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Abstract: In this paper, we investigate the effect of pulse-to-pulse fluctuations of 
supercontinuum sources on the noise in spectral domain optical coherence tomography (OCT) 
images. The commonly quoted theoretical expression for the OCT noise is derived for a thermal 
light source, which is not suitable if a supercontinuum light source is used. We therefore 
propose a new, measurement-based OCT noise model that predicts the noise without any 
assumptions on the type of light source. We show that the predicted noise values are in excellent 
agreement with the measured values. The spectral correlation evaluated for the photodetected 
signal when using a supercontinuum determines the shape of the OCT noise floor, which must 
be taken into account when characterizing the sensitivity roll-off of a supercontinuum-based 
OCT system. The spectral correlations using both conventional supercontinuum sources and 
low-noise all-normal dispersion supercontinuum sources are investigated, and the fundamental 
physical effects that cause these correlations are discussed. 

 

1. Introduction 

Optical coherence tomography (OCT) is a non-invasive imaging technique that relies on white 
light interferometry to create volumetric images of an investigated sample, which is often 
biological [1]. The spectral characteristics of the employed light source are central in designing 
the OCT system, whose axial resolution is inversely proportional to the optical bandwidth of 
the employed source and directly proportional to the central wavelength squared, and in 
addition, the optical properties of the sample depend on the central wavelength too. For these 
reasons exactly, supercontinuum sources are increasingly applied in OCT due to their octave-
spanning, high-power spectra covering the visible and near-infrared spectral regions, which 
allow great freedom in tunability by filtering, both in terms of bandwidth and central 
wavelength [2–5]. However, most commercially available supercontinuum sources generate 
broadband light by non-linear amplification of quantum noise as well as strongly phase and 
amplitude dependent non-linear interactions between optical solitons. Consequently, the 
supercontinuum sources are inherently noisy [6–8], as opposed to other common OCT sources, 
e.g., super-luminescent diodes (SLDs). This often forces researchers and clinicians to 
compromise between ultra-high resolution and shot noise limited imaging. In order to optimize 
this compromise, both the resolution and the noise should be correctly assessed. The expected 
resolution is easily predicted using the bandwidth and central wavelength values of the source 
used, but the noise properties are more complex to quantify. The noise contribution is often 
split into four terms: read-out noise, dark noise, shot noise, and excess photon noise [9]. While 
there is a vast amount of literature on noise, most theoretical descriptions implicitly assume 
that the light source is thermal or pseudo-thermal [10–12], in which case the excess photon 
noise is evaluated based on a Bose-Einstein distribution for the photon counting distribution. 
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For supercontinuum sources, this assumption is questionable at best, but for SLDs, which are 
very common in OCT, the expression can be corrected by introducing an empirical noise 
suppression factor, f, which takes into account the amplified spontaneous emission, to reduce 
the excess noise term: 購勅掴┸聴挑帖態 噺 購勅掴┸鎚椎墜津態 【血, where 購勅掴┸聴挑帖態  and  購勅掴┸鎚椎墜津態  are the excess photon 
noise terms for an SLD and for a spontaneous source, respectively [13]. Supercontinuum 
sources generate the broadband spectrum in a fundamentally different way than in SLDs or 
thermal light sources, and a correct expression for the excess photon noise can therefore not be 
created by another modification of the known formula. 

      In this work, we derive a general expression for the excess noise based on the measured 
noise and demonstrate that this predicts the experimental OCT noise figures better than the old 
model. We further show that the OCT noise floor is not flat along depth and that its shape is 
determined by the spectral coherence between different wavelength components of a single 
pulse of the supercontinuum. Both conventional, soliton-based supercontinuum and an all-
normal dispersion (ANDi) supercontinuum sources are investigated. Finally, we discuss the 
sensitivity roll-off of spectral domain (SD)-OCT using a supercontinuum source and how this 
is affected by noise. 

