
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Zheng, Yudi and Kell, Stephen and Bulej, Lubomir and Sun, Haiyang and Binder, Walter (2016)
Comprehensive Multiplatform Dynamic Program Analysis for Java and Android. IEEE Software,
33 (4). pp. 55-63. ISSN 0740-7459.

DOI

https://doi.org/10.1109/MS.2015.151

Link to record in KAR

https://kar.kent.ac.uk/72033/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189723403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Comprehensive Multi-platform Dynamic

Program Analysis for Java and Android

Yudi Zheng1, Stephen Kell2, Lubomı́r Bulej1, Haiyang Sun1 and

Walter Binder1

1Università della Svizzera italiana (USI), Faculty of Informatics, Switzerland
{yudi.zheng, lubomir.bulej, haiyang.sun, walter.binder}@usi.ch

2University of Cambridge, Computer Laboratory, United Kingdom
stephen.kell@cl.cam.ac.uk

Abstract

Dynamic program analyses, such as profiling, tracing and bug-finding
tools, are essential for software engineering. Unfortunately, implementing
dynamic analyses for managed languages such as Java is unduly difficult
and error-prone, because the runtime environments provide only complex
low-level mechanisms. Currently, programmers writing custom tooling
must expend great effort in tool development and maintenance, while
still suffering substantial limitations such as incomplete code coverage
or lack of portability. Ideally, a framework would be available in which
dynamic analysis tools could be expressed at a high level, robustly, with
high coverage and supporting alternative runtimes such as Android. We
describe our research on an “all-in-one” dynamic program analysis frame-
work which uses a combination of techniques to satisfy these requirements.

Keywords: Dynamic program analysis, Java, Android

1 Introduction

Have you ever wanted to climb inside your program to see it executing? Modern,
managed platforms such as the Java Virtual Machine (JVM) expose a variety
of low-level interfaces for instrumenting and profiling code, but obtaining high-
level insight remains frustratingly difficult.

Developers of large, complex systems have a continual need to optimize, test,
debug and comprehend their systems’ behavior. For example, when investigat-
ing performance, we might want to count objects allocated by allocation site
(allocation profiling), log entry and exit to certain methods (method tracing),
count caller–callee invocation frequencies (call-graph edge profiling), flag lines
of code as covered or not (code coverage), and so on. These are all dynamic
program analyses, offered by various off-the-shelf tools. Since complex programs

1

vary in what methods are of interest, how allocation sites should be grouped
together, how much context sensitivity is appropriate, and so on, programmers
often require more tailored analyses. Therefore programmers nevertheless fre-
quently customize their tooling, by grappling with the VM’s low-level interfaces.

The basic such interface offered by a JVM is bytecode instrumentation. Us-
ing an API called JVMTI [1] and a bytecode library such as ASM (http:
//asm.ow2.org), the tool author rewrites the program’s assembly-level byte-
code instructions as they are loaded. This is intricate and error-prone: it must
add analysis logic, but otherwise avoid interfering with the program’s execution.
It’s also insufficient: some events (e.g. object allocation) occur not only in byte-
code but also internally within the VM, requiring a separate set of callbacks.
Using JVMTI is both difficult and commonplace, as revealed by hundreds of
Stack Overflow questions.

Bytecode instrumentation has the appealing property that the analysis and
the program share a virtual machine. The core of the analysis can therefore
be written in Java or another familiar language, and is dynamically optimized
together with the program. Unfortunately, this also creates a fundamental ten-
sion between coverage and isolation. The analysis inevitably interferes with the
program’s behavior, since it shares the same core classes. The consequences
range from the typically harmless (class initializers run in a different order after
instrumentation) to the surprisingly deadly: infinite recursion, state corruption
or deadlock. The usual escape route is to leave core libraries uninstrumented,
sacrificing coverage.

Is there a better way? Ideally, we would like a high-level programming model
that abstracts away from bytecode. We would also like high coverage, allowing
the instrumentation of core classes without risk of interference. The analysis
should also be portable to any JVM and perhaps other VMs such as Dalvik
(used in the Android operating system).

Our research has produced an “all-in-one” analysis framework that achieves
these goals. As we’ll see, it comprehensively takes care of the incidental com-
plexities of developing custom dynamic analyses, allowing programmers to focus
on the essentials.

