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Abstract: Telomeres are nucleoprotein structures that cap the end of each chromosome arm and
function to maintain genome stability. The length of telomeres is known to shorten with each cell
division and it is well-established that telomere attrition is related to replicative capacity in vitro.
Moreover, telomere loss is also correlated with the process of aging in vivo. In this review, we discuss
the mechanisms that lead to telomere shortening and summarise telomere homeostasis in humans
throughout a lifetime. In addition, we discuss the available evidence that shows that telomere
shortening is related to human aging and the onset of age-related disease.

Keywords: telomeres; telomere length; aging; senescence

1. Introduction: Structure, Function and Maintenance of the Telomere

Telomeres are nucleoprotein structures found at the end of each chromosome arm that function to
maintain genome stability. In all mammals, telomeres are formed of a highly conserved, hexameric
(TTAGGG) tandem repeat DNA sequence. This is organised into a looped structure called a T-loop
and associated with specialised proteins including, among others, those that make up the Shelterin
complex [1–3]. The looped structure (Figure 1) is formed via nucleolytic activity at the extreme termini
of telomeric DNA to produce a single stranded G-rich overhang. This loops back and invades the
double stranded telomere tract [4,5], ensuring that loose DNA ends are housed internally within the
nucleoprotein structure.

There are many proteins associated with the telomere that, combined, make up the telosome.
Some are involved in DNA damage response mechanisms, for example DNA protein kinase (DNA-PK),
p53, polyadenosine diphosphate ribose polymerase (PARP), Tankyrase 1 and 2, Excision repair
cross-complementing associated with xeroderma pigmentosum group F (ERCC/XPF) radiation 51
(RAD51), werner (WRN) and bloom (BLM) [6,7]. Others are involved in nuclear organization such as
lamin associated proteins (LAPs) [8,9] and silent information regulator (Sir) proteins, which are also
involved in epistatic control of telomere length [10]. The presence and action of these proteins at the
telomere sequence is largely governed by proteins that make up the Shelterin complex. This complex
is made up of a collection of six specialized proteins that associate with the telomere structure to form
a fully functional capping structure. These proteins and their characteristics are outlined in further
detail in Table 1.
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Figure 1. The T-loop and the D-loop. The 3′ end of the G rich strand (blue) protrudes as a single
stranded extension of the telomere. This G-strand overhang loops back to form a T-loop and invades
the 5′ double stranded telomeric duplex, forming a D-loop.

Table 1. The Shelterin complex: Characterisation of the proteins that make up the Shelterin
complex [3,11,12].

Protein Name Interactions Function

Telomere repeat binding factor 1
(TERF1 also known as TRF1)

Direct interaction with double
stranded TTAGGG repeats Regulation of telomere length

Telomere repeat binding factor 2
(TERF2 also known as TRF2)

Direct interaction with double
stranded TTAGGG repeats

Stabilisation of the T-loop and
regulation of telomere length

TERF1 interacting nuclear factor 2
(TINF2 also known as TIN2)

Associates directly with TERF1,
TERF2 and ACD and indirectly

with POT1

Tethering of ACD and POT1 to
TERF1 and TERF2 and tethering

TERF1 to TERF2, which
stabilises the association of

TERF2 with the telomere. Also
regulates telomere length

Protection of Telomeres 1 (POT1) Direct interaction with single
stranded telomere overhang

Inhibition of DNA damage
response and regulation of

telomere length

Shelterin complex subunit and
telomerase recruitment factor
(ACD, also known as TPP1)

Interaction with TINF2 and POT1

Enhances POT1 binding to
single stranded telomere DNA

and regulates telomere length in
combination with POT1

TERF2 interacting protein
(TERF2IP also known as RAP1) Associates with TERF2 Telomere length regulation

Interactions between members of the Shelterin complex and the telomere DNA sequence stabilise
the telomere structure and regulate access of proteins involved in DNA repair and lengthening [3,11,13].
Collectively therefore, this specialised nucleoprotein structure functions to form a cap at the
chromosome ends, serving two main functions: Firstly it shields the ends of chromosome arms
from inappropriate DNA repair mechanisms, which might otherwise recognise loose DNA strands as a
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double strand break and result in chromosome fusion events. Secondly, this capping structure prevents
the degradation of genes near the end of chromosome arms as a result of incomplete DNA replication.