2. Theory of noise in optical coherence tomography 

In SD-OCT, the broadband light is sent to a Michelson interferometer with the two arms 
denoted as a reference arm and a sample arm as shown in Fig. 1.  

 

Fig. 1. Sketch of an SD-OCT system. FC is a 50/50 fiber coupler, and NDF is a variable neutral 
density filter. 

A mirror is placed in the reference arm, and the sample is placed in the sample arm. The 
returning light from the two arms is collected in the output arm of the interferometer, where it 
is detected by a spectrometer. We will therefore treat the noise at the spectrometer level, 
measured as the variance of counts in a single pixel. The total noise, 購痛墜痛態 , is: 時嗣伺嗣匝 噺 時司袋纂匝 髪 時史酸伺嗣匝 髪 時蚕姉匝 ┸ (1) 
where 購追袋鳥態  is the combined read-out and dark noise of the camera including digitization errors, 購鎚朕墜痛態 岷件峅 噺 考盤鶏追勅捗岷件峅 髪 鶏鎚銚陳岷件峅匪酵沈【岫屋降岷件峅岫つ結岻態岻  is the shot noise, and 購勅掴態 岷件峅 噺 岫購牒岷件峅考酵沈【岫屋降岷件峅つ結岻岻態  is the excess photon noise. In these expressions, さ is the combined quantum 
efficiency of the grating based spectrometer and of the detector array, ki is the integration time 
of the spectrometer, Pref/sam[i] is the power returned from the reference and sample arm, 
respectively, with incidence on pixel i, │ is the reduced Plank constant, の[i] is the angular 
frequency of the light incident on pixel i, and つ結  is the dimensionless gain factor of the 
spectrometer converting photo-electrons into counts at the spectrometer output. jP[i] is the root 
mean square (RMS) error of the power incident on pixel i. The combined read-out and dark 
noise component represents electronic noise independent of the optical power. The shot noise 
is the variation of detected power due to the quantization of photons and is thus also present in 
the absence of any power fluctuations. Finally, the excess photon noise term describes the actual 



variations of the incident power. The power fluctuations can be measured experimentally and 
are typically specified in a normalized fashion as the relative intensity noise (RIN), 三薩錆岷餐峅 噺 時皿岷餐峅侍皿岷餐峅 噺   時皿岷餐峅皿司蚕讃岷餐峅袋皿史珊仕岷餐峅 ┸  (2) 

where 航牒岷件峅 is the mean power at pixel i. Inserting 購牒 in 購勅掴, gives 時蚕姉匝 岷餐峅 噺 磐三薩錆岷餐峅盤皿司蚕讃岷餐峅袋皿史珊仕岷餐峅匪雌滋餐屋磁岷餐峅綻勅 卑匝┸ (3) 