2 Writing Dynamic Analyses is Hard

Let’s examine a real-world example. JaCoCo [2] is a code coverage tool re-
porting which classes, methods and lines of code were touched during a given
program execution. It maintains arrays of flags on a per-class basis, and instru-
ments application code to set flags as control reaches the corresponding points.
This is easy to state, but not easy to implement: JaCoCo’s core and runtime
implementation amounts to about 2000 logical lines of Java. Much of this code
is devoted to manipulating bytecode instructions. Mixed in with this is the
primary concern of creating and updating the arrays.

The extract in Figure 1 shows the kind of code involved. In-
strumentation is done using the ASM bytecode library. Similar li-

2

// in SystemPropertiesRuntime
public int generateDataAccessor(final long classid , final String classname,

final int probecount, final MethodVisitor mv) {
mv.visitMethodInsn(Opcodes.INVOKESTATIC, ”java/lang/System”,

”getProperties”, ”()Ljava/ util /Properties ;”, false);

// Stack [0]: Ljava/ util /Properties ;

mv. visitLdcInsn (key);

// Stack [1]: Ljava/lang/String ;
// Stack [0]: Ljava/ util /Properties ;

mv.visitMethodInsn(Opcodes.INVOKEVIRTUAL, ”java/util/Properties”,
”get”, ”(Ljava/lang/Object;)Ljava/lang/Object;”, false);

// Stack [0]: Ljava/lang/Object;

RuntimeData.generateAccessCall(classid , classname, probecount, mv);

// Stack [0]: [Z

return 6; // Maximum local stack size is 3
}

Figure 1: Direct bytecode instrumentation in JaCoCo [2]

braries include Shrike (http://wala.sourceforge.net/wiki/index.php/
Shrike_technical_overview), which offers a patch-like abstraction on byte-
code, and Javassist [3], which integrates into the Java class-loading infrastruc-
ture.

The intention of this code is simple: getting a local reference to a system-
wide array of flags corresponding to the lines of code covered. The array is
retrieved via Java’s system properties object; notice how a canned bytecode
sequence for calling System.getProperty() is spliced in by manually assembling
bytecode (“visit” means “append instruction to the output buffer”) and explic-
itly managing the operand stack.

We can also see the potential for interference problems. The library method
System.getProperties() might itself be instrumented. To avoid infinite recursion,
we need to arrange for the instrumentation to call an uninstrumented version of
it. Alternatively, we could exclude the method from instrumentation entirely (as
is done by JaCoCo), but then we would not measure its coverage. In general, this
sharing of library state between program and instrumentation risks modifying
the program behavior in unforeseeable ways, depending on the internals of the
library [4].

These difficulties motivate a different approach. Developing a dynamic anal-
ysis involves writing two different kinds of code. Some code does instrumen-
tation—inserting logic into the base program, to collect low-level observations.
Other code does analysis, turning these observations into the high-level out-

3

put desired by the user. In most cases, the inserted code is simple: it collects
contextual information at the insertion site (e.g., the index of the bytecode in-
struction that has been hit, which class and method it is in, etc.). By contrast,
the analysis might perform complex computations to aggregate and filter the
output.

Ideally, therefore, analyses would be written in an ordinary, powerful,
general-purpose programming language. Instrumentation, by contrast, inserts
only simple code, but requires some specialized notation to specify what infor-
mation to collect and when. Mixing instrumentation and analysis tends to make
both kinds of code unnecessarily complex [5]. In our example, the array retrieved
by the getProperties() call in Figure 1 is really part of the analysis—it is used
to aggregate code coverage events—yet is being dealt with by instrumentation.
We would like a design that keeps the two separate.

Although the inserted code is simple, inserting it is not. This is a problem
of meta-programming—modifying the structure of another program. It must
transform arbitrary bytecode to collect the required information (what) at the
required points (where) while otherwise faithfully preserving its semantics. Nor-
mally, instrumentation is viewed as a special case of program transformation,
and programmed by manipulating free-form lists of instructions. Although flexi-
ble, this is needlessly onerous, since instrumentation seeks only to add behavior,
not modify it. Rather than manipulating raw instructions, we require a carefully
designed set of primitives which express addition of code straightforwardly.

