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Interval Sliding Mode Observer Based Incipient

Sensor Fault Detection with Application to a

Traction Device in China Railway High-speed
Kangkang Zhang, Bin Jiang, Senior Member, IEEE, Xianggang Yan and Jun Shen

Abstract—This paper proposes an interval sliding mode ob-
server (ISMO) and an incipient sensor faults detection method
for a class of nonlinear control systems with observer unmatched
uncertainties. The interval bounds for continuous nonlinear
functions and new injection functions are constructed to design
ISMOs. An incipient fault detection framework with newly
designed residual and threshold generators is proposed. The
detectability is then studied, and a set of sufficient detectable
conditions are presented. Applications to an electrical traction
device used in China Railway High-speed (CRH) are presented
to verify the effectiveness of the proposed incipient sensor fault
detection methodology.

Index Terms—Interval observer, sliding mode, incipient fault
detection, traction device.

I. Introduction

Fault tolerant control and fault diagnosis techniques have

been given greater concerns and widely studied [1]- [14].

Observer-based fault diagnosis is one powerful techniques

in the field of model-based diagnosis, in which analytical

redundancy is first established through the diagnostic observer

to reconstruct measured outputs. Then, the residuals used

to diagnose faults are generated by comparing the system

measurable outputs with the corresponding redundancy. In

ideal case, the residuals are zero in fault-free scenario. Un-

fortunately, the residuals are usually not zero due to modeling

error and possible uncertainties experienced by the systems.

Thus, the threshold concept is introduced to distinguish the

faults from uncertainties through residuals. It is an efficient

idea for general serious abrupt faults detection because abrupt

faults always have larger effects on residuals than uncertainties

[4]. However, this idea may not be pertinent to incipient fault

diagnosis because the influence of incipient faults on residuals

is easily submerged by uncertainties. This is great challenging
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for observer-based incipient fault detection (IFD), particularly

for incipient sensor fault detection (ISFD).

Observer-based fault diagnosis for nonlinear control systems

has been studied extensively such as [7], [8], [9] and [14].

High accuracy output reconstruction is one of the main tasks

of the diagnostic observer in observer-based fault diagno-

sis, which is particularly important for IFD. However, it

is impossible to reconstruct the outputs precisely only by

input-output signals using Luenberger observer for nonlinear

systems because observer unmatched uncertainties can not be

eliminated from the output channels. Nevertheless, the interval

estimation technique is proposed in [15] for the first time and

is used to estimate the lower and upper bounds of uncertain

dynamic systems with uncertainties propagated by interval

models. Interval observers have no structural limitation on

uncertainties, which improves the robustness against modeling

uncertainties and disturbances effectively, which have been

used in fault diagnosis fields such as [16] and [17]. Therefore,

to use the interval observers as diagnostic observer provides a

new idea for IFD. However, until now, most existing interval

observers are for linear systems [15] or LPV systems [16]

and [18], nonlinear functions in these papers are usually

replaced by an enlarged parametric variation in the LPV

representation. An interval observer design scheme is proposed

for Lipschitz nonlinear systems in [19], which motivates the

study of nonlinear complexity by relaxing Lipschitz condition.

Over the past few decades, sliding mode observer based

fault diagnosis has also been studies and used widely (see

e.g., [20] and [21]). The sliding mode observer is used to

diagnose faults for the first time in [21] which considers the

disruption of sliding motion and has motivated the research in

this area. The “equivalent output injection" concept is used

to reconstruct sensor and actuator faults signals and then

detect and isolate then explicitly in [20]. In [22], another

FDI (fault detection and isolation) method is developed by

using sliding mode observer to generate residuals instead of

reconstructing fault signals. All results above require that the

system detectable and the observer matched structural con-

dition is satisfied. Therefore, interval estimation with sliding

mode technique is a pertinent solution to ISFD.

Recently, an ISMO is proposed in [23] to detect incipient

sensor faults. Built on the author’s previous work in [23], ISFD

schemes with detailed analysis and solid results are developed

for a class of nonlinear control systems in this paper. The

Min-Max approach [24] is employed in this paper to obtain

the interval model for a class of nonlinear functions. Then, the
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ISFD framework is established with new proposed residual

generator and corresponding threshold generator. Moreover,

the detectability is studied, and sufficient conditions on incip-

ient faults are obtained. In this paper, the main contribution is

summarized as follows:

(i) an ISMO is proposed as diagnostic observer for

a class of nonlinear control systems with observer

unmatched uncertainties,

(ii) an ISFD framework is established with new residual

generator and threshold generator.

The rest parts are organized as follows. In Section II, prob-

lem formulation and preliminaries are presented. In Section III,

the ISMO is designed as the diagnostic observer. In Section

IV, the residual and corresponding threshold generators are

proposed. In Section V, Verification in the TDCS-FIB is

presented. Section VI concludes this paper.

Notation: In this paper, ∥ · ∥ represents the 2−norm. For a

matrix or vector M, all elements of M are positive (nonnega-

tive) is denoted by M > 0 (M ≥ 0). For two vectors x1, x2 ∈ Rn

or matrices A1, A2 ∈ Rn×n, x1 ≤ x2 and A1 ≤ A2 are

defined in element wise, respectively. For a matrix A ∈ Rm×n,

A+ = max{0, A} and A− = A+ − A. It should be noted that A+

and A− are nonnegative.

II. Preliminaries and Problem Formulations

The following two lemmas are firstly introduced.

Lemma 1: [18] Let x, x, x̄ ∈ Rn satisfy that x ≤ x ≤ x̄.

Then for matrices A with appropriate dimensions, A+x−A− x̄ ≤
Ax ≤ A+ x̄ − A−x.

Lemma 2: For any x̂ ∈ Σ with Σ ⊆ Rh being a closed

compact set, and for any continuous scalar function g(x, y, u)

with x ∈ Σ, there exist w(x̂, y, u) ∈ Rh and a(x̂, y, u) ∈ R such

that

J (w(·), x) − a(·) ≤ 0 (1)

where J (w, x) = sgn (α)
(

g (x, y, u) − g (x̂, y, u) + w(·) (x − x̂)
)

with α being a known scalar.

Proof: : See [24] and [25].

Remark 1: An available way to obtain w(·) and a(·) is to

solve the optimization problem

a(·) = min
w∈Rh

max
x∈Σ

J (w, x) ,w(·) = arg min
w∈Rh

max
x∈Σ

J (w, x) . (2)

which is presented in [24] and [25]. ∇
Remark 2: Lemma 1 is usually used in interval observer

design. Lemma 2 provides a way to obtain the interval model

of general continuous functions. Reference [19] presents a

method to design interval observers for global Lipschitz

systems, this paper proposes a way to design for general

continuous systems. ∇
Generally speaking, incipient faults have small amplitude,

and develop continuously and slowly. Based on [28], the

incipient sensor fault f ∈ Rq considered in this paper is

modeled by

ḟ = A f f + ξ(t) (3)

where A f ∈ Rq×q is the Hurwitz matrix, and ξ(t) ∈ Rq is a

driving signal. It should be pointed out that for an incipient

fault f and a given Hurwitz matrix A f , there always exist

driving signal ξ(t) satisfying (3).