The measured noise includes all three noise terms in Eq. (1), so in order to maximize the 
excess photon noise contribution to the overall noise, measurements need to be done at high 
power levels where the excess photon noise dominates due to its square dependence on optical 
power. Introducing 軽頂 噺 盤鶏追勅捗岷件峅 髪 鶏鎚銚陳岷件峅匪考酵沈【岫屋降岷件峅つ結岻 as the expected number of counts 
within an integration time simplifies the expressions for the shot noise and excess photon noise, 
which now read, 購鎚朕墜痛態 岷件峅 噺 軽頂【つ結┸  and 購勅掴態 岷件峅 噺 迎荊軽岷件峅態軽頂態 , respectively. The RIN is 
typically measured with a narrowband filter placed before a fast photodiode connected to an 
oscilloscope [14,15], but it can just as well be done using a spectrometer, by recording several 
spectra. When measuring the RIN, care must be taken regarding the hardware for two separate 
reasons: Firstly, the bandwidth in which 航牒 and 購牒 are measured affects the result in general 
and in particular for the supercontinuum source because of its non-trivial spectral composition. 
A wider bandwidth, be it filter bandwidth or spectral resolution of a spectrometer, will, due to 
averaging effects within the bandwidth, decrease the measured RIN, because spectral 
components separated by more than 0.1 to 1 nm are uncorrelated for a conventional 
supercontinuum [16]. The decrease of the RIN with increasing bandwidth is expected to be 
linear according to the photocounting statistics applied to a thermal source. However, 
experiments for a supercontinuum show a highly non-linear dependence, and a 3 dB increase 
has been reported when decreasing the bandwidth from 8 nm to 1 nm [16]. The effect of this 
correlation of spectral components, or lack thereof, on the OCT noise will be treated in a later 
section. Secondly, averaging M pulses in a single read-out decreases the measured RIN, again 
due to averaging effects, which is why high repetition rate supercontinuum sources show great 
promise for OCT imaging [17]. Far from the edges of the supercontinuum spectrum, the RIN 
is well approximated by Gaussian statistics [15,18], and the observed variance will therefore 
decrease linearly with M. Therefore, the exact effect of supercontinuum excess noise in SD-
OCT must be evaluated using the pixel bandwidth and M, the number of pulses per integration 
time of the spectrometer employed. This can be achieved by measuring with the intended 
hardware or by estimation from RIN measurements performed with different equipment. The 
excess noise is thus 購勅掴態 岷件峅 噺 迎荊軽暢岷件峅態軽頂岷件峅態 噺 迎荊軽怠岷件峅態軽頂岷件峅態【血追勅椎酵沈, (4) 

with 警 噺 血追勅椎酵沈, where 血追勅椎 is the repetition rate of the supercontinuum. This formally states 
what is generally accepted by the scientific community [2,3,17,19]: that the SC excess noise is 
reduced by increasing either the repetition rate or the integration time.  

We now compare the expression given by the measurement-based model with that of the 
old model. The excess noise contribution from continuous wave thermal or pseudothermal 
sources reads, for 酵頂 企 酵沈 [10]: 購岷件峅勅掴┸鎚椎墜津態 噺 軽頂岷件峅態酵頂【酵沈 ┸          (5) 

where 酵頂 噺 な【つ荒 噺 膏岷件峅態【岫潔絞膏岻 is the coherence time of the light that is incident on a 
single pixel assuming a top-hat spectral shape at each pixel [20]. c is the speed of light in 
vacuum, and hそ is the bandwidth intercepted by a single pixel on the camera. This increase of 
the coherence time from the fs regime in the total supercontinuum to the ps regime on a single 
pixel is due to the intrinsic delay caused by the diffraction grating [21]. Disregarding the fact 
that the assumption of thermal light does not hold for supercontinuum sources, we apply the 
formula to supercontinua and compare it to our measurement-based model in Eq. (4) in order 



to estimate the error. The pulsed nature of supercontinua requires the duty cycle to be taken 
into account [22], such that the expression reads: 購勅掴┸鎚椎墜津態 噺 軽頂岷件峅態酵頂【岫酵沈血追勅椎酵椎岻, (6) 
where kp is the pulse length. Comparing this to 購勅掴態 岷件峅 in Eq. (4), reveals that the old model 
predicts 迎荊軽怠岷件峅態 噺 酵頂【酵椎. 

3. Results and discussion 

In order to validate the measurement-based noise model and compare it to the old noise model, an SD-
OCT system with the sample arm blocked is used to obtain a series of 1024 spectra at 33 different power 
levels, which were manually adjusted with a variable neutral density filter. The blocked sample arm 
imitates the case when the sample arm reflectivity is much less than that in the reference arm, which is the 
case when imaging biological samples. The supercontinuum employed is a SuperK Extreme EXR-9 
(NKT Photonics A/S, Birkerød, Denmark) operating at a 320 MHz repetition rate. The supercontinuum 
is spectrally filtered to the range 1000 nm to 1750 nm to remove unwanted spectral components by 
applying a high- and a low-pass filter. The fiber coupler is TW1300R5A2 from Thorlabs, Inc. (USA), 
and the spectrometer is C-1070-1470-GL2KL (Wasatch Photonics, USA), which has 2048 pixels in the 
range 1070 nm to 1470 nm, giving an approximate pixel bandwidth of 0.2 nm. The spectrometer has a 
gain factor of  〉e = 270 electrons/count, specified by the manufacturer. 