During DNA replication, DNA polymerase may only synthesise new DNA in the 5′ to 3′ direction
with the aid of RNA primers that are formed by the enzyme primase. These primers anneal to the
template strands, providing a free 3′ OH group for the addition of free nucleotides. Since the action of
polymerase proceeds in the same direction as the progression of the replication fork, the synthesis of
new DNA in the 5′ to 3′ direction requires only one primer and is continuous [14]. However, synthesis
of a new 3′ to 5′ DNA strand progresses against the direction of the replication fork. Therefore synthesis
of this new strand requires the annealing of multiple RNA primers which are elongated into short
Okazaki fragments and subsequently ligated to form the new DNA strand [15]. Consequently, a length
of DNA at least the size of the RNA primer is lost at the 5′ end of the lagging strand when the final RNA
primer is removed following replication [16]. In reality however, a much larger amount of DNA is lost
following replication as a consequence of priming failure [14] and as a consequence of the complex
nature of the telomere structure itself. The association of telomere sequences with the Shelterin complex
leads to replication fork stalling [17] and the presence of G-quadruplexes, which are an essential feature
in the formation of the t-loop, results in replication fork slippage [5]. Furthermore, the synthesis of
DNA via polymerase action produces blunt ends. In order to form a T-loop, nucleolytic activity is
required to produce a single stranded overhang (Figure 1). Thus, there are several mechanisms that
result in telomere attrition following replication in proliferating cells and it is thought that the presence
of the telomere sequence acts as a ‘buffering system’ to prevent the loss of crucial DNA. Eventually
however, this buffering system is lost and it is widely accepted that, as a consequence of this, the cell
loses its ability to proliferate and reaches its so-called replicative capacity.

Once telomeres have shortened beyond a critical level, the proteins that form the Shelterin complex
are unable to associate with the telomeric sequence and can no longer perform their role in capping the
end of the chromosome. Therefore, a major limiting factor in the function of the telomere is its length.
This represents a problem in cells that are highly mitotically active, such as stem cells that differentiate
in order to generate new tissue or replace damaged cells. In these cells, it is important that telomere
length is maintained to ensure prolonged replicative capacity and this is achieved via two primary
mechanisms: The action of a specialised enzyme called telomerase or homologous recombination
mediated alternative lengthening of telomeres (ALT). Telomerase is a ribonucleoprotein complex, made
up of a telomerase reverse transcriptase (TERT) catalytic subunit that synthesises new telomeric repeats
by copying its telomerase RNA component (TERC) [18]. In most cell types, its action is inhibited
by the competitive binding of telomeric repeat containing RNA (TERRA) (which is transcribed from
sub-telomeric and telomeric DNA sequences) to TERC and via contact with TERT [19,20]. Several cell
types including stem cells are able to express telomerase however and in cells that do not (or where
telomerase is repressed) homologous recombination based ALT may extend telomere length. In this
scenario it is thought that the 5′ overhang belonging to the telomere of one chromatid may invade the
T-loop of the homologous chromatid. This structure resembles a replication fork that is recognised by
DNA polymerase and is subsequently extended [21].

Despite the presence of these elongation mechanisms, telomere shortening is still observed
following proliferation in most stem cells (with the exception of embryonic stem cells). This is because
telomere elongation mechanisms are increasingly reduced during differentiation and therefore they
become insufficient to completely eradicate telomere loss. In the majority of differentiated somatic
cells (except for lymphocytes), telomerase is not expressed at all and therefore in these cells, telomere
length declines with each division [22].

2. Telomere Length and Replicative Capacity

The finite replicative capacity of somatic cells has been recognised since Leonard Hayflick’s work
in the 1960s [23]. However, its association with the ‘end replication problem’ was not discovered until
the 1970s and it was a further twenty years before telomere shortening was formally associated with
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passage number and replicative capacity in vitro [24–26]. Since then, an array of studies have shown
that telomere length is correlated with donor age in a variety of somatic cell types, generally declining
as a function of chronological age [27–34].