We find inspiration for these primitives in aspect-oriented programming
(AOP) [6], and its notions of join points (dynamic points in execution) and ad-
vice (code snippets inserted into existing code). It is possible to use an existing
aspect-oriented language like AspectJ for some instrumentation tasks, but this
suffers numerous limitations: AspectJ cannot instrument core library classes
(conservatively avoiding interference problems) and lacks definitions for many
of the intra-procedural control-flow join points commonly used in analyses, such
as basic block entry/exit.

If we specify instrumentation using aspect-like primitives, how does this
integrate with the analysis code? One way is to treat a dynamic analysis as
a (potentially distributed) event-processing system. This decouples the two
kinds of code, and abstracts away from instrumentation mechanisms. There
is a natural mapping from event-processing concepts onto dynamic program
analysis.

Events. Events reify specific moments in the execution of the base program,
along with relevant contextual information. Events are produced by instrumen-
tation and consumed by analysis.

Producers. An event producer is a unifying abstraction of various program
instrumentation mechanisms. For example, on the JVM we have two mecha-
nisms: bytecode instrumentation and JVMTI agent callbacks [1].

4

Event ConsumerEvent Producer

(:dx)

Instrumentation Server

Shadow VM

Consumer

Programming Model

VM Context

Event Dispatcher

Analysis

Producer 

Programming Model

DiSL Snippet

Observed VM 3Observed VM 2Observed VM 1

Event API

Java  

Bytecode

Load

Deploy

(a) Instrumentation (b) Event Flow

(:dex2jar)

Events

Call

What events does my

analysis consume?
Compute results from

observed events

VM ContextVM Context

Figure 2: Overview of the ShadowVM framework.

Consumers. An event consumer is a unifying abstraction of analysis code. An
analysis specifies only which events it requires, not how they are collected. It
consumes these events and generates output useful to the application developer.

3 The ShadowVM Framework

The ShadowVM framework is the “all in one” system we have built to implement
our vision of simple custom dynamic analyses. It lets developers retain Java as
the primary development language. By separating instrumentation from anal-
ysis, it offers a higher level of abstraction than bytecode instrumentation. Fig-
ure 2 illustrates how it realizes dynamic analyses as distributed event-processing
systems. The base program executes in the observed VM, where instrumenta-
tion produces events. The framework delivers these to the analysis, executing
in the separate ShadowVM.

Producer programming model. In the observed VM, instrumentation pro-
duces events that are required by the analysis. We adopt the aspect-oriented
programming model of DiSL, a domain-specific language embedded in Java [7].
It expresses instrumentation using the abstractions of markers, guards and snip-
pets. Markers identify points in execution, which guards may filter. Snippets,
analogous to advice in AOP, are small fragments of Java code targeting the
Event API. This API accepts events for delivery to the analysis.

Events may be constructed from primitive values, strings, object identities,
and a selection of data types identifying locations in code: classes, method

5

names, and marker-defined identifiers such as basic block IDs. A library of
ready-made markers and snippets is provided to generate common bytecode
events, such as method entry/exit, basic-block entry/exit, object allocation, or
field read/write.

VM-internal events, not corresponding to bytecodes, are denoted by the unit
of resource whose lifetime they relate to: objects, threads, or the VM itself. The
framework generates events marking the disposal of resources, often useful as
triggers for analyses to clean up internal state or output results.

Consumer programming model. All analysis state and computation oc-
curs in the ShadowVM, using facilities of the shadow API [8, 9]. Its basic
abstraction is the shadow object. Logically, any object in the base program has
a corresponding shadow in the analysis. In practice, shadows are created on
demand. When an object is first passed to the Event API, it is tagged with a
unique 64-bit number, and a shadow object is created, recording this identifier
and the base object’s class. Beyond this, shadow objects’ state is user-defined,
consisting of an arbitrary key-value map. This may be used to store analysis-
specific data (e.g. timestamps, flags, etc.) and/or the real object’s contents (by
observing field writes; library code is provided). Many performance-oriented
analyses do not require object contents. Shadow strings are a special case: for
convenience, they replicate the base string contents.