3.1 Evaluating the excess noise 

The average spectra for selected power levels are shown in Fig. 2(a), and the noise across the spectra is 
clearly visible.  Fig. 2(b) shows the RIN calculated as in Eq. (2) for each pixel in the 
spectrometer and smoothened with a moving average window across 12.8 nm (64 pixels). This 
is compared to the RIN predicted by the old model, 岫酵頂【酵椎岻怠【態┸ with 0.2 nm pixel bandwidth 
and kp = 28 ps estimated roughly from a simulation of the SuperK EXR-9 obtained by solving 
the generalized non-linear Schrödinger equation [6]. 

Fig. 2. (a) Mean spectra averaged over 1024 read-outs for selected power levels, (b) RIN 
calculated according to Eq. (2) using the series of spectra with the highest intensity in (a) and 岫酵頂【酵椎岻怠【態   from Eq. (6). (c)-(e) show the variance in counts versus the mean counts at 1200 
nm, 1300 nm, and 1420 nm, respectively, within the spectral colored bands in (a) and (b). 

 
The spectrometer is operated at an integration time ki = 9.1 µs, giving 警 噺 ひ┻な づs 抜ぬにど MHz 噺 にひにね detected pulses per read-out. RINM on the right y-axis are the measured 
values, and converted to the detector-independent RIN1 on the left axis by multiplication 
with ヂ警. The prediction of the old model is on average 98 % higher in the detected spectral 
region than the measured RIN. This gives a 6 dB difference in sensitivity assuming excess noise 



dominated imaging, which is not as bad as one might expect. Additionally, the slopes of the 
two RIN curves are very similar, posing the question whether in fact the old model is somehow 
valid for supercontinuum sources? The answer to this, we believe, is no. The RIN of the old 
model, 岫酵頂【酵椎岻怠【態┸ will continue to decrease linearly with wavelength due to the そ2 dependence 
of kc, whereas the supercontinuum RIN has a minimum at the pump wavelength (1064 nm in 
this case), and increases towards both sides of the spectrum [7,15]. Thus, at e.g. 800 nm, the 
measured RIN increases with decreasing wavelength, as opposed to the old model that predicts 
a decrease. The similarity observed here is thus attributed to chance. Figures 2(c)-(e) show the 
variance of counts versus the mean counts, at 1200 nm, 1300 nm, and 1420 nm respectively 
calculated for each pixel and averaged in 12.8 nm bands. The average is performed to achieve 
a better estimate for each point than is possible using a single pixel. The individual noise 
contributions are shown in dashed lines, with 購追袋鳥態 噺 ぱ┻な (fitted value) and 購鎚朕墜痛態 噺 軽頂【にばど. 
For the excess noise, the measurement-based prediction, 購勅掴態 岷件峅 噺 迎荊軽暢岷件峅態軽頂態, is the black 
dashed line with the RIN values taken from solid line within the colored bands in Fig 2(b). The 
prediction of the old model, dashed in Fig. 2(b), is shown as the grey dash-dotted lines in Figs. 
2(c)-(e), and we observe a clear deviation between the measured noise and the prediction of the 
old model. The total theoretical noise from the measurement-based model is plotted as the solid, 
red line, and we can immediately evaluate the accuracy of the excess noise predicted via the 
measured RIN.  Furthermore, we notice that the shot noise surpasses the read-out and dark 
noise at ~2000 counts, which means that even in the total absence of excess noise, the system 
would be limited by the read-out and dark noise when the reference signal alone reaches 50 % 
of the dynamic range (max. 4096 counts). The high read-out and dark noise is inherent to the 
InGaAs CCD detectors that are required for detecting in the 1300 nm region. In this case, the 
electronic noise is measured to be ヂぱ┻な 蛤 に┻ぱの counts RMS. Even 14 years ago, silicon CCDs 
were shown to exhibit electronic noise of ~0.55 counts RMS allowing wider dynamic range for 
shot noise limited detection than modern InGaAs CCD detectors  [23]. 