Furthermore, the contribution of telomere attrition to the process of aging has been well characterised
and it is now generally accepted that when telomere length becomes critically short, the ability to support
the Shelterin complex is lost. In turn, the inhibitory action of the Shelterin complex on DNA damage
response pathways is released and the cell cycle leaves G1 and enters G0 [35]. This is initiated by the
ataxia telangiectasia mutated (ATM) or the ataxia telangiectasia and radiation 3 (RAD3) related protein
(ATR) pathway. Both of these lead to the phosphorylation of p53, expression of p21 and inhibition of cyclin
dependent kinases that would otherwise enable progression through the cell cycle [36,37]. Upon leaving
the cell cycle, the cell either enters senescence (defined as the irreversible cessation of division) or apoptosis,
(defined as programmed cell death). The exact mechanisms that dictate the committal to senescence or
apoptosis are poorly understood [38] and the characteristics of each scenario are quite different. However,
the outcome (inability of the cell to continue division) is the same.

The consequence of an accumulation of senescent cells is two-fold: Firstly, senescence leads to a
reduction in the number of mitotically active cells in a given tissue, limiting the potential for growth and
repair. Secondly their accumulation results in the release of proteases, growth factors and inflammatory
cytokines which act on non-senescent neighbouring cells. Normally, this initiates clearance of senescent
cells by the immune system. However, as the immune system ages its ability to clear senescent cells
becomes impaired [37,38]. Ultimately therefore, it is thought that the accumulation of senescent cells
as a result of telomere attrition drives the process of tissue and organismal aging. In order to test this
hypothesis, a multitude of studies have measured telomere length in vivo in relation to chronological
age [30–32,34]. Moreover, a variety of studies have investigated the relationship between telomere
length and age-related disease [39–41].

3. Telomere Homeostasis Throughout a Life-Time

As male and female gametes fuse during the process of fertilisation, telomere length must be reset
in order for the offspring to have sufficient telomeric reserve to develop and fulfil a healthy lifespan.
Following fertilisation, telomere length declines in the cleavage stage embryo in comparison to the
oocyte and declines further still at the morula stage [42] in line with a decline in telomerase activity
during this time [43]. At the blastocyst stage however, telomerase activity is markedly increased and
telomeres are lengthened [42,43]. At present, information regarding telomere dynamics in the earliest
weeks of gestation are lacking except for a few notable observations. Cheng and colleagues showed
that, between weeks six and seven of gestation, telomere length rapidly declines, however this is
slowed between weeks eight and eleven and then remains constant thereafter (that is, telomere length
in foetuses above eleven weeks’ gestation was not different to that of full term babies) [44]. This finding
is supported by others whom concluded that telomere length is not associated with gestational age in
foetuses between 15 and 19 weeks’ gestation [45] and that, although telomere length may fluctuate
between 23 and 36 weeks’ gestation, overall telomere length is either increased or no detectable change
is observed [46]. Furthermore, telomere length appears to be synchronous among different tissues
during foetal life [45] and is maintained by telomerase activity in utero [44,47,48].

At the time of birth, many have shown that telomere length is highly variable [49–52],
a finding consistent with the highly variable telomere length observed in human embryos [42] and
foetuses [45,46]. Furthermore, telomere length in newborns appears to be associated with parental
telomere lengths, though controversy exists as to the relative influence of the mother [53,54] and the
father [55,56]. Interestingly, telomere length appears to maintain synchrony between tissues at the
time of birth and telomere length appears similar between male and female babies [49,52]. This is in
contrast to observations in adults which indicate that while telomere lengths in different tissues may
be correlated, they are highly variable [57,58] and that telomere length is longer in women than in
men [40,59,60].



Cells 2019, 8, 73 5 of 19

Following birth, telomere length begins to decline within the first weeks of postnatal life and
interestingly, this pattern holds true for infants born preterm, indicating that foetal telomere length
maintenance is specific to life in utero [50,51]. Moreover, it has been shown that the rate of telomere
shortening is most pronounced in the early years of life following birth and that this rate of attrition
declines in young adulthood and reduces further still in older individuals [29–32,34]. Despite the
relatively earlier onset of telomere shortening in preterm infants in comparison to term born infants
overall telomere length does not appear to be significantly shortened at term equivalent age [49] or
in early childhood [61]. Interestingly however, a number of studies have highlighted that telomere
attrition rate in adults is most prominent in those with higher telomere length at baseline [59,62,63].

Telomere Length in Relation to Demographic and Lifestyle Factors

Evidence to support the hypothesis that telomere length is inversely correlated with chronological
age is well-documented within the literature. However, it is important to note that in many studies the
data appears to be somewhat scattered and the correlations between telomere length and chronological
age may be less well-established than previously thought. In addition, telomere length has been
shown to be highly variable among individuals of the same or similar age in all age ranges assessed.
Alongside chronological aging, available evidence (summarised in Table 2) supports the notion that a
wealth of genetic and environmental factors may modulate telomere length.