Consider nonlinear systems with incipient sensor faults

modeled by (3)

ż =Azz + gz(z, y, u) + Bzu + ηz(z, u, ω, t), (4)

y =Czz + [0(p−q)×q, Iq]⊤ f (5)

where z ∈ Rn0 is state, u ∈ Rm is control, y ∈ Rp is output.

The function gz(·) is a known nonlinear continuous vector

field, and ηz(·) represents lumped uncertainties which includes

perturbation parameters, unmodeled dynamics, system uncer-

tainties and external and internal disturbances (noises) [29]. It

is assumed throughout the paper that p ≥ q.

Using the augmentation method presented in [4], the non-

linear system (4)-(5) and incipient sensor fault (3) can be

augmented with inherent relative degree one. Then, based on

[20], there exists a coordinate transformation such that the

augmented system is transformed to

ẋ1 =A11x1 + A12x2 + g1(x1, y, u) + B1u + η1(·), (6)

ẋ21 =A211x1 + A11
22x21 + A12

22x22 + g21(·) + B21u + η21(·), (7)

ẋ22 =A212x1 + A21
22x21 + A22

22x22 + g22(·) + B22u

+ η22(·) + ξ(·), (8)

y =C21x21 +C22x22 (9)

where x1 ∈ Rn1 and x21 ∈ Rp−q and x22 ∈ Rq with n1 + p =

n0 +q = n. The uncertainty η1(·) is observer unmatched which

is challenging to deal with. The matrix C2 = [C21,C22] is

nonsingular. It is assumed throughout this paper that all the

nonlinear vectors g1(·), g21(·) and g22(·) satisfy the conditions

in Lemma 2. For a practical system, there always exists an

inherent interval Ω = [x1 min, x1 max] such that no matter when

faults occur, x1 ∈ Ω.

Assumption 1: There exist functions η̄21(y, u, t), η
1
(y, u, t),

η̄1(y, u, t), η
22

(y, u, t) and η̄22(y, u, t) such that ∥η21(·)∥ ≤ η̄21(·),
η

1
(·) ≤ η1(·) ≤ η̄1(·) and η

22
(·) ≤ η22(·) ≤ η̄22(·). Moreover,

there exist ∆
η1

, ∆̄η1
, ∆
η22

and ∆̄η22
such that η1(·)− η

1
(·) ≤ ∆

η1
,

η̄1(·)−η1(·) ≤ ∆̄η1
, η22(·)−η

22
(·) ≤ ∆

η22
and η̄22(·)−η22(·) ≤ ∆̄η22

.

Remark 3: The function η̄21(·) in Assumption 1 usually

appears in sliding mode observer design papers such as [20]

and [30] and it is quite reasonable to assume η21(·) is norm

bounded. Also, Assumption 1 provides interval models of

disturbances for subsystems (6) and (8). ∇

III. Interval SlidingMode Diagnostic Observer Design

The Appendix A provides an interval model

[ϕ̄1(x̄1, x1
, ·), ϕ

1
(x̄1, x1

, ·)] in (A.2) for the nonlinearity

g1(·). Based on the interval model, the dynamics of x̄1 and x
1

are proposed by

˙̄x1 =A11 x̄1 + A12C−1
2 y + ϕ̄1

(

x̄1, x1
, ·
)

+ η̄1(·) + B1u

+ F1(x̄1 − x
1
), (10)

ẋ
1
=A11x

1
+ A12C−1

2 y + ϕ
1

(

x̄1, x1
, ·
)

+ η
1
(·) + B1u

− F1(x̄1 − x
1
) (11)



3

Ã11 =















A11 + F1 +
(

W
−
1
+ W̄+

1

)

(x̄1, ·) F1 + W̄
+
1
(x̄1, ·)

F1 + W̄
+
1
(x

1
, ·) A11 + F1 + (W̄−

1
+ W̄+

1
)(x

1
, ·)















.

where the gain matrix F1 ∈ Rn1×n1 is nonnegative which will

be determined later. The initial states satisfy x
1
(0), x̄1(0) ∈ Ω

and x
1
(0) ≤ x1(0) ≤ x̄1(0).

Denote e1 = [ē1, e1
]⊤ where ē1 = x̄1 − x1 and e

1
= x1 − x

1
.

By comparing (10) and (11) with (6), the error dynamic is

obtained by

ė1 = Â11e1 + φ(x̄1, x1
, x1, ·) (12)

where

Â11 =













A11 + F1 F1

F1 A11 + F1













and

φ(·) =














ϕ̄1 (·) − g1 (·) + η̄1(·) − η1 (·)
g1 (·) − ϕ

1
(·) + η1 (·) − η

1
(·)















.

From (A.5), (A.6) and Assumption 1, it follows that

φ(·) ≤














(

W
−
1
+ W̄+

1

)

(x̄1, ·)ē1 + W̄
+
1
(x̄1, ·)e1

(W̄−
1
+ W̄+

1
)(x

1
, ·)e

1
+ W̄+

1
(x

1
, ·)ē1















+ φ̃

where φ̃ ≥ 0 and

φ̃ =













(A
1
+ Ā1)(x̄1, ·) + ∆̄η1

(·)
(A

1
+ Ā1)(x

1
, ·) + ∆

η1
(·)













.

Then (12) becomes

ė1 ≤ Ã11e1 + φ̃ (13)

where Ã11 is given in the top of this page.

Based on system (13), a system is constructed as follows

v̇ = Ā11v + φ̃, v(0) ≥ e1(0) (14)

where Ā11 ≥ Ã11. Then a proposition is ready to be presented.

Proposition 1: Under Assumption 1, if there exists a

nonnegative matrix F1 such that

• both the matrices Â11 and Ã11 are the Metzler matrices,

• there exist the Metzler and Hurwitz matrix Ā11 such that

Ā11 ≥ Ã11, (15)

then 0 ≤ e1 ≤ v and (10)-(11) is an interval observer of

subsystem (6).

Proof: From x
1
(0) ≤ x1(0) ≤ x̄1(0), it is straightforward

to see that e1(0) ≥ 0. Consider the first time constant t1 when

one of the components of vector e1 in (12) is equal to zero.