3.2 Spectral correlations and the OCT noise floor 

Up until now, we have only considered the noise in k-space, but ultimately we are interested in 
the noise in the A-scan, i.e., in the z-domain. If we were dealing with white (uncorrelated) noise, 
the noise floor in the z-domain would be flat, and the specific level could be inferred directly 
by the variance in k-space, but unfortunately, supercontinuum excess noise is by no means 
white [3,17,19]. As discussed previously, the output of commercial supercontinuum sources 
consists of a sea of hundreds of individual solitons, which all make up the broadband spectrum. 
The solitons are very short in time and correspondingly wide in wavelength. Close to the pump, 
the pulse-to-pulse fluctuations arise due to the fact that the phase and central wavelength vary 
from soliton to soliton. As a result, several spectrally overlapping solitons will interfere, 
creating a chaotic spectrum with a seemingly random distribution of many narrowband peaks. 
Therefore, one pulse may have light at a certain wavelength while the next one may not. 
Integrating over enough pulses washes out these fluctuations, and the result is the flat and 
smooth spectrum often associated with supercontinua. If the supercontinuum is detected with a 
fast spectrometer, however, the noise becomes visible, as is the case in OCT.  When the 
bandwidth of the light incident on a single pixel on the spectrometer is smaller than the 
bandwidth of the peaks created by soliton interference, the values of neighboring pixels become 
correlated, and the noise will then also be correlated. Computing and averaging an ensemble of 
autocorrelation functions for each acquired spectrum, IR,norm, after standard OCT processing 
(background subtraction, normalization, and linearization), reveals any fixed patterns in the 
correlations. Such an average of autocorrelations, 迎岫弘倦岻 噺 完 荊眺┸津墜追陳岫倦 髪 〉倦岻荊眺┸津墜追陳岫倦岻d倦∞貸∞ , 
for 500 spectra is shown in Fig. 3(a). 



  

Fig. 3. Autocorrelations and noise floors for a conventional supercontinuum (a)-(b) and an ANDi 
supercontinuum (c)-(d). (a) Averaged autocorrelation for 500 OCT-processed spectra, and (b) 
averaged OCT noise floor (red) and the inverse Fourier transform of the autocorrelation in (a) 
(blue).   糾  博博博博 denotes the ensemble average. 

The narrow central part of the peak shown in the inset (marked by (1)) is caused by soliton 
interference, and its measured full-width at half-maximum of 3.8 pixels corresponds to an 
average soliton interference width between 0.5 and 0.6 nm at 1300 nm, well within the range 
of 0.1 to 1 nm coherence wavelength as suggested by Corwin et al. [16]. Figure 3(b) shows the 
OCT noise floor (average of 500 A-scans with blocked sample arm) in dashed red (bottom-
most). The solid blue (top-most) curve shows the square root of the Fourier transform of the 
averaged autocorrelation of the same 500 spectra, and we see a good agreement, only a factor 
of ~0.5 dB apart. Such an agreement is expected due to the Wiener-Khinchin theorem, which 
states that the autocorrelation function and the power spectral density (PSD) are linked through 
a Fourier transform [24]. Despite the name, the term PSD is not related to the spectral domain 
in general, this is only the case for temporal signals. The Wiener-Khinchin theorem holds 
between any two domains linked by a Fourier transform, and in OCT, the signal is detected in 
k-space, and the Wiener-Khinchin theorem thus links the autocorrelation in k-space with the 
PSD in the z-domain. The PSD in this case being the absolute square of the Fourier transform 
of IR,norm, we expect to see perfect agreement between the two curves in Fig. 3(b), and that 
would indeed be the case if we were looking at a single spectrum. However, here we are dealing 
with averages of ensembles, and the 0.5 dB offset arises because the solid blue curve (top most 
curve) is the average of the autocorrelations, which is inherently proportional to the power 