Table 2. Demographic factors affecting telomere length: An overview of current findings and references.

Demographic Factors General Observations References

Genetic factors
Several twin studies have identified high heritability
of telomere length and many specific loci associated

with telomere length have been reported.
[64–67]

Gender

Longer telomeres are found in adult females
compared to males. This is thought to be due to

higher levels of oestrogen, which confers
anti-inflammatory as well as antioxidant properties

and is known to promote telomerase expression.

[60,68–70]

Ethnicity

Telomeres are slightly longer in white individuals
compared to black and Hispanic individuals.

However, this difference is often not statistically
significant unless also adjusted for other factors such
as age, sex, socio-economic background and lifestyle

factors (diet and smoking)

[71]

Level of psychosocial stress

Shortened telomeres are associated with high levels
of psychosocial stress as a result of increased

oxidative stress as well as reduced telomerase
activity. Telomere length is also inversely correlated

with major depressive disorder due to increased
inflammatory factors leading to increased

oxidative stress.

[72–74]

Level of physical activity

Longer telomeres have been found in those that
engage in higher levels of physical activity, which is
associated with improved physical and psychological

wellbeing. Thus it is possible that the effects of
physical activity on telomere length are influenced by
a positive effect on physical and mental well-being

[75–77]
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Table 2. Cont.

Demographic Factors General Observations References

Obesity

Telomeres are known to be shortened in obese
individuals. Obesity is associated with chronic

inflammation, increased reactive oxygen species
(ROS) production in adipose tissue and evidence of

increased systemic oxidative stress. Furthermore,
telomere length is correlated with body mass index
(BMI), with increased BMI resulting in higher blood
volume, stimulating increased proliferation of blood

cells and leading to telomere shortening.
Interestingly, weight loss is positively correlated with

telomere lengthening and those with shortest
telomere length at baseline benefit from the most

pronounced rate of telomere lengthening following
weight loss. A greater adherence to a Mediterranean

diet is also associated with longer telomeres.

[78–81]

Smoking

Telomere length is shorter in smokers and
ex-smokers compared to non-smokers and negatively

associated with the amount of cigarettes smoked
per year.

[78,82]

Alcohol consumption
Telomere length is negatively correlated with the
number of alcohol units consumed per day and is
shorter in alcohol abusers compared to controls.

[83]

4. Telomere Length and Biological Aging

The high inter-individual variability of telomere length means that, although it is convincingly
associated with the finite replicative capacity of cells in vitro, its relationship with the process of
biological aging in vivo is more difficult to unpick. Aging can be defined as the gradual decline
in normal tissue and organ function over time as a consequence of an accumulation of senescent
cells and a decline in the regenerative potential of stem cells [84,85]. This decline in tissue function
can be thought of as normal ‘wear and tear’ that occurs over time and may be the sole cause or a
contributing factor to the development of age-related diseases in combination with other inducers
of cell senescence [84]. Such inducers might include endogenous factors; for example mitochondrial
dysfunction [86,87] and inflammation [88] or exogenous factors; such as cigarette smoking, high fat diet,
chemotherapy, radiation and other environmental or lifestyle factors [84,89]. These factors are strongly
linked with the production of reactive oxygen species (ROS), which are known to induce cellular
senescence and moreover [89], it is thought that the G-rich telomere repeat sequence is particularly
susceptible to oxidative damage [90]. Since telomere attrition is an initiator of cell senescence in vitro,
a variety of studies have sought to investigate the relationship between telomere shortening and
age-related diseases. These commonly occur during the process of normal aging but in rare examples,
may occur in the context of premature aging disorders.

4.1. Telomere Biology and Premature Aging Disorders

Premature aging disorders result in characteristic symptoms normally associated with old age, such as
hair greying, hair loss, neurological degeneration, loss of subcutaneous fat, skin atrophy and cancers. In all
cases, genetic mutations lead to dysfunctional proteins that are involved in DNA damage response and/or
DNA damage repair pathways, telosome structure or telomere length regulation. As a result, depending
on the affected pathway, telomere length may be shortened in these individuals or the rate of telomere
attrition may be accelerated in comparison to age matched individuals. In recent decades, a number of
studies have investigated telomere biology in relation to premature aging disorders and the key findings
from these are highlighted in Table 3. However, while these studies have provided some valuable insights
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into the role of telomere biology in the pathogenesis of age-related disease, many aspects of premature
aging disorders are not observed as part of normal aging and therefore it is difficult to apply these findings
to aging in the general population [40].