Suppose that it is ē1i. Then

˙̄e1i (t1) =

n1
∑

j=1, j,i

(A11i j + F1i j)ē1 j(t1) +

n1
∑

j=1

F1i je1 j
(t1) + φi (·) |t=t1

where A11i j and F1i j represent the elements of the ith row

and jth column of A11 and F1, respectively. From the interval

bounds in (A.2) and Assumption 1, φi(·)|t=t1 ≥ 0. Because the

matrix Â11 is Metzler, and F1 is positive, A11i j + F1i j > 0 for

∀i , j. Then ˙̄e1i (t1) > 0, which implies that ē1i(t) > 0 for

t > t1. Thus, it can be concluded that ē1i remains positive for

t ≥ 0. Using the same analysis on e
1i

, it is easy to obtain that

e
1i
> 0 for t ≥ 0 as well. Therefore, e1i(t) ≥ 0 for t ≥ 0.

Moreover, since Ā11 ≥ Ã11 and e1 ≥ 0, Ã11e1 ≤ Ā11e1 and

then ė1 ≤ Ā11e1 + φ̃. Using the Comparing Principle presented

in [31], if the initial condition satisfies 0 ≤ e1(0) ≤ v(0), then

0 ≤ e1 ≤ v where v is the state of the constructed system

(14). Since Ā11 is the Hurwitz and Metzler matrix, v ≥ 0 and

asymptotically converges to an interval with its upper bound

being associated with Ā11 and φ̃. Thus, e1 also asymptotically

converges to this interval.

Hence, the result follows.

Remark 4: Many different interval observers have been pro-

posed (see [26]) for systems with different uncertain structures

and [27] has provided a method to design interval observers for

linear systems with uncertain structural parameters. Unfortu-

nately, due to the time-varying and state-related characteristic

of Ã11, the stability condition to guarantee the convergence of

the interval observer in [27] cannot be applied. On the other

hand, it is still challenging to ensure the stability of systems

with time-varying and state-related system matrix Ã11. In this

paper, the Metzler and Hurwitz matrix Ā11 is introduced to

deal with this issue. ∇
Denote v̄ = diag{In1

, 0}v and v = diag{0, In1
}v. From 0 ≤ e1 ≤ v

in Proposition 1,

0 < ē1 ≤ v̄, 0 < e
1
≤ v (16)

which will be used in the following sections.

From Proposition 1, the sub-observer (10)-(11) provides

estimates of upper and lower bounds of x1 respectively. Then

x̂1, the estimate of x1, can be constructed by using midpoint

of the interval [x
1
, x̄1], i.e.

x̂1 =
x

1
+ x̄1

2
. (17)

Then the estimate error is obtained by

e1 = x1 − x̂1 =
e

1
− ē1

2
. (18)

From Proposition 1 that 0 ≤ e1 ≤ v, it yields

∥e1∥ ≤
1

2
(∥ē1∥ + ∥e1

∥) ≤ ∥v∥. (19)

Denote x̂21 as estimate of x21. For sub-system (7), consider

the following sub-observer

˙̂x21 =A211 x̂1 + A11
22 x̂21 + A12

22x22 + g21(x̂1, ·)
+ (A11

22 − Â11
22) (x21 − x̂21) + B21u + ν1 + ν2 (20)

where Â11
22

is symmetric negative definite, and functions ν1 and

ν2 are given by

ν1 =m1(·)sign(x21 − x̂21), (21)

ν2 =M2(·)sign(x21 − x̂21) (22)

where m1(·) is a positive scalar function, and M2(·) is a

diagonal matrix function, which are both determined later.
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Remark 5: The choice x̂1 in (17) is used to ensure that e1

can be bounded by assured upper and low bounds, which are

required to design gains m1(·) and M2(·). ∇
Denote e21 = x21 − x̂21. Based on Lemma 2, for g21i(x1, ·),

the ith component of g21(x1, ·), there exist vector w21i(x̂1, ·)
and a scalar a21i(x̂1, ·), i = 1, 2, · · · , p − q such that

Πi = sign(e21i)(g21i(x1, ·) − g21i(x̂1, ·) + w21i(·)e1) − a21i(·) ≤ 0.

(23)

Denote W21(·) = diag{w211}. By comparing (20) with (7), the

error dynamic is obtained by

ė21 =(A211 −W21(·))e1 + Â11
22e21 + g21(x1, ·) − g21(x̂1, ·)

+W21(·)e1 + η21(·) − ν1 − ν2. (24)

Consider a hyperplane

L = {(e1, e21)|e21 = 0} . (25)

Then, the following conclusion is ready to be presented.

Proposition 2: Under Assumption 1, error system (24) is

driven to the sliding surface L given by (25) in finite time and

maintains on it thereafter if the gains m1(y, u, t) and M2(x̂1, ·)
in (21) and (22) satisfy that

m1(·) ≥∥A211 −W21(·)∥w + η̄21(y, u, t) + κ, (26)

M2(·) =diag {a21i} (27)

where κ is a positive constant scalar.

Proof: Let V =
1

2
eT

21
e21 be the Lyapunov function

candidate. It follows from the error dynamic (24) that

V̇ =
1

2
eT

21

(

Â11
22 + Â11T

22

)

e21

+ eT
21 ((A211 −W21(·))e1 + η21(·) − ν1)

+ eT
21(g21(x1, ·) − g21(x̂1, ·) +W21(·)e1 − ν2).

Since Â11
22

is symmetric negative definite, eT
21

(Â11
22
+ Â11T

22
)e21 ≤

0. Then,

V̇ ≤ ∥e21∥ (∥(A211 −W21(·))∥ ∥e1∥ + ∥η21(·)∥) − m1(·) ∥e21∥
+ eT

21(g21(x1, ·) − g21(x̂1, ·) +W21(·)e1 − M2(·)sgn (e21)).

Note that it follows from (23) that

eT
21

(

(g21(x1, ·) − g21(x̂1, ·) +W21(·)e1) − M2(·)sign (e21)
)

=

p−q
∑

i=1

e21i

(

(g2i(x1, ·) − g2i(x̂1, ·) + w2i(·)e1) − a2i(·)sign (e21i)
)

=

p−q
∑

i=1

|e21i|Πi ≤ 0. (28)

Thus, it can be concluded that V̇ ≤ −κ ∥e21∥ ≤ −κV1/2, which

means that the “η−reachability condition" is satisfied.

Hence, the conclusion follows.

From subsystem (8), it can be seen that the fault related term

ξ(·) affects x22 directly, which implies that only using x22

is sufficient to detect incipient faults. Thus, in sub-observer

design for (8), the residual generation and threshold generation

problems should be pre-considered. The sub-observer for (8)

is proposed by

˙̄x22 =A212 x̄1 + A21
22 x̂21 + A22

22 x̄22 + g22(x̄1, ·) + B22u

+ F2(x̄1 − x
1
) + K22 (x22 − x̄22) , x̄22(0) = x22(0), (29)

ẋ
22
=A212x

1
+ A21

22 x̂21 + A22
22x

22
+ g22(x

1
, ·) + B22u

− F2(x̄1 − x
1
) + K22

(

x22 − x
22

)

, x
22

(0) = x22(0) (30)

where the gain matrix K22 is chosen as A22
22
−Â22

22
with Â22

22
being

the Hurwitz and Metzler matrix. The gain F2 is a nonnegative

matrix to be chosen to ensure that A212+F2 is also nonnegative.