spectrum amplitude squared, whereas the dashed red curve is averaged over just the amplitude. 
Assuming Gaussian noise in k-space, both the real and imaginary part of the Fourier transform 
will also be Gaussian with variance 購態岫権岻, where the z-dependence is due to the spectral 
correlations. The amplitude of the Fourier transform adheres to a Rayleigh distribution with 
mean 航眺岫権岻 噺 購岫権岻 抜 紐講【に [10]. The amplitude squared obeys a ぬ2 distribution with k = 2 
degrees of freedom (a degree for each of the real and imaginary part), and the square root of 
the mean is 岫航鼎岫権岻岻怠【態 噺 購岫権岻 抜 ヂに┻ This difference in probability distributions at the point of 

averaging gives rise to a factor of 航鼎怠【態【航眺 噺 紐ね【講 噺 ど┻のにの  dB between the two curves. 
Figures 3(c) and 3(d) show the same as Figs. 3(a) and 3(b), but for an ANDi supercontinuum 
generated by pumping a commercially available fiber with 165 fs pulses, see [25] for details. 
As the name suggests, the fibers used to generate ANDi supercontinua exhibit normal 
dispersion over the relevant wavelength range. This prohibits modulation instability and the 
formation of solitons, which are central to the generation of conventional supercontinua, and 
the generated supercontinuum consequently exhibits fundamentally different noise 
characteristics [26,27]. The extreme spectral broadening is caused by self-phase modulation 
and optical wave breaking, which are both coherent processes [26,28]. In the absence of 
solitons, the spectral components are correlated over a larger 〉k, as seen by the peak in Fig. 
3(c), marked by (2), which is significantly wider than the corresponding peak (1) in Fig. 3(a). 
These correlations contain the excess noise at optical path difference (OPD) < 200µm, leaving 
the noise floor at the remaining axial positions flat and low, seemingly shot noise dominated. 
The ripples observed in Fig. 3(c) are due to self-phase modulation, which creates fringes in the 
spectrum. Optical wave breaking subsequently washes out the fringes partially, and the ripples 
in Fig. 3(c) are the remnants of the self-phase modulation fringes. The ripples cause peak (2) 
in Fig. 3(d) to shift slightly away from OPD = 0, as it can be noticed from the inset in Fig. 3(d). 
This coherent noise stems from fluctuations in the pump. A varying pump peak power cause 
the self-phase modulation fringes to vary in both period and spectral extent, giving rise to 
spectrally coherent noise. For long pulses and/or long fiber lengths uncorrelated noise is also 
present because modulation instability is initiated in the orthogonal polarization (PMI) and the 
excellent coherence properties of the supercontinuum are lost. The limiting pulse and fiber 
lengths depend on both the birefringence of the ANDi fiber and the pulse peak power [29]. The 
165 fs, 40 kW peak power, and 0.5 m fiber length used here suggests that we are at least partially 
in the PMI regime. The PMI noise is present across the entire axial range, and is thus difficult 
to distinguish from shot noise. Filtering away the coherent noise contribution at shallow OPD 
for each A-scan individually and returning via a Fourier transform to k-space, we obtain a 
variance of ~30 counts squared per pixel, while the shot noise limited variance is expected to 
be Nc/〉e = 2000/270 = 7.4. The observed variance, and thus also the A-scan noise floor, is four 
times higher than the shot noise limit, allowing us to conclude that the PMI noise rather than 
the shot noise determines the noise floor amplitude at OPD > 200 microns. The flat parts in 
Figs. 3(a) and 3(c) are due to the window applied (shown in Fig. (3(e)) to isolate the part of the 
ANDi spectrum that is useful for OCT. The window is also applied to the spectra from the 
conventional supercontinuum to ensure a fair comparison. 