Event notifications are delivered as method invocations on an analysis class
loaded in the ShadowVM, somewhat similar to remote method invocation. The
analysis developer controls the interface of this class, so each kind of event
corresponds to a method of specific signature. Generally, the developer supplies
instrumentation, typically chosen from a library, to generate these events. In
the case of lifetime events, the developer simply implements a system-defined
interface corresponding to the desired kinds of lifetime events—object death,
thread termination, or exit of the observed VM—signaling to the framework
that it must generate these events. (On the JVM, these events are generated
by registering JVMTI callbacks.)

Configuration issues. For use cases where only specific packages must be
instrumented, the developer may define a “scope” (set of classes to instru-
ment) and/or a global exclusion list. Wildcards are supported, e.g., exclude
"java.*". In the absence of these, all bytecode is subject to instrumentation;
unlike other systems, our system safely supports this. Additionally, each instru-
mentation can be guarded by conditions that are evaluated at instrumentation
time, referring to any property of the class/method being instrumented.

4 Supporting the Android Platform

Android is a Linux-based multi-user operating system. Applications are written
in Java, and executed in the Dalvik Virtual Machine (DVM). The DVM lacks
certain features that enable implementation of the ShadowVM framework on

6

the JVM, most notably a tool interface akin to JVMTI. Extending the Shad-
owVM to support Android therefore required overcoming various conceptual
and technical challenges.

Multi-process application support. Although written in Java, Android
applications adhere to a particular component model, and expose multiple en-
try points. By default, the components of a single application execute in a
single DVM, but any component can be configured to execute in a separate
DVM, distributing the application across address spaces. An analysis observing
an Android application therefore needs to handle events from multiple VM in-
stances. ShadowVM enables this by associating the observed events and object
identities with a “VM context” provided to the analysis with each delivered
event (Figure 2b). New DVM instances are spawned from a bootstrap VM
(the Zygote), requiring the ShadowVM to replicate shadow objects from the
zygote’s shadow into its new child. Replication of any custom data associated
with shadow objects in the parent VM is handled by the analysis, but this only
concerns objects that were exposed to the analysis during initialization of the
system classes in the Zygote.

Inter-process communication events. Android applications execute in a
private sandbox. Each application has its own data, and can communicate and
exchange data with other applications or services through the Binder inter-
process communication (IPC) mechanism. The communication follows a syn-
chronous client-server model, transferring control flow between client and server
with each request and response. To enable observation of multi-process applica-
tions and their interactions with the wider system, the ShadowVM framework
on Android expands the range of VM-internal events to include the low-level
IPC operations that Android applications use for communication and control
transfer.

Tool interface essentials. On the JVM, JVMTI is used to instrument classes
on load and to implement the generation of VM-internal object, thread, and VM
lifecycle events. DVM lacks any similar tool interface, so we needed to modify
the DVM to provide the essential subset of JVMTI features. This includes object
tagging, hooks in the garbage collector (when freeing tagged objects) and in
various other places (e.g., class loading, IPC, thread creation and termination,
etc.). Our modifications to DVM are encapsulated in well-defined interfaces,
making them portable to the new Android Runtime (ART, from the recent
Android 5.0 release).

Bytecode transformation and class loading. The DVM implements a
register-based machine, and works with bytecode converted from the stack-based
Java bytecode. Working directly with Dalvik bytecode would place an added
burden on analysis developers, requiring platform-specific instrumentations to
enable development of multi-platform analyses. We avoid this by converting the

7

Dalvik bytecode to Java bytecode for instrumentation, and converting it back
for execution (Figure 2a). Unlike the JVM, which loads individual classes as
streams of bytes, the DVM loads multiple classes at a time by mapping a class
archive directly into memory. This forces us to instrument classes in batches
before they are mapped into memory, to preserve transparency of load-time
instrumentation.

5 Example Analyses

Support Lines of Code

JVM DVM Full Coverage Producer Consumer

Original JaCoCo Yes Yes No 1389 570

ShadowVM JaCoCo Yes Yes Yes 281 82

Original ElephantTracks Only Java 1.6 No Yes 6668 2770

ShadowVM ElephantTracks Yes Yes Yes 608 1628

 @SyntheticLocal

 static boolean encounterBranch = false;

 @Before (marker = BranchMarker.class)

 static void beforeBranchInstruction () {

 encounterBranch = true;

 }

 @AfterReturning (marker = IfThenBranchMarker.class)

 static void thenBranch (final CodeCoverageContext c) {

 if (encounterBranch) {

 CodeCoverageAnalysisProxy.branchTaken (

 c.classIdentifier (),

 c.methodIdentifier (),

 c.branchIndex ());

 encounterBranch = false;