Therefore, the design of diagnostic observer characterized

by sub-observers (10)-(11), (20) and (29)-(30) is completed.

In next section, incipient sensor fault detection schemes will

be presented.

IV. Incipient Fault Detection Schemes

A. Residual Generation

The residual r is defined as r = [x̄22 − x22, x22 − x
22

]⊤. Then

by comparing (29) and (30) with (8), the residual generator ṙ

is obtained by

ṙ =













A212 + F2 F2

F2 A212 + F2

























ē1

e
1













+













A21
22

A21
22













e21

+













Â22
22

0

0 Â22
22













r +













g22(x̄1, ·) − g22(x1, ·)
g22(x1, ·) − g22(x

1
, ·)













+













−ξ(·)
ξ(·)













+













−η22(·)
+η22(·)













(31)

where the initial value of r is chosen as r(0) = 0.

Remark 6: After sliding motion takes place, e21 = 0 which

means that r does not rely on the estimate of x̂21 during the

sliding motion. ∇

B. Adaptive Threshold Generation

Adaptive thresholds should be higher than residuals in fault

free scenario. As the residual r is used directly to detect

incipient faults without evaluation, the threshold is chosen as

its upper bound.

Based on Lemma 2, there exist W
22

(x̄1, ·) = diag{w
22i
},

A
22

(x̄1, ·) = [a
22i

]⊤, W̄22(x
1
, ·) = diag{w̄22i} and Ā22(x

1
, ·) =

[ā22i]
⊤ such that

g22(x̄1, ·) − g22(x1, ·) ≤ A22
(x̄1, ·) −W22

(x̄1, ·)ē1, (32)

g22(x1, ·) − g22(x
1
, ·) ≤ Ā22(x

1
, ·) − W̄22(x

1
, ·)e

1
. (33)

Note that W
22

(·) = W+
22

(·) − W−
22

(·) with W+
22

(·) and W−
22

(·)
being nonnegative. From Proposition 1 and (16), −W

22
(·)ē1 ≤

W
−
22

(·)v̄. Similarly, −W
22

(·)e
1
≤ W̄−

22
(·)v. In addition, due to

the negativity of A212+F2 and F2, (A212+F2)ē1 ≤ (A212+F2)v̄,

(A212 + F2)e
1
≤ (A212 + F2)v, F2ē1 ≤ F2v̄ and F2e

1
≤ F2v.

After sliding motion takes place, e21 = ė21 = 0. Based on

(31), the threshold generator J̇th is constructed as follows

J̇th =













A212 + F2 F2

F2 A212 + F2

























v̄

v













+













Â22
22

02

0 Â22
22













Jth

+













W
−
22

(x̄1, ·)v̄ + A22
(x̄1, ·)

W̄
−
22

(x
1
, ·)v + Ā22(x

1
, ·)













+













−η
22

(·)
+η̄22(·)













(34)
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where the initial value of Jth is chosen as Jth(0) = 0.

Comparing with (31), due to Metzler matrix Â22
22

, in fault free

scenario (i.e. ξ(·) = 0), r ≤ Jth. Therefore, Jth is chosen as

adaptive threshold.

Remark 7: It should be pointed out that r and Jth satisfy

r < Jth only on the sliding surface (25). It usually takes longer

time for incipient faults (for example, mechanical wear) to

cause serious system failure. Moreover, the reaching time of

sliding motion can be shortened by choosing a big reachability

constant. Therefore, the developed results can be applied to a

majority of cases in reality. ∇

C. Incipient Fault Detection Decision

Firstly, denote detection index Γ = 1 as that fault is detected

and Γ = 0 as that fault is not detected. In this paper, the

decision on occurrence of incipient sensor faults is made if

during sliding motion, there exists at least one j, j = 1, · · · , 2q

such that r j(Td) exceeds the corresponding adaptive threshold

Jth j(Td) and remains that thereafter where Td is the fault

detection time, that is

• r j(Td) > Jth j(Td), Γ j = 1,

• otherwise, Γ j = 0.

Accordingly, the detection time Td is defined as the first time

when r j(Td) > Jth j(Td) and remains that thereafter for some

j = 1, · · · , 2q, i.e.,

Td

∆
= inf

2q

∪
j=1

{

t > 0
∣

∣

∣r j (t) > Jth j (t)
}

. (35)

D. Incipient Fault Detectability

Denote ∆r = Jth−r. As analyzed above, in fault-free scenario

(i.e. ξ(·) = 0), ∆r ≥ 0, and in fault case, the incipient sensor

fault is detected if there exists a j, j = 1, · · · , 2p such that

∆r j < 0 where ∆r j is the jth row of ∆r. Comparing (31) with

adaptive threshold (34), the dynamics of ∆r can be obtained.

Due to inequalities (32)-(33),

∆̇r ≥ A∆∆r + D∆(v − e1) + ∆η22
− ∆ξ(·) (36)

where

D∆ =













A212 + F2 +W
−
22

(x̄1, ·) F2

F2 A212 + F2 + W̄
−
22

(x̄1, ·)













,

A∆ =













Â22
22

0

0 Â22
22













, ∆η22
=













∆
η22

∆̄η22













, ∆ξ(·) =













ξ(·)
−ξ(·)













with ∆
η22
= η22 − η22 and ∆̄η22

= η̄22 − η22.

Now, Choose Â22
22
= −αIq with α > 0. By integrating (36)

in both sides from T0 (T0 is the fault occurrence time instant)

to Td, each component of ∆r, ∆r j satisfies that

∆r j(Td) ≥∆r j(T0) +

∫ Td

T0

e−α(t−τ)[D∆(v − e1) + ∆η22
] jdτ

−
∫ Td

T0

e−α(t−τ)[∆ξ(·)] jdτ (37)

and (37) still holds for t > Td. From the incipient fault

detection decision, a necessary requirement to detect the

incipient fault at Td is that there is a j, j = 1, · · · , 2q such

that ∆r j(t) < 0 for t ≥ Td, that is

∫ Td

T0

e−α(t−τ)[∆ξ(·)] jdτ

≥ ∆r j(T0) +

∫ Td

T0

e−α(t−τ)[D∆(v − e1) + ∆η22
] jdτ (38)

and (38) still holds for t > Td.