3.3 Assessing the sensitivity of supercontinuum-based OCT systems 

Finally, the depth-dependent sensitivity of supercontinuum-based SD-OCT systems must be 
discussed. In OCT, the sensitivity is defined as the minimum sample reflectivity, which gives 
a signal-to-noise ratio (SNR) of 1 [9], and the sensitivity roll-off characterizes the signal 
degradation with the axial coordinate due to both finite pixel size and spectral resolution in the  



Fig. 4. Sensitivity of a supercontinuum-based SD-OCT system. Mean A-scan of a sample mirror 
at 11 different axial positions on the left axis, and the SNR on the right, for (a) a conventional 
supercontinuum, and (b) an ANDi supercontinuum. 

spectrometer [30]. The shape of the noise floor is typically not included in the roll-off because 
most OCT systems employing non-supercontinuum sources are shot noise limited, and thus 
exhibit white noise characteristics [9,19,31]. The sensitivity figure for a given system is then 
evaluated at a shallow axial coordinate value, where the signal, and thereby also the sensitivity, 
is larger. However, for a supercontinuum-based SD-OCT, the noise floor decreases with axial 
position, and this impacts both the sensitivity figure and the roll-off. To illustrate this point, 
Fig. 4 shows the mean amplitude on the left axis calculated for 500 A-scans for each mirror 
position at 11 different axial positions in the sample arm as well as the SNR on the right axis. 
In Fig. 4(a), a conventional supercontinuum is used, and in (b) an ANDi supercontinuum. For 
the conventional supercontinuum in Fig. 4(a), we notice a signal roll-off of 6.4 dB from 200 
µm to 1200 µm, characteristic to SD-OCT, but the decrease of the noise floor is larger at 9 dB, 
yielding a SNR increase along the axial coordinate. For the ANDi supercontinuum, however, 
the SNR decreases with depth, after reaching a maximum at ~400µm OPD. The sensitivity 
figure for the system should thus not by default be the sensitivity at shallow depth, but rather 
the maximum sensitivity over the entire range. 

 

4. Conclusion 

In conclusion, we have developed an assumption-free model for the excess noise of a 
supercontinuum source based on the measured amplitude fluctuations and shown that it predicts 
the measured noise extremely well. The excess noise can be reduced by increasing either the 
integration time of the spectrometer or the pulse repetition rate of the supercontinuum, but even 
without excess noise, truly shot noise limited performance may be difficult to achieve at 1300 
nm due to the high electronic noise of InGaAs CCDs. This forces using a higher optical power, 
to exceed the readout noise, to a value where the excess photon noise exceeds the shot noise. 
The spectral correlations of the supercontinuum determine the shape of the noise floor, which 
is not flat versus OPD. A commercially available conventional supercontinuum source, as well 
as an in-house built ANDi supercontinuum source, were used to investigate different types of 
correlations and their effect on the noise floor. The conventional supercontinuum is spectrally 
correlated over only sub-nm wavelength differences due to interference of hundreds of optical 
solitons, which gives a relatively high but decreasing noise floor in the A-scan. The ANDi 
supercontinuum, however, is correlated across several nm due to the inherent coherence of self-
phase modulation and optical wave breaking, which contains the RIN noise of the ANDi 
supercontinuum at axial positions close to 0 OPD in the A-scan, thus leaving the remaining 
axial positions limited by the incoherent noise from polarization modulation instability, whose 
impact depends on pump and fiber parameters. The shape of the noise floor must therefore be 



taken into account when characterizing the sensitivity and roll-off of a supercontinuum-based 
SD-OCT system.  
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