discrete labels which were then smoothed

by median filtering. A grid search was conducted for αc as in Sec-

tion 4.2, while the window size of the median filter was searched in

range of [1, 256] with a step of 6. Those values resulting in the best

F1-score on the validation set were retained for evaluation.

4.5. Experimental results

The results obtained by the proposed multi-label multi-task CRNN

and the multi-label CRNN baseline on the two experimental datasets

are shown in Tables 1 and 2. To further compare with existing works

on the ITC-Irst dataset, we also contrast their performance with the

best result previously reported in [18] using a dual-DNN approach.

On the TUT-SED-Synthetic-2016 dataset, no prior event-wise results

were reported, so a CRNN-based system, similar to that reporting

best frame- and segment-wise performance [8], is used for a baseline

here.

Results show that the proposed system outperforms the base-

line on both isolated and overlapping AED tasks. In the isolated

AED case with ITC-Irst, an absolute gain of 0.9% was achieved

on both average F1-score (i.e. the event categories are considered

equally important) and overall F1-score (i.e. the event instances are

considered equally important) although it brings up the overall ER

by 0.8% absolute. The rise in ER is mainly due to insertion errors

on “key jingle” and “phone ring”, which are likely due to their bi-

modal behaviour. The improvement of the proposed system over the

baseline becomes even more noticeable on the overlapping data in

TUT-SED-Synthetic-2016. Absolute gains of 1.2% on average F1-

score and of 4.1% on overall F1-score were achieved. Moreover, it

also improves average and overall ER by 2.3% and 18.7% absolute,

respectively. Fig. 2 further shows the confidence scores produced

by the proposed system for three different event categories on one

recording of TUT-SED-Synthetic-2016. Although the events over-

lap heavily (and events of other categories were also present but are

excluded from the plot for clarity), the proposed network seems to be

able to untangle the mixtures and recognize the individual instances.

Meanwhile comparing results in Tables 1 and 2, it is clear that over-

lapping, or polyphonic, AED remains a more challenging task than

isolated AED.

On the other hand, the proposed system significantly outper-

forms the prior work (i.e. the dual-DNN system [18]) that reported

the best results on ITC-Irst. Absolute gains of 2.5% and 2.1% were

achieved on average and overall F1-score, respectively, while aver-

Table 1. ITC-Irst: the detection performances obtained by the pro-

posed approach and the baseline in comparison with the best re-

ported existing work [18].

Event type
Proposed Baseline

Best reported
(Dual-DNN [18])

F1 ER F1 ER F1 ER

door knock 100.0 0.0 100.0 0.0 100.0 0.0

door slam 100.0 0.0 100.0 0.0 100.0 0.0

steps 100.0 0.0 100.0 0.0 91.7 16.7

chair moving 92.3 33.3 91.7 33.3 92.0 16.7

spoon cup jingle 100.0 0.0 100.0 0.0 100.0 0.0

paper wrapping 100.0 0.0 100.0 0.0 100.0 0.0

key jingle 95.7 25.0 95.7 8.3 95.7 8.3

keyboard clicking 96.0 8.3 86.7 33.3 91.7 16.7

phone ring 97.4 30.4 98.0 21.7 100.0 17.4

applause 100.0 0.0 100.0 0.0 100.0 0.0

cough 93.8 16.7 92.9 16.7 88.0 25.0

laugh 95.7 8.3 95.7 8.3 81.8 33.3

Average 97.6 10.2 96.7 10.1 95.1 11.2

Overall 97.3 11.0 96.4 10.2 95.2 11.0

Table 2. TUT-SED-Synthetic-2016: the detection performance ob-

tained by the proposed approach and the baseline system.

Event type
Proposed Baseline

F1 ER F1 ER

alarms & sirens 72.6 50.4 78.7 37.2

baby crying 58.0 97.8 58.9 93.0

bird singing 63.2 97.5 61.4 89.8

bus 71.1 84.1 62.7 103.7

cat meowing 45.0 130.5 43.8 116.3

crowd applause 51.0 91.9 59.4 91.0

crowd cheering 71.6 49.5 75.2 43.1

dog barking 69.4 72.5 83.4 31.6

footsteps 56.4 99.0 46.9 133.6

glass smash 60.9 118.6 74.7 59.3

gun shot 70.6 72.2 47.7 216.5

horsewalk 60.2 102.3 49.0 110.0

mixer 81.0 50.5 86.6 35.3

motorcycle 49.6 89.9 44.3 94.9

rain 69.8 63.4 76.8 42.0

thunder 72.8 77.8 54.8 86.7

Average 64.0 84.2 62.8 86.5

Overall 60.4 107.4 56.3 126.1

age ER was lowered by 1.0% absolute.

5. CONCLUSION

This paper has proposed a multi-label multi-task CRNN in an ef-

fort to treat the isolated and overlapping audio event detection tasks

homogeneously. Built on top of a CRNN architecture, the recur-

rent output layer of the network was designed to accommodate arbi-

trary numbers of overlapping sounds, i.e. from isolated to maximally

polyphonic (all event categories occurring simultaneously), at every

recurrent time step. For network training, three sequential losses,

including the multi-label classification loss, the distance estimation

loss, and the confidence loss, were introduced to penalize the net-

work on both multi-label event activity classification errors and event

boundary estimation errors. Evaluating on two datasets, namely

ITC-Irst for isolated AED and TUT-SED-Synthetic-2016 for over-

lapping AED, we demonstrated that the proposed network outper-

forms the multi-class CRNN baseline with the same network body,

as well as previously published state-of-the-art results.
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