 }

 }

 @AfterReturning (marker = IfElseBranchMarker.class)

 static void elseBranch (final CodeCoverageContext c) {

 if (encounterBranch) {

 CodeCoverageAnalysisProxy.branchTaken (

 c.classIdentifier (),

 c.methodIdentifier (),

 c.branchIndex ());

 encounterBranch = false;

 }

 }

Event Producer Event Consumer

public class CodeCoverageAnalysis implements

 VmExitListener {

 public void branchTaken(ShadowString classID,

 ShadowString methodID,

 int branchIndex) {

 ... // Update coverage profile

 // to corresponding method

 }

 ...

 @Override

 public void onVMExit (Context context) {

 ... // Dump coverage profile of the process

 }

}

Figure 3: Top: JaCoCo on ShadowVM; bottom: original JaCoCo and Elephant-
Tracks versus our implementations on ShadowVM

To illustrate the framework, we implemented the functionality of the popular
code coverage tool JaCoCo [2] using ShadowVM. The upper part of Figure 3
shows the code snippets for branch event producer (instrumentation) and branch
event consumer (analysis). The instrumentation assigns each branch a dedicated
number for indexing, and emits an event indicating which branch is taken. This

8

code illustrates our aspect-oriented primitives: Java attributes mark a snippet
(a static method) with places where it should be inserted (here before and after
branches). The extra “synthetic” local boolean is inserted into each method
body and used to select only the taken branches. Although snippets appear
as static methods within a Java class, this is simply a convenient container for
annotated fragments of code and auxiliary definitions (like the synthetic local).
It is never loaded nor instantiated, and is used only by the instrumentation
engine.

The snippet produces an event consisting of a string and an integer, uniquely
identifying the branch. The analysis maintains a simple data structure tracking
taken branches, updated in reaction to the events received.

The bottom part of Figure 3 compares the original JaCoCo with the Shad-
owVM version. While both versions support the JVM and the DVM, only
the ShadowVM version allows code coverage analysis of core library classes.
Moreover, our framework enables a more compact implementation of both in-
strumentation and analysis; overall, the ShadowVM version has fewer than 19%
of the logical lines of code of the original JaCoCo.

We also implemented the object-lifetime analyzer ElephantTracks [10] with
ShadowVM. The original ElephantTracks is implemented as a native JVMTI
agent in C to avoid interference. With ShadowVM, the tool can be implemented
in pure Java. The original ElephantTracks only runs on Java 6, whereas the
ShadowVM version also supports Java 7, Java 8, and the DVM. Overall, the
ShadowVM version has fewer than 24% of the logical lines of code of the original
ElephantTracks.

In summary, ShadowVM reduces development effort for many analysis tools,
thanks to its high-level programming model, multi-platform support and built-in
comprehensive bytecode coverage.

6 Discussion

Any practical system makes certain trade-offs in its design and implementation.
We conclude this article with a discussion of the strengths and limitations of
our framework.

6.1 Benefits and Deployment Scenarios

Expressiveness, isolation and complete bytecode coverage. Our ap-
proach satisfies the goals we identified at the start of the article. It offers a
favorable trade-off between a high-level programming model and expressiveness.
By deploying the analysis in a separate process, interference with the observed
application is minimized, and analyses can observe code in core classes, right
from the earliest “bootstrapping” stages of VM execution.

Multi-platform analysis. With our framework, all user code is portable:
an analysis written for Java applications also supports Android applications

9

out-of-the-box. Our framework also offers multi-process support, such that one
analysis process can handle the events of multiple observed JVMs and DVMs.
This provides a sound basis for analyzing distributed systems.

Parallelism and available resources. Because the event-consuming part of
an analysis executes in a separate VM, our framework implicitly parallelizes the
execution of the observed application and the analysis. Since the analysis VM
can be deployed on a different machine than the observed VM, our approach
minimizes the extra memory requirements on the observed VM. This enables
heavyweight analysis even on resource-constrained devices.

6.2 Limitations

Users of our dynamic program analysis framework need to be aware of the
following limitations, which our ongoing research is addressing.