Remark 8: Inequality (38) provides a method to judge

whether an incipient sensor fault can be detected. For example,

if ∆r j(T0) = 0 and 0 ≤ [D∆(v − e1) + ∆η22
] j ≤ δ(t) where δ(t)

is a positive function, then the faults with their magnitudes

[∆ξ(·)] j satisfying [∆ξ(·)] j ≥ δ(t) for t > T0 can be detected.

More specifically, δ(t) can be chosen as δ(t) = δ0 + e−βt with

δ0 > 0 and β > 0 in the transition process. So the detectability

of the developed incipient sensor fault detection scheme will

increases as T0 increases. ∇
Remark 9: The left hand side of (38) can be seen as the

first-order filter with single pole −α which can increase the

response rates of r and Jth and reduce the incipient fault

detection time Td by increasing the value of α. Hence, the

value of α should be chosen large sufficient to detect the

incipient faults in a short time. In addition, to increase the

incipient fault detectability, it can be seen from the right

hand side of (38) that the l1−norm of vector D∆(v − e1)

should be reduced by adjusting nonnegative matrices F1 and

F2. Recalling the dynamics of e1 and v in (13) and (14)

respectively, the negative effect of D∆(v − e1) can be reduced

by solving the linear programming problem on the variables

F1 and F2 presented by Theorem 3.4 in [32]. ∇

Remark 10: Comparing with the adaptive thresholds pre-

sented in [7] and [33], the adaptive threshold Jth in this

paper is generated by (34) without using absolute value, which

facilitates to give a fair judgment for ISFD in all directions and

improve fault detectability. The reason can be seen from the

sufficient condition (38) which is more relax than the similar

condition in [7] and [33] using absolute value. ∇
Remark 11: This paper uses the interval estimation tech-

nique to design diagnostic observer for a class of nonlinear

control systems, which is quite challenging because there

is no existing proper interval models for the nonlinearities

g1(x1, y, u), g21(x1, y, u) and g22(x1, y, u) considered in (6)-(8).

This paper introduces the proper interval model [ϕ
1
, ϕ̄1] for

g1(x1, y, u) in (A.2) and similar interval model for g22(x1, y, u)

satisfying (32)-(33) based on Lemma 2. Then these optimized

interval models are used to develop dynamical interval esti-

mator (10)-(11) where the Hurwitz and Metzler matrix Ā11

is introduced to guarantee the stability of the time-varying

system (13), and is also used to develop residual generator

(31) and threshold generator (34). Furthermore, based on

Lemma 2, the inequality (23) is yielded, which facilitates to

design gains m1(·) and M2(·) in (26) and (27) respectively and

guarantees that the sliding mode with respect to the sliding

surface L occurs and maintains on it thereafter. Therefore, one

contribution of this paper is developing an ISMO as diagnostic

observer for a class of continuous nonlinear systems.
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On the other hand, because of the novel interval models

for the considered nonlinearities, the ISFD schemes proposed

in this paper, including residual generator (31), threshold

generator (34) and the incipient fault detectability, are further

developed, and a set of sufficient detectable conditions (38)

is proposed. Therefore, another contribution of this paper is

that an ISFD is established with new residual generator and

threshold generator. ∇

V. Verifications

This section will give two verification examples, including

a numerical example and an application example to show the

universality of the proposed incipient sensor fault detection

method. Also, comparisons with existing sensor fault detection

method such as presented in [7] and [33] are presented to

illustrate advantages of the proposed method.

A. Numerical Example

Consider a simple nonlinear system in the form of (6)-(9)

as follows:

ẋ1 = − 80x1 + 5x2 + x2
1 + η1,

ẋ2 = − x1 − 5x2 + η21,

ẋ3 =x1 − 10x3 + x2
1 + ξ + η22

where η1 = 10(sin(20t) + sin(25t)), η21 = 10(1.2 + sin(20t) +

sin(35t)) and η22 = −5(sin(18t) + sin(20t)). The item ξ is the

fault-related signal, which is set as ξ = 0 for t < 0.5s and

ξ = 10+5 sin(250t) for t ≥ 0.5s. The term x2
1

is the continuous

nonlinearity whose new interval model will be designed based

on the method presented in Appendix A.

Firstly, η
1
, η̄1, η̄21, η

22
and η̄22 in Assumption 1 are

selected as η̄1 = 10(0.1 + sin(20t) + sin(25t)), η
1
= 10(−0.2 +

sin(20t) + sin(25t)), η̄21 = |10(2 + sin(20t) + sin(35t))|, η̄22 =

−5(−0.5+sin(18t)+sin(20t)), η
22
= −5(0.3+sin(18t)+sin(20t)),

respectively. Then, based on Appendix A, for x1 ∈ [−5, 5],

A
1
(x̄1, ·) = 0, W

1
(x̄1, ·) = −2x̄1,

Ā1(x
1
, ·) = −x2

1
+ 0.25(x

1
+ 5), W̄1(x

1
, ·) = −0.25,

A
22

(x̄1, ·) = 0, W
22

(x̄1, ·) = −2x̄1,

Ā22(x
1
, ·) = −x2

1
+ 0.25(x

1
+ 5), W̄22(x

1
, ·) = −0.25.

Based on Propositions 1 and 2, the design parameters F1 = 15

and κ = 10. The parameter F2 in (29) and (30) is chosen as

0. Thus, the interval sliding mode diagnostic observer (10)-

(11) and (20) can be constructed and residuals and adaptive

threshold can also be generated by (31) and (34) respectively.

Their time responses are shown in Figs. 1-2. It can be seen

from Fig. 1 that x̄1 ≤ x1 ≤ x
1

for t > 0, and the estimate error

e2 is driven to the sliding surface in finite time and maintains

on it thereafter. Fig. 2 shows that for t > 0.5s, r1 exceeds Jth1

and maintains larger than Jth1, and the variable Γ1 becomes 1

at Td and maintains unchanged. Therefore, based on the ISFD

decision principle, the incipient sensor fault is detected at time

instant Td.

The adaptive threshold concept proposed in [7] and [33]

motivates this paper to use interval estimation techniques to
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Fig. 1. Time responses of x̄1, x1, x1, x̂2, x2 and e2.
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Incipient sensor fault
 is detected at Td

Fig. 2. Time responses of r, Jth, Γ1 and Γ2.

design adaptive thresholds for incipient sensor fault detection

schemes. In addition, [7] and [33] are quite popular in fault

diagnosis areas with high citations. Therefore, in this simu-

lation, the comparison will be made between the developed

fault diagnosis method in this paper and the results in [7] and

[33].