Table 3. Telomere biology in premature aging disorders: Clinical observations and aberrant telomere
observations associated with premature aging disorders.

Premature
Aging Disorder

Characteristic
Symptoms

Mutations Observed
Effects on Telomere

Structure
References

Hutchinson-Gilford
Progeria

Syndrome

Hair greying and loss,
decreased joint mobility,
loss of subcutaneous fat

and atherosclerosis

Point mutation in the LMNA gene
encoding prelamin A; a protein

involved in nuclear lamina. Mutant
LMNA induces DNA damage

response at the telomere leading to
cell senescence

Shortened telomere length [91–93]

Werner
Syndrome

Hair greying and loss,
skin atrophy, diabetes,
osteoporosis, cataracts,

arteriosclerosis
and neoplasms

Mutation in WRN gene located on
the P arm of chromosome 8, which

encodes the RecQ DNA helicase
involved in DNA replication,

recombination and repair.
Recruitment of WRN by TERF2 is

essential for resolution of the
telomeric D-loop and synthesis of

the telomeric 3′ overhang

Average telomere length is
not reduced. However, loss
of telomeres on individual

sister chromatids is observed
leading to chromosome
breakage-fusion events,

genome instability and cell
senescence. The rate of

overall telomere attrition is
also increased.

[94–98]

Bloom Syndrome

Growth retardation,
immunodeficiency,
genomic instability

cancer and
premature menopause

Mutation of BLM; another RecQ
helicase associated with TERF2 and

involved in DNA replication,
recombination and repair

Telomere length is not
reduced. However, the rate

of telomere shortening
is accelerated

[99–102]

Nijmegen
Breakage

Syndrome

Chromosomal instability
and cancers

Mutation of NSB1, which is
involved in DNA repair in

association with TERF2
Shortened telomere length [103,104]

Cockayne
Syndrome

Neurological
degeneration, hearing

loss, retinal degeneration
and loss of

subcutaneous fat

Mutation in one of five genes
including CSA, CSB, XPB, XPD and
XPG. Mutation in CSB is implicated

in the majority of cases. CSB
interacts with TERF2 as well as

TERF1 to regulate telomere
length maintenance

Shortened telomere length [105–107]

Dyskeratosis
Congenita

Abnormal skin
pigmentation, nail

dystrophy, bone marrow
failure and cancer

One of several mutations involving
telomerase (an enzyme involved in

telomere length maintenance) or
proteins that regulate telomerase. In
the X-linked recessive form, DKC1
is mutated, which associates with

TERC (the RNA component of
telomerase). In the autosomal

dominant form, TERC is commonly
involved; however TIFN2 is
mutated in some cases. In
autosomal recessive forms,

mutations in TERT (the reverse
transcriptase component of

telomerase), NOP10 and NHP2 are
the cause. NHP2 interacts with

NOP10, which in turn associates
with DKC1 in order to interact

with TERC.

Shortened telomere length.
Furthermore, shorter

telomeres are associated
with more severe

clinical phenotypes

[108–112]

Ataxia
telangiectasia

Neurological
deterioration,

chromosomal instability
and predisposition to

cancer

Mutations in ATM, which is located
on the q arm of chromosome 11 and
is involved in cell cycle progression

and DNA repair pathways

Accelerated telomere
shortening and chromosome

fusion events
[113,114]
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Table 3. Cont.

Premature
Aging Disorder

Characteristic
Symptoms

Mutations Observed
Effects on Telomere

Structure
References

Down’s
Syndrome

Accelerated aging
characteristics such as

premature skin
wrinkling, greying hair,

hypogonadism,
hypothyroidism, early

menopause and
declining immune

function. In addition
overexpression of
amyloid precursor
protein (APP) on

chromosome 21 leads to
Alzheimer’s Disease

Trisomy chromosome 21 Shortened telomere length [115–117]

4.2. Telomere Length in Age-Related Cardiometabolic and Neurological Disorders

Several studies have shown that shortened telomeres are associated with cardiovascular
disease [118–120], including atherosclerosis [121–123], hypertension [124], vascular dementia [125]
and coronary heart disease [126]. Moreover, in many cases telomere length has been identified as an
indicator of the severity of such conditions [60,127] and has been associated with risk of stroke, heart
attack and mortality [127,128]. However, methodological issues, particularly in relation to adjustment
for important confounders (e.g., age, gender and ethnicity) mean than drawing robust conclusions
from the data is difficult. Furthermore, others have noted that while telomere length itself may not be
a risk factor for mortality associated with cardiovascular disease, the rate of telomere attrition is [129].