Overhead. Since the event-producing and event-consuming parts of an anal-
ysis are separate processes, some communication overheads are incurred. We
refer to [8] for a performance evaluation of our framework. The implementation
of object tagging in standard JVMs proves a bottleneck; this is used to assign
globally unique identities to objects that are captured in events, and is stressed
heavily by our system.

DVM quirks. For the analysis of Android applications, a version-specific
patch needs to be applied to the DVM first. The conversion between JVM and
Dalvik bytecode introduces some bias in metrics related to individual bytecodes
or basic blocks. For example, the basic block size may change upon bytecode
conversion.

Event ordering. Concurrency raises some subtle issues in event processing.
Our framework supports different event ordering semantics (particularly, global
order and per-thread program order [8]), to cater to different analyses’ require-
ments. However, it does not guarantee that the occurrence of an event and the
generation of the event happen atomically. Consequently, the happens-before
relationship within an observed VM may not always be preserved. Other pro-
gram analysis frameworks suffer from the same limitations, independently of
whether they perform the analysis within the observed VM or in a separate
process.

Native code. Our system cannot observe execution in native code, un-
like whole-program dynamic instrumentation systems such as Valgrind [11] or
DynamoRIO [12]. These offer instrumentation interfaces at the level of portable
intermediate code—much lower-level than our approach. Also, they provide no
way to recover a source-level view of a Java program’s state in terms of objects,
fields, methods, etc.. Systems such as DTrace [13], which instrument native

10

code at both user and kernel levels, face in-kernel isolation problems analogous
to those we face in the observed VM. The solutions are similar: to avoid inter-
ference, DTrace instrumentation traps to a wait-free code path (analogous to
our snippets) which buffers data (events) for hand-off to a sandboxed consumer
(the analysis), while sharing no state with the rest of the kernel.

Synchronous analysis. In our system, events are processed remotely and
asynchronously by the analysis. This gives the analysis no opportunity to “go
back” and inspect more program state than it was initially passed. Instead,
all the required state must be captured up-front in the instrumentation. Thus,
ShadowVM is not suited for implementing interactive debuggers. Furthermore,
the analysis cannot synchronously request a heap dump. We could request the
heap dump only later, when it may not show the relevant features. Alterna-
tively, we could maintain a “shadow heap” in the analysis, by observing all
events that change the object graph (i.e., field writes). However, this usually
exhibits high overhead. Also, changes to the object graph in native code (e.g.,
through the JNI, upon object cloning, or upon deserialization) are not cap-
tured by our current implementation, meaning the shadow heap may not be
completely accurate.

6.3 Availability

Our program analysis framework is public available as an open-source software
project hosted on OW2 (http://disl.ow2.org/). The current release DiSL 2.1
includes both DiSL and ShadowVM; it has been endorsed by the SPEC Re-
search Group and included in their tool repository (http://research.spec.
org/tools/overview/disl.html). A detailed tutorial helps getting started
with DiSL [14]. DVM support is currently available as a prototype (http:
//dag.inf.usi.ch/downloads); it will be part of the forthcoming DiSL 3.0
open-source release.

Acknowledgments

The research presented in this paper has been supported by the Swiss Na-
tional Science Foundation (projects CRSII2 136225 and 200021 141002), by
the European Commission (contract ACP2-GA-2013-605442) and by Oracle
(ERO project 1332).

Biographies

Yudi Zheng is a PhD student in the Faculty of Informatics, Università della
Svizzera italiana (USI), Switzerland. He holds an MSc from Shanghai Jiang
Tong University, China. His research interests include program analysis and
virtual machines. Contact him at yudi.zheng@usi.ch.

11

Stephen Kell is a Research Associate at the Computer Laboratory, Uni-
versity of Cambridge, United Kingdom. He holds a PhD from the Uni-
versity of Cambridge. His research interests include the design and imple-
mentation of programming languages and related tools. Contact him at
stephen.kell@cl.cam.ac.uk.

Lubomı́r Bulej is a Senior Researcher at the Faculty of Informatics, Uni-
versità della Svizzera italiana (USI), Switzerland, currently on leave from his
assistant professor position at the Department of Distributed and Dependable
Systems, Charles University in Prague, Czech Republic. He holds an MSc from
the Czech Technical University in Prague, and a PhD from the Charles Uni-
versity in Prague. His research interests include performance evaluation and
monitoring, dynamic program analysis, and operating systems. He is a member
of the ACM. Contact him at lubomir.bulej@usi.ch.