It should be pointed out that this paper has different design

parameters compared with [7] and [33]. But to make this

comparison persuasive, their design parameters with similar

functions are chosen as the same. To design residual generator,

that is the dynamic of x̂3, the gain matrix in [7] and [33] is

chosen as F2. Similar with the selection before, the estimate

error x3 − x̂3 is chosen as r because ξ appears only in x3. In

addition, the bound of η22 is also chosen as max{|η̄22|, |η
22
|} =

5(0.5 + | sin(18t)| + | sin(20t)|).
The estimates and fault detection results are presented in

Figs. 3 and 4. Fig. 3 illustrates the estimates for x1 and x2. By

comparing Fig. 1 with Fig. 3, it can be seen that Fig. 1 provides

better estimates than Fig. 3. Comparing the time responses of

r and Jth in Fig. 4 with ones in Fig. 2, it is easy to see that the

adaptive thresholds in Fig. 2 are closer to the residuals than

that in Fig. 4 for t < 0.5s (in fault-free scenario), which means

that the adaptive thresholds in Fig. 2 are more proper than that
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in Fig. 4. The different time responses of Γ in Fig. 4 and Fig. 2

also show the advantage of the ISFD method proposed in this

paper. The variable Γ1 in Fig. 2 becomes 1 at Td and maintains

it for t > Td. However, the variable Γ in Fig. 4 varies between

1 and 0 intermittently and can not maintain value 0. Therefore,

based on the developed fault detection decision principle, the

same incipient sensor fault is detected based on Fig. 2 while

is not detected based on Fig. 4.
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Fig. 3. Time responses of x̂1, x̂2, x1 and x2.
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Fig. 4. Time responses of r, Jth and Γ.

B. Application Example

To verify the theoretical results developed in this paper

using traction devices in CRH, faults should be injected firstly.

The hardware-implemented and simulation-implemented fault

injection are two main fault injection techniques [35]. The

latter has some advantages such as high observability, control-

lability and short test period, and has become the mainstream

in fault injection areas [36]. In this section, the developed ISFD

method will be applied to a simulation and verification plat-

form, called traction and driving control system-fault injection

benchmark (TDCS-FIB). This platform was developed using

a simulation-implemented fault injection by a professional

team (Central South University Fault Injection Team) and

was built on SimPower System toolbox. This platform is

able to simulate faults in traction converters, traction motors,

sensors and traction control units for CRH effectively [36]. The

structure of this platform is shown in Fig. 5 outside of the red

rectangle frame, which consists of fault injection modules and

the traction and driving control system.

The red rectangle frame in Fig. 5 is fault diagnosis schemes.

The circuit topology of the rectifier device is shown in Fig. 6

Fig. 5. Schematic diagram of TDCS-FIB.

where us and is are the voltage and current of the grid side,

R and L are the resistance and inductance of the grid side

respectively, S ia, S ib, i = 1, 2, 3, 4 are the IGBT modules of a

and b bridges, respectively, u1 and u2 are dc voltages in dc-

link side respectively, and iL is the load current. Parameters

are given by Table I. Suppose that there is no power loss and

su

L R

si
abu
a

b

1aS

2aS

3aS

4aS

1bS

2bS

3bS

4bS

p

n

pi

ni

+

−

1
C

1
u

2
C +

−
2
u

dcU

li

oi

Fig. 6. Single-phase three-level diode clamp PWM rectifier.

TABLE I
Parameters.

Parameter Value Unit

Pm 800 KW
R 0.34 Ω

L 2.2 × 10−3 H

C1 16 × 10−3 F

C2 16 × 10−3 F
us 2100 sin(314t) V

energy storage in the traction motors and inverters. Then

(u1 + u2)il = Pm

where Pm is the instantaneous power of the traction motors.

It is supposed that Pm is fixed.

The harmonics in is, u1 and u2 are considered as distur-

bances and uncertainties and denoted by ηn(us, is, u1, u2, ω, t) =

[ηis
(·), ηu1

(·), ηu2
(·)]⊤. Then, based on method provided in [37]
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and the average modeling approach presented in [38] , the

dynamic model of this rectifier is obtained by

dis

dt
=

1

L
(us − Ris − uab) + ηis

(·),
du1

dt
=

1

C1

(

ip − il
)

− βu1 −
Pm

u1 + u2

+ ηu1
(·),

du2

dt
=

1

C2

(−in − il) − βu2 −
Pm

u1 + u2

+ ηu2
(·)

where β is a positive constant and obtained using the average

modeling approach, which is chosen as β = 100 in this

simulation. In this simulation, incipient sensor fault detection

schemes are aimed to supervise the voltage sensors. These

two potential incipient voltage sensor faults are modeled as

(3) where A f is given as follows

A f =













−0.5 0

2 −0.5













.

Let z := col(Z, f ). Then the dynamic model which has the

form of (4)-(5) can be obtained, and there exists a coordinate

transformation x = Tz where

T =



















































0 −1.4142 0 0 0

0 0 1.4142 0 0

1 0 0 0 0

0 0 −1 0 −1

0 −1 0 −1 0



















































such that the augmented system has the form (6)-(9) in new

coordinates. Moreover, in the new coordinates, is = x3, u1 =

−0.707x1 and u2 = −0.707x2. Then

g1(x) =

















− 1×107

x1+x2

− 1×107

x1+x2

















, g21(x) = 0, g22 (x) =

















− 2.8284×106

x1+x2

− 2.8284×106

x1+x2

















.

The dc link voltages u1 and u2 locate between 1000V

and 2000V in traction systems. Then a hypercube set Ω

with 4 vertices is obtained where umin = [−1414,−1414]⊤

and umax = [−2828,−2828]⊤. Then the coordinates of these

four vertices are given by [−1414,−1414], [−1414,−2828],

[−2828,−1414] and [−2828,−2828]. In order to construct the

closed form solution for the min-max optimization problem

in (2) for g1(x), g21(x) and g22 (x), a 2-dimensional simplex

Ωs, enclosing Ω is constructed. The vertices of Ωs are given

by [0,−1414], [−2828,−1414] and [−2828,−4242]. Then the

solutions based on the method provided in [24] are presented

as follows

[ā11 (x̄1), w̄11 (x̄1)]T =

[ −1 −x̄1 −x̄2−1414
−1 −x̄1−2828 −x̄2−1414
−1 −x̄1−2828 −x̄2−4242

]−1























− 1×107

x̄1+x̄2
−7072.1

− 1×107

x̄1+x̄2
−2357.4

− 1×107

x̄1+x̄2
−1414.4























,

[ā12 (x̄1), w̄12 (x̄1)] = [ā11 (x̄1), w̄11 (x̄1)] ,

[a
11

(x
1
),w

11
(x

1
)] =[ 0, − 1×107

(x1+x2)2
, − 1×107

(x1+x2)2
],

[a
12

(x
1
),w

12
(x

1
)] =[a

11
(x

1
),w

11
(x

1
)],

W21(·) =0, A21(·) = 0,

[a
221

(x̄1), w
221

(x̄1)] =[ 0, − 2.8284×106

(x̄1+x̄2)2
, − 2.8284×106

(x̄1+x̄2)2
],

[a
222

(x̄1), w
222

(x̄1)] =[a
221

(x̄1), w
221

(x̄1)],

[

ā221(x
1
), w̄221(x

1
)
]T
=

[ −1 −x1 −x2−1414

−1 −x1−2828 −x2−1414

−1 −x1−2828 −x2−4242

]−1























− 2.8284×106

x1+x2
−5000.8

− 2.8284×106

x1+x2
−1666.9

− 2.8284×106

x1+x2
−1000.2























,

[

ā222(x
1
), w̄222(x

1
)
]

=
[

ā221(x
1
), w̄221(x

1
)
]

.