Type II diabetes is another disease that is recognised as part of the aging phenotype and is one of
the most common chronic diseases in the world. Again, this disease shows conflicting results across
different studies that have assessed its relationship with telomere length. Initial studies showed that
short telomeres are associated with type II diabetes [130,131]; however in prospective studies this
association was not always replicated. While some analyses demonstrate shortened telomere length as
a risk for type II diabetes, others report no such link [132,133]. A recent meta-analysis argued that this
conflicting information may be due to small sample sizes in previous studies and therefore the authors
pooled data from a large number of studies, concluding that shortened telomeres are associated with
type II diabetes [134]. The authors point out however, that the strength of association in sub-group
analysis was influenced by age and that other studies identify additional influencers of telomere length
such as gender and ethnicity. Information on these factors was insufficient for such analysis in their
own study and therefore further research is warranted [134].

Similar conclusions can be drawn from studies that have investigated telomere length in
Alzheimer’s disease patients and in those suffering with dementia. Several studies show that
affected individuals possess shortened leukocyte telomere lengths in comparison to age matched
controls [135–139], however the data that associates severity of disease with telomere length is less
clear-cut. While some show that telomere lengths of dementia and Alzheimer’s disease patients are
correlated with disease status [136,138,139] others have not [140–142].

In addition, studies that have investigated telomere length in Parkinson’s disease patients show
similar results. Although telomere length has been shown to be reduced compared to controls in one
study [143], this was not observed in another [144]. Furthermore, a third study found that individuals
with shortest telomere lengths were three fold less likely to develop Parkinson’s disease [145]. That
being said, it has been noted that the range of telomere lengths is altered in Parkinson’s disease
patients, with lengths of less than 5kb only observed in patients and not controls. Furthermore, in older
individuals (above 60 years old), the percentage of short telomeres increased over time in comparison
to controls [144].
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4.3. Telomeres, Tumorigenesis and Cancer

Cancer, which is defined as the uncontrolled growth of abnormal cells, is the leading cause of
death worldwide [146] with advancing age being the most significant risk factor [147]. Cancer cells
are typically characterised by chaotic genome instability and immortality as a result of an acquired
means to circumvent normal replicative barriers. Therefore, the finite replicative capacity of the cell
is vital in the prevention of cancer and in this sense, telomere function may also be extended to the
protection against cancer. Once telomere degradation has reached a critical level, the cell is committed
to pathways that ultimately result in senescence or apoptosis and thus telomeres protect the integrity
of the genome. However in the event that this mechanism should fail, tumorigenesis ensues [148].

Tumorigenesis is considered to be a three-step process, in which cancer cells evolve the ability
to overcome committal to senescence. First, are the loss of telomeric repeat sequences and/or the
loss of the telosome structure, which may occur independently of or as a result of the former [149].
Second is the inappropriate action of non-homologous end joining (NHEJ) or homology direction
repair (HDR) machinery, which may recognise uncapped telomeres as DNA breaks. Such action results
in the fusion of chromosomes at their ends, generating dicentric chromosomes which are subsequently
pulled apart during cell division, creating further breakages. This breakage-bridge-fusion cycle
continues during successive cell divisions resulting in duplication of whole chromosomes, aneuploidy,
gene amplifications, translocations, inversions and deletions [150]. Such complex chromosome
rearrangements add further oncogenic potential via deregulation of oncogenes or altered gene
dosage [151–153]. This second stage, known as the crisis stage, drives malignant transformation
via the ability to evade apoptosis mechanisms [154]. Furthermore, as more successive divisions occur,
telomeres shorten further, encouraging more chromosomes to enter breakage-fusion-bridge cycles and
an accumulation of genomic instability [150]. Finally, these malignant cells must acquire immortality
in order to continue cell division unchecked. In 90% of cancers, this is achieved via the expression
of telomerase, which is inactive in normal somatic cells and acts to maintain telomere length in a
shortened state [155]. Less commonly, this maintenance is achieved via ALT [156].