Haiyang Sun is a PhD student in the Faculty of Informatics, Università
della Svizzera italiana (USI), Switzerland. He holds an MSc from Shanghai
Jiang Tong University, China. His research interests include program analysis
and cloud computing. Contact him at haiyang.sun@usi.ch.

Walter Binder is an Associate Professor in the Faculty of Informatics, Uni-
versità della Svizzera italiana (USI), Switzerland. He holds an MSc, a PhD, and
a Venia Docendi from Vienna University of Technology, Austria. Before joining
USI, he was a post-doctoral researcher in the Artificial Intelligence Laboratory,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. His research
interests include dynamic program analysis, virtual machines, parallel program-
ming, and cloud computing. Walter Binder is an IEEE and ACM member.
Contact him at walter.binder@usi.ch.

References

[1] Oracle, “JVM Tool Interface (JVMTI) Version 1.2.” URL: http://docs.
oracle.com/javase/8/docs/platform/jvmti/jvmti.html.

[2] EclEmma, “JaCoCo Java Code Coverage Library.” URL: http://www.
eclemma.org/jacoco/.

[3] S. Chiba, “Load-time structural reflection in Java,” in ECOOP ’00: Pro-
ceedings of the 14th European Conference on Object-Orientd Programming,
vol. 1850 of LNCS, pp. 313–336, 2000.

[4] S. Kell, D. Ansaloni, W. Binder, and L. Marek, “The JVM is not observable
enough (and what to do about it),” in VMIL ’12: Proceedings of the 6th
ACM Workshop on Virtual Machines and Intermediate Languages, pp. 33–
38, 2012.

12

[5] D. Ansaloni, S. Kell, Y. Zheng, L. Bulej, W. Binder, and P. Tůma, “En-
abling modularity and re-use in dynamic program analysis tools for the
Java virtual machine,” in ECOOP ’13: Proceedings of the 27th European
Conference on Object-Oriented Programming, vol. 7920 of LNCS, pp. 352–
377, 2013.

[6] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J. Irwin, “Aspect-oriented programming,” in ECOOP ’97: Pro-
ceedings of the 11th European Conference on Object-Oriented Programming,
vol. 1241 of LNCS, pp. 220–242, 1997.

[7] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi,
“DiSL: A domain-specific language for bytecode instrumentation,” in
AOSD ’12: Proceedings of the 11th Annual International Conference on
Aspect-oriented Software Development, pp. 239–250, 2012.

[8] L. Marek, S. Kell, Y. Zheng, L. Bulej, W. Binder, P. Tůma, D. Ansaloni,
A. Sarimbekov, and A. Sewe, “ShadowVM: Robust and comprehensive dy-
namic program analysis for the Java platform,” in GPCE ’13: Proceedings
of the 12th International Conference on Generative Programming: Con-
cepts and Experiences, pp. 105–114, 2013.

[9] H. Sun, Y. Zheng, L. Bulej, A. Villazón, Z. Qi, P. Tůma, and W. Binder,
“A programming model and framework for comprehensive dynamic analysis
on Android,” in MODULARITY ’15: Proceedings of the 14th International
Conference on Modularity, pp. 133–145, 2015.

[10] N. P. Ricci, S. Z. Guyer, and J. E. B. Moss, “Elephant Tracks: Portable
production of complete and precise GC traces,” in Proceedings of the 2013
International Symposium on Memory Management, pp. 109–118, 2013.

[11] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” SIGPLAN Not., vol. 42, no. 6, pp. 89–
100, 2007.

[12] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent dynamic instru-
mentation,” in VEE ’12: Proceedings of the 8th ACM SIGPLAN/SIGOPS
conference on Virtual Execution Environments, pp. 133–144, 2012.

[13] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic instrumen-
tation of production systems,” in ATEC ’04: Proceedings of the USENIX
Annual Technical Conference, pp. 2–15, 2004.

[14] L. Marek, Y. Zheng, D. Ansaloni, L. Bulej, A. Sarimbekov, W. Binder, and
P. Tůma, “Introduction to dynamic program analysis with DiSL,” Science
of Computer Programming, vol. 98, part 1, pp. 100–115, 2015.

13