Thus, nonlinear functions ϕ
1

(

x̄1, x1
, ·
)

and ϕ̄1

(

x̄1, x1
, ·
)

in

(A.2), and (A
1
+ Ā1)(x̄1, ·),

(

W
−
1
+ W̄+

1

)

(x̄1, ·), W̄+1 (x̄1, ·)
(A

1
+ Ā1)(x

1
, ·), (W̄−

1
+ W̄+

1
)(x

1
, ·), W̄+

1
(x

1
, ·) in (A.5)

and (A.6) are obtained, respectively. Also, −W−
22

(x̄1, ·)w̄ +
A

22
(x̄1, ·),−W̄−22

(x
1
, ·)w+ Ā22(x

1
, ·) in (34) are obtained. Then,

based on Proposition 1, the gain matrix F1 is calculated using

LMI technique and shown as follows

F1 =













38.1067 6.4006

6.4006 38.1067













.

In the sub-observer (20), the gain matrix Â21
22
= −100. The

gains m21 and M21 are chosen based on Proposition 2. Then

the residual generator (31) and threshold generator (34) are

constructed with Â22
22
= −100I2 and

F2 =













1.4142 70.3571

70.3571 0













. (39)

In the disturbance ηis
, the 3rd-order and the 5th-order har-

monics of grid side current is are mainly considered because

their amplitudes are larger than other higher order harmonics.

Also, parameter uncertainties ∆R = 0.02Ω, ∆L = 0.2 × 10−4H

and ∆C = 2 × 10−4F are considered. Then,

ηis
=

H3is√
2 cos (ωt)

sin (3ωt) +
H5is√

2
sin (5ωt − ϕ5) + ∆1is

is,

ηu1
=∆1u1

is, ηu2
= ∆1u2

is

where H3 = 100, H5 = 20 and phase angle ϕ5 = 0.1π, ∆1u1
=

−0.7716 and ∆1u2
= 0.7716. Thus,

η1 = − 1.414[∆1u1
y1,∆1u2

y1]T ,

η21 =

√
2H3y1

cos (ωt)
sin (3ωt) +

√
2H5y1 sin (5ωt − ϕ5) + ∆1is

y1,

η22 = − [∆1u2
y1,∆1u1

y1]T .
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Therefore, η̄21(·), η
1
(·), η̄1(·), η

22
(·) and η̄22(·) in Assumption

1 are selected as

η̄1(·) = [|1.414∆u1
y1|, |1.414∆u2

y1|
]⊤
,

η
1
(·) = [−|1.414∆u1

y1|, − |1.414∆u2
y1|
]⊤
,

η̄21(·) =
∥

∥

∥

∥

∥

∥

√
2H3y1

cos (ωt)
sin (3ωt) +

√
2H5y1 sin (5ωt − ϕ5) + ∆1is

y1

∥

∥

∥

∥

∥

∥

,

η̄22(·) = [|∆u2
y1|, |∆u1

y1|
]T
, η̄

22
(·) = [−|∆u2

y1|, − |∆u1
y1|
]⊤
.

In addition, the vector ξ(t) in (3) to describe the incipient

voltage sensor faults is given by ξ(t) = col(ξ1, ξ2) where

ξ1 =











0, t ≤ 0.5s,

100 + 20 sin (200t) , t ≥ 0.5s,

ξ2 =











0, t ≤ 0.5s,

100 + 50 sin (200t) , t ≥ 0.5s.

The simulation results are shown in Figs. 7-11. It can be

seen from Figs. 7 and 8 that the designed interval observer

(10)-(11) can guarantee that x
1
< x1 < x̄1 for t ≥ 0. Fig. 9

illustrates the estimate x̂21 and estimate error e21, which shows

that the sliding mode takes place in finite time and maintains

on sliding surface for t ≥ 0.002s. From Fig. 10, it is obtained

that residuals r (blue and solid lines) are lower than the

corresponding adaptive thresholds Jth (red and dashed lines)

for t < T0 (T0 = 0.5s), while r3 exceeds Jth3 intermittently and

r4 exceeds Jth4 for t > T0. Fig. 11 illustrates the fault decision

index Γ, and it can be seen from this figure that the incipient

dc voltage sensor faults are detected at time Td.
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Fig. 7. Time responses of x̄11, x11, x11, ē11 and e11.

To compare with existing sensor fault detection methods,

the method proposed in [7] and [33] is constructed for this

application example and the fault detection results are pre-

sented in Fig. 13 where the estimate errors x4 − x̂4 and x5 − x̂5

are chosen as r1 and r2 respectively. In addition, the norm

bounds of elements in η22, i.e. |∆u2
y1| and |∆u1

y1|, are selected

to generate adaptive thresholds presented in [7] and [33]. By

comparing the time responses of r and Jth in Fig. 13 with Fig.

10, the similar conclusion with that in Numerical Example is

obtained, that is the adaptive thresholds in Fig. 10 are more

proper than that in Fig. 13. On the other hand, it is shown in
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Fig. 8. Time responses of x̄12, x12, x12, ē12 and e12.
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Fig. 9. Time responses of x̂21 and e21.
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Fig. 10. Time responses of residual r and threshold Jth.

Fig. 11 that the variable Γ4 becomes 1 at Td and maintains on

it for t > Td, while both the variables Γ1 and Γ2 in Fig. 13

maintain 0 for t > 0. Therefore, based on the developed fault

detection decision principle, the same incipient sensor fault

is detected based on Fig. 11. However, this fault can not be

detected based on Fig. 13.

Therefore, compared with [7] and [33], superiorities of

the developed incipient sensor fault detection method are
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Fig. 11. Time responses of Γi, i = 1, 2, 3, 4.
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Fig. 12. Time responses of x̂11, x̂12, x̂21, x11, x12 and x21.
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Fig. 13. Time responses of residual r, threshold Jth, Γ1 and Γ2.

summarized as follows:

• The proposed interval sliding mode observer provides

better estimates than the diagnostic observer used in

[7] and [33] because interval estimation techniques and

sliding mode techniques are applied together.

• The developed incipient sensor fault detection method

has higher fault detectability than the ones developed in

[7] and [33] because the better estimates are provided

by the proposed novel ISMO and double independent

adaptive thresholds are developed using more precise

interval bounds of uncertainties.

VI. Conclusions

This paper has proposed a new ISFD method based on

an ISMO for a class of nonlinear systems with observer

unmatched uncertainties. An interval estimator and sliding

mode estimator have been designed. Then residual generator

and adaptive threshold generator have been proposed. Incipient

sensor fault detection decision scheme and fault detectability

have also been studied. At last, an application for detecting

incipient dc voltage sensor faults of rectifiers is presented to

demonstrate the effectiveness and practicality of the proposed

incipient faults detection schemes. Fault diagnosis for systems

with uncertain structural parameters using interval estimation

technique is a challenging problem, which will be addressed

in the future work. On the other hand, the incipient fault

description method in this paper can only characterize the con-

tinuous property but not small amplitude property of incipient

faults. This leads to that the incipient sensor fault detection

scheme developed in this paper is not able to optimize the

design parameters to specially improve the incipient fault

detectability. In the future work, novel description methods

for incipient faults should be developed to characterize both

the continuous and small amplitude properties.

Appendix A

Let x̄1 and x
1

be estimates of the upper bound and lower

bound of x1 respectively and suppose that x̄1, x
1
∈ Ω. Then

based on Lemma 2, for g1i(x1, ·) in x1 ∈ Ω, the ith element of

g1(x1, ·), and x̄1, x
1
∈ Ω, there exist a scalar a1i(·) and a vector

w1i(·) such that (1) holds. Denote that










w1i(·) = w̄1i(·), a1i(·) = ā1i(·), α > 0,

w1i(·) = w
1i

(·), a1i(·) = a
1i

(·), α < 0.

It follows from Lemma 2 that

g1i (x1, ·) ≤g1i(x̄1, ·) + w̄1i(x̄1, ·)x̄1 − w̄1i(x̄1, ·)x1 + ā1i(x̄1, ·),
g1i (x1, ·) ≥g1i(x

1
, ·) + w

1i
(x

1
, ·)x

1
− w

1i
(x

1
, ·)x1 − a

1i
(x

1
, ·).

For x
1
≤ x1 ≤ x̄1, it follows from Lemma 1 that

w̄+1i(·)x
1
− w̄−1i(·)x̄1 ≤ w̄1i(x̄1, ·)x1 ≤ w̄+1i(·)x̄1 − w̄−1i(·)x

1
,

w+
1i

(·)x
1
− w−

1i
(·)x̄1 ≤ w

1i
(x

1
, ·)x1 ≤ w+

1i
(·)x̄1 − w−

1i
(·)x

1
.

Thus,

ϕ
1i

(

x̄1, x1
, ·
)

≤ g1i (x1, ·) ≤ ϕ̄1i

(

x̄1, x1
, ·
)

(A.1)

where

ϕ̄1i

(

x̄1, x1
, ·
)

=g1i (x̄1, ·) + w̄1i (x̄1, ·) x̄1 + w̄−1i (x̄1, ·) x̄1

− w̄+1i (x̄1, ·) x
1
+ ā1i (x̄1, ·) ,

ϕ
1i

(

x̄1, x1
, ·
)

=g1i

(

x
1
, ·
)

+ w
1i

(

x
1
, ·
)

x
1
+ w−

1i

(

x
1
, ·
)

x
1

− w+
1i

(

x
1
, ·
)

x̄1 − a
1i

(

x
1
, ·
)

.

Moreover, let ē1 = x̄1 − x1 and e
1
= x1 − x

1
, it follows from

Lemma 2 that

g1i(x̄1, ·) − g1i(x1, ·) ≤a
1i

(x̄1, ·) − w
1i

(x̄1, ·)ē1,

g1i(x1, ·) − g1i(x
1
, ·) ≤ā1i(x

1
, ·) − w̄1i(x

1
, ·)e

1
.
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Therefore, there exist vectors Ā1 = [ā1i]
⊤, A

1
= [a

1i
]⊤, ϕ̄1 =

[ϕ̄1i]
⊤ and ϕ1 = [ϕ

1i
]⊤, and diagonal matrix W̄1 = diag{w̄1i},

W
1
(·) = diag{w

1i
} such that for x

1
< x1 < x̄1,

g1 (x1, ·) ∈
[

ϕ
1

(

x̄1, x1
, ·
)

, ϕ̄1

(

x̄1, x1
, ·
)]

, (A.2)

g1 (x̄1, ·) − g1 (x1, ·) ≤ A1
(x̄1, ·) −W1

(x̄1, ·)ē1, (A.3)

g1 (x1, ·) − g1

(

x
1
, ·
)

≤ Ā1(x
1
, ·) − W̄1(x

1
, ·)e

1
. (A.4)

Moreover,

0 ≤ ϕ̄1

(

x̄1, x1
, ·
)

− g1 (x1, ·) ≤ (A
1
+ Ā1)(x̄1, ·)

−W
1
(x̄1, ·)ē1 + W̄

+
1 (x̄1, ·)

(

ē1 + e
1

)

,

0 ≤ g1 (x1, ·) − ϕ
1

(

x̄1, x1
, ·
)

≤ (A
1
+ Ā1)(x

1
, ·)

− W̄1(x
1
, ·)e

1
+W+

1
(x

1
, ·)
(

ē1 + e
1

)

.

Since W+
1
(·) ≥ 0, W̄+

1
(·) ≥ 0, −W

1
(·)ē1 ≤ W−1 (·)ē1 and

−W̄1(·)e
1
≤ W̄−

1
(·)e

1
,

0 ≤ ϕ̄1

(

x̄1, x1
, ·
)

− g1 (x1, ·) ≤ (A
1
+ Ā1)(x̄1, ·)

+
(

W
−
1
+ W̄+1

)

(x̄1, ·)ē1 + W̄
+
1 (x̄1, ·)e1

, (A.5)

0 ≤ g1 (x1, ·) − ϕ
1

(

x̄1, x1
, ·
)

≤ (A
1
+ Ā1)(x

1
, ·)

+ (W̄−1 + W̄
+
1 )(x

1
, ·)e

1
+ W̄+1 (x

1
, ·)ē1. (A.6)

It should be pointed out that (A
1
+Ā1)(x̄1, ·),

(

W
−
1
+ W̄+

1

)

(x̄1, ·),
W̄
+
1
(x̄1, ·) in (A.5) are nonnegative, and (A

1
+ Ā1)(x

1
, ·), (W̄−

1
+

W̄
+
1
)(x

1
, ·), W̄+

1
(x

1
, ·) in (A.6) are also nonnegative.

Remark 12: It is worth pointing out that the continuous

function g1(x1, x2, u) may not be local Lipschitz continuous

because of the existence of (A
1
+Ā1)(x̄1, ·) and (A

1
+Ā1)(x

1
, ·)

in (A.5) and (A.6). ∇
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