With the above in mind, it is widely believed that shortened telomeres are both a protector (when
recognised via the appropriate mechanisms) and an initiator (when not recognised) of tumorigenesis.
In recent decades, it has also been increasingly recognised that a single short telomere may be sufficient
to initiate tumorigenesis and that telomerase action may be tightly controlled, such that it may
selectively act upon only the shortest telomeres. This in turn leads to the maintenance of a shortened
state, synchronous with other chromosomes within the population of cells rather than elongation
beyond the length of other chromosomes. Therefore, in many (but not all) tumours, overall telomere
length may be unchanged or remain shortened in comparison to normal neighbouring cells [157–159].

Given the association between shortened, dysfunctional telomeres and tumorigenesis it is
unsurprising that many researchers have investigated the relationship between telomere length and
a variety of specific cancers. In similarity to its relationship with chronological age, the relationship
between telomere length and cancer is equally difficult to draw robust conclusions from. The
majority of studies report shortened telomere length and some have additionally found that the
degree of malignancy and prognosis were also associated with telomere length [160,161]. However
this appears to be specific to certain types of cancer. In meta-analyses, telomere length was shown
to be shortened in bladder, oesophageal, gastric, head and neck, ovarian and renal cancers [160].
Short telomeres and telomerase mutations are also associated with hepatocarcinoma [162,163].
However, no association with telomere length was observed in endometrial, prostate and skin cancer.
Furthermore, an assessment of the association between telomere length in non-Hodgkin’s lymphoma,
breast, lung and colorectal cancer proved inconclusive [160]. Moreover, a recent systematic analysis of
telomere length in 31 cancers showed that while overall, telomere length was shortened in tumour
compared to normal tissues, many tumour types showed telomere elongation in a proportion of
samples assessed. In three tumour types (testicular germ cell carcinoma, lower grade glioma and
sarcoma), over 50% of samples showed telomere elongation [164]. Similarly, contradictory results are
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available from a variety of studies that have associated telomere length with the risk of developing
cancer. While some studies report that longer telomeres are associated with an increased risk of
developing cancer [165–167], others argue that shortened telomeres increase cancer risk [160,168,169].
These discrepancies may at least in part, be down to differences in study design. Prospective studies
assess telomere length prior to diagnosis and therefore prior to the crisis stage of tumorigenesis when
telomeres are longer and inhibit the protective effects of senescence whereas retrospective studies
assess telomere length after cancer diagnosis and therefore after the crisis stage of tumorigenesis when
telomeres are shorter and genomic instability ensues [165,170].

5. Conclusions and Perspectives

Since their discovery in 1939, our knowledge of telomere biology has continued to advance in
leaps and bounds. Available data suggest that telomere attrition is associated with cellular senescence,
the process of aging and the pathogenesis of many diseases. However, whilst these findings are both
interesting and invaluable areas of uncertainty remain. Firstly, it must be recognised that association
does not imply causality and the observational nature of telomere studies precludes any causal
inferences. Secondly, whether shortening of telomeres observed is cause, effect or both is not well
established. In addition, high inter-individual variability in telomere length suggests that many other
factors besides chronological age may act as influencers (Table 2). Furthermore, many other factors
in addition to telomere shortening may contribute to the process of aging at the cellular, organ and
organismal level. For example genetic, epigenetic, environmental and lifestyle factors [171,172] have
been implicated in addition to mechanisms that regulate protein homeostasis, nutrient sensing [173]
and mitochondrial function [173,174].

It is important to recognise that telomere length is a difficult parameter to measure and therefore
technical factors in any study design may also impose significant problems in the interpretation of
study results. For example, sample storage conditions and the methodology used to extract DNA and
measure telomere length [175–177] may have an effect on the results obtained. In the context of studies
that have assessed telomere length in relation to the onset of disease, the origin of the sample (e.g., the
cell type and whether the sample is specific to the affected tissue or a surrogate sample) [160], the type
of controls used (paired samples with normal controls from the same individual or unpaired samples
with controls from healthy donors) the timing of the sample (prior to or subsequent to the onset of
disease) and the administration of any treatment [165] may have additional effects. In the future
therefore, research efforts should employ carefully designed, robust and reproducible methodologies
in order to further our understanding of how the complex mechanisms that orchestrate the relationship
between telomere biology and the process of aging and disease are interwoven.